41#define DEBUG_TYPE "gisel-known-bits"
49 "Analysis for ComputingKnownBits",
false,
true)
52 : MF(MF),
MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()),
57 switch (
MI->getOpcode()) {
58 case TargetOpcode::COPY:
60 case TargetOpcode::G_ASSERT_ALIGN: {
62 return Align(
MI->getOperand(2).getImm());
64 case TargetOpcode::G_FRAME_INDEX: {
65 int FrameIdx =
MI->getOperand(1).getIndex();
66 return MF.getFrameInfo().getObjectAlign(FrameIdx);
68 case TargetOpcode::G_INTRINSIC:
69 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
70 case TargetOpcode::G_INTRINSIC_CONVERGENT:
71 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
73 return TL.computeKnownAlignForTargetInstr(*
this, R, MRI,
Depth + 1);
78 assert(
MI.getNumExplicitDefs() == 1 &&
79 "expected single return generic instruction");
84 const LLT Ty = MRI.getType(R);
94 const APInt &DemandedElts,
102 LLT Ty = MRI.getType(R);
103 unsigned BitWidth = Ty.getScalarSizeInBits();
115[[maybe_unused]]
static void
118 <<
"] Computed for: " <<
MI <<
"[" <<
Depth <<
"] Known: 0x"
129 const APInt &DemandedElts,
160 const APInt &DemandedElts,
163 unsigned Opcode =
MI.getOpcode();
164 LLT DstTy = MRI.getType(R);
178 "DemandedElt width should equal the fixed vector number of elements");
181 "DemandedElt width should be 1 for scalars or scalable vectors");
206 TL.computeKnownBitsForTargetInstr(*
this, R, Known, DemandedElts, MRI,
209 case TargetOpcode::G_BUILD_VECTOR: {
214 if (!DemandedElts[
I])
228 case TargetOpcode::G_SPLAT_VECTOR: {
236 case TargetOpcode::COPY:
237 case TargetOpcode::G_PHI:
238 case TargetOpcode::PHI: {
244 assert(
MI.getOperand(0).getSubReg() == 0 &&
"Is this code in SSA?");
247 for (
unsigned Idx = 1; Idx <
MI.getNumOperands(); Idx += 2) {
257 if (SrcReg.
isVirtual() && Src.getSubReg() == 0 &&
258 MRI.getType(SrcReg).isValid()) {
261 Depth + (Opcode != TargetOpcode::COPY));
276 case TargetOpcode::G_CONSTANT: {
280 case TargetOpcode::G_FRAME_INDEX: {
281 int FrameIdx =
MI.getOperand(1).getIndex();
282 TL.computeKnownBitsForFrameIndex(FrameIdx, Known, MF);
285 case TargetOpcode::G_SUB: {
293 case TargetOpcode::G_XOR: {
302 case TargetOpcode::G_PTR_ADD: {
306 LLT Ty = MRI.getType(
MI.getOperand(1).getReg());
307 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
311 case TargetOpcode::G_ADD: {
319 case TargetOpcode::G_AND: {
329 case TargetOpcode::G_OR: {
339 case TargetOpcode::G_MUL: {
347 case TargetOpcode::G_UMULH: {
355 case TargetOpcode::G_SMULH: {
363 case TargetOpcode::G_SELECT: {
364 computeKnownBitsMin(
MI.getOperand(2).getReg(),
MI.getOperand(3).getReg(),
365 Known, DemandedElts,
Depth + 1);
368 case TargetOpcode::G_SMIN: {
378 case TargetOpcode::G_SMAX: {
388 case TargetOpcode::G_UMIN: {
397 case TargetOpcode::G_UMAX: {
406 case TargetOpcode::G_FCMP:
407 case TargetOpcode::G_ICMP: {
410 if (TL.getBooleanContents(DstTy.
isVector(),
411 Opcode == TargetOpcode::G_FCMP) ==
417 case TargetOpcode::G_SEXT: {
425 case TargetOpcode::G_ASSERT_SEXT:
426 case TargetOpcode::G_SEXT_INREG: {
429 Known = Known.
sextInReg(
MI.getOperand(2).getImm());
432 case TargetOpcode::G_ANYEXT: {
438 case TargetOpcode::G_LOAD: {
446 case TargetOpcode::G_SEXTLOAD:
447 case TargetOpcode::G_ZEXTLOAD: {
454 Known = Opcode == TargetOpcode::G_SEXTLOAD
459 case TargetOpcode::G_ASHR: {
468 case TargetOpcode::G_LSHR: {
477 case TargetOpcode::G_SHL: {
486 case TargetOpcode::G_INTTOPTR:
487 case TargetOpcode::G_PTRTOINT:
492 case TargetOpcode::G_ZEXT:
493 case TargetOpcode::G_TRUNC: {
499 case TargetOpcode::G_ASSERT_ZEXT: {
503 unsigned SrcBitWidth =
MI.getOperand(2).getImm();
504 assert(SrcBitWidth &&
"SrcBitWidth can't be zero");
506 Known.
Zero |= (~InMask);
507 Known.
One &= (~Known.Zero);
510 case TargetOpcode::G_ASSERT_ALIGN: {
511 int64_t LogOfAlign =
Log2_64(
MI.getOperand(2).getImm());
520 case TargetOpcode::G_MERGE_VALUES: {
521 unsigned NumOps =
MI.getNumOperands();
522 unsigned OpSize = MRI.getType(
MI.getOperand(1).getReg()).getSizeInBits();
524 for (
unsigned I = 0;
I !=
NumOps - 1; ++
I) {
527 DemandedElts,
Depth + 1);
532 case TargetOpcode::G_UNMERGE_VALUES: {
533 unsigned NumOps =
MI.getNumOperands();
535 LLT SrcTy = MRI.getType(SrcReg);
537 if (SrcTy.isVector() && SrcTy.getScalarType() != DstTy.
getScalarType())
542 for (; DstIdx !=
NumOps - 1 &&
MI.getOperand(DstIdx).
getReg() != R;
546 APInt SubDemandedElts = DemandedElts;
547 if (SrcTy.isVector()) {
550 DemandedElts.
zext(SrcTy.getNumElements()).
shl(DstIdx * DstLanes);
556 if (SrcTy.isVector())
557 Known = std::move(SrcOpKnown);
562 case TargetOpcode::G_BSWAP: {
568 case TargetOpcode::G_BITREVERSE: {
574 case TargetOpcode::G_CTPOP: {
586 case TargetOpcode::G_UBFX: {
587 KnownBits SrcOpKnown, OffsetKnown, WidthKnown;
597 case TargetOpcode::G_SBFX: {
598 KnownBits SrcOpKnown, OffsetKnown, WidthKnown;
615 case TargetOpcode::G_UADDO:
616 case TargetOpcode::G_UADDE:
617 case TargetOpcode::G_SADDO:
618 case TargetOpcode::G_SADDE:
619 case TargetOpcode::G_USUBO:
620 case TargetOpcode::G_USUBE:
621 case TargetOpcode::G_SSUBO:
622 case TargetOpcode::G_SSUBE:
623 case TargetOpcode::G_UMULO:
624 case TargetOpcode::G_SMULO: {
625 if (
MI.getOperand(1).getReg() == R) {
628 if (TL.getBooleanContents(DstTy.
isVector(),
false) ==
635 case TargetOpcode::G_CTLZ:
636 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
646 case TargetOpcode::G_SHUFFLE_VECTOR: {
647 APInt DemandedLHS, DemandedRHS;
650 unsigned NumElts = MRI.getType(
MI.getOperand(1).getReg()).getNumElements();
652 DemandedElts, DemandedLHS, DemandedRHS))
673 case TargetOpcode::G_CONCAT_VECTORS: {
674 if (MRI.getType(
MI.getOperand(0).getReg()).isScalableVector())
679 unsigned NumSubVectorElts =
680 MRI.getType(
MI.getOperand(1).getReg()).getNumElements();
684 DemandedElts.
extractBits(NumSubVectorElts,
I * NumSubVectorElts);
696 case TargetOpcode::G_ABS: {
710 Ty = Ty.getScalarType();
719 LLT Ty = MRI.getType(R);
722 computeKnownFPClass(R, DemandedElts, InterestedClasses, Known,
Depth);
725void GISelValueTracking::computeKnownFPClassForFPTrunc(
733 KnownFPClass KnownSrc;
734 computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
747void GISelValueTracking::computeKnownFPClass(
Register R,
748 const APInt &DemandedElts,
752 assert(Known.
isUnknown() &&
"should not be called with known information");
762 MachineInstr &
MI = *MRI.getVRegDef(R);
763 unsigned Opcode =
MI.getOpcode();
764 LLT DstTy = MRI.getType(R);
772 switch (Cst->getKind()) {
774 auto APF = Cst->getScalarValue();
776 Known.
SignBit = APF.isNegative();
781 bool SignBitAllZero =
true;
782 bool SignBitAllOne =
true;
784 for (
auto C : *Cst) {
787 SignBitAllZero =
false;
789 SignBitAllOne =
false;
792 if (SignBitAllOne != SignBitAllZero)
808 KnownNotFromFlags |=
fcNan;
810 KnownNotFromFlags |=
fcInf;
814 InterestedClasses &= ~KnownNotFromFlags;
816 auto ClearClassesFromFlags =
823 const MachineFunction *MF =
MI.getMF();
827 TL.computeKnownFPClassForTargetInstr(*
this, R, Known, DemandedElts, MRI,
830 case TargetOpcode::G_FNEG: {
832 computeKnownFPClass(Val, DemandedElts, InterestedClasses, Known,
Depth + 1);
836 case TargetOpcode::G_SELECT: {
859 bool LookThroughFAbsFNeg = CmpLHS !=
LHS && CmpLHS !=
RHS;
860 std::tie(TestedValue, MaskIfTrue, MaskIfFalse) =
866 MaskIfTrue = TestedMask;
867 MaskIfFalse = ~TestedMask;
870 if (TestedValue ==
LHS) {
872 FilterLHS = MaskIfTrue;
873 }
else if (TestedValue ==
RHS) {
875 FilterRHS = MaskIfFalse;
879 computeKnownFPClass(
LHS, DemandedElts, InterestedClasses & FilterLHS, Known,
883 computeKnownFPClass(
RHS, DemandedElts, InterestedClasses & FilterRHS,
890 case TargetOpcode::G_FCOPYSIGN: {
891 Register Magnitude =
MI.getOperand(1).getReg();
894 KnownFPClass KnownSign;
896 computeKnownFPClass(Magnitude, DemandedElts, InterestedClasses, Known,
898 computeKnownFPClass(Sign, DemandedElts, InterestedClasses, KnownSign,
903 case TargetOpcode::G_FMA:
904 case TargetOpcode::G_STRICT_FMA:
905 case TargetOpcode::G_FMAD: {
920 KnownFPClass KnownAddend;
921 computeKnownFPClass(
C, DemandedElts, InterestedClasses, KnownAddend,
928 case TargetOpcode::G_FSQRT:
929 case TargetOpcode::G_STRICT_FSQRT: {
930 KnownFPClass KnownSrc;
932 if (InterestedClasses &
fcNan)
937 computeKnownFPClass(Val, DemandedElts, InterestedSrcs, KnownSrc,
Depth + 1);
952 case TargetOpcode::G_FABS: {
957 computeKnownFPClass(Val, DemandedElts, InterestedClasses, Known,
963 case TargetOpcode::G_FSIN:
964 case TargetOpcode::G_FCOS:
965 case TargetOpcode::G_FSINCOS: {
968 KnownFPClass KnownSrc;
970 computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
978 case TargetOpcode::G_FMAXNUM:
979 case TargetOpcode::G_FMINNUM:
980 case TargetOpcode::G_FMINNUM_IEEE:
981 case TargetOpcode::G_FMAXIMUM:
982 case TargetOpcode::G_FMINIMUM:
983 case TargetOpcode::G_FMAXNUM_IEEE:
984 case TargetOpcode::G_FMAXIMUMNUM:
985 case TargetOpcode::G_FMINIMUMNUM: {
988 KnownFPClass KnownLHS, KnownRHS;
990 computeKnownFPClass(
LHS, DemandedElts, InterestedClasses, KnownLHS,
992 computeKnownFPClass(
RHS, DemandedElts, InterestedClasses, KnownRHS,
996 Known = KnownLHS | KnownRHS;
999 if (NeverNaN && (Opcode == TargetOpcode::G_FMINNUM ||
1000 Opcode == TargetOpcode::G_FMAXNUM ||
1001 Opcode == TargetOpcode::G_FMINIMUMNUM ||
1002 Opcode == TargetOpcode::G_FMAXIMUMNUM))
1005 if (Opcode == TargetOpcode::G_FMAXNUM ||
1006 Opcode == TargetOpcode::G_FMAXIMUMNUM ||
1007 Opcode == TargetOpcode::G_FMAXNUM_IEEE) {
1015 }
else if (Opcode == TargetOpcode::G_FMAXIMUM) {
1021 }
else if (Opcode == TargetOpcode::G_FMINNUM ||
1022 Opcode == TargetOpcode::G_FMINIMUMNUM ||
1023 Opcode == TargetOpcode::G_FMINNUM_IEEE) {
1031 }
else if (Opcode == TargetOpcode::G_FMINIMUM) {
1063 }
else if ((Opcode == TargetOpcode::G_FMAXIMUM ||
1064 Opcode == TargetOpcode::G_FMINIMUM) ||
1065 Opcode == TargetOpcode::G_FMAXIMUMNUM ||
1066 Opcode == TargetOpcode::G_FMINIMUMNUM ||
1067 Opcode == TargetOpcode::G_FMAXNUM_IEEE ||
1068 Opcode == TargetOpcode::G_FMINNUM_IEEE ||
1074 if ((Opcode == TargetOpcode::G_FMAXIMUM ||
1075 Opcode == TargetOpcode::G_FMAXNUM ||
1076 Opcode == TargetOpcode::G_FMAXIMUMNUM ||
1077 Opcode == TargetOpcode::G_FMAXNUM_IEEE) &&
1080 else if ((Opcode == TargetOpcode::G_FMINIMUM ||
1081 Opcode == TargetOpcode::G_FMINNUM ||
1082 Opcode == TargetOpcode::G_FMINIMUMNUM ||
1083 Opcode == TargetOpcode::G_FMINNUM_IEEE) &&
1090 case TargetOpcode::G_FCANONICALIZE: {
1092 KnownFPClass KnownSrc;
1093 computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
1115 DenormalMode DenormMode = MF->getDenormalMode(FPType);
1134 case TargetOpcode::G_VECREDUCE_FMAX:
1135 case TargetOpcode::G_VECREDUCE_FMIN:
1136 case TargetOpcode::G_VECREDUCE_FMAXIMUM:
1137 case TargetOpcode::G_VECREDUCE_FMINIMUM: {
1143 computeKnownFPClass(Val,
MI.getFlags(), InterestedClasses,
Depth + 1);
1149 case TargetOpcode::G_TRUNC:
1150 case TargetOpcode::G_FFLOOR:
1151 case TargetOpcode::G_FCEIL:
1152 case TargetOpcode::G_FRINT:
1153 case TargetOpcode::G_FNEARBYINT:
1154 case TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND:
1155 case TargetOpcode::G_INTRINSIC_ROUND: {
1157 KnownFPClass KnownSrc;
1163 computeKnownFPClass(Val, DemandedElts, InterestedSrcs, KnownSrc,
Depth + 1);
1180 case TargetOpcode::G_FEXP:
1181 case TargetOpcode::G_FEXP2:
1182 case TargetOpcode::G_FEXP10: {
1188 KnownFPClass KnownSrc;
1189 computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
1198 case TargetOpcode::G_FLOG:
1199 case TargetOpcode::G_FLOG2:
1200 case TargetOpcode::G_FLOG10: {
1215 KnownFPClass KnownSrc;
1216 computeKnownFPClass(Val, DemandedElts, InterestedSrcs, KnownSrc,
Depth + 1);
1226 DenormalMode
Mode = MF->getDenormalMode(FltSem);
1233 case TargetOpcode::G_FPOWI: {
1238 LLT ExpTy = MRI.getType(Exp);
1240 Exp, ExpTy.
isVector() ? DemandedElts : APInt(1, 1),
Depth + 1);
1242 if (ExponentKnownBits.
Zero[0]) {
1256 KnownFPClass KnownSrc;
1257 computeKnownFPClass(Val, DemandedElts,
fcNegative, KnownSrc,
Depth + 1);
1262 case TargetOpcode::G_FLDEXP:
1263 case TargetOpcode::G_STRICT_FLDEXP: {
1265 KnownFPClass KnownSrc;
1266 computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
1283 if ((InterestedClasses & ExpInfoMask) ==
fcNone)
1292 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
1293 computeKnownFPClassForFPTrunc(
MI, DemandedElts, InterestedClasses, Known,
1297 case TargetOpcode::G_FADD:
1298 case TargetOpcode::G_STRICT_FADD:
1299 case TargetOpcode::G_FSUB:
1300 case TargetOpcode::G_STRICT_FSUB: {
1303 KnownFPClass KnownLHS, KnownRHS;
1305 (Opcode == TargetOpcode::G_FADD ||
1306 Opcode == TargetOpcode::G_STRICT_FADD) &&
1308 bool WantNaN = (InterestedClasses &
fcNan) !=
fcNone;
1311 if (!WantNaN && !WantNegative && !WantNegZero)
1317 if (InterestedClasses &
fcNan)
1318 InterestedSrcs |=
fcInf;
1319 computeKnownFPClass(
RHS, DemandedElts, InterestedSrcs, KnownRHS,
Depth + 1);
1324 (Opcode == TargetOpcode::G_FSUB ||
1325 Opcode == TargetOpcode::G_STRICT_FSUB)) {
1329 computeKnownFPClass(
LHS, DemandedElts, InterestedSrcs, KnownLHS,
1337 if (Opcode == Instruction::FAdd) {
1364 case TargetOpcode::G_FMUL:
1365 case TargetOpcode::G_STRICT_FMUL: {
1378 KnownFPClass KnownLHS, KnownRHS;
1379 computeKnownFPClass(
RHS, DemandedElts, NeedForNan, KnownRHS,
Depth + 1);
1383 computeKnownFPClass(
LHS, DemandedElts, NeedForNan, KnownLHS,
Depth + 1);
1410 case TargetOpcode::G_FDIV:
1411 case TargetOpcode::G_FREM: {
1417 if (Opcode == TargetOpcode::G_FDIV) {
1428 const bool WantNan = (InterestedClasses &
fcNan) !=
fcNone;
1430 const bool WantPositive = Opcode == TargetOpcode::G_FREM &&
1432 if (!WantNan && !WantNegative && !WantPositive)
1435 KnownFPClass KnownLHS, KnownRHS;
1438 KnownRHS,
Depth + 1);
1440 bool KnowSomethingUseful =
1443 if (KnowSomethingUseful || WantPositive) {
1448 computeKnownFPClass(
LHS, DemandedElts, InterestedClasses & InterestedLHS,
1449 KnownLHS,
Depth + 1);
1452 if (Opcode == Instruction::FDiv) {
1493 case TargetOpcode::G_FPEXT: {
1497 computeKnownFPClass(R, DemandedElts, InterestedClasses, Known,
Depth + 1);
1501 LLT SrcTy = MRI.getType(Src).getScalarType();
1518 case TargetOpcode::G_FPTRUNC: {
1519 computeKnownFPClassForFPTrunc(
MI, DemandedElts, InterestedClasses, Known,
1523 case TargetOpcode::G_SITOFP:
1524 case TargetOpcode::G_UITOFP: {
1533 if (Opcode == TargetOpcode::G_UITOFP)
1537 LLT Ty = MRI.getType(Val);
1539 if (InterestedClasses &
fcInf) {
1544 if (Opcode == TargetOpcode::G_SITOFP)
1558 case TargetOpcode::G_BUILD_VECTOR:
1559 case TargetOpcode::G_CONCAT_VECTORS: {
1566 for (
unsigned Idx = 0; Idx <
Merge.getNumSources(); ++Idx) {
1568 bool NeedsElt = DemandedElts[Idx];
1574 computeKnownFPClass(Src, Known, InterestedClasses,
Depth + 1);
1577 KnownFPClass Known2;
1578 computeKnownFPClass(Src, Known2, InterestedClasses,
Depth + 1);
1590 case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1600 LLT VecTy = MRI.getType(Vec);
1605 if (CIdx && CIdx->ult(NumElts))
1607 return computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known,
1613 case TargetOpcode::G_INSERT_VECTOR_ELT: {
1619 LLT VecTy = MRI.getType(Vec);
1627 APInt DemandedVecElts = DemandedElts;
1628 bool NeedsElt =
true;
1630 if (CIdx && CIdx->ult(NumElts)) {
1631 DemandedVecElts.
clearBit(CIdx->getZExtValue());
1632 NeedsElt = DemandedElts[CIdx->getZExtValue()];
1637 computeKnownFPClass(Elt, Known, InterestedClasses,
Depth + 1);
1646 if (!DemandedVecElts.
isZero()) {
1647 KnownFPClass Known2;
1648 computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known2,
1655 case TargetOpcode::G_SHUFFLE_VECTOR: {
1659 APInt DemandedLHS, DemandedRHS;
1661 assert(DemandedElts == APInt(1, 1));
1662 DemandedLHS = DemandedRHS = DemandedElts;
1665 DemandedElts, DemandedLHS,
1672 if (!!DemandedLHS) {
1674 computeKnownFPClass(
LHS, DemandedLHS, InterestedClasses, Known,
1684 if (!!DemandedRHS) {
1685 KnownFPClass Known2;
1687 computeKnownFPClass(
RHS, DemandedRHS, InterestedClasses, Known2,
1693 case TargetOpcode::COPY: {
1696 if (!Src.isVirtual())
1699 computeKnownFPClass(Src, DemandedElts, InterestedClasses, Known,
Depth + 1);
1710 computeKnownFPClass(R, DemandedElts, InterestedClasses, KnownClasses,
Depth);
1711 return KnownClasses;
1717 computeKnownFPClass(R, Known, InterestedClasses,
Depth);
1725 InterestedClasses &=
~fcNan;
1727 InterestedClasses &=
~fcInf;
1730 computeKnownFPClass(R, DemandedElts, InterestedClasses,
Depth);
1733 Result.KnownFPClasses &=
~fcNan;
1735 Result.KnownFPClasses &=
~fcInf;
1741 LLT Ty = MRI.getType(R);
1742 APInt DemandedElts =
1744 return computeKnownFPClass(R, DemandedElts, Flags, InterestedClasses,
Depth);
1748unsigned GISelValueTracking::computeNumSignBitsMin(
Register Src0,
Register Src1,
1749 const APInt &DemandedElts,
1753 if (Src1SignBits == 1)
1770 case TargetOpcode::G_SEXTLOAD:
1773 case TargetOpcode::G_ZEXTLOAD:
1786 const APInt &DemandedElts,
1789 unsigned Opcode =
MI.getOpcode();
1791 if (Opcode == TargetOpcode::G_CONSTANT)
1792 return MI.getOperand(1).getCImm()->getValue().getNumSignBits();
1800 LLT DstTy = MRI.getType(R);
1810 unsigned FirstAnswer = 1;
1812 case TargetOpcode::COPY: {
1814 if (Src.getReg().isVirtual() && Src.getSubReg() == 0 &&
1815 MRI.getType(Src.getReg()).isValid()) {
1822 case TargetOpcode::G_SEXT: {
1824 LLT SrcTy = MRI.getType(Src);
1828 case TargetOpcode::G_ASSERT_SEXT:
1829 case TargetOpcode::G_SEXT_INREG: {
1832 unsigned SrcBits =
MI.getOperand(2).getImm();
1833 unsigned InRegBits = TyBits - SrcBits + 1;
1837 case TargetOpcode::G_LOAD: {
1844 case TargetOpcode::G_SEXTLOAD: {
1859 case TargetOpcode::G_ZEXTLOAD: {
1874 case TargetOpcode::G_AND:
1875 case TargetOpcode::G_OR:
1876 case TargetOpcode::G_XOR: {
1878 unsigned Src1NumSignBits =
1880 if (Src1NumSignBits != 1) {
1882 unsigned Src2NumSignBits =
1884 FirstAnswer = std::min(Src1NumSignBits, Src2NumSignBits);
1888 case TargetOpcode::G_ASHR: {
1893 FirstAnswer = std::min<uint64_t>(FirstAnswer + *
C, TyBits);
1896 case TargetOpcode::G_SHL: {
1899 if (std::optional<ConstantRange> ShAmtRange =
1901 uint64_t MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
1902 uint64_t MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
1912 if (ExtOpc == TargetOpcode::G_SEXT || ExtOpc == TargetOpcode::G_ZEXT ||
1913 ExtOpc == TargetOpcode::G_ANYEXT) {
1914 LLT ExtTy = MRI.getType(Src1);
1916 LLT ExtendeeTy = MRI.getType(Extendee);
1920 if (SizeDiff <= MinShAmt) {
1924 return Tmp - MaxShAmt;
1930 return Tmp - MaxShAmt;
1934 case TargetOpcode::G_TRUNC: {
1936 LLT SrcTy = MRI.getType(Src);
1940 unsigned NumSrcBits = SrcTy.getScalarSizeInBits();
1942 if (NumSrcSignBits > (NumSrcBits - DstTyBits))
1943 return NumSrcSignBits - (NumSrcBits - DstTyBits);
1946 case TargetOpcode::G_SELECT: {
1947 return computeNumSignBitsMin(
MI.getOperand(2).getReg(),
1948 MI.getOperand(3).getReg(), DemandedElts,
1951 case TargetOpcode::G_SMIN:
1952 case TargetOpcode::G_SMAX:
1953 case TargetOpcode::G_UMIN:
1954 case TargetOpcode::G_UMAX:
1956 return computeNumSignBitsMin(
MI.getOperand(1).getReg(),
1957 MI.getOperand(2).getReg(), DemandedElts,
1959 case TargetOpcode::G_SADDO:
1960 case TargetOpcode::G_SADDE:
1961 case TargetOpcode::G_UADDO:
1962 case TargetOpcode::G_UADDE:
1963 case TargetOpcode::G_SSUBO:
1964 case TargetOpcode::G_SSUBE:
1965 case TargetOpcode::G_USUBO:
1966 case TargetOpcode::G_USUBE:
1967 case TargetOpcode::G_SMULO:
1968 case TargetOpcode::G_UMULO: {
1972 if (
MI.getOperand(1).getReg() == R) {
1973 if (TL.getBooleanContents(DstTy.
isVector(),
false) ==
1980 case TargetOpcode::G_SUB: {
1982 unsigned Src2NumSignBits =
1984 if (Src2NumSignBits == 1)
1994 if ((Known2.
Zero | 1).isAllOnes())
2001 FirstAnswer = Src2NumSignBits;
2008 unsigned Src1NumSignBits =
2010 if (Src1NumSignBits == 1)
2015 FirstAnswer = std::min(Src1NumSignBits, Src2NumSignBits) - 1;
2018 case TargetOpcode::G_ADD: {
2020 unsigned Src2NumSignBits =
2022 if (Src2NumSignBits <= 2)
2026 unsigned Src1NumSignBits =
2028 if (Src1NumSignBits == 1)
2037 if ((Known1.
Zero | 1).isAllOnes())
2043 FirstAnswer = Src1NumSignBits;
2052 FirstAnswer = std::min(Src1NumSignBits, Src2NumSignBits) - 1;
2055 case TargetOpcode::G_FCMP:
2056 case TargetOpcode::G_ICMP: {
2057 bool IsFP = Opcode == TargetOpcode::G_FCMP;
2060 auto BC = TL.getBooleanContents(DstTy.
isVector(), IsFP);
2067 case TargetOpcode::G_BUILD_VECTOR: {
2069 FirstAnswer = TyBits;
2070 APInt SingleDemandedElt(1, 1);
2072 if (!DemandedElts[
I])
2077 FirstAnswer = std::min(FirstAnswer, Tmp2);
2080 if (FirstAnswer == 1)
2085 case TargetOpcode::G_CONCAT_VECTORS: {
2086 if (MRI.getType(
MI.getOperand(0).getReg()).isScalableVector())
2088 FirstAnswer = TyBits;
2091 unsigned NumSubVectorElts =
2092 MRI.getType(
MI.getOperand(1).getReg()).getNumElements();
2095 DemandedElts.
extractBits(NumSubVectorElts,
I * NumSubVectorElts);
2100 FirstAnswer = std::min(FirstAnswer, Tmp2);
2103 if (FirstAnswer == 1)
2108 case TargetOpcode::G_SHUFFLE_VECTOR: {
2111 APInt DemandedLHS, DemandedRHS;
2113 unsigned NumElts = MRI.getType(Src1).getNumElements();
2115 DemandedElts, DemandedLHS, DemandedRHS))
2121 if (FirstAnswer == 1)
2123 if (!!DemandedRHS) {
2126 FirstAnswer = std::min(FirstAnswer, Tmp2);
2130 case TargetOpcode::G_SPLAT_VECTOR: {
2134 unsigned NumSrcBits = MRI.getType(Src).getSizeInBits();
2135 if (NumSrcSignBits > (NumSrcBits - TyBits))
2136 return NumSrcSignBits - (NumSrcBits - TyBits);
2139 case TargetOpcode::G_INTRINSIC:
2140 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
2141 case TargetOpcode::G_INTRINSIC_CONVERGENT:
2142 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
2145 TL.computeNumSignBitsForTargetInstr(*
this, R, DemandedElts, MRI,
Depth);
2147 FirstAnswer = std::max(FirstAnswer, NumBits);
2167 Mask <<= Mask.getBitWidth() - TyBits;
2168 return std::max(FirstAnswer, Mask.countl_one());
2172 LLT Ty = MRI.getType(R);
2173 APInt DemandedElts =
2182 unsigned Opcode =
MI.getOpcode();
2184 LLT Ty = MRI.getType(R);
2185 unsigned BitWidth = Ty.getScalarSizeInBits();
2187 if (Opcode == TargetOpcode::G_CONSTANT) {
2188 const APInt &ShAmt =
MI.getOperand(1).getCImm()->getValue();
2190 return std::nullopt;
2194 if (Opcode == TargetOpcode::G_BUILD_VECTOR) {
2195 const APInt *MinAmt =
nullptr, *MaxAmt =
nullptr;
2196 for (
unsigned I = 0, E =
MI.getNumOperands() - 1;
I != E; ++
I) {
2197 if (!DemandedElts[
I])
2200 if (
Op->getOpcode() != TargetOpcode::G_CONSTANT) {
2201 MinAmt = MaxAmt =
nullptr;
2205 const APInt &ShAmt =
Op->getOperand(1).getCImm()->getValue();
2207 return std::nullopt;
2208 if (!MinAmt || MinAmt->
ugt(ShAmt))
2210 if (!MaxAmt || MaxAmt->ult(ShAmt))
2213 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
2214 "Failed to find matching min/max shift amounts");
2215 if (MinAmt && MaxAmt)
2225 return std::nullopt;
2230 if (std::optional<ConstantRange> AmtRange =
2232 return AmtRange->getUnsignedMin().getZExtValue();
2233 return std::nullopt;
2251 Info = std::make_unique<GISelValueTracking>(MF, MaxDepth);
2276 if (!MO.isReg() || MO.getReg().isPhysical())
2279 if (!
MRI.getType(Reg).isValid())
2281 KnownBits Known = VTA.getKnownBits(Reg);
2282 unsigned SignedBits = VTA.computeNumSignBits(Reg);
2283 OS <<
" " << MO <<
" KnownBits:" << Known <<
" SignBits:" << SignedBits
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Utilities for dealing with flags related to floating point properties and mode controls.
static void dumpResult(const MachineInstr &MI, const KnownBits &Known, unsigned Depth)
static unsigned computeNumSignBitsFromRangeMetadata(const GAnyLoad *Ld, unsigned TyBits)
Compute the known number of sign bits with attached range metadata in the memory operand.
Provides analysis for querying information about KnownBits during GISel passes.
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
Implement a low-level type suitable for MachineInstr level instruction selection.
Contains matchers for matching SSA Machine Instructions.
Promote Memory to Register
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file describes how to lower LLVM code to machine code.
static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty)
static Function * getFunction(FunctionType *Ty, const Twine &Name, Module *M)
static LLVM_ABI bool isRepresentableAsNormalIn(const fltSemantics &Src, const fltSemantics &Dst)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
void setAllBits()
Set every bit to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
void setPreservesAll()
Set by analyses that do not transform their input at all.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
This class represents a range of values.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
Represents any generic load, including sign/zero extending variants.
const MDNode * getRanges() const
Returns the Ranges that describes the dereference.
static LLVM_ABI std::optional< GFConstant > getConstant(Register Const, const MachineRegisterInfo &MRI)
To use KnownBitsInfo analysis in a pass, KnownBitsInfo &Info = getAnalysis<GISelValueTrackingInfoAnal...
GISelValueTracking & get(MachineFunction &MF)
bool runOnMachineFunction(MachineFunction &MF) override
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
GISelValueTracking Result
LLVM_ABI Result run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
LLVM_ABI PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
unsigned getMaxDepth() const
KnownBits getKnownBits(Register R)
Align computeKnownAlignment(Register R, unsigned Depth=0)
std::optional< ConstantRange > getValidShiftAmountRange(Register R, const APInt &DemandedElts, unsigned Depth)
If a G_SHL/G_ASHR/G_LSHR node with shift operand R has shift amounts that are all less than the eleme...
bool maskedValueIsZero(Register Val, const APInt &Mask)
std::optional< uint64_t > getValidMinimumShiftAmount(Register R, const APInt &DemandedElts, unsigned Depth=0)
If a G_SHL/G_ASHR/G_LSHR node with shift operand R has shift amounts that are all less than the eleme...
bool signBitIsZero(Register Op)
const DataLayout & getDataLayout() const
unsigned computeNumSignBits(Register R, const APInt &DemandedElts, unsigned Depth=0)
APInt getKnownOnes(Register R)
KnownBits getKnownBits(MachineInstr &MI)
APInt getKnownZeroes(Register R)
void computeKnownBitsImpl(Register R, KnownBits &Known, const APInt &DemandedElts, unsigned Depth=0)
Register getCondReg() const
Register getFalseReg() const
Register getTrueReg() const
Register getSrc2Reg() const
Register getSrc1Reg() const
ArrayRef< int > getMask() const
constexpr bool isScalableVector() const
Returns true if the LLT is a scalable vector.
constexpr unsigned getScalarSizeInBits() const
constexpr bool isValid() const
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
constexpr bool isFixedVector() const
Returns true if the LLT is a fixed vector.
constexpr LLT getScalarType() const
TypeSize getValue() const
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
LLT getMemoryType() const
Return the memory type of the memory reference.
const MDNode * getRanges() const
Return the range tag for the memory reference.
LocationSize getSizeInBits() const
Return the size in bits of the memory reference.
MachineOperand class - Representation of each machine instruction operand.
Register getReg() const
getReg - Returns the register number.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
operand_type_match m_Reg()
operand_type_match m_Pred()
bind_ty< FPClassTest > m_FPClassTest(FPClassTest &T)
bool mi_match(Reg R, const MachineRegisterInfo &MRI, Pattern &&P)
ClassifyOp_match< LHS, Test, TargetOpcode::G_IS_FPCLASS > m_GIsFPClass(const LHS &L, const Test &T)
Matches the register and immediate used in a fpclass test G_IS_FPCLASS val, 96.
CompareOp_match< Pred, LHS, RHS, TargetOpcode::G_FCMP > m_GFCmp(const Pred &P, const LHS &L, const RHS &R)
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI std::optional< APInt > getIConstantVRegVal(Register VReg, const MachineRegisterInfo &MRI)
If VReg is defined by a G_CONSTANT, return the corresponding value.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI const llvm::fltSemantics & getFltSemanticForLLT(LLT Ty)
Get the appropriate floating point arithmetic semantic based on the bit size of the given scalar LLT.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
AnalysisManager< MachineFunction > MachineFunctionAnalysisManager
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, FPClassTest RHSClass, bool LookThroughSrc=true)
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
constexpr unsigned MaxAnalysisRecursionDepth
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
DWARFExpression::Operation Op
std::string toString(const APInt &I, unsigned Radix, bool Signed, bool formatAsCLiteral=false, bool UpperCase=true, bool InsertSeparators=false)
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
static uint32_t extractBits(uint64_t Val, uint32_t Hi, uint32_t Lo)
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
constexpr bool outputsAreZero() const
Return true if output denormals should be flushed to 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getIEEE()
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
KnownBits reverseBits() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits sub(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from subtraction of LHS and RHS.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
bool isAllOnes() const
Returns true if value is all one bits.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
void copysign(const KnownFPClass &Sign)
bool isKnownNeverSubnormal() const
Return true if it's known this can never be a subnormal.
LLVM_ABI bool isKnownNeverLogicalZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a zero.
bool isKnownNeverPosZero() const
Return true if it's known this can never be a literal positive zero.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
void signBitMustBeZero()
Assume the sign bit is zero.
LLVM_ABI bool isKnownNeverLogicalPosZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a positive zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
LLVM_ABI bool isKnownNeverLogicalNegZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a negative zero.