13#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
14#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
75 switch ((Imm >> 6) & 0x7) {
101 assert((Imm & 0x3f) == Imm &&
"Illegal shifted immedate value!");
111 return (STEnc << 6) | (Imm & 0x3f);
125 assert((Imm & 0x7) == Imm &&
"invalid immediate!");
173 assert((Imm & 0x7) == Imm &&
"Illegal shifted immedate value!");
180 return (Imm & 0x1) != 0;
207 return ((elt & 1) << (
size-1)) | (elt >> 1);
216 if (Imm == 0ULL || Imm == ~0ULL ||
228 if ((Imm & Mask) != ((Imm >>
Size) & Mask)) {
241 assert(
I < 64 &&
"undefined behavior");
256 assert(
Size >
I &&
"I should be smaller than element size");
268 unsigned N = ((NImms >> 6) & 1) ^ 1;
270 Encoding = (
N << 12) | (Immr << 6) | (NImms & 0x3f);
286 assert(res &&
"invalid logical immediate");
296 unsigned N = (val >> 12) & 1;
297 unsigned immr = (val >> 6) & 0x3f;
298 unsigned imms = val & 0x3f;
300 assert((regSize == 64 ||
N == 0) &&
"undefined logical immediate encoding");
302 assert(len >= 0 &&
"undefined logical immediate encoding");
303 unsigned size = (1 << len);
304 unsigned R = immr & (
size - 1);
305 unsigned S = imms & (
size - 1);
306 assert(S !=
size - 1 &&
"undefined logical immediate encoding");
307 uint64_t pattern = (1ULL << (S + 1)) - 1;
308 for (
unsigned i = 0; i < R; ++i)
312 while (
size != regSize) {
313 pattern |= (pattern <<
size);
325 unsigned N = (val >> 12) & 1;
326 unsigned imms = val & 0x3f;
328 if (regSize == 32 &&
N != 0)
333 unsigned size = (1 << len);
334 unsigned S = imms & (
size - 1);
347 uint8_t Sign = (Imm >> 7) & 0x1;
348 uint8_t Exp = (Imm >> 4) & 0x7;
349 uint8_t Mantissa = Imm & 0xf;
358 I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
359 I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
360 I |= (Exp & 0x3) << 23;
362 return bit_cast<float>(
I);
369 uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
370 int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;
371 int32_t Mantissa = Imm.getZExtValue() & 0x3ff;
380 if (Exp < -3 || Exp > 4)
382 Exp = ((Exp+3) & 0x7) ^ 4;
384 return ((
int)Sign << 7) | (Exp << 4) | Mantissa;
395 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
396 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;
397 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;
401 if (Mantissa & 0x7ffff)
404 if ((Mantissa & 0xf) != Mantissa)
408 if (Exp < -3 || Exp > 4)
410 Exp = ((Exp+3) & 0x7) ^ 4;
412 return ((
int)Sign << 7) | (Exp << 4) | Mantissa;
423 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
424 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;
425 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
429 if (Mantissa & 0xffffffffffffULL)
432 if ((Mantissa & 0xf) != Mantissa)
436 if (Exp < -3 || Exp > 4)
438 Exp = ((Exp+3) & 0x7) ^ 4;
440 return ((
int)Sign << 7) | (Exp << 4) | Mantissa;
453 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
454 ((Imm & 0xffffff00ffffff00ULL) == 0);
458 return (Imm & 0xffULL);
463 return (EncVal << 32) | EncVal;
468 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
469 ((Imm & 0xffff00ffffff00ffULL) == 0);
473 return (Imm & 0xff00ULL) >> 8;
478 return (EncVal << 40) | (EncVal << 8);
483 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
484 ((Imm & 0xff00ffffff00ffffULL) == 0);
488 return (Imm & 0xff0000ULL) >> 16;
493 return (EncVal << 48) | (EncVal << 16);
498 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
499 ((Imm & 0x00ffffff00ffffffULL) == 0);
503 return (Imm & 0xff000000ULL) >> 24;
508 return (EncVal << 56) | (EncVal << 24);
513 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
514 (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
515 ((Imm & 0xff00ff00ff00ff00ULL) == 0);
519 return (Imm & 0xffULL);
524 return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
529 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
530 (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
531 ((Imm & 0x00ff00ff00ff00ffULL) == 0);
535 return (Imm & 0xff00ULL) >> 8;
540 return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
545 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
546 ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
550 return (Imm & 0xff00ULL) >> 8;
555 return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
560 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
561 ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
566 return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
570 return (Imm & 0x00ff0000ULL) >> 16;
575 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
576 ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
577 ((Imm >> 56) == (Imm & 0x000000ffULL));
581 return (Imm & 0xffULL);
586 EncVal |= (EncVal << 8);
587 EncVal |= (EncVal << 16);
588 EncVal |= (EncVal << 32);
595 uint64_t ByteA = Imm & 0xff00000000000000ULL;
596 uint64_t ByteB = Imm & 0x00ff000000000000ULL;
597 uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
598 uint64_t ByteD = Imm & 0x000000ff00000000ULL;
599 uint64_t ByteE = Imm & 0x00000000ff000000ULL;
600 uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
601 uint64_t ByteG = Imm & 0x000000000000ff00ULL;
602 uint64_t ByteH = Imm & 0x00000000000000ffULL;
604 return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
605 (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
606 (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
607 (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
608 (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
609 (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
610 (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
611 (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
615 uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
616 uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
617 uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
618 uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
619 uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
620 uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
621 uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
622 uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
624 uint8_t EncVal = BitA;
644 if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
645 if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
646 if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
647 if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
648 if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
649 if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
650 if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
651 if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
657 uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
658 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
659 (BString == 0x1f || BString == 0x20) &&
660 ((Imm & 0x0007ffff0007ffffULL) == 0);
664 uint8_t BitA = (Imm & 0x80000000ULL) != 0;
665 uint8_t BitB = (Imm & 0x20000000ULL) != 0;
666 uint8_t BitC = (Imm & 0x01000000ULL) != 0;
667 uint8_t BitD = (Imm & 0x00800000ULL) != 0;
668 uint8_t BitE = (Imm & 0x00400000ULL) != 0;
669 uint8_t BitF = (Imm & 0x00200000ULL) != 0;
670 uint8_t BitG = (Imm & 0x00100000ULL) != 0;
671 uint8_t BitH = (Imm & 0x00080000ULL) != 0;
673 uint8_t EncVal = BitA;
693 if (Imm & 0x80) EncVal |= 0x80000000ULL;
694 if (Imm & 0x40) EncVal |= 0x3e000000ULL;
695 else EncVal |= 0x40000000ULL;
696 if (Imm & 0x20) EncVal |= 0x01000000ULL;
697 if (Imm & 0x10) EncVal |= 0x00800000ULL;
698 if (Imm & 0x08) EncVal |= 0x00400000ULL;
699 if (Imm & 0x04) EncVal |= 0x00200000ULL;
700 if (Imm & 0x02) EncVal |= 0x00100000ULL;
701 if (Imm & 0x01) EncVal |= 0x00080000ULL;
702 return (EncVal << 32) | EncVal;
707 uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
708 return ((BString == 0xff || BString == 0x100) &&
709 ((Imm & 0x0000ffffffffffffULL) == 0));
713 uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
714 uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
715 uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
716 uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
717 uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
718 uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
719 uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
720 uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
722 uint8_t EncVal = BitA;
742 if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
743 if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
744 else EncVal |= 0x4000000000000000ULL;
745 if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
746 if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
747 if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
748 if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
749 if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
750 if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
751 return (EncVal << 32) | EncVal;
757 auto Parts =
bit_cast<std::array<
T,
sizeof(int64_t) /
sizeof(
T)>>(Imm);
767 int64_t Mask = ~int64_t(std::numeric_limits<std::make_unsigned_t<T>>
::max());
768 if ((Imm & Mask) != 0 && (Imm & Mask) != Mask)
774 return int8_t(Imm) ==
T(Imm);
779 return int16_t(Imm) ==
T(Imm);
787 bool IsInt8t = std::is_same<int8_t, std::make_signed_t<T>>
::value ||
788 std::is_same<int8_t, T>::value;
789 return uint8_t(Imm) == Imm || (!IsInt8t &&
uint16_t(Imm & ~0xff) == Imm);
794 if (isSVECpyImm<int64_t>(Imm))
797 auto S = bit_cast<std::array<int32_t, 2>>(Imm);
798 auto H = bit_cast<std::array<int16_t, 4>>(Imm);
799 auto B = bit_cast<std::array<int8_t, 8>>(Imm);
801 if (isSVEMaskOfIdenticalElements<int32_t>(Imm) && isSVECpyImm<int32_t>(S[0]))
803 if (isSVEMaskOfIdenticalElements<int16_t>(Imm) && isSVECpyImm<int16_t>(
H[0]))
805 if (isSVEMaskOfIdenticalElements<int8_t>(Imm) && isSVECpyImm<int8_t>(
B[0]))
811 for (
int Shift = 0; Shift <= RegWidth - 16; Shift += 16)
812 if ((
Value & ~(0xffffULL << Shift)) == 0)
820 Value &= 0xffffffffULL;
823 if (
Value == 0 && Shift != 0)
826 return (
Value & ~(0xffffULL << Shift)) == 0;
836 Value &= 0xffffffffULL;
848 Value &= 0xffffffffULL;
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Given that RA is a live value
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements the C++20 <bit> header.
APInt bitcastToAPInt() const
Class for arbitrary precision integers.
LLVM Value Representation.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static bool isValidDecodeLogicalImmediate(uint64_t val, unsigned regSize)
isValidDecodeLogicalImmediate - Check to see if the logical immediate value in the form "N:immr:imms"...
static bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm)
Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth)
static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth)
static uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize)
decodeLogicalImmediate - Decode a logical immediate value in the form "N:immr:imms" (where the immr a...
static unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET, bool DoShift)
getExtendImm - Encode the extend type and amount for a load/store inst: doshift: should the offset be...
static unsigned getShiftValue(unsigned Imm)
getShiftValue - Extract the shift value.
static uint64_t decodeAdvSIMDModImmType4(uint8_t Imm)
static bool isLogicalImmediate(uint64_t imm, unsigned regSize)
isLogicalImmediate - Return true if the immediate is valid for a logical immediate instruction of the...
static uint8_t encodeAdvSIMDModImmType2(uint64_t Imm)
static bool isSVEAddSubImm(int64_t Imm)
Returns true if Imm is valid for ADD/SUB.
static bool processLogicalImmediate(uint64_t Imm, unsigned RegSize, uint64_t &Encoding)
processLogicalImmediate - Determine if an immediate value can be encoded as the immediate operand of ...
static bool isAdvSIMDModImmType9(uint64_t Imm)
static uint64_t decodeAdvSIMDModImmType2(uint8_t Imm)
static bool isAdvSIMDModImmType4(uint64_t Imm)
static unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET, unsigned Imm)
getArithExtendImm - Encode the extend type and shift amount for an arithmetic instruction: imm: 3-bit...
static uint64_t decodeAdvSIMDModImmType12(uint8_t Imm)
static bool isAdvSIMDModImmType5(uint64_t Imm)
static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth)
static unsigned getArithShiftValue(unsigned Imm)
getArithShiftValue - get the arithmetic shift value.
static uint64_t decodeAdvSIMDModImmType11(uint8_t Imm)
static int getFP32Imm(const APInt &Imm)
getFP32Imm - Return an 8-bit floating-point version of the 32-bit floating-point value.
static float getFPImmFloat(unsigned Imm)
static AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm)
getExtendType - Extract the extend type for the offset operand of loads/stores.
static uint8_t encodeAdvSIMDModImmType7(uint64_t Imm)
static uint64_t decodeAdvSIMDModImmType1(uint8_t Imm)
static uint8_t encodeAdvSIMDModImmType12(uint64_t Imm)
static uint8_t encodeAdvSIMDModImmType10(uint64_t Imm)
static uint8_t encodeAdvSIMDModImmType9(uint64_t Imm)
static bool isSVEMaskOfIdenticalElements(int64_t Imm)
Returns true if Imm is the concatenation of a repeating pattern of type T.
static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth)
static uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize)
encodeLogicalImmediate - Return the encoded immediate value for a logical immediate instruction of th...
static const char * getShiftExtendName(AArch64_AM::ShiftExtendType ST)
getShiftName - Get the string encoding for the shift type.
static bool isAdvSIMDModImmType7(uint64_t Imm)
static uint64_t decodeAdvSIMDModImmType3(uint8_t Imm)
static uint64_t decodeAdvSIMDModImmType7(uint8_t Imm)
unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET)
Mapping from extend bits to required operation: shifter: 000 ==> uxtb 001 ==> uxth 010 ==> uxtw 011 =...
static bool isSVECpyImm(int64_t Imm)
Returns true if Imm is valid for CPY/DUP.
static uint8_t encodeAdvSIMDModImmType5(uint64_t Imm)
static int getFP64Imm(const APInt &Imm)
getFP64Imm - Return an 8-bit floating-point version of the 64-bit floating-point value.
static uint64_t ror(uint64_t elt, unsigned size)
static bool isAdvSIMDModImmType10(uint64_t Imm)
static AArch64_AM::ShiftExtendType getExtendType(unsigned Imm)
getExtendType - Extract the extend type for operands of arithmetic ops.
static int getFP16Imm(const APInt &Imm)
getFP16Imm - Return an 8-bit floating-point version of the 16-bit floating-point value.
static uint64_t decodeAdvSIMDModImmType9(uint8_t Imm)
static uint64_t decodeAdvSIMDModImmType10(uint8_t Imm)
static uint64_t decodeAdvSIMDModImmType5(uint8_t Imm)
static uint64_t decodeAdvSIMDModImmType8(uint8_t Imm)
static uint8_t encodeAdvSIMDModImmType8(uint64_t Imm)
static bool isAdvSIMDModImmType12(uint64_t Imm)
static uint8_t encodeAdvSIMDModImmType11(uint64_t Imm)
static AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm)
static bool isAdvSIMDModImmType11(uint64_t Imm)
static uint8_t encodeAdvSIMDModImmType6(uint64_t Imm)
static AArch64_AM::ShiftExtendType getShiftType(unsigned Imm)
getShiftType - Extract the shift type.
static bool isAdvSIMDModImmType8(uint64_t Imm)
static uint8_t encodeAdvSIMDModImmType4(uint64_t Imm)
static unsigned getShifterImm(AArch64_AM::ShiftExtendType ST, unsigned Imm)
getShifterImm - Encode the shift type and amount: imm: 6-bit shift amount shifter: 000 ==> lsl 001 ==...
static bool isAdvSIMDModImmType6(uint64_t Imm)
static bool getMemDoShift(unsigned Imm)
getMemDoShift - Extract the "do shift" flag value for load/store instructions.
static uint8_t encodeAdvSIMDModImmType1(uint64_t Imm)
static uint8_t encodeAdvSIMDModImmType3(uint64_t Imm)
static bool isAdvSIMDModImmType2(uint64_t Imm)
static uint64_t decodeAdvSIMDModImmType6(uint8_t Imm)
static bool isAdvSIMDModImmType3(uint64_t Imm)
static bool isAdvSIMDModImmType1(uint64_t Imm)
This is an optimization pass for GlobalISel generic memory operations.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
int countl_one(T Value)
Count the number of ones from the most significant bit to the first zero bit.
To bit_cast(const From &from) noexcept
Expected< ExpressionValue > max(const ExpressionValue &Lhs, const ExpressionValue &Rhs)
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.