LLVM 19.0.0git
ARMParallelDSP.cpp
Go to the documentation of this file.
1//===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Armv6 introduced instructions to perform 32-bit SIMD operations. The
11/// purpose of this pass is do some IR pattern matching to create ACLE
12/// DSP intrinsics, which map on these 32-bit SIMD operations.
13/// This pass runs only when unaligned accesses is supported/enabled.
14//
15//===----------------------------------------------------------------------===//
16
17#include "ARM.h"
18#include "ARMSubtarget.h"
20#include "llvm/ADT/Statistic.h"
28#include "llvm/IR/IntrinsicsARM.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/NoFolder.h"
32#include "llvm/Pass.h"
33#include "llvm/PassRegistry.h"
34#include "llvm/Support/Debug.h"
37
38using namespace llvm;
39using namespace PatternMatch;
40
41#define DEBUG_TYPE "arm-parallel-dsp"
42
43STATISTIC(NumSMLAD , "Number of smlad instructions generated");
44
45static cl::opt<bool>
46DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
47 cl::desc("Disable the ARM Parallel DSP pass"));
48
50NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16),
51 cl::desc("Limit the number of loads analysed"));
52
53namespace {
54 struct MulCandidate;
55 class Reduction;
56
57 using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>;
58 using MemInstList = SmallVectorImpl<LoadInst*>;
60
61 // 'MulCandidate' holds the multiplication instructions that are candidates
62 // for parallel execution.
63 struct MulCandidate {
64 Instruction *Root;
65 Value* LHS;
66 Value* RHS;
67 bool Exchange = false;
68 bool Paired = false;
69 SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen.
70
71 MulCandidate(Instruction *I, Value *lhs, Value *rhs) :
72 Root(I), LHS(lhs), RHS(rhs) { }
73
74 bool HasTwoLoadInputs() const {
75 return isa<LoadInst>(LHS) && isa<LoadInst>(RHS);
76 }
77
78 LoadInst *getBaseLoad() const {
79 return VecLd.front();
80 }
81 };
82
83 /// Represent a sequence of multiply-accumulate operations with the aim to
84 /// perform the multiplications in parallel.
85 class Reduction {
86 Instruction *Root = nullptr;
87 Value *Acc = nullptr;
88 MulCandList Muls;
89 MulPairList MulPairs;
91
92 public:
93 Reduction() = delete;
94
95 Reduction (Instruction *Add) : Root(Add) { }
96
97 /// Record an Add instruction that is a part of the this reduction.
98 void InsertAdd(Instruction *I) { Adds.insert(I); }
99
100 /// Create MulCandidates, each rooted at a Mul instruction, that is a part
101 /// of this reduction.
102 void InsertMuls() {
103 auto GetMulOperand = [](Value *V) -> Instruction* {
104 if (auto *SExt = dyn_cast<SExtInst>(V)) {
105 if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0)))
106 if (I->getOpcode() == Instruction::Mul)
107 return I;
108 } else if (auto *I = dyn_cast<Instruction>(V)) {
109 if (I->getOpcode() == Instruction::Mul)
110 return I;
111 }
112 return nullptr;
113 };
114
115 auto InsertMul = [this](Instruction *I) {
116 Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0);
117 Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0);
118 Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS));
119 };
120
121 for (auto *Add : Adds) {
122 if (Add == Acc)
123 continue;
124 if (auto *Mul = GetMulOperand(Add->getOperand(0)))
125 InsertMul(Mul);
126 if (auto *Mul = GetMulOperand(Add->getOperand(1)))
127 InsertMul(Mul);
128 }
129 }
130
131 /// Add the incoming accumulator value, returns true if a value had not
132 /// already been added. Returning false signals to the user that this
133 /// reduction already has a value to initialise the accumulator.
134 bool InsertAcc(Value *V) {
135 if (Acc)
136 return false;
137 Acc = V;
138 return true;
139 }
140
141 /// Set two MulCandidates, rooted at muls, that can be executed as a single
142 /// parallel operation.
143 void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1,
144 bool Exchange = false) {
145 LLVM_DEBUG(dbgs() << "Pairing:\n"
146 << *Mul0->Root << "\n"
147 << *Mul1->Root << "\n");
148 Mul0->Paired = true;
149 Mul1->Paired = true;
150 if (Exchange)
151 Mul1->Exchange = true;
152 MulPairs.push_back(std::make_pair(Mul0, Mul1));
153 }
154
155 /// Return the add instruction which is the root of the reduction.
156 Instruction *getRoot() { return Root; }
157
158 bool is64Bit() const { return Root->getType()->isIntegerTy(64); }
159
160 Type *getType() const { return Root->getType(); }
161
162 /// Return the incoming value to be accumulated. This maybe null.
163 Value *getAccumulator() { return Acc; }
164
165 /// Return the set of adds that comprise the reduction.
166 SetVector<Instruction*> &getAdds() { return Adds; }
167
168 /// Return the MulCandidate, rooted at mul instruction, that comprise the
169 /// the reduction.
170 MulCandList &getMuls() { return Muls; }
171
172 /// Return the MulCandidate, rooted at mul instructions, that have been
173 /// paired for parallel execution.
174 MulPairList &getMulPairs() { return MulPairs; }
175
176 /// To finalise, replace the uses of the root with the intrinsic call.
177 void UpdateRoot(Instruction *SMLAD) {
178 Root->replaceAllUsesWith(SMLAD);
179 }
180
181 void dump() {
182 LLVM_DEBUG(dbgs() << "Reduction:\n";
183 for (auto *Add : Adds)
184 LLVM_DEBUG(dbgs() << *Add << "\n");
185 for (auto &Mul : Muls)
186 LLVM_DEBUG(dbgs() << *Mul->Root << "\n"
187 << " " << *Mul->LHS << "\n"
188 << " " << *Mul->RHS << "\n");
189 LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n")
190 );
191 }
192 };
193
194 class WidenedLoad {
195 LoadInst *NewLd = nullptr;
197
198 public:
199 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide)
200 : NewLd(Wide) {
201 append_range(Loads, Lds);
202 }
203 LoadInst *getLoad() {
204 return NewLd;
205 }
206 };
207
208 class ARMParallelDSP : public FunctionPass {
209 ScalarEvolution *SE;
210 AliasAnalysis *AA;
212 DominatorTree *DT;
213 const DataLayout *DL;
214 Module *M;
215 std::map<LoadInst*, LoadInst*> LoadPairs;
216 SmallPtrSet<LoadInst*, 4> OffsetLoads;
217 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
218
219 template<unsigned>
220 bool IsNarrowSequence(Value *V);
221 bool Search(Value *V, BasicBlock *BB, Reduction &R);
222 bool RecordMemoryOps(BasicBlock *BB);
223 void InsertParallelMACs(Reduction &Reduction);
224 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
225 LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy);
226 bool CreateParallelPairs(Reduction &R);
227
228 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
229 /// Dual performs two signed 16x16-bit multiplications. It adds the
230 /// products to a 32-bit accumulate operand. Optionally, the instruction can
231 /// exchange the halfwords of the second operand before performing the
232 /// arithmetic.
233 bool MatchSMLAD(Function &F);
234
235 public:
236 static char ID;
237
238 ARMParallelDSP() : FunctionPass(ID) { }
239
240 void getAnalysisUsage(AnalysisUsage &AU) const override {
250 AU.setPreservesCFG();
251 }
252
253 bool runOnFunction(Function &F) override {
255 return false;
256 if (skipFunction(F))
257 return false;
258
259 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
260 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
261 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
262 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
263 auto &TPC = getAnalysis<TargetPassConfig>();
264
265 M = F.getParent();
266 DL = &M->getDataLayout();
267
268 auto &TM = TPC.getTM<TargetMachine>();
269 auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
270
271 if (!ST->allowsUnalignedMem()) {
272 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
273 "running pass ARMParallelDSP\n");
274 return false;
275 }
276
277 if (!ST->hasDSP()) {
278 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
279 "ARMParallelDSP\n");
280 return false;
281 }
282
283 if (!ST->isLittle()) {
284 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
285 << "ARMParallelDSP\n");
286 return false;
287 }
288
289 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
290 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
291
292 bool Changes = MatchSMLAD(F);
293 return Changes;
294 }
295 };
296}
297
298bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
299 MemInstList &VecMem) {
300 if (!Ld0 || !Ld1)
301 return false;
302
303 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
304 return false;
305
306 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
307 dbgs() << "Ld0:"; Ld0->dump();
308 dbgs() << "Ld1:"; Ld1->dump();
309 );
310
311 VecMem.clear();
312 VecMem.push_back(Ld0);
313 VecMem.push_back(Ld1);
314 return true;
315}
316
317// MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
318// instructions, which is set to 16. So here we should collect all i8 and i16
319// narrow operations.
320// TODO: we currently only collect i16, and will support i8 later, so that's
321// why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
322template<unsigned MaxBitWidth>
323bool ARMParallelDSP::IsNarrowSequence(Value *V) {
324 if (auto *SExt = dyn_cast<SExtInst>(V)) {
325 if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth)
326 return false;
327
328 if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) {
329 // Check that this load could be paired.
330 return LoadPairs.count(Ld) || OffsetLoads.count(Ld);
331 }
332 }
333 return false;
334}
335
336/// Iterate through the block and record base, offset pairs of loads which can
337/// be widened into a single load.
338bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
341 LoadPairs.clear();
342 WideLoads.clear();
343
344 // Collect loads and instruction that may write to memory. For now we only
345 // record loads which are simple, sign-extended and have a single user.
346 // TODO: Allow zero-extended loads.
347 for (auto &I : *BB) {
348 if (I.mayWriteToMemory())
350 auto *Ld = dyn_cast<LoadInst>(&I);
351 if (!Ld || !Ld->isSimple() ||
352 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back()))
353 continue;
354 Loads.push_back(Ld);
355 }
356
357 if (Loads.empty() || Loads.size() > NumLoadLimit)
358 return false;
359
360 using InstSet = std::set<Instruction*>;
361 using DepMap = std::map<Instruction*, InstSet>;
362 DepMap RAWDeps;
363
364 // Record any writes that may alias a load.
366 for (auto *Write : Writes) {
367 for (auto *Read : Loads) {
368 MemoryLocation ReadLoc =
369 MemoryLocation(Read->getPointerOperand(), Size);
370
371 if (!isModOrRefSet(AA->getModRefInfo(Write, ReadLoc)))
372 continue;
373 if (Write->comesBefore(Read))
374 RAWDeps[Read].insert(Write);
375 }
376 }
377
378 // Check whether there's not a write between the two loads which would
379 // prevent them from being safely merged.
380 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) {
381 bool BaseFirst = Base->comesBefore(Offset);
382 LoadInst *Dominator = BaseFirst ? Base : Offset;
383 LoadInst *Dominated = BaseFirst ? Offset : Base;
384
385 if (RAWDeps.count(Dominated)) {
386 InstSet &WritesBefore = RAWDeps[Dominated];
387
388 for (auto *Before : WritesBefore) {
389 // We can't move the second load backward, past a write, to merge
390 // with the first load.
391 if (Dominator->comesBefore(Before))
392 return false;
393 }
394 }
395 return true;
396 };
397
398 // Record base, offset load pairs.
399 for (auto *Base : Loads) {
400 for (auto *Offset : Loads) {
401 if (Base == Offset || OffsetLoads.count(Offset))
402 continue;
403
404 if (isConsecutiveAccess(Base, Offset, *DL, *SE) &&
405 SafeToPair(Base, Offset)) {
406 LoadPairs[Base] = Offset;
407 OffsetLoads.insert(Offset);
408 break;
409 }
410 }
411 }
412
413 LLVM_DEBUG(if (!LoadPairs.empty()) {
414 dbgs() << "Consecutive load pairs:\n";
415 for (auto &MapIt : LoadPairs) {
416 LLVM_DEBUG(dbgs() << *MapIt.first << ", "
417 << *MapIt.second << "\n");
418 }
419 });
420 return LoadPairs.size() > 1;
421}
422
423// Search recursively back through the operands to find a tree of values that
424// form a multiply-accumulate chain. The search records the Add and Mul
425// instructions that form the reduction and allows us to find a single value
426// to be used as the initial input to the accumlator.
427bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) {
428 // If we find a non-instruction, try to use it as the initial accumulator
429 // value. This may have already been found during the search in which case
430 // this function will return false, signaling a search fail.
431 auto *I = dyn_cast<Instruction>(V);
432 if (!I)
433 return R.InsertAcc(V);
434
435 if (I->getParent() != BB)
436 return false;
437
438 switch (I->getOpcode()) {
439 default:
440 break;
441 case Instruction::PHI:
442 // Could be the accumulator value.
443 return R.InsertAcc(V);
444 case Instruction::Add: {
445 // Adds should be adding together two muls, or another add and a mul to
446 // be within the mac chain. One of the operands may also be the
447 // accumulator value at which point we should stop searching.
448 R.InsertAdd(I);
449 Value *LHS = I->getOperand(0);
450 Value *RHS = I->getOperand(1);
451 bool ValidLHS = Search(LHS, BB, R);
452 bool ValidRHS = Search(RHS, BB, R);
453
454 if (ValidLHS && ValidRHS)
455 return true;
456
457 // Ensure we don't add the root as the incoming accumulator.
458 if (R.getRoot() == I)
459 return false;
460
461 return R.InsertAcc(I);
462 }
463 case Instruction::Mul: {
464 Value *MulOp0 = I->getOperand(0);
465 Value *MulOp1 = I->getOperand(1);
466 return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1);
467 }
468 case Instruction::SExt:
469 return Search(I->getOperand(0), BB, R);
470 }
471 return false;
472}
473
474// The pass needs to identify integer add/sub reductions of 16-bit vector
475// multiplications.
476// To use SMLAD:
477// 1) we first need to find integer add then look for this pattern:
478//
479// acc0 = ...
480// ld0 = load i16
481// sext0 = sext i16 %ld0 to i32
482// ld1 = load i16
483// sext1 = sext i16 %ld1 to i32
484// mul0 = mul %sext0, %sext1
485// ld2 = load i16
486// sext2 = sext i16 %ld2 to i32
487// ld3 = load i16
488// sext3 = sext i16 %ld3 to i32
489// mul1 = mul i32 %sext2, %sext3
490// add0 = add i32 %mul0, %acc0
491// acc1 = add i32 %add0, %mul1
492//
493// Which can be selected to:
494//
495// ldr r0
496// ldr r1
497// smlad r2, r0, r1, r2
498//
499// If constants are used instead of loads, these will need to be hoisted
500// out and into a register.
501//
502// If loop invariants are used instead of loads, these need to be packed
503// before the loop begins.
504//
505bool ARMParallelDSP::MatchSMLAD(Function &F) {
506 bool Changed = false;
507
508 for (auto &BB : F) {
510 if (!RecordMemoryOps(&BB))
511 continue;
512
513 for (Instruction &I : reverse(BB)) {
514 if (I.getOpcode() != Instruction::Add)
515 continue;
516
517 if (AllAdds.count(&I))
518 continue;
519
520 const auto *Ty = I.getType();
521 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
522 continue;
523
524 Reduction R(&I);
525 if (!Search(&I, &BB, R))
526 continue;
527
528 R.InsertMuls();
529 LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump());
530
531 if (!CreateParallelPairs(R))
532 continue;
533
534 InsertParallelMACs(R);
535 Changed = true;
536 AllAdds.insert(R.getAdds().begin(), R.getAdds().end());
537 LLVM_DEBUG(dbgs() << "BB after inserting parallel MACs:\n" << BB);
538 }
539 }
540
541 return Changed;
542}
543
544bool ARMParallelDSP::CreateParallelPairs(Reduction &R) {
545
546 // Not enough mul operations to make a pair.
547 if (R.getMuls().size() < 2)
548 return false;
549
550 // Check that the muls operate directly upon sign extended loads.
551 for (auto &MulCand : R.getMuls()) {
552 if (!MulCand->HasTwoLoadInputs())
553 return false;
554 }
555
556 auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) {
557 // The first elements of each vector should be loads with sexts. If we
558 // find that its two pairs of consecutive loads, then these can be
559 // transformed into two wider loads and the users can be replaced with
560 // DSP intrinsics.
561 auto Ld0 = static_cast<LoadInst*>(PMul0->LHS);
562 auto Ld1 = static_cast<LoadInst*>(PMul1->LHS);
563 auto Ld2 = static_cast<LoadInst*>(PMul0->RHS);
564 auto Ld3 = static_cast<LoadInst*>(PMul1->RHS);
565
566 // Check that each mul is operating on two different loads.
567 if (Ld0 == Ld2 || Ld1 == Ld3)
568 return false;
569
570 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
571 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
572 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
573 R.AddMulPair(PMul0, PMul1);
574 return true;
575 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
576 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
577 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n");
578 R.AddMulPair(PMul0, PMul1, true);
579 return true;
580 }
581 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
582 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
583 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
584 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n");
585 LLVM_DEBUG(dbgs() << " and swapping muls\n");
586 // Only the second operand can be exchanged, so swap the muls.
587 R.AddMulPair(PMul1, PMul0, true);
588 return true;
589 }
590 return false;
591 };
592
593 MulCandList &Muls = R.getMuls();
594 const unsigned Elems = Muls.size();
595 for (unsigned i = 0; i < Elems; ++i) {
596 MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get());
597 if (PMul0->Paired)
598 continue;
599
600 for (unsigned j = 0; j < Elems; ++j) {
601 if (i == j)
602 continue;
603
604 MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get());
605 if (PMul1->Paired)
606 continue;
607
608 const Instruction *Mul0 = PMul0->Root;
609 const Instruction *Mul1 = PMul1->Root;
610 if (Mul0 == Mul1)
611 continue;
612
613 assert(PMul0 != PMul1 && "expected different chains");
614
615 if (CanPair(R, PMul0, PMul1))
616 break;
617 }
618 }
619 return !R.getMulPairs().empty();
620}
621
622void ARMParallelDSP::InsertParallelMACs(Reduction &R) {
623
624 auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1,
625 Value *Acc, bool Exchange,
626 Instruction *InsertAfter) {
627 // Replace the reduction chain with an intrinsic call
628
629 Value* Args[] = { WideLd0, WideLd1, Acc };
630 Function *SMLAD = nullptr;
631 if (Exchange)
632 SMLAD = Acc->getType()->isIntegerTy(32) ?
633 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
634 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
635 else
636 SMLAD = Acc->getType()->isIntegerTy(32) ?
637 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
638 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
639
640 IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
641 BasicBlock::iterator(InsertAfter));
642 Instruction *Call = Builder.CreateCall(SMLAD, Args);
643 NumSMLAD++;
644 return Call;
645 };
646
647 // Return the instruction after the dominated instruction.
648 auto GetInsertPoint = [this](Value *A, Value *B) {
649 assert((isa<Instruction>(A) || isa<Instruction>(B)) &&
650 "expected at least one instruction");
651
652 Value *V = nullptr;
653 if (!isa<Instruction>(A))
654 V = B;
655 else if (!isa<Instruction>(B))
656 V = A;
657 else
658 V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A;
659
660 return &*++BasicBlock::iterator(cast<Instruction>(V));
661 };
662
663 Value *Acc = R.getAccumulator();
664
665 // For any muls that were discovered but not paired, accumulate their values
666 // as before.
667 IRBuilder<NoFolder> Builder(R.getRoot()->getParent());
668 MulCandList &MulCands = R.getMuls();
669 for (auto &MulCand : MulCands) {
670 if (MulCand->Paired)
671 continue;
672
673 Instruction *Mul = cast<Instruction>(MulCand->Root);
674 LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n");
675
676 if (R.getType() != Mul->getType()) {
677 assert(R.is64Bit() && "expected 64-bit result");
678 Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul));
679 Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType()));
680 }
681
682 if (!Acc) {
683 Acc = Mul;
684 continue;
685 }
686
687 // If Acc is the original incoming value to the reduction, it could be a
688 // phi. But the phi will dominate Mul, meaning that Mul will be the
689 // insertion point.
690 Builder.SetInsertPoint(GetInsertPoint(Mul, Acc));
691 Acc = Builder.CreateAdd(Mul, Acc);
692 }
693
694 if (!Acc) {
695 Acc = R.is64Bit() ?
696 ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) :
697 ConstantInt::get(IntegerType::get(M->getContext(), 32), 0);
698 } else if (Acc->getType() != R.getType()) {
699 Builder.SetInsertPoint(R.getRoot());
700 Acc = Builder.CreateSExt(Acc, R.getType());
701 }
702
703 // Roughly sort the mul pairs in their program order.
704 llvm::sort(R.getMulPairs(), [](auto &PairA, auto &PairB) {
705 const Instruction *A = PairA.first->Root;
706 const Instruction *B = PairB.first->Root;
707 return A->comesBefore(B);
708 });
709
710 IntegerType *Ty = IntegerType::get(M->getContext(), 32);
711 for (auto &Pair : R.getMulPairs()) {
712 MulCandidate *LHSMul = Pair.first;
713 MulCandidate *RHSMul = Pair.second;
714 LoadInst *BaseLHS = LHSMul->getBaseLoad();
715 LoadInst *BaseRHS = RHSMul->getBaseLoad();
716 LoadInst *WideLHS = WideLoads.count(BaseLHS) ?
717 WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty);
718 LoadInst *WideRHS = WideLoads.count(BaseRHS) ?
719 WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty);
720
721 Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS);
722 InsertAfter = GetInsertPoint(InsertAfter, Acc);
723 Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter);
724 }
725 R.UpdateRoot(cast<Instruction>(Acc));
726}
727
728LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads,
729 IntegerType *LoadTy) {
730 assert(Loads.size() == 2 && "currently only support widening two loads");
731
732 LoadInst *Base = Loads[0];
733 LoadInst *Offset = Loads[1];
734
735 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back());
736 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back());
737
738 assert((BaseSExt && OffsetSExt)
739 && "Loads should have a single, extending, user");
740
741 std::function<void(Value*, Value*)> MoveBefore =
742 [&](Value *A, Value *B) -> void {
743 if (!isa<Instruction>(A) || !isa<Instruction>(B))
744 return;
745
746 auto *Source = cast<Instruction>(A);
747 auto *Sink = cast<Instruction>(B);
748
749 if (DT->dominates(Source, Sink) ||
750 Source->getParent() != Sink->getParent() ||
751 isa<PHINode>(Source) || isa<PHINode>(Sink))
752 return;
753
754 Source->moveBefore(Sink);
755 for (auto &Op : Source->operands())
756 MoveBefore(Op, Source);
757 };
758
759 // Insert the load at the point of the original dominating load.
760 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset;
761 IRBuilder<NoFolder> IRB(DomLoad->getParent(),
762 ++BasicBlock::iterator(DomLoad));
763
764 // Create the wide load, while making sure to maintain the original alignment
765 // as this prevents ldrd from being generated when it could be illegal due to
766 // memory alignment.
767 Value *VecPtr = Base->getPointerOperand();
768 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlign());
769
770 // Make sure everything is in the correct order in the basic block.
771 MoveBefore(Base->getPointerOperand(), VecPtr);
772 MoveBefore(VecPtr, WideLoad);
773
774 // From the wide load, create two values that equal the original two loads.
775 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
776 // TODO: Support big-endian as well.
777 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType());
778 Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType());
779 BaseSExt->replaceAllUsesWith(NewBaseSExt);
780
781 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType());
782 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth());
783 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal);
784 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy);
785 Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType());
786 OffsetSExt->replaceAllUsesWith(NewOffsetSExt);
787
788 LLVM_DEBUG(dbgs() << "From Base and Offset:\n"
789 << *Base << "\n" << *Offset << "\n"
790 << "Created Wide Load:\n"
791 << *WideLoad << "\n"
792 << *Bottom << "\n"
793 << *NewBaseSExt << "\n"
794 << *Top << "\n"
795 << *Trunc << "\n"
796 << *NewOffsetSExt << "\n");
797 WideLoads.emplace(std::make_pair(Base,
798 std::make_unique<WidenedLoad>(Loads, WideLoad)));
799 return WideLoad;
800}
801
803 return new ARMParallelDSP();
804}
805
806char ARMParallelDSP::ID = 0;
807
808INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
809 "Transform functions to use DSP intrinsics", false, false)
810INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
811 "Transform functions to use DSP intrinsics", false, false)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Lower uses of LDS variables from non kernel functions
arm parallel Transform functions to use DSP intrinsics
static cl::opt< bool > DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), cl::desc("Disable the ARM Parallel DSP pass"))
static cl::opt< unsigned > NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16), cl::desc("Limit the number of loads analysed"))
arm parallel dsp
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Size
SmallVector< uint32_t, 0 > Writes
Definition: ELF_riscv.cpp:497
This is the interface for a simple mod/ref and alias analysis over globals.
Move duplicate certain instructions close to their use
Definition: Localizer.cpp:33
loop Loop Strength Reduction
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
const char LLVMTargetMachineRef TM
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:59
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:40
Target-Independent Code Generator Pass Configuration Options pass.
static bool is64Bit(const char *name)
Value * RHS
Value * LHS
BinaryOperator * Mul
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
ModRefInfo getModRefInfo(const Instruction *I, const std::optional< MemoryLocation > &OptLoc)
Check whether or not an instruction may read or write the optionally specified memory location.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:269
An immutable pass that tracks lazily created AssumptionCache objects.
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:165
This is the shared class of boolean and integer constants.
Definition: Constants.h:80
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:317
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
Definition: Pass.cpp:178
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:294
Legacy wrapper pass to provide the GlobalsAAResult object.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2666
const BasicBlock * getParent() const
Definition: Instruction.h:152
bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
Class to represent integer types.
Definition: DerivedTypes.h:40
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:278
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:72
An instruction for reading from memory.
Definition: Instructions.h:184
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Pass interface - Implemented by all 'passes'.
Definition: Pass.h:94
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
The main scalar evolution driver.
A vector that has set insertion semantics.
Definition: SetVector.h:57
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:360
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:342
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:427
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
Provides information about what library functions are available for the current target.
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:76
Target-Independent Code Generator Pass Configuration Options.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:228
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
void dump() const
Support for debugging, callable in GDB: V->dump()
Definition: AsmWriter.cpp:5239
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1461
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
@ Offset
Definition: DWP.cpp:456
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2073
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:419
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1647
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool isModOrRefSet(const ModRefInfo MRI)
Definition: ModRef.h:42
@ Add
Sum of integers.
bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, ScalarEvolution &SE, bool CheckType=true)
Returns true if the memory operations A and B are consecutive.
Pass * createARMParallelDSPPass()