LLVM 19.0.0git
WebAssemblyLowerEmscriptenEHSjLj.cpp
Go to the documentation of this file.
1//=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file lowers exception-related instructions and setjmp/longjmp function
11/// calls to use Emscripten's library functions. The pass uses JavaScript's try
12/// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in
13/// case of Emscripten SjLJ.
14///
15/// * Emscripten exception handling
16/// This pass lowers invokes and landingpads into library functions in JS glue
17/// code. Invokes are lowered into function wrappers called invoke wrappers that
18/// exist in JS side, which wraps the original function call with JS try-catch.
19/// If an exception occurred, cxa_throw() function in JS side sets some
20/// variables (see below) so we can check whether an exception occurred from
21/// wasm code and handle it appropriately.
22///
23/// * Emscripten setjmp-longjmp handling
24/// This pass lowers setjmp to a reasonably-performant approach for emscripten.
25/// The idea is that each block with a setjmp is broken up into two parts: the
26/// part containing setjmp and the part right after the setjmp. The latter part
27/// is either reached from the setjmp, or later from a longjmp. To handle the
28/// longjmp, all calls that might longjmp are also called using invoke wrappers
29/// and thus JS / try-catch. JS longjmp() function also sets some variables so
30/// we can check / whether a longjmp occurred from wasm code. Each block with a
31/// function call that might longjmp is also split up after the longjmp call.
32/// After the longjmp call, we check whether a longjmp occurred, and if it did,
33/// which setjmp it corresponds to, and jump to the right post-setjmp block.
34/// We assume setjmp-longjmp handling always run after EH handling, which means
35/// we don't expect any exception-related instructions when SjLj runs.
36/// FIXME Currently this scheme does not support indirect call of setjmp,
37/// because of the limitation of the scheme itself. fastcomp does not support it
38/// either.
39///
40/// In detail, this pass does following things:
41///
42/// 1) Assumes the existence of global variables: __THREW__, __threwValue
43/// __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
44/// These variables are used for both exceptions and setjmp/longjmps.
45/// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
46/// means nothing occurred, 1 means an exception occurred, and other numbers
47/// mean a longjmp occurred. In the case of longjmp, __THREW__ variable
48/// indicates the corresponding setjmp buffer the longjmp corresponds to.
49/// __threwValue is 0 for exceptions, and the argument to longjmp in case of
50/// longjmp.
51///
52/// * Emscripten exception handling
53///
54/// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
55/// at link time. setThrew exists in Emscripten's compiler-rt:
56///
57/// void setThrew(uintptr_t threw, int value) {
58/// if (__THREW__ == 0) {
59/// __THREW__ = threw;
60/// __threwValue = value;
61/// }
62/// }
63//
64/// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
65/// In exception handling, getTempRet0 indicates the type of an exception
66/// caught, and in setjmp/longjmp, it means the second argument to longjmp
67/// function.
68///
69/// 3) Lower
70/// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
71/// into
72/// __THREW__ = 0;
73/// call @__invoke_SIG(func, arg1, arg2)
74/// %__THREW__.val = __THREW__;
75/// __THREW__ = 0;
76/// if (%__THREW__.val == 1)
77/// goto %lpad
78/// else
79/// goto %invoke.cont
80/// SIG is a mangled string generated based on the LLVM IR-level function
81/// signature. After LLVM IR types are lowered to the target wasm types,
82/// the names for these wrappers will change based on wasm types as well,
83/// as in invoke_vi (function takes an int and returns void). The bodies of
84/// these wrappers will be generated in JS glue code, and inside those
85/// wrappers we use JS try-catch to generate actual exception effects. It
86/// also calls the original callee function. An example wrapper in JS code
87/// would look like this:
88/// function invoke_vi(index,a1) {
89/// try {
90/// Module["dynCall_vi"](index,a1); // This calls original callee
91/// } catch(e) {
92/// if (typeof e !== 'number' && e !== 'longjmp') throw e;
93/// _setThrew(1, 0); // setThrew is called here
94/// }
95/// }
96/// If an exception is thrown, __THREW__ will be set to true in a wrapper,
97/// so we can jump to the right BB based on this value.
98///
99/// 4) Lower
100/// %val = landingpad catch c1 catch c2 catch c3 ...
101/// ... use %val ...
102/// into
103/// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
104/// %val = {%fmc, getTempRet0()}
105/// ... use %val ...
106/// Here N is a number calculated based on the number of clauses.
107/// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
108///
109/// 5) Lower
110/// resume {%a, %b}
111/// into
112/// call @__resumeException(%a)
113/// where __resumeException() is a function in JS glue code.
114///
115/// 6) Lower
116/// call @llvm.eh.typeid.for(type) (intrinsic)
117/// into
118/// call @llvm_eh_typeid_for(type)
119/// llvm_eh_typeid_for function will be generated in JS glue code.
120///
121/// * Emscripten setjmp / longjmp handling
122///
123/// If there are calls to longjmp()
124///
125/// 1) Lower
126/// longjmp(env, val)
127/// into
128/// emscripten_longjmp(env, val)
129///
130/// If there are calls to setjmp()
131///
132/// 2) In the function entry that calls setjmp, initialize
133/// functionInvocationId as follows:
134///
135/// functionInvocationId = alloca(4)
136///
137/// Note: the alloca size is not important as this pointer is
138/// merely used for pointer comparisions.
139///
140/// 3) Lower
141/// setjmp(env)
142/// into
143/// __wasm_setjmp(env, label, functionInvocationId)
144///
145/// __wasm_setjmp records the necessary info (the label and
146/// functionInvocationId) to the "env".
147/// A BB with setjmp is split into two after setjmp call in order to
148/// make the post-setjmp BB the possible destination of longjmp BB.
149///
150/// 4) Lower every call that might longjmp into
151/// __THREW__ = 0;
152/// call @__invoke_SIG(func, arg1, arg2)
153/// %__THREW__.val = __THREW__;
154/// __THREW__ = 0;
155/// %__threwValue.val = __threwValue;
156/// if (%__THREW__.val != 0 & %__threwValue.val != 0) {
157/// %label = __wasm_setjmp_test(%__THREW__.val, functionInvocationId);
158/// if (%label == 0)
159/// emscripten_longjmp(%__THREW__.val, %__threwValue.val);
160/// setTempRet0(%__threwValue.val);
161/// } else {
162/// %label = -1;
163/// }
164/// longjmp_result = getTempRet0();
165/// switch %label {
166/// label 1: goto post-setjmp BB 1
167/// label 2: goto post-setjmp BB 2
168/// ...
169/// default: goto splitted next BB
170/// }
171///
172/// __wasm_setjmp_test examines the jmp buf to see if it was for a matching
173/// setjmp call. After calling an invoke wrapper, if a longjmp occurred,
174/// __THREW__ will be the address of matching jmp_buf buffer and
175/// __threwValue be the second argument to longjmp.
176/// __wasm_setjmp_test returns a setjmp label, a unique ID to each setjmp
177/// callsite. Label 0 means this longjmp buffer does not correspond to one
178/// of the setjmp callsites in this function, so in this case we just chain
179/// the longjmp to the caller. Label -1 means no longjmp occurred.
180/// Otherwise we jump to the right post-setjmp BB based on the label.
181///
182/// * Wasm setjmp / longjmp handling
183/// This mode still uses some Emscripten library functions but not JavaScript's
184/// try-catch mechanism. It instead uses Wasm exception handling intrinsics,
185/// which will be lowered to exception handling instructions.
186///
187/// If there are calls to longjmp()
188///
189/// 1) Lower
190/// longjmp(env, val)
191/// into
192/// __wasm_longjmp(env, val)
193///
194/// If there are calls to setjmp()
195///
196/// 2) and 3): The same as 2) and 3) in Emscripten SjLj.
197/// (functionInvocationId initialization + setjmp callsite transformation)
198///
199/// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value
200/// thrown by __wasm_longjmp function. In the runtime library, we have an
201/// equivalent of the following struct:
202///
203/// struct __WasmLongjmpArgs {
204/// void *env;
205/// int val;
206/// };
207///
208/// The thrown value here is a pointer to the struct. We use this struct to
209/// transfer two values by throwing a single value. Wasm throw and catch
210/// instructions are capable of throwing and catching multiple values, but
211/// it also requires multivalue support that is currently not very reliable.
212/// TODO Switch to throwing and catching two values without using the struct
213///
214/// All longjmpable function calls will be converted to an invoke that will
215/// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we
216/// test the thrown values using __wasm_setjmp_test function as we do for
217/// Emscripten SjLj. The main difference is, in Emscripten SjLj, we need to
218/// transform every longjmpable callsite into a sequence of code including
219/// __wasm_setjmp_test() call; in Wasm SjLj we do the testing in only one
220/// place, in this catchpad.
221///
222/// After testing calling __wasm_setjmp_test(), if the longjmp does not
223/// correspond to one of the setjmps within the current function, it rethrows
224/// the longjmp by calling __wasm_longjmp(). If it corresponds to one of
225/// setjmps in the function, we jump to the beginning of the function, which
226/// contains a switch to each post-setjmp BB. Again, in Emscripten SjLj, this
227/// switch is added for every longjmpable callsite; in Wasm SjLj we do this
228/// only once at the top of the function. (after functionInvocationId
229/// initialization)
230///
231/// The below is the pseudocode for what we have described
232///
233/// entry:
234/// Initialize functionInvocationId
235///
236/// setjmp.dispatch:
237/// switch %label {
238/// label 1: goto post-setjmp BB 1
239/// label 2: goto post-setjmp BB 2
240/// ...
241/// default: goto splitted next BB
242/// }
243/// ...
244///
245/// bb:
246/// invoke void @foo() ;; foo is a longjmpable function
247/// to label %next unwind label %catch.dispatch.longjmp
248/// ...
249///
250/// catch.dispatch.longjmp:
251/// %0 = catchswitch within none [label %catch.longjmp] unwind to caller
252///
253/// catch.longjmp:
254/// %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs
255/// %env = load 'env' field from __WasmLongjmpArgs
256/// %val = load 'val' field from __WasmLongjmpArgs
257/// %label = __wasm_setjmp_test(%env, functionInvocationId);
258/// if (%label == 0)
259/// __wasm_longjmp(%env, %val)
260/// catchret to %setjmp.dispatch
261///
262///===----------------------------------------------------------------------===//
263
265#include "WebAssembly.h"
271#include "llvm/IR/Dominators.h"
272#include "llvm/IR/IRBuilder.h"
273#include "llvm/IR/IntrinsicsWebAssembly.h"
274#include "llvm/IR/Module.h"
280#include <set>
281
282using namespace llvm;
283
284#define DEBUG_TYPE "wasm-lower-em-ehsjlj"
285
287 EHAllowlist("emscripten-cxx-exceptions-allowed",
288 cl::desc("The list of function names in which Emscripten-style "
289 "exception handling is enabled (see emscripten "
290 "EMSCRIPTEN_CATCHING_ALLOWED options)"),
292
293namespace {
294class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
295 bool EnableEmEH; // Enable Emscripten exception handling
296 bool EnableEmSjLj; // Enable Emscripten setjmp/longjmp handling
297 bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling
298 bool DoSjLj; // Whether we actually perform setjmp/longjmp handling
299
300 GlobalVariable *ThrewGV = nullptr; // __THREW__ (Emscripten)
301 GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
302 Function *GetTempRet0F = nullptr; // getTempRet0() (Emscripten)
303 Function *SetTempRet0F = nullptr; // setTempRet0() (Emscripten)
304 Function *ResumeF = nullptr; // __resumeException() (Emscripten)
305 Function *EHTypeIDF = nullptr; // llvm.eh.typeid.for() (intrinsic)
306 Function *EmLongjmpF = nullptr; // emscripten_longjmp() (Emscripten)
307 Function *WasmSetjmpF = nullptr; // __wasm_setjmp() (Emscripten)
308 Function *WasmSetjmpTestF = nullptr; // __wasm_setjmp_test() (Emscripten)
309 Function *WasmLongjmpF = nullptr; // __wasm_longjmp() (Emscripten)
310 Function *CatchF = nullptr; // wasm.catch() (intrinsic)
311
312 // type of 'struct __WasmLongjmpArgs' defined in emscripten
313 Type *LongjmpArgsTy = nullptr;
314
315 // __cxa_find_matching_catch_N functions.
316 // Indexed by the number of clauses in an original landingpad instruction.
317 DenseMap<int, Function *> FindMatchingCatches;
318 // Map of <function signature string, invoke_ wrappers>
319 StringMap<Function *> InvokeWrappers;
320 // Set of allowed function names for exception handling
321 std::set<std::string> EHAllowlistSet;
322 // Functions that contains calls to setjmp
323 SmallPtrSet<Function *, 8> SetjmpUsers;
324
325 StringRef getPassName() const override {
326 return "WebAssembly Lower Emscripten Exceptions";
327 }
328
329 using InstVector = SmallVectorImpl<Instruction *>;
330 bool runEHOnFunction(Function &F);
331 bool runSjLjOnFunction(Function &F);
332 void handleLongjmpableCallsForEmscriptenSjLj(
333 Function &F, Instruction *FunctionInvocationId,
334 SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
335 void
336 handleLongjmpableCallsForWasmSjLj(Function &F,
337 Instruction *FunctionInvocationId,
338 SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
339 Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
340
341 Value *wrapInvoke(CallBase *CI);
342 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
343 Value *FunctionInvocationId, Value *&Label,
344 Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
345 PHINode *&CallEmLongjmpBBThrewPHI,
346 PHINode *&CallEmLongjmpBBThrewValuePHI,
347 BasicBlock *&EndBB);
348 Function *getInvokeWrapper(CallBase *CI);
349
350 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
351 bool supportsException(const Function *F) const {
352 return EnableEmEH && (areAllExceptionsAllowed() ||
353 EHAllowlistSet.count(std::string(F->getName())));
354 }
355 void replaceLongjmpWith(Function *LongjmpF, Function *NewF);
356
357 void rebuildSSA(Function &F);
358
359public:
360 static char ID;
361
362 WebAssemblyLowerEmscriptenEHSjLj()
363 : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH),
364 EnableEmSjLj(WebAssembly::WasmEnableEmSjLj),
365 EnableWasmSjLj(WebAssembly::WasmEnableSjLj) {
366 assert(!(EnableEmSjLj && EnableWasmSjLj) &&
367 "Two SjLj modes cannot be turned on at the same time");
368 assert(!(EnableEmEH && EnableWasmSjLj) &&
369 "Wasm SjLj should be only used with Wasm EH");
370 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
371 }
372 bool runOnModule(Module &M) override;
373
374 void getAnalysisUsage(AnalysisUsage &AU) const override {
376 }
377};
378} // End anonymous namespace
379
380char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
381INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
382 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
383 false, false)
384
386 return new WebAssemblyLowerEmscriptenEHSjLj();
387}
388
389static bool canThrow(const Value *V) {
390 if (const auto *F = dyn_cast<const Function>(V)) {
391 // Intrinsics cannot throw
392 if (F->isIntrinsic())
393 return false;
394 StringRef Name = F->getName();
395 // leave setjmp and longjmp (mostly) alone, we process them properly later
396 if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
397 return false;
398 return !F->doesNotThrow();
399 }
400 // not a function, so an indirect call - can throw, we can't tell
401 return true;
402}
403
404// Get a thread-local global variable with the given name. If it doesn't exist
405// declare it, which will generate an import and assume that it will exist at
406// link time.
409 const char *Name) {
410 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
411 if (!GV)
412 report_fatal_error(Twine("unable to create global: ") + Name);
413
414 // Variables created by this function are thread local. If the target does not
415 // support TLS, we depend on CoalesceFeaturesAndStripAtomics to downgrade it
416 // to non-thread-local ones, in which case we don't allow this object to be
417 // linked with other objects using shared memory.
418 GV->setThreadLocalMode(GlobalValue::GeneralDynamicTLSModel);
419 return GV;
420}
421
422// Simple function name mangler.
423// This function simply takes LLVM's string representation of parameter types
424// and concatenate them with '_'. There are non-alphanumeric characters but llc
425// is ok with it, and we need to postprocess these names after the lowering
426// phase anyway.
427static std::string getSignature(FunctionType *FTy) {
428 std::string Sig;
430 OS << *FTy->getReturnType();
431 for (Type *ParamTy : FTy->params())
432 OS << "_" << *ParamTy;
433 if (FTy->isVarArg())
434 OS << "_...";
435 Sig = OS.str();
436 erase_if(Sig, isSpace);
437 // When s2wasm parses .s file, a comma means the end of an argument. So a
438 // mangled function name can contain any character but a comma.
439 std::replace(Sig.begin(), Sig.end(), ',', '.');
440 return Sig;
441}
442
444 Module *M) {
446 // Tell the linker that this function is expected to be imported from the
447 // 'env' module.
448 if (!F->hasFnAttribute("wasm-import-module")) {
449 llvm::AttrBuilder B(M->getContext());
450 B.addAttribute("wasm-import-module", "env");
451 F->addFnAttrs(B);
452 }
453 if (!F->hasFnAttribute("wasm-import-name")) {
454 llvm::AttrBuilder B(M->getContext());
455 B.addAttribute("wasm-import-name", F->getName());
456 F->addFnAttrs(B);
457 }
458 return F;
459}
460
461// Returns an integer type for the target architecture's address space.
462// i32 for wasm32 and i64 for wasm64.
464 IRBuilder<> IRB(M->getContext());
465 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
466}
467
468// Returns an integer pointer type for the target architecture's address space.
469// i32* for wasm32 and i64* for wasm64. With opaque pointers this is just a ptr
470// in address space zero.
472 return PointerType::getUnqual(M->getContext());
473}
474
475// Returns an integer whose type is the integer type for the target's address
476// space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
477// integer.
479 IRBuilder<> IRB(M->getContext());
480 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
481}
482
483// Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
484// This is because a landingpad instruction contains two more arguments, a
485// personality function and a cleanup bit, and __cxa_find_matching_catch_N
486// functions are named after the number of arguments in the original landingpad
487// instruction.
488Function *
489WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
490 unsigned NumClauses) {
491 if (FindMatchingCatches.count(NumClauses))
492 return FindMatchingCatches[NumClauses];
493 PointerType *Int8PtrTy = PointerType::getUnqual(M.getContext());
494 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
495 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
497 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
498 FindMatchingCatches[NumClauses] = F;
499 return F;
500}
501
502// Generate invoke wrapper seqence with preamble and postamble
503// Preamble:
504// __THREW__ = 0;
505// Postamble:
506// %__THREW__.val = __THREW__; __THREW__ = 0;
507// Returns %__THREW__.val, which indicates whether an exception is thrown (or
508// whether longjmp occurred), for future use.
509Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
510 Module *M = CI->getModule();
511 LLVMContext &C = M->getContext();
512
513 IRBuilder<> IRB(C);
514 IRB.SetInsertPoint(CI);
515
516 // Pre-invoke
517 // __THREW__ = 0;
518 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
519
520 // Invoke function wrapper in JavaScript
522 // Put the pointer to the callee as first argument, so it can be called
523 // within the invoke wrapper later
524 Args.push_back(CI->getCalledOperand());
525 Args.append(CI->arg_begin(), CI->arg_end());
526 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
527 NewCall->takeName(CI);
529 NewCall->setDebugLoc(CI->getDebugLoc());
530
531 // Because we added the pointer to the callee as first argument, all
532 // argument attribute indices have to be incremented by one.
533 SmallVector<AttributeSet, 8> ArgAttributes;
534 const AttributeList &InvokeAL = CI->getAttributes();
535
536 // No attributes for the callee pointer.
537 ArgAttributes.push_back(AttributeSet());
538 // Copy the argument attributes from the original
539 for (unsigned I = 0, E = CI->arg_size(); I < E; ++I)
540 ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
541
542 AttrBuilder FnAttrs(CI->getContext(), InvokeAL.getFnAttrs());
543 if (auto Args = FnAttrs.getAllocSizeArgs()) {
544 // The allocsize attribute (if any) referes to parameters by index and needs
545 // to be adjusted.
546 auto [SizeArg, NEltArg] = *Args;
547 SizeArg += 1;
548 if (NEltArg)
549 NEltArg = *NEltArg + 1;
550 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
551 }
552 // In case the callee has 'noreturn' attribute, We need to remove it, because
553 // we expect invoke wrappers to return.
554 FnAttrs.removeAttribute(Attribute::NoReturn);
555
556 // Reconstruct the AttributesList based on the vector we constructed.
558 C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
559 NewCall->setAttributes(NewCallAL);
560
561 CI->replaceAllUsesWith(NewCall);
562
563 // Post-invoke
564 // %__THREW__.val = __THREW__; __THREW__ = 0;
565 Value *Threw =
566 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
567 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
568 return Threw;
569}
570
571// Get matching invoke wrapper based on callee signature
572Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
573 Module *M = CI->getModule();
575 FunctionType *CalleeFTy = CI->getFunctionType();
576
577 std::string Sig = getSignature(CalleeFTy);
578 if (InvokeWrappers.contains(Sig))
579 return InvokeWrappers[Sig];
580
581 // Put the pointer to the callee as first argument
582 ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
583 // Add argument types
584 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
585
586 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
587 CalleeFTy->isVarArg());
588 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
589 InvokeWrappers[Sig] = F;
590 return F;
591}
592
593static bool canLongjmp(const Value *Callee) {
594 if (auto *CalleeF = dyn_cast<Function>(Callee))
595 if (CalleeF->isIntrinsic())
596 return false;
597
598 // Attempting to transform inline assembly will result in something like:
599 // call void @__invoke_void(void ()* asm ...)
600 // which is invalid because inline assembly blocks do not have addresses
601 // and can't be passed by pointer. The result is a crash with illegal IR.
602 if (isa<InlineAsm>(Callee))
603 return false;
604 StringRef CalleeName = Callee->getName();
605
606 // TODO Include more functions or consider checking with mangled prefixes
607
608 // The reason we include malloc/free here is to exclude the malloc/free
609 // calls generated in setjmp prep / cleanup routines.
610 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
611 return false;
612
613 // There are functions in Emscripten's JS glue code or compiler-rt
614 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
615 CalleeName == "__wasm_setjmp" || CalleeName == "__wasm_setjmp_test" ||
616 CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
617 return false;
618
619 // __cxa_find_matching_catch_N functions cannot longjmp
620 if (Callee->getName().starts_with("__cxa_find_matching_catch_"))
621 return false;
622
623 // Exception-catching related functions
624 //
625 // We intentionally treat __cxa_end_catch longjmpable in Wasm SjLj even though
626 // it surely cannot longjmp, in order to maintain the unwind relationship from
627 // all existing catchpads (and calls within them) to catch.dispatch.longjmp.
628 //
629 // In Wasm EH + Wasm SjLj, we
630 // 1. Make all catchswitch and cleanuppad that unwind to caller unwind to
631 // catch.dispatch.longjmp instead
632 // 2. Convert all longjmpable calls to invokes that unwind to
633 // catch.dispatch.longjmp
634 // But catchswitch BBs are removed in isel, so if an EH catchswitch (generated
635 // from an exception)'s catchpad does not contain any calls that are converted
636 // into invokes unwinding to catch.dispatch.longjmp, this unwind relationship
637 // (EH catchswitch BB -> catch.dispatch.longjmp BB) is lost and
638 // catch.dispatch.longjmp BB can be placed before the EH catchswitch BB in
639 // CFGSort.
640 // int ret = setjmp(buf);
641 // try {
642 // foo(); // longjmps
643 // } catch (...) {
644 // }
645 // Then in this code, if 'foo' longjmps, it first unwinds to 'catch (...)'
646 // catchswitch, and is not caught by that catchswitch because it is a longjmp,
647 // then it should next unwind to catch.dispatch.longjmp BB. But if this 'catch
648 // (...)' catchswitch -> catch.dispatch.longjmp unwind relationship is lost,
649 // it will not unwind to catch.dispatch.longjmp, producing an incorrect
650 // result.
651 //
652 // Every catchpad generated by Wasm C++ contains __cxa_end_catch, so we
653 // intentionally treat it as longjmpable to work around this problem. This is
654 // a hacky fix but an easy one.
655 //
656 // The comment block in findWasmUnwindDestinations() in
657 // SelectionDAGBuilder.cpp is addressing a similar problem.
658 if (CalleeName == "__cxa_end_catch")
660 if (CalleeName == "__cxa_begin_catch" ||
661 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
662 CalleeName == "__clang_call_terminate")
663 return false;
664
665 // std::terminate, which is generated when another exception occurs while
666 // handling an exception, cannot longjmp.
667 if (CalleeName == "_ZSt9terminatev")
668 return false;
669
670 // Otherwise we don't know
671 return true;
672}
673
674static bool isEmAsmCall(const Value *Callee) {
675 StringRef CalleeName = Callee->getName();
676 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
677 return CalleeName == "emscripten_asm_const_int" ||
678 CalleeName == "emscripten_asm_const_double" ||
679 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
680 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
681 CalleeName == "emscripten_asm_const_async_on_main_thread";
682}
683
684// Generate __wasm_setjmp_test function call seqence with preamble and
685// postamble. The code this generates is equivalent to the following
686// JavaScript code:
687// %__threwValue.val = __threwValue;
688// if (%__THREW__.val != 0 & %__threwValue.val != 0) {
689// %label = __wasm_setjmp_test(%__THREW__.val, functionInvocationId);
690// if (%label == 0)
691// emscripten_longjmp(%__THREW__.val, %__threwValue.val);
692// setTempRet0(%__threwValue.val);
693// } else {
694// %label = -1;
695// }
696// %longjmp_result = getTempRet0();
697//
698// As output parameters. returns %label, %longjmp_result, and the BB the last
699// instruction (%longjmp_result = ...) is in.
700void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
701 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *FunctionInvocationId,
702 Value *&Label, Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
703 PHINode *&CallEmLongjmpBBThrewPHI, PHINode *&CallEmLongjmpBBThrewValuePHI,
704 BasicBlock *&EndBB) {
705 Function *F = BB->getParent();
706 Module *M = F->getParent();
707 LLVMContext &C = M->getContext();
708 IRBuilder<> IRB(C);
709 IRB.SetCurrentDebugLocation(DL);
710
711 // if (%__THREW__.val != 0 & %__threwValue.val != 0)
712 IRB.SetInsertPoint(BB);
713 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
714 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
715 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
716 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
717 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
718 ThrewValueGV->getName() + ".val");
719 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
720 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
721 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
722
723 // Generate call.em.longjmp BB once and share it within the function
724 if (!CallEmLongjmpBB) {
725 // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
726 CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F);
727 IRB.SetInsertPoint(CallEmLongjmpBB);
728 CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi");
729 CallEmLongjmpBBThrewValuePHI =
730 IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi");
731 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
732 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
733 IRB.CreateCall(EmLongjmpF,
734 {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI});
735 IRB.CreateUnreachable();
736 } else {
737 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
738 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
739 }
740
741 // %label = __wasm_setjmp_test(%__THREW__.val, functionInvocationId);
742 // if (%label == 0)
743 IRB.SetInsertPoint(ThenBB1);
744 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
745 Value *ThrewPtr =
746 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
747 Value *ThenLabel = IRB.CreateCall(WasmSetjmpTestF,
748 {ThrewPtr, FunctionInvocationId}, "label");
749 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
750 IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2);
751
752 // setTempRet0(%__threwValue.val);
753 IRB.SetInsertPoint(EndBB2);
754 IRB.CreateCall(SetTempRet0F, ThrewValue);
755 IRB.CreateBr(EndBB1);
756
757 IRB.SetInsertPoint(ElseBB1);
758 IRB.CreateBr(EndBB1);
759
760 // longjmp_result = getTempRet0();
761 IRB.SetInsertPoint(EndBB1);
762 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
763 LabelPHI->addIncoming(ThenLabel, EndBB2);
764
765 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
766
767 // Output parameter assignment
768 Label = LabelPHI;
769 EndBB = EndBB1;
770 LongjmpResult = IRB.CreateCall(GetTempRet0F, std::nullopt, "longjmp_result");
771}
772
773void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
774 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
775 DT.recalculate(F); // CFG has been changed
776
778 for (BasicBlock &BB : F) {
779 for (Instruction &I : BB) {
780 unsigned VarID = SSA.AddVariable(I.getName(), I.getType());
781 // If a value is defined by an invoke instruction, it is only available in
782 // its normal destination and not in its unwind destination.
783 if (auto *II = dyn_cast<InvokeInst>(&I))
784 SSA.AddAvailableValue(VarID, II->getNormalDest(), II);
785 else
786 SSA.AddAvailableValue(VarID, &BB, &I);
787 for (auto &U : I.uses()) {
788 auto *User = cast<Instruction>(U.getUser());
789 if (auto *UserPN = dyn_cast<PHINode>(User))
790 if (UserPN->getIncomingBlock(U) == &BB)
791 continue;
792 if (DT.dominates(&I, User))
793 continue;
794 SSA.AddUse(VarID, &U);
795 }
796 }
797 }
798 SSA.RewriteAllUses(&DT);
799}
800
801// Replace uses of longjmp with a new longjmp function in Emscripten library.
802// In Emscripten SjLj, the new function is
803// void emscripten_longjmp(uintptr_t, i32)
804// In Wasm SjLj, the new function is
805// void __wasm_longjmp(i8*, i32)
806// Because the original libc longjmp function takes (jmp_buf*, i32), we need a
807// ptrtoint/bitcast instruction here to make the type match. jmp_buf* will
808// eventually be lowered to i32/i64 in the wasm backend.
809void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF,
810 Function *NewF) {
811 assert(NewF == EmLongjmpF || NewF == WasmLongjmpF);
812 Module *M = LongjmpF->getParent();
814 LLVMContext &C = LongjmpF->getParent()->getContext();
815 IRBuilder<> IRB(C);
816
817 // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and
818 // cast its first argument (jmp_buf*) appropriately
819 for (User *U : LongjmpF->users()) {
820 auto *CI = dyn_cast<CallInst>(U);
821 if (CI && CI->getCalledFunction() == LongjmpF) {
822 IRB.SetInsertPoint(CI);
823 Value *Env = nullptr;
824 if (NewF == EmLongjmpF)
825 Env =
826 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env");
827 else // WasmLongjmpF
828 Env = IRB.CreateBitCast(CI->getArgOperand(0), IRB.getPtrTy(), "env");
829 IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)});
830 ToErase.push_back(CI);
831 }
832 }
833 for (auto *I : ToErase)
834 I->eraseFromParent();
835
836 // If we have any remaining uses of longjmp's function pointer, replace it
837 // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp.
838 if (!LongjmpF->uses().empty()) {
839 Value *NewLongjmp =
840 IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast");
841 LongjmpF->replaceAllUsesWith(NewLongjmp);
842 }
843}
844
846 for (const auto &BB : *F)
847 for (const auto &I : BB)
848 if (const auto *CB = dyn_cast<CallBase>(&I))
849 if (canLongjmp(CB->getCalledOperand()))
850 return true;
851 return false;
852}
853
854// When a function contains a setjmp call but not other calls that can longjmp,
855// we don't do setjmp transformation for that setjmp. But we need to convert the
856// setjmp calls into "i32 0" so they don't cause link time errors. setjmp always
857// returns 0 when called directly.
858static void nullifySetjmp(Function *F) {
859 Module &M = *F->getParent();
860 IRBuilder<> IRB(M.getContext());
861 Function *SetjmpF = M.getFunction("setjmp");
863
864 for (User *U : make_early_inc_range(SetjmpF->users())) {
865 auto *CB = cast<CallBase>(U);
866 BasicBlock *BB = CB->getParent();
867 if (BB->getParent() != F) // in other function
868 continue;
869 CallInst *CI = nullptr;
870 // setjmp cannot throw. So if it is an invoke, lower it to a call
871 if (auto *II = dyn_cast<InvokeInst>(CB))
873 else
874 CI = cast<CallInst>(CB);
875 ToErase.push_back(CI);
876 CI->replaceAllUsesWith(IRB.getInt32(0));
877 }
878 for (auto *I : ToErase)
879 I->eraseFromParent();
880}
881
882bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
883 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
884
885 LLVMContext &C = M.getContext();
886 IRBuilder<> IRB(C);
887
888 Function *SetjmpF = M.getFunction("setjmp");
889 Function *LongjmpF = M.getFunction("longjmp");
890
891 // In some platforms _setjmp and _longjmp are used instead. Change these to
892 // use setjmp/longjmp instead, because we later detect these functions by
893 // their names.
894 Function *SetjmpF2 = M.getFunction("_setjmp");
895 Function *LongjmpF2 = M.getFunction("_longjmp");
896 if (SetjmpF2) {
897 if (SetjmpF) {
898 if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType())
899 report_fatal_error("setjmp and _setjmp have different function types");
900 } else {
901 SetjmpF = Function::Create(SetjmpF2->getFunctionType(),
902 GlobalValue::ExternalLinkage, "setjmp", M);
903 }
904 SetjmpF2->replaceAllUsesWith(SetjmpF);
905 }
906 if (LongjmpF2) {
907 if (LongjmpF) {
908 if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType())
910 "longjmp and _longjmp have different function types");
911 } else {
912 LongjmpF = Function::Create(LongjmpF2->getFunctionType(),
913 GlobalValue::ExternalLinkage, "setjmp", M);
914 }
915 LongjmpF2->replaceAllUsesWith(LongjmpF);
916 }
917
918 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
919 assert(TPC && "Expected a TargetPassConfig");
920 auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
921
922 // Declare (or get) global variables __THREW__, __threwValue, and
923 // getTempRet0/setTempRet0 function which are used in common for both
924 // exception handling and setjmp/longjmp handling
925 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
926 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
927 GetTempRet0F = getEmscriptenFunction(
928 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
929 SetTempRet0F = getEmscriptenFunction(
930 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
931 "setTempRet0", &M);
932 GetTempRet0F->setDoesNotThrow();
933 SetTempRet0F->setDoesNotThrow();
934
935 bool Changed = false;
936
937 // Function registration for exception handling
938 if (EnableEmEH) {
939 // Register __resumeException function
940 FunctionType *ResumeFTy =
941 FunctionType::get(IRB.getVoidTy(), IRB.getPtrTy(), false);
942 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
943 ResumeF->addFnAttr(Attribute::NoReturn);
944
945 // Register llvm_eh_typeid_for function
946 FunctionType *EHTypeIDTy =
947 FunctionType::get(IRB.getInt32Ty(), IRB.getPtrTy(), false);
948 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
949 }
950
951 // Functions that contains calls to setjmp but don't have other longjmpable
952 // calls within them.
953 SmallPtrSet<Function *, 4> SetjmpUsersToNullify;
954
955 if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) {
956 // Precompute setjmp users
957 for (User *U : SetjmpF->users()) {
958 if (auto *CB = dyn_cast<CallBase>(U)) {
959 auto *UserF = CB->getFunction();
960 // If a function that calls setjmp does not contain any other calls that
961 // can longjmp, we don't need to do any transformation on that function,
962 // so can ignore it
963 if (containsLongjmpableCalls(UserF))
964 SetjmpUsers.insert(UserF);
965 else
966 SetjmpUsersToNullify.insert(UserF);
967 } else {
968 std::string S;
970 SS << *U;
971 report_fatal_error(Twine("Indirect use of setjmp is not supported: ") +
972 SS.str());
973 }
974 }
975 }
976
977 bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
978 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
979 DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed);
980
981 // Function registration and data pre-gathering for setjmp/longjmp handling
982 if (DoSjLj) {
983 assert(EnableEmSjLj || EnableWasmSjLj);
984 if (EnableEmSjLj) {
985 // Register emscripten_longjmp function
986 FunctionType *FTy = FunctionType::get(
987 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
988 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
989 EmLongjmpF->addFnAttr(Attribute::NoReturn);
990 } else { // EnableWasmSjLj
991 Type *Int8PtrTy = IRB.getPtrTy();
992 // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp.
993 FunctionType *FTy = FunctionType::get(
994 IRB.getVoidTy(), {Int8PtrTy, IRB.getInt32Ty()}, false);
995 WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M);
996 WasmLongjmpF->addFnAttr(Attribute::NoReturn);
997 }
998
999 if (SetjmpF) {
1000 Type *Int8PtrTy = IRB.getPtrTy();
1001 Type *Int32PtrTy = IRB.getPtrTy();
1002 Type *Int32Ty = IRB.getInt32Ty();
1003
1004 // Register __wasm_setjmp function
1005 FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
1006 FunctionType *FTy = FunctionType::get(
1007 IRB.getVoidTy(), {SetjmpFTy->getParamType(0), Int32Ty, Int32PtrTy},
1008 false);
1009 WasmSetjmpF = getEmscriptenFunction(FTy, "__wasm_setjmp", &M);
1010
1011 // Register __wasm_setjmp_test function
1012 FTy = FunctionType::get(Int32Ty, {Int32PtrTy, Int32PtrTy}, false);
1013 WasmSetjmpTestF = getEmscriptenFunction(FTy, "__wasm_setjmp_test", &M);
1014
1015 // wasm.catch() will be lowered down to wasm 'catch' instruction in
1016 // instruction selection.
1017 CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch);
1018 // Type for struct __WasmLongjmpArgs
1019 LongjmpArgsTy = StructType::get(Int8PtrTy, // env
1020 Int32Ty // val
1021 );
1022 }
1023 }
1024
1025 // Exception handling transformation
1026 if (EnableEmEH) {
1027 for (Function &F : M) {
1028 if (F.isDeclaration())
1029 continue;
1030 Changed |= runEHOnFunction(F);
1031 }
1032 }
1033
1034 // Setjmp/longjmp handling transformation
1035 if (DoSjLj) {
1036 Changed = true; // We have setjmp or longjmp somewhere
1037 if (LongjmpF)
1038 replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF);
1039 // Only traverse functions that uses setjmp in order not to insert
1040 // unnecessary prep / cleanup code in every function
1041 if (SetjmpF)
1042 for (Function *F : SetjmpUsers)
1043 runSjLjOnFunction(*F);
1044 }
1045
1046 // Replace unnecessary setjmp calls with 0
1047 if ((EnableEmSjLj || EnableWasmSjLj) && !SetjmpUsersToNullify.empty()) {
1048 Changed = true;
1049 assert(SetjmpF);
1050 for (Function *F : SetjmpUsersToNullify)
1052 }
1053
1054 // Delete unused global variables and functions
1055 for (auto *V : {ThrewGV, ThrewValueGV})
1056 if (V && V->use_empty())
1057 V->eraseFromParent();
1058 for (auto *V : {GetTempRet0F, SetTempRet0F, ResumeF, EHTypeIDF, EmLongjmpF,
1059 WasmSetjmpF, WasmSetjmpTestF, WasmLongjmpF, CatchF})
1060 if (V && V->use_empty())
1061 V->eraseFromParent();
1062
1063 return Changed;
1064}
1065
1066bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
1067 Module &M = *F.getParent();
1068 LLVMContext &C = F.getContext();
1069 IRBuilder<> IRB(C);
1070 bool Changed = false;
1073
1074 // rethrow.longjmp BB that will be shared within the function.
1075 BasicBlock *RethrowLongjmpBB = nullptr;
1076 // PHI node for the loaded value of __THREW__ global variable in
1077 // rethrow.longjmp BB
1078 PHINode *RethrowLongjmpBBThrewPHI = nullptr;
1079
1080 for (BasicBlock &BB : F) {
1081 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
1082 if (!II)
1083 continue;
1084 Changed = true;
1085 LandingPads.insert(II->getLandingPadInst());
1086 IRB.SetInsertPoint(II);
1087
1088 const Value *Callee = II->getCalledOperand();
1089 bool NeedInvoke = supportsException(&F) && canThrow(Callee);
1090 if (NeedInvoke) {
1091 // Wrap invoke with invoke wrapper and generate preamble/postamble
1092 Value *Threw = wrapInvoke(II);
1093 ToErase.push_back(II);
1094
1095 // If setjmp/longjmp handling is enabled, the thrown value can be not an
1096 // exception but a longjmp. If the current function contains calls to
1097 // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
1098 // if the function does not contain setjmp calls, we shouldn't silently
1099 // ignore longjmps; we should rethrow them so they can be correctly
1100 // handled in somewhere up the call chain where setjmp is. __THREW__'s
1101 // value is 0 when nothing happened, 1 when an exception is thrown, and
1102 // other values when longjmp is thrown.
1103 //
1104 // if (%__THREW__.val == 0 || %__THREW__.val == 1)
1105 // goto %tail
1106 // else
1107 // goto %longjmp.rethrow
1108 //
1109 // rethrow.longjmp: ;; This is longjmp. Rethrow it
1110 // %__threwValue.val = __threwValue
1111 // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
1112 //
1113 // tail: ;; Nothing happened or an exception is thrown
1114 // ... Continue exception handling ...
1115 if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) &&
1116 canLongjmp(Callee)) {
1117 // Create longjmp.rethrow BB once and share it within the function
1118 if (!RethrowLongjmpBB) {
1119 RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F);
1120 IRB.SetInsertPoint(RethrowLongjmpBB);
1121 RethrowLongjmpBBThrewPHI =
1122 IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi");
1123 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1124 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
1125 ThrewValueGV->getName() + ".val");
1126 IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue});
1127 IRB.CreateUnreachable();
1128 } else {
1129 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1130 }
1131
1132 IRB.SetInsertPoint(II); // Restore the insert point back
1133 BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
1134 Value *CmpEqOne =
1135 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1136 Value *CmpEqZero =
1137 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
1138 Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
1139 IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB);
1140 IRB.SetInsertPoint(Tail);
1141 BB.replaceSuccessorsPhiUsesWith(&BB, Tail);
1142 }
1143
1144 // Insert a branch based on __THREW__ variable
1145 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
1146 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
1147
1148 } else {
1149 // This can't throw, and we don't need this invoke, just replace it with a
1150 // call+branch
1152 }
1153 }
1154
1155 // Process resume instructions
1156 for (BasicBlock &BB : F) {
1157 // Scan the body of the basic block for resumes
1158 for (Instruction &I : BB) {
1159 auto *RI = dyn_cast<ResumeInst>(&I);
1160 if (!RI)
1161 continue;
1162 Changed = true;
1163
1164 // Split the input into legal values
1165 Value *Input = RI->getValue();
1166 IRB.SetInsertPoint(RI);
1167 Value *Low = IRB.CreateExtractValue(Input, 0, "low");
1168 // Create a call to __resumeException function
1169 IRB.CreateCall(ResumeF, {Low});
1170 // Add a terminator to the block
1171 IRB.CreateUnreachable();
1172 ToErase.push_back(RI);
1173 }
1174 }
1175
1176 // Process llvm.eh.typeid.for intrinsics
1177 for (BasicBlock &BB : F) {
1178 for (Instruction &I : BB) {
1179 auto *CI = dyn_cast<CallInst>(&I);
1180 if (!CI)
1181 continue;
1182 const Function *Callee = CI->getCalledFunction();
1183 if (!Callee)
1184 continue;
1185 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
1186 continue;
1187 Changed = true;
1188
1189 IRB.SetInsertPoint(CI);
1190 CallInst *NewCI =
1191 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
1192 CI->replaceAllUsesWith(NewCI);
1193 ToErase.push_back(CI);
1194 }
1195 }
1196
1197 // Look for orphan landingpads, can occur in blocks with no predecessors
1198 for (BasicBlock &BB : F) {
1199 Instruction *I = BB.getFirstNonPHI();
1200 if (auto *LPI = dyn_cast<LandingPadInst>(I))
1201 LandingPads.insert(LPI);
1202 }
1203 Changed |= !LandingPads.empty();
1204
1205 // Handle all the landingpad for this function together, as multiple invokes
1206 // may share a single lp
1207 for (LandingPadInst *LPI : LandingPads) {
1208 IRB.SetInsertPoint(LPI);
1210 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
1211 Constant *Clause = LPI->getClause(I);
1212 // TODO Handle filters (= exception specifications).
1213 // https://github.com/llvm/llvm-project/issues/49740
1214 if (LPI->isCatch(I))
1215 FMCArgs.push_back(Clause);
1216 }
1217
1218 // Create a call to __cxa_find_matching_catch_N function
1219 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
1220 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
1221 Value *Poison = PoisonValue::get(LPI->getType());
1222 Value *Pair0 = IRB.CreateInsertValue(Poison, FMCI, 0, "pair0");
1223 Value *TempRet0 = IRB.CreateCall(GetTempRet0F, std::nullopt, "tempret0");
1224 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
1225
1226 LPI->replaceAllUsesWith(Pair1);
1227 ToErase.push_back(LPI);
1228 }
1229
1230 // Erase everything we no longer need in this function
1231 for (Instruction *I : ToErase)
1232 I->eraseFromParent();
1233
1234 return Changed;
1235}
1236
1237// This tries to get debug info from the instruction before which a new
1238// instruction will be inserted, and if there's no debug info in that
1239// instruction, tries to get the info instead from the previous instruction (if
1240// any). If none of these has debug info and a DISubprogram is provided, it
1241// creates a dummy debug info with the first line of the function, because IR
1242// verifier requires all inlinable callsites should have debug info when both a
1243// caller and callee have DISubprogram. If none of these conditions are met,
1244// returns empty info.
1245static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
1246 DISubprogram *SP) {
1247 assert(InsertBefore);
1248 if (InsertBefore->getDebugLoc())
1249 return InsertBefore->getDebugLoc();
1250 const Instruction *Prev = InsertBefore->getPrevNode();
1251 if (Prev && Prev->getDebugLoc())
1252 return Prev->getDebugLoc();
1253 if (SP)
1254 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1255 return DebugLoc();
1256}
1257
1258bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1259 assert(EnableEmSjLj || EnableWasmSjLj);
1260 Module &M = *F.getParent();
1261 LLVMContext &C = F.getContext();
1262 IRBuilder<> IRB(C);
1264
1265 // Setjmp preparation
1266
1267 BasicBlock *Entry = &F.getEntryBlock();
1268 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1269 SplitBlock(Entry, &*Entry->getFirstInsertionPt());
1270
1271 IRB.SetInsertPoint(Entry->getTerminator()->getIterator());
1272 // This alloca'ed pointer is used by the runtime to identify function
1273 // invocations. It's just for pointer comparisons. It will never be
1274 // dereferenced.
1275 Instruction *FunctionInvocationId =
1276 IRB.CreateAlloca(IRB.getInt32Ty(), nullptr, "functionInvocationId");
1277 FunctionInvocationId->setDebugLoc(FirstDL);
1278
1279 // Setjmp transformation
1280 SmallVector<PHINode *, 4> SetjmpRetPHIs;
1281 Function *SetjmpF = M.getFunction("setjmp");
1282 for (auto *U : make_early_inc_range(SetjmpF->users())) {
1283 auto *CB = cast<CallBase>(U);
1284 BasicBlock *BB = CB->getParent();
1285 if (BB->getParent() != &F) // in other function
1286 continue;
1287 if (CB->getOperandBundle(LLVMContext::OB_funclet)) {
1288 std::string S;
1290 SS << "In function " + F.getName() +
1291 ": setjmp within a catch clause is not supported in Wasm EH:\n";
1292 SS << *CB;
1294 }
1295
1296 CallInst *CI = nullptr;
1297 // setjmp cannot throw. So if it is an invoke, lower it to a call
1298 if (auto *II = dyn_cast<InvokeInst>(CB))
1299 CI = llvm::changeToCall(II);
1300 else
1301 CI = cast<CallInst>(CB);
1302
1303 // The tail is everything right after the call, and will be reached once
1304 // when setjmp is called, and later when longjmp returns to the setjmp
1305 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1306 // Add a phi to the tail, which will be the output of setjmp, which
1307 // indicates if this is the first call or a longjmp back. The phi directly
1308 // uses the right value based on where we arrive from
1309 IRB.SetInsertPoint(Tail, Tail->getFirstNonPHIIt());
1310 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1311
1312 // setjmp initial call returns 0
1313 SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1314 // The proper output is now this, not the setjmp call itself
1315 CI->replaceAllUsesWith(SetjmpRet);
1316 // longjmp returns to the setjmp will add themselves to this phi
1317 SetjmpRetPHIs.push_back(SetjmpRet);
1318
1319 // Fix call target
1320 // Our index in the function is our place in the array + 1 to avoid index
1321 // 0, because index 0 means the longjmp is not ours to handle.
1322 IRB.SetInsertPoint(CI);
1323 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1324 FunctionInvocationId};
1325 IRB.CreateCall(WasmSetjmpF, Args);
1326 ToErase.push_back(CI);
1327 }
1328
1329 // Handle longjmpable calls.
1330 if (EnableEmSjLj)
1331 handleLongjmpableCallsForEmscriptenSjLj(F, FunctionInvocationId,
1332 SetjmpRetPHIs);
1333 else // EnableWasmSjLj
1334 handleLongjmpableCallsForWasmSjLj(F, FunctionInvocationId, SetjmpRetPHIs);
1335
1336 // Erase everything we no longer need in this function
1337 for (Instruction *I : ToErase)
1338 I->eraseFromParent();
1339
1340 // Finally, our modifications to the cfg can break dominance of SSA variables.
1341 // For example, in this code,
1342 // if (x()) { .. setjmp() .. }
1343 // if (y()) { .. longjmp() .. }
1344 // We must split the longjmp block, and it can jump into the block splitted
1345 // from setjmp one. But that means that when we split the setjmp block, it's
1346 // first part no longer dominates its second part - there is a theoretically
1347 // possible control flow path where x() is false, then y() is true and we
1348 // reach the second part of the setjmp block, without ever reaching the first
1349 // part. So, we rebuild SSA form here.
1350 rebuildSSA(F);
1351 return true;
1352}
1353
1354// Update each call that can longjmp so it can return to the corresponding
1355// setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the
1356// comments at top of the file for details.
1357void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj(
1358 Function &F, Instruction *FunctionInvocationId,
1359 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1360 Module &M = *F.getParent();
1361 LLVMContext &C = F.getContext();
1362 IRBuilder<> IRB(C);
1364
1365 // call.em.longjmp BB that will be shared within the function.
1366 BasicBlock *CallEmLongjmpBB = nullptr;
1367 // PHI node for the loaded value of __THREW__ global variable in
1368 // call.em.longjmp BB
1369 PHINode *CallEmLongjmpBBThrewPHI = nullptr;
1370 // PHI node for the loaded value of __threwValue global variable in
1371 // call.em.longjmp BB
1372 PHINode *CallEmLongjmpBBThrewValuePHI = nullptr;
1373 // rethrow.exn BB that will be shared within the function.
1374 BasicBlock *RethrowExnBB = nullptr;
1375
1376 // Because we are creating new BBs while processing and don't want to make
1377 // all these newly created BBs candidates again for longjmp processing, we
1378 // first make the vector of candidate BBs.
1379 std::vector<BasicBlock *> BBs;
1380 for (BasicBlock &BB : F)
1381 BBs.push_back(&BB);
1382
1383 // BBs.size() will change within the loop, so we query it every time
1384 for (unsigned I = 0; I < BBs.size(); I++) {
1385 BasicBlock *BB = BBs[I];
1386 for (Instruction &I : *BB) {
1387 if (isa<InvokeInst>(&I)) {
1388 std::string S;
1390 SS << "In function " << F.getName()
1391 << ": When using Wasm EH with Emscripten SjLj, there is a "
1392 "restriction that `setjmp` function call and exception cannot be "
1393 "used within the same function:\n";
1394 SS << I;
1396 }
1397 auto *CI = dyn_cast<CallInst>(&I);
1398 if (!CI)
1399 continue;
1400
1401 const Value *Callee = CI->getCalledOperand();
1402 if (!canLongjmp(Callee))
1403 continue;
1404 if (isEmAsmCall(Callee))
1405 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1406 F.getName() +
1407 ". Please consider using EM_JS, or move the "
1408 "EM_ASM into another function.",
1409 false);
1410
1411 Value *Threw = nullptr;
1413 if (Callee->getName().starts_with("__invoke_")) {
1414 // If invoke wrapper has already been generated for this call in
1415 // previous EH phase, search for the load instruction
1416 // %__THREW__.val = __THREW__;
1417 // in postamble after the invoke wrapper call
1418 LoadInst *ThrewLI = nullptr;
1419 StoreInst *ThrewResetSI = nullptr;
1420 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1421 I != IE; ++I) {
1422 if (auto *LI = dyn_cast<LoadInst>(I))
1423 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1424 if (GV == ThrewGV) {
1425 Threw = ThrewLI = LI;
1426 break;
1427 }
1428 }
1429 // Search for the store instruction after the load above
1430 // __THREW__ = 0;
1431 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1432 I != IE; ++I) {
1433 if (auto *SI = dyn_cast<StoreInst>(I)) {
1434 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1435 if (GV == ThrewGV &&
1436 SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1437 ThrewResetSI = SI;
1438 break;
1439 }
1440 }
1441 }
1442 }
1443 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1444 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1445 Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1446
1447 } else {
1448 // Wrap call with invoke wrapper and generate preamble/postamble
1449 Threw = wrapInvoke(CI);
1450 ToErase.push_back(CI);
1451 Tail = SplitBlock(BB, CI->getNextNode());
1452
1453 // If exception handling is enabled, the thrown value can be not a
1454 // longjmp but an exception, in which case we shouldn't silently ignore
1455 // exceptions; we should rethrow them.
1456 // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1457 // thrown, other values when longjmp is thrown.
1458 //
1459 // if (%__THREW__.val == 1)
1460 // goto %eh.rethrow
1461 // else
1462 // goto %normal
1463 //
1464 // eh.rethrow: ;; Rethrow exception
1465 // %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1466 // __resumeException(%exn)
1467 //
1468 // normal:
1469 // <-- Insertion point. Will insert sjlj handling code from here
1470 // goto %tail
1471 //
1472 // tail:
1473 // ...
1474 if (supportsException(&F) && canThrow(Callee)) {
1475 // We will add a new conditional branch. So remove the branch created
1476 // when we split the BB
1477 ToErase.push_back(BB->getTerminator());
1478
1479 // Generate rethrow.exn BB once and share it within the function
1480 if (!RethrowExnBB) {
1481 RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F);
1482 IRB.SetInsertPoint(RethrowExnBB);
1483 CallInst *Exn =
1484 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1485 IRB.CreateCall(ResumeF, {Exn});
1486 IRB.CreateUnreachable();
1487 }
1488
1489 IRB.SetInsertPoint(CI);
1490 BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1491 Value *CmpEqOne =
1492 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1493 IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB);
1494
1495 IRB.SetInsertPoint(NormalBB);
1496 IRB.CreateBr(Tail);
1497 BB = NormalBB; // New insertion point to insert __wasm_setjmp_test()
1498 }
1499 }
1500
1501 // We need to replace the terminator in Tail - SplitBlock makes BB go
1502 // straight to Tail, we need to check if a longjmp occurred, and go to the
1503 // right setjmp-tail if so
1504 ToErase.push_back(BB->getTerminator());
1505
1506 // Generate a function call to __wasm_setjmp_test function and
1507 // preamble/postamble code to figure out (1) whether longjmp
1508 // occurred (2) if longjmp occurred, which setjmp it corresponds to
1509 Value *Label = nullptr;
1510 Value *LongjmpResult = nullptr;
1511 BasicBlock *EndBB = nullptr;
1512 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, FunctionInvocationId, Label,
1513 LongjmpResult, CallEmLongjmpBB, CallEmLongjmpBBThrewPHI,
1514 CallEmLongjmpBBThrewValuePHI, EndBB);
1515 assert(Label && LongjmpResult && EndBB);
1516
1517 // Create switch instruction
1518 IRB.SetInsertPoint(EndBB);
1519 IRB.SetCurrentDebugLocation(EndBB->back().getDebugLoc());
1520 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1521 // -1 means no longjmp happened, continue normally (will hit the default
1522 // switch case). 0 means a longjmp that is not ours to handle, needs a
1523 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1524 // 0).
1525 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1526 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1527 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1528 }
1529
1530 // We are splitting the block here, and must continue to find other calls
1531 // in the block - which is now split. so continue to traverse in the Tail
1532 BBs.push_back(Tail);
1533 }
1534 }
1535
1536 for (Instruction *I : ToErase)
1537 I->eraseFromParent();
1538}
1539
1541 for (const User *U : CPI->users())
1542 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
1543 return CRI->getUnwindDest();
1544 return nullptr;
1545}
1546
1547// Create a catchpad in which we catch a longjmp's env and val arguments, test
1548// if the longjmp corresponds to one of setjmps in the current function, and if
1549// so, jump to the setjmp dispatch BB from which we go to one of post-setjmp
1550// BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at
1551// top of the file for details.
1552void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj(
1553 Function &F, Instruction *FunctionInvocationId,
1554 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1555 Module &M = *F.getParent();
1556 LLVMContext &C = F.getContext();
1557 IRBuilder<> IRB(C);
1558
1559 // A function with catchswitch/catchpad instruction should have a personality
1560 // function attached to it. Search for the wasm personality function, and if
1561 // it exists, use it, and if it doesn't, create a dummy personality function.
1562 // (SjLj is not going to call it anyway.)
1563 if (!F.hasPersonalityFn()) {
1564 StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX);
1565 FunctionType *PersType =
1566 FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true);
1567 Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee();
1568 F.setPersonalityFn(
1569 cast<Constant>(IRB.CreateBitCast(PersF, IRB.getPtrTy())));
1570 }
1571
1572 // Use the entry BB's debugloc as a fallback
1573 BasicBlock *Entry = &F.getEntryBlock();
1574 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1575 IRB.SetCurrentDebugLocation(FirstDL);
1576
1577 // Add setjmp.dispatch BB right after the entry block. Because we have
1578 // initialized functionInvocationId in the entry block and split the
1579 // rest into another BB, here 'OrigEntry' is the function's original entry
1580 // block before the transformation.
1581 //
1582 // entry:
1583 // functionInvocationId initialization
1584 // setjmp.dispatch:
1585 // switch will be inserted here later
1586 // entry.split: (OrigEntry)
1587 // the original function starts here
1588 BasicBlock *OrigEntry = Entry->getNextNode();
1589 BasicBlock *SetjmpDispatchBB =
1590 BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry);
1591 cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB);
1592
1593 // Create catch.dispatch.longjmp BB and a catchswitch instruction
1594 BasicBlock *CatchDispatchLongjmpBB =
1595 BasicBlock::Create(C, "catch.dispatch.longjmp", &F);
1596 IRB.SetInsertPoint(CatchDispatchLongjmpBB);
1597 CatchSwitchInst *CatchSwitchLongjmp =
1598 IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1);
1599
1600 // Create catch.longjmp BB and a catchpad instruction
1601 BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F);
1602 CatchSwitchLongjmp->addHandler(CatchLongjmpBB);
1603 IRB.SetInsertPoint(CatchLongjmpBB);
1604 CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitchLongjmp, {});
1605
1606 // Wasm throw and catch instructions can throw and catch multiple values, but
1607 // that requires multivalue support in the toolchain, which is currently not
1608 // very reliable. We instead throw and catch a pointer to a struct value of
1609 // type 'struct __WasmLongjmpArgs', which is defined in Emscripten.
1610 Instruction *LongjmpArgs =
1611 IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown");
1612 Value *EnvField =
1613 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep");
1614 Value *ValField =
1615 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep");
1616 // void *env = __wasm_longjmp_args.env;
1617 Instruction *Env = IRB.CreateLoad(IRB.getPtrTy(), EnvField, "env");
1618 // int val = __wasm_longjmp_args.val;
1619 Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val");
1620
1621 // %label = __wasm_setjmp_test(%env, functionInvocatinoId);
1622 // if (%label == 0)
1623 // __wasm_longjmp(%env, %val)
1624 // catchret to %setjmp.dispatch
1625 BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F);
1626 BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F);
1627 Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p");
1628 Value *Label = IRB.CreateCall(WasmSetjmpTestF, {EnvP, FunctionInvocationId},
1629 OperandBundleDef("funclet", CatchPad), "label");
1630 Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0));
1631 IRB.CreateCondBr(Cmp, ThenBB, EndBB);
1632
1633 IRB.SetInsertPoint(ThenBB);
1634 CallInst *WasmLongjmpCI = IRB.CreateCall(
1635 WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad));
1636 IRB.CreateUnreachable();
1637
1638 IRB.SetInsertPoint(EndBB);
1639 // Jump to setjmp.dispatch block
1640 IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB);
1641
1642 // Go back to setjmp.dispatch BB
1643 // setjmp.dispatch:
1644 // switch %label {
1645 // label 1: goto post-setjmp BB 1
1646 // label 2: goto post-setjmp BB 2
1647 // ...
1648 // default: goto splitted next BB
1649 // }
1650 IRB.SetInsertPoint(SetjmpDispatchBB);
1651 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi");
1652 LabelPHI->addIncoming(Label, EndBB);
1653 LabelPHI->addIncoming(IRB.getInt32(-1), Entry);
1654 SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size());
1655 // -1 means no longjmp happened, continue normally (will hit the default
1656 // switch case). 0 means a longjmp that is not ours to handle, needs a
1657 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1658 // 0).
1659 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1660 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1661 SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB);
1662 }
1663
1664 // Convert all longjmpable call instructions to invokes that unwind to the
1665 // newly created catch.dispatch.longjmp BB.
1666 SmallVector<CallInst *, 64> LongjmpableCalls;
1667 for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) {
1668 for (auto &I : *BB) {
1669 auto *CI = dyn_cast<CallInst>(&I);
1670 if (!CI)
1671 continue;
1672 const Value *Callee = CI->getCalledOperand();
1673 if (!canLongjmp(Callee))
1674 continue;
1675 if (isEmAsmCall(Callee))
1676 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1677 F.getName() +
1678 ". Please consider using EM_JS, or move the "
1679 "EM_ASM into another function.",
1680 false);
1681 // This is __wasm_longjmp() call we inserted in this function, which
1682 // rethrows the longjmp when the longjmp does not correspond to one of
1683 // setjmps in this function. We should not convert this call to an invoke.
1684 if (CI == WasmLongjmpCI)
1685 continue;
1686 LongjmpableCalls.push_back(CI);
1687 }
1688 }
1689
1690 for (auto *CI : LongjmpableCalls) {
1691 // Even if the callee function has attribute 'nounwind', which is true for
1692 // all C functions, it can longjmp, which means it can throw a Wasm
1693 // exception now.
1694 CI->removeFnAttr(Attribute::NoUnwind);
1695 if (Function *CalleeF = CI->getCalledFunction())
1696 CalleeF->removeFnAttr(Attribute::NoUnwind);
1697
1698 // Change it to an invoke and make it unwind to the catch.dispatch.longjmp
1699 // BB. If the call is enclosed in another catchpad/cleanuppad scope, unwind
1700 // to its parent pad's unwind destination instead to preserve the scope
1701 // structure. It will eventually unwind to the catch.dispatch.longjmp.
1703 BasicBlock *UnwindDest = nullptr;
1704 if (auto Bundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
1705 Instruction *FromPad = cast<Instruction>(Bundle->Inputs[0]);
1706 while (!UnwindDest) {
1707 if (auto *CPI = dyn_cast<CatchPadInst>(FromPad)) {
1708 UnwindDest = CPI->getCatchSwitch()->getUnwindDest();
1709 break;
1710 }
1711 if (auto *CPI = dyn_cast<CleanupPadInst>(FromPad)) {
1712 // getCleanupRetUnwindDest() can return nullptr when
1713 // 1. This cleanuppad's matching cleanupret uwninds to caller
1714 // 2. There is no matching cleanupret because it ends with
1715 // unreachable.
1716 // In case of 2, we need to traverse the parent pad chain.
1717 UnwindDest = getCleanupRetUnwindDest(CPI);
1718 Value *ParentPad = CPI->getParentPad();
1719 if (isa<ConstantTokenNone>(ParentPad))
1720 break;
1721 FromPad = cast<Instruction>(ParentPad);
1722 }
1723 }
1724 }
1725 if (!UnwindDest)
1726 UnwindDest = CatchDispatchLongjmpBB;
1727 changeToInvokeAndSplitBasicBlock(CI, UnwindDest);
1728 }
1729
1731 for (auto &BB : F) {
1732 if (auto *CSI = dyn_cast<CatchSwitchInst>(BB.getFirstNonPHI())) {
1733 if (CSI != CatchSwitchLongjmp && CSI->unwindsToCaller()) {
1734 IRB.SetInsertPoint(CSI);
1735 ToErase.push_back(CSI);
1736 auto *NewCSI = IRB.CreateCatchSwitch(CSI->getParentPad(),
1737 CatchDispatchLongjmpBB, 1);
1738 NewCSI->addHandler(*CSI->handler_begin());
1739 NewCSI->takeName(CSI);
1740 CSI->replaceAllUsesWith(NewCSI);
1741 }
1742 }
1743
1744 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB.getTerminator())) {
1745 if (CRI->unwindsToCaller()) {
1746 IRB.SetInsertPoint(CRI);
1747 ToErase.push_back(CRI);
1748 IRB.CreateCleanupRet(CRI->getCleanupPad(), CatchDispatchLongjmpBB);
1749 }
1750 }
1751 }
1752
1753 for (Instruction *I : ToErase)
1754 I->eraseFromParent();
1755}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_DEBUG(X)
Definition: Debug.h:101
std::string Name
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Memory SSA
Definition: MemorySSA.cpp:72
Module.h This file contains the declarations for the Module class.
uint64_t IntrinsicInst * II
const char LLVMTargetMachineRef TM
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file contains some functions that are useful when dealing with strings.
Target-Independent Code Generator Pass Configuration Options pass.
static void nullifySetjmp(Function *F)
static bool canLongjmp(const Value *Callee)
static cl::list< std::string > EHAllowlist("emscripten-cxx-exceptions-allowed", cl::desc("The list of function names in which Emscripten-style " "exception handling is enabled (see emscripten " "EMSCRIPTEN_CATCHING_ALLOWED options)"), cl::CommaSeparated)
static Type * getAddrPtrType(Module *M)
static std::string getSignature(FunctionType *FTy)
static Type * getAddrIntType(Module *M)
static bool canThrow(const Value *V)
static BasicBlock * getCleanupRetUnwindDest(const CleanupPadInst *CPI)
static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore, DISubprogram *SP)
static bool containsLongjmpableCalls(const Function *F)
static Value * getAddrSizeInt(Module *M, uint64_t C)
static Function * getEmscriptenFunction(FunctionType *Ty, const Twine &Name, Module *M)
static GlobalVariable * getGlobalVariable(Module &M, Type *Ty, WebAssemblyTargetMachine &TM, const char *Name)
static bool isEmAsmCall(const Value *Callee)
This file provides WebAssembly-specific target descriptions.
This file declares the WebAssembly-specific subclass of TargetMachine.
This file contains the entry points for global functions defined in the LLVM WebAssembly back-end.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AttributeSet getFnAttrs() const
The function attributes are returned.
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute > > Attrs)
Create an AttributeList with the specified parameters in it.
AttributeSet getRetAttrs() const
The attributes for the ret value are returned.
AttributeSet getParamAttrs(unsigned ArgNo) const
The attributes for the argument or parameter at the given index are returned.
static AttributeSet get(LLVMContext &C, const AttrBuilder &B)
Definition: Attributes.cpp:842
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:202
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:209
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:167
const Instruction & back() const
Definition: BasicBlock.h:463
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1236
void setCallingConv(CallingConv::ID CC)
Definition: InstrTypes.h:1527
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Definition: InstrTypes.h:2143
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1465
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
Definition: InstrTypes.h:1385
Value * getCalledOperand() const
Definition: InstrTypes.h:1458
void setAttributes(AttributeList A)
Set the parameter attributes for this call.
Definition: InstrTypes.h:1546
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1410
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
Definition: InstrTypes.h:1391
FunctionType * getFunctionType() const
Definition: InstrTypes.h:1323
void removeFnAttr(Attribute::AttrKind Kind)
Removes the attribute from the function.
Definition: InstrTypes.h:1621
unsigned arg_size() const
Definition: InstrTypes.h:1408
AttributeList getAttributes() const
Return the parameter attributes for this call.
Definition: InstrTypes.h:1542
This class represents a function call, abstracting a target machine's calling convention.
void addHandler(BasicBlock *Dest)
Add an entry to the switch instruction... Note: This action invalidates handler_end().
static ConstantTokenNone * get(LLVMContext &Context)
Return the ConstantTokenNone.
Definition: Constants.cpp:1500
This is an important base class in LLVM.
Definition: Constant.h:42
Subprogram description.
A debug info location.
Definition: DebugLoc.h:33
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:151
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:317
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
void addFnAttr(Attribute::AttrKind Kind)
Add function attributes to this function.
Definition: Function.cpp:629
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition: Function.h:165
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:207
void setDoesNotThrow()
Definition: Function.h:589
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:656
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:294
@ ExternalLinkage
Externally visible function.
Definition: GlobalValue.h:52
IntegerType * getIntNTy(unsigned N)
Fetch the type representing an N-bit integer.
Definition: IRBuilder.h:536
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:483
ConstantInt * getIntN(unsigned N, uint64_t C)
Get a constant N-bit value, zero extended or truncated from a 64-bit value.
Definition: IRBuilder.h:494
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2671
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:466
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:66
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:463
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
The landingpad instruction holds all of the information necessary to generate correct exception handl...
An instruction for reading from memory.
Definition: Instructions.h:174
LLVMContext & getContext() const
Definition: Metadata.h:1231
ModulePass class - This class is used to implement unstructured interprocedural optimizations and ana...
Definition: Pass.h:251
virtual bool runOnModule(Module &M)=0
runOnModule - Virtual method overriden by subclasses to process the module being operated on.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
LLVMContext & getContext() const
Get the global data context.
Definition: Module.h:301
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1852
Helper class for SSA formation on a set of values defined in multiple blocks.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:412
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:344
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:479
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:696
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:290
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
Definition: StringMap.h:128
bool contains(StringRef Key) const
contains - Return true if the element is in the map, false otherwise.
Definition: StringMap.h:273
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:373
Multiway switch.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static IntegerType * getInt32Ty(LLVMContext &C)
LLVM Value Representation.
Definition: Value.h:74
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
iterator_range< user_iterator > users()
Definition: Value.h:421
bool use_empty() const
Definition: Value.h:344
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
iterator_range< use_iterator > uses()
Definition: Value.h:376
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:353
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
@ Entry
Definition: COFF.h:811
@ WASM_EmscriptenInvoke
For emscripten __invoke_* functions.
Definition: CallingConv.h:229
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1513
cl::opt< bool > WasmEnableSjLj
cl::opt< bool > WasmEnableEmEH
cl::opt< bool > WasmEnableEmSjLj
@ SS
Definition: X86.h:211
@ CommaSeparated
Definition: CommandLine.h:163
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
StringRef getEHPersonalityName(EHPersonality Pers)
BasicBlock * changeToInvokeAndSplitBasicBlock(CallInst *CI, BasicBlock *UnwindEdge, DomTreeUpdater *DTU=nullptr)
Convert the CallInst to InvokeInst with the specified unwind edge basic block.
Definition: Local.cpp:2923
CallInst * changeToCall(InvokeInst *II, DomTreeUpdater *DTU=nullptr)
This function converts the specified invoke into a normal call.
Definition: Local.cpp:2903
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:656
OperandBundleDefT< Value * > OperandBundleDef
Definition: AutoUpgrade.h:33
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
ModulePass * createWebAssemblyLowerEmscriptenEHSjLj()
@ Or
Bitwise or logical OR of integers.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition: STLExtras.h:2051