81using namespace PatternMatch;
83#define DEBUG_TYPE "indvars"
86STATISTIC(NumReplaced ,
"Number of exit values replaced");
87STATISTIC(NumLFTR ,
"Number of loop exit tests replaced");
88STATISTIC(NumElimExt ,
"Number of IV sign/zero extends eliminated");
89STATISTIC(NumElimIV ,
"Number of congruent IVs eliminated");
93 cl::desc(
"Choose the strategy to replace exit value in IndVarSimplify"),
97 "only replace exit value when the cost is cheap"),
100 "only replace exit value when it is an unused "
101 "induction variable in the loop and has cheap replacement cost"),
103 "only replace exit values when loop def likely dead"),
105 "always replace exit value whenever possible")));
109 cl::desc(
"Use post increment control-dependent ranges in IndVarSimplify"),
114 cl::desc(
"Disable Linear Function Test Replace optimization"));
118 cl::desc(
"Predicate conditions in read only loops"));
122 cl::desc(
"Allow widening of indvars to eliminate s/zext"));
126class IndVarSimplify {
133 std::unique_ptr<MemorySSAUpdater> MSSAU;
138 bool RunUnswitching =
false;
141 bool rewriteNonIntegerIVs(
Loop *L);
147 bool canonicalizeExitCondition(
Loop *L);
154 bool rewriteFirstIterationLoopExitValues(
Loop *L);
157 const SCEV *ExitCount,
160 bool sinkUnusedInvariants(
Loop *L);
166 : LI(LI), SE(SE), DT(DT),
DL(
DL), TLI(TLI),
TTI(
TTI),
167 WidenIndVars(WidenIndVars) {
169 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
174 bool runUnswitching()
const {
return RunUnswitching; }
185 bool isExact =
false;
189 APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
204bool IndVarSimplify::handleFloatingPointIV(
Loop *L,
PHINode *PN) {
206 unsigned BackEdge = IncomingEdge^1;
209 auto *InitValueVal = dyn_cast<ConstantFP>(PN->
getIncomingValue(IncomingEdge));
212 if (!InitValueVal || !
ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
218 if (Incr ==
nullptr || Incr->getOpcode() != Instruction::FAdd)
return false;
222 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
224 if (IncValueVal ==
nullptr || Incr->getOperand(0) != PN ||
232 if (IncrUse == Incr->user_end())
return false;
234 if (IncrUse != Incr->user_end())
return false;
240 Compare = dyn_cast<FCmpInst>(U2);
241 if (!Compare || !
Compare->hasOneUse() ||
242 !isa<BranchInst>(
Compare->user_back()))
261 if (ExitValueVal ==
nullptr ||
267 switch (
Compare->getPredicate()) {
268 default:
return false;
290 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
301 if (InitValue >= ExitValue)
308 if (++
Range == 0)
return false;
322 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
327 if (InitValue <= ExitValue)
334 if (++
Range == 0)
return false;
348 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
363 Incr->
getName() +
".int", Incr->getIterator());
379 Compare->replaceAllUsesWith(NewCompare);
403bool IndVarSimplify::rewriteNonIntegerIVs(
Loop *L) {
410 for (
PHINode &PN : Header->phis())
413 bool Changed =
false;
415 if (
PHINode *PN = dyn_cast_or_null<PHINode>(&*
PHI))
416 Changed |= handleFloatingPointIV(L, PN);
435bool IndVarSimplify::rewriteFirstIterationLoopExitValues(
Loop *L) {
440 L->getUniqueExitBlocks(ExitBlocks);
442 bool MadeAnyChanges =
false;
443 for (
auto *ExitBB : ExitBlocks) {
446 for (
PHINode &PN : ExitBB->phis()) {
448 IncomingValIdx != E; ++IncomingValIdx) {
456 if (!
L->getLoopLatch() ||
457 !DT->
dominates(IncomingBB,
L->getLoopLatch()))
464 if (
auto *BI = dyn_cast<BranchInst>(TermInst)) {
467 Cond = BI->getCondition();
468 }
else if (
auto *SI = dyn_cast<SwitchInst>(TermInst))
469 Cond =
SI->getCondition();
473 if (!
L->isLoopInvariant(
Cond))
479 if (!ExitVal || ExitVal->getParent() !=
L->getHeader())
485 auto *LoopPreheader =
L->getLoopPreheader();
486 assert(LoopPreheader &&
"Invalid loop");
487 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
488 if (PreheaderIdx != -1) {
489 assert(ExitVal->getParent() ==
L->getHeader() &&
490 "ExitVal must be in loop header");
491 MadeAnyChanges =
true;
493 ExitVal->getIncomingValue(PreheaderIdx));
494 SE->forgetValue(&PN);
499 return MadeAnyChanges;
512 bool IsSigned = Cast->
getOpcode() == Instruction::SExt;
513 if (!IsSigned && Cast->
getOpcode() != Instruction::ZExt)
526 if (NarrowIVWidth >= Width)
566class IndVarSimplifyVisitor :
public IVVisitor {
593bool IndVarSimplify::simplifyAndExtend(
Loop *L,
599 L->getBlocks()[0]->getModule(), Intrinsic::experimental_guard);
600 bool HasGuards = GuardDecl && !GuardDecl->use_empty();
603 for (
PHINode &PN :
L->getHeader()->phis())
610 bool Changed =
false;
611 while (!LoopPhis.
empty()) {
622 IndVarSimplifyVisitor Visitor(CurrIV, SE,
TTI, DT);
629 if (Visitor.WI.WidestNativeType) {
632 }
while(!LoopPhis.
empty());
642 DT, DeadInsts, ElimExt, Widened,
644 NumElimExt += ElimExt;
645 NumWidened += Widened;
667 case Instruction::Add:
668 case Instruction::Sub:
670 case Instruction::GetElementPtr:
680 if (Phi && Phi->getParent() == L->getHeader()) {
685 if (IncI->
getOpcode() == Instruction::GetElementPtr)
690 if (Phi && Phi->getParent() == L->getHeader()) {
713 assert(L->getLoopLatch() &&
"Must be in simplified form");
730 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
736 if (!L->isLoopInvariant(
RHS)) {
737 if (!L->isLoopInvariant(
LHS))
750 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
755 Value *IncV = Phi->getIncomingValue(
Idx);
764 if (isa<Constant>(V))
765 return !isa<UndefValue>(V);
777 if(
I->mayReadFromMemory() || isa<CallInst>(
I) || isa<InvokeInst>(
I))
806 assert(Phi->getParent() == L->getHeader());
807 assert(L->getLoopLatch());
817 if (!Step || !Step->
isOne())
820 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
821 Value *IncV = Phi->getIncomingValue(LatchIdx);
823 isa<SCEVAddRecExpr>(SE->
getSCEV(IncV)));
842 const SCEV *BestInit =
nullptr;
844 assert(LatchBlock &&
"Must be in simplified form");
852 const auto *AR = cast<SCEVAddRecExpr>(SE->
getSCEV(Phi));
858 if (PhiWidth < BCWidth || !
DL.isLegalInteger(PhiWidth))
867 Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
881 if (!Phi->getType()->isIntegerTy() &&
901 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->
getType()))
914 const SCEV *ExitCount,
bool UsePostInc,
Loop *L,
930 if (!isa<SCEVConstant>(IVInit) || !isa<SCEVConstant>(ExitCount))
937 "Computed iteration count is not loop invariant!");
949 const SCEV *ExitCount,
951 assert(
L->getLoopLatch() &&
"Loop no longer in simplified form?");
957 Value *CmpIndVar = IndVar;
958 bool UsePostInc =
false;
963 if (ExitingBB ==
L->getLoopLatch()) {
990 if (
auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
991 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
992 if (BO->hasNoUnsignedWrap())
994 if (BO->hasNoSignedWrap())
999 IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1002 "genLoopLimit missed a cast");
1008 P = ICmpInst::ICMP_NE;
1010 P = ICmpInst::ICMP_EQ;
1017 Builder.SetCurrentDebugLocation(
Cond->getDebugLoc());
1024 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->
getType());
1025 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->
getType());
1026 if (CmpIndVarSize > ExitCntSize) {
1036 const SCEV *
IV = SE->getSCEV(CmpIndVar);
1037 const SCEV *TruncatedIV = SE->getTruncateExpr(
IV, ExitCnt->
getType());
1038 const SCEV *ZExtTrunc =
1039 SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->
getType());
1041 if (ZExtTrunc ==
IV) {
1043 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->
getType(),
1046 const SCEV *SExtTrunc =
1047 SE->getSignExtendExpr(TruncatedIV, CmpIndVar->
getType());
1048 if (SExtTrunc ==
IV) {
1050 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->
getType(),
1057 L->makeLoopInvariant(ExitCnt, Discard);
1059 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->
getType(),
1062 LLVM_DEBUG(
dbgs() <<
"INDVARS: Rewriting loop exit condition to:\n"
1063 <<
" LHS:" << *CmpIndVar <<
'\n'
1064 <<
" op:\t" << (
P == ICmpInst::ICMP_NE ?
"!=" :
"==")
1066 <<
" RHS:\t" << *ExitCnt <<
"\n"
1067 <<
"ExitCount:\t" << *ExitCount <<
"\n"
1070 Value *
Cond = Builder.CreateICmp(
P, CmpIndVar, ExitCnt,
"exitcond");
1078 DeadInsts.emplace_back(OrigCond);
1091bool IndVarSimplify::sinkUnusedInvariants(
Loop *L) {
1093 if (!ExitBlock)
return false;
1096 if (!Preheader)
return false;
1098 bool MadeAnyChanges =
false;
1101 while (
I != Preheader->
begin()) {
1104 if (isa<PHINode>(
I))
1113 if (
I->mayHaveSideEffects() ||
I->mayReadFromMemory())
1117 if (isa<DbgInfoIntrinsic>(
I))
1128 if (isa<AllocaInst>(
I))
1133 bool UsedInLoop =
false;
1134 for (
Use &U :
I->uses()) {
1140 UseBB =
P->getIncomingBlock(i);
1142 if (UseBB == Preheader ||
L->contains(UseBB)) {
1156 if (
I != Preheader->
begin()) {
1160 }
while (
I->isDebugOrPseudoInst() &&
I != Preheader->
begin());
1162 if (
I->isDebugOrPseudoInst() &&
I == Preheader->
begin())
1168 MadeAnyChanges =
true;
1170 SE->forgetValue(ToMove);
1175 return MadeAnyChanges;
1181 LLVM_DEBUG(
dbgs() <<
"Replacing condition of loop-exiting branch " << *BI
1182 <<
" with " << *NewCond <<
"\n");
1184 if (OldCond->use_empty())
1191 bool ExitIfTrue = !L->contains(*
succ_begin(ExitingBB));
1193 return ConstantInt::get(OldCond->getType(),
1194 IsTaken ? ExitIfTrue : !ExitIfTrue);
1207 assert(L->isLoopSimplifyForm() &&
"Should only do it in simplify form!");
1208 auto *LoopPreheader = L->getLoopPreheader();
1209 auto *LoopHeader = L->getHeader();
1211 for (
auto &PN : LoopHeader->phis()) {
1214 Worklist.
push_back(cast<Instruction>(U));
1223 while (!Worklist.
empty()) {
1225 if (!Visited.
insert(
I).second)
1229 if (!L->contains(
I))
1234 for (
User *U :
I->users())
1235 Worklist.
push_back(cast<Instruction>(U));
1236 I->replaceAllUsesWith(Res);
1247 BasicBlock *Preheader = L->getLoopPreheader();
1248 assert(Preheader &&
"Preheader doesn't exist");
1252 bool ExitIfTrue = !L->contains(*
succ_begin(ExitingBB));
1254 InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
1257 return Builder.
CreateICmp(InvariantPred, LHSV, RHSV,
1261static std::optional<Value *>
1263 const SCEV *MaxIter,
bool Inverted,
bool SkipLastIter,
1281 auto *MaxIterTy = MaxIter->
getType();
1298 if (
auto *
UMin = dyn_cast<SCEVUMinExpr>(MaxIter)) {
1310 return std::nullopt;
1325 "Not a loop exit!");
1338 auto GoThrough = [&](
Value *V) {
1359 if (!GoThrough(Curr))
1360 if (
auto *ICmp = dyn_cast<ICmpInst>(Curr))
1362 }
while (!Worklist.
empty());
1369 if (!SkipLastIter && LeafConditions.
size() > 1 &&
1371 ScalarEvolution::ExitCountKind::SymbolicMaximum) ==
1373 for (
auto *ICmp : LeafConditions) {
1376 const SCEV *ExitMax = EL.SymbolicMaxNotTaken;
1377 if (isa<SCEVCouldNotCompute>(ExitMax))
1385 if (WideExitMax == WideMaxIter)
1386 ICmpsFailingOnLastIter.
insert(ICmp);
1389 bool Changed =
false;
1390 for (
auto *OldCond : LeafConditions) {
1395 bool OptimisticSkipLastIter = SkipLastIter;
1396 if (!OptimisticSkipLastIter) {
1397 if (ICmpsFailingOnLastIter.
size() > 1)
1398 OptimisticSkipLastIter =
true;
1399 else if (ICmpsFailingOnLastIter.
size() == 1)
1400 OptimisticSkipLastIter = !ICmpsFailingOnLastIter.
count(OldCond);
1404 OptimisticSkipLastIter, SE,
Rewriter)) {
1406 auto *NewCond = *Replaced;
1407 if (
auto *NCI = dyn_cast<Instruction>(NewCond)) {
1408 NCI->setName(OldCond->
getName() +
".first_iter");
1410 LLVM_DEBUG(
dbgs() <<
"Unknown exit count: Replacing " << *OldCond
1411 <<
" with " << *NewCond <<
"\n");
1417 ICmpsFailingOnLastIter.
erase(OldCond);
1423bool IndVarSimplify::canonicalizeExitCondition(
Loop *L) {
1434 L->getExitingBlocks(ExitingBlocks);
1435 bool Changed =
false;
1436 for (
auto *ExitingBB : ExitingBlocks) {
1437 auto *BI = dyn_cast<BranchInst>(ExitingBB->
getTerminator());
1443 if (!ICmp || !ICmp->hasOneUse())
1446 auto *
LHS = ICmp->getOperand(0);
1447 auto *
RHS = ICmp->getOperand(1);
1451 if (!
L->isLoopInvariant(RHS)) {
1452 if (!
L->isLoopInvariant(LHS))
1459 Value *LHSOp =
nullptr;
1464 const unsigned InnerBitWidth =
DL.getTypeSizeInBits(LHSOp->
getType());
1465 const unsigned OuterBitWidth =
DL.getTypeSizeInBits(
RHS->
getType());
1466 auto FullCR = ConstantRange::getFull(InnerBitWidth);
1467 FullCR = FullCR.zeroExtend(OuterBitWidth);
1468 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1469 if (FullCR.contains(RHSCR)) {
1472 ICmp->setPredicate(ICmp->getUnsignedPredicate());
1482 for (
auto *ExitingBB : ExitingBlocks) {
1483 auto *BI = dyn_cast<BranchInst>(ExitingBB->
getTerminator());
1489 if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned())
1492 bool Swapped =
false;
1493 auto *
LHS = ICmp->getOperand(0);
1494 auto *
RHS = ICmp->getOperand(1);
1495 if (
L->isLoopInvariant(LHS) ==
L->isLoopInvariant(RHS))
1498 if (
L->isLoopInvariant(LHS)) {
1504 assert(!
L->isLoopInvariant(LHS) &&
L->isLoopInvariant(RHS));
1509 Value *LHSOp =
nullptr;
1519 if (!
LHS->
hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp)))
1526 auto doRotateTransform = [&]() {
1527 assert(ICmp->isUnsigned() &&
"must have proven unsigned already");
1529 Instruction::Trunc, RHS, LHSOp->
getType(),
"",
1530 L->getLoopPreheader()->getTerminator()->getIterator());
1531 ICmp->setOperand(Swapped ? 1 : 0, LHSOp);
1532 ICmp->setOperand(Swapped ? 0 : 1, NewRHS);
1534 ICmp->setSameSign(
false);
1536 DeadInsts.push_back(LHS);
1541 const unsigned InnerBitWidth =
DL.getTypeSizeInBits(LHSOp->
getType());
1542 const unsigned OuterBitWidth =
DL.getTypeSizeInBits(
RHS->
getType());
1543 auto FullCR = ConstantRange::getFull(InnerBitWidth);
1544 FullCR = FullCR.zeroExtend(OuterBitWidth);
1545 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1546 if (FullCR.contains(RHSCR)) {
1547 doRotateTransform();
1561 L->getExitingBlocks(ExitingBlocks);
1578 if (!DT->
dominates(ExitingBB,
L->getLoopLatch()))
1585 if (!L->contains(BI->getSuccessor(CI->isNullValue())))
1586 replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE);
1593 if (ExitingBlocks.
empty())
1597 const SCEV *MaxBECount = SE->getSymbolicMaxBackedgeTakenCount(L);
1598 if (isa<SCEVCouldNotCompute>(MaxBECount))
1607 if (
A ==
B)
return false;
1611 assert(DT->properlyDominates(B, A) &&
1612 "expected total dominance order!");
1617 for (
unsigned i = 1; i < ExitingBlocks.
size(); i++) {
1622 bool Changed =
false;
1623 bool SkipLastIter =
false;
1624 const SCEV *CurrMaxExit = SE->getCouldNotCompute();
1625 auto UpdateSkipLastIter = [&](
const SCEV *MaxExitCount) {
1626 if (SkipLastIter || isa<SCEVCouldNotCompute>(MaxExitCount))
1628 if (isa<SCEVCouldNotCompute>(CurrMaxExit))
1629 CurrMaxExit = MaxExitCount;
1631 CurrMaxExit = SE->getUMinFromMismatchedTypes(CurrMaxExit, MaxExitCount);
1634 if (CurrMaxExit == MaxBECount)
1635 SkipLastIter =
true;
1638 for (
BasicBlock *ExitingBB : ExitingBlocks) {
1639 const SCEV *ExactExitCount = SE->getExitCount(L, ExitingBB);
1640 const SCEV *MaxExitCount = SE->getExitCount(
1641 L, ExitingBB, ScalarEvolution::ExitCountKind::SymbolicMaximum);
1642 if (isa<SCEVCouldNotCompute>(ExactExitCount)) {
1646 auto OptimizeCond = [&](
bool SkipLastIter) {
1648 MaxBECount, SkipLastIter,
1649 SE, Rewriter, DeadInsts);
1668 if (OptimizeCond(
false))
1670 else if (SkipLastIter && OptimizeCond(
true))
1672 UpdateSkipLastIter(MaxExitCount);
1676 UpdateSkipLastIter(ExactExitCount);
1683 if (ExactExitCount->
isZero()) {
1684 foldExit(L, ExitingBB,
true, DeadInsts);
1692 "Exit counts must be integers");
1695 SE->getWiderType(MaxBECount->
getType(), ExactExitCount->
getType());
1696 ExactExitCount = SE->getNoopOrZeroExtend(ExactExitCount, WiderType);
1697 MaxBECount = SE->getNoopOrZeroExtend(MaxBECount, WiderType);
1704 foldExit(L, ExitingBB,
false, DeadInsts);
1713 if (!DominatingExactExitCounts.
insert(ExactExitCount).second) {
1714 foldExit(L, ExitingBB,
false, DeadInsts);
1731 L->getExitingBlocks(ExitingBlocks);
1748 const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1749 if (isa<SCEVCouldNotCompute>(ExactBTC) || !
Rewriter.isSafeToExpand(ExactBTC))
1752 assert(SE->isLoopInvariant(ExactBTC, L) &&
"BTC must be loop invariant");
1776 if (!ExitBlock->
phis().empty())
1779 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1780 if (isa<SCEVCouldNotCompute>(ExitCount) ||
1781 !
Rewriter.isSafeToExpand(ExitCount))
1784 assert(SE->isLoopInvariant(ExitCount, L) &&
1785 "Exit count must be loop invariant");
1818 for (
unsigned i = 1; i < ExitingBlocks.size(); i++)
1820 "Not sorted by dominance");
1824 for (
unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1825 if (BadExit(ExitingBlocks[i])) {
1826 ExitingBlocks.resize(i);
1830 if (ExitingBlocks.empty())
1844 if (
I.mayHaveSideEffects())
1847 bool Changed =
false;
1858 Rewriter.setInsertPoint(
L->getLoopPreheader()->getTerminator());
1860 Value *ExactBTCV =
nullptr;
1861 for (
BasicBlock *ExitingBB : ExitingBlocks) {
1862 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1866 if (ExitCount == ExactBTC) {
1868 B.getFalse() :
B.getTrue();
1872 ExactBTCV =
Rewriter.expandCodeFor(ExactBTC);
1876 ECV =
B.CreateZExt(ECV, WiderTy);
1877 RHS =
B.CreateZExt(RHS, WiderTy);
1880 ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1881 NewCond =
B.CreateICmp(Pred, ECV, RHS);
1886 DeadInsts.emplace_back(OldCond);
1888 RunUnswitching =
true;
1898bool IndVarSimplify::run(
Loop *L) {
1900 assert(
L->isRecursivelyLCSSAForm(*DT, *LI) &&
1901 "LCSSA required to run indvars!");
1912 if (!
L->isLoopSimplifyForm())
1915 bool Changed =
false;
1918 Changed |= rewriteNonIntegerIVs(L);
1922#if LLVM_ENABLE_ABI_BREAKING_CHECKS
1933 Changed |= simplifyAndExtend(L, Rewriter, LI);
1942 NumReplaced += Rewrites;
1948 NumElimIV +=
Rewriter.replaceCongruentIVs(L, DT, DeadInsts,
TTI);
1952 Changed |= canonicalizeExitCondition(L);
1955 if (optimizeLoopExits(L, Rewriter)) {
1960 SE->forgetTopmostLoop(L);
1965 if (predicateLoopExits(L, Rewriter)) {
1977 L->getExitingBlocks(ExitingBlocks);
1978 for (
BasicBlock *ExitingBB : ExitingBlocks) {
1992 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1993 if (isa<SCEVCouldNotCompute>(ExitCount))
2013 if (!
Rewriter.isSafeToExpand(ExitCount))
2016 Changed |= linearFunctionTestReplace(L, ExitingBB,
2028 while (!DeadInsts.empty()) {
2029 Value *
V = DeadInsts.pop_back_val();
2031 if (
PHINode *
PHI = dyn_cast_or_null<PHINode>(V))
2033 else if (
Instruction *Inst = dyn_cast_or_null<Instruction>(V))
2042 Changed |= sinkUnusedInvariants(L);
2047 Changed |= rewriteFirstIterationLoopExitValues(L);
2053 assert(
L->isRecursivelyLCSSAForm(*DT, *LI) &&
2054 "Indvars did not preserve LCSSA!");
2056 MSSAU->getMemorySSA()->verifyMemorySSA();
2064 Function *
F = L.getHeader()->getParent();
2074 if (IVS.runUnswitching()) {
This file declares a class to represent arbitrary precision floating point values and provide a varie...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
static Value * genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, const SCEV *ExitCount, bool UsePostInc, Loop *L, SCEVExpander &Rewriter, ScalarEvolution *SE)
Insert an IR expression which computes the value held by the IV IndVar (which must be an loop counter...
static void replaceExitCond(BranchInst *BI, Value *NewCond, SmallVectorImpl< WeakTrackingVH > &DeadInsts)
static cl::opt< bool > DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), cl::desc("Disable Linear Function Test Replace optimization"))
static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB)
Whether the current loop exit test is based on this value.
static cl::opt< ReplaceExitVal > ReplaceExitValue("replexitval", cl::Hidden, cl::init(OnlyCheapRepl), cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), clEnumValN(OnlyCheapRepl, "cheap", "only replace exit value when the cost is cheap"), clEnumValN(UnusedIndVarInLoop, "unusedindvarinloop", "only replace exit value when it is an unused " "induction variable in the loop and has cheap replacement cost"), clEnumValN(NoHardUse, "noharduse", "only replace exit values when loop def likely dead"), clEnumValN(AlwaysRepl, "always", "always replace exit value whenever possible")))
static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, const TargetTransformInfo *TTI)
Update information about the induction variable that is extended by this sign or zero extend operatio...
static void replaceLoopPHINodesWithPreheaderValues(LoopInfo *LI, Loop *L, SmallVectorImpl< WeakTrackingVH > &DeadInsts, ScalarEvolution &SE)
static bool needsLFTR(Loop *L, BasicBlock *ExitingBB)
linearFunctionTestReplace policy.
static bool optimizeLoopExitWithUnknownExitCount(const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, const SCEV *MaxIter, bool SkipLastIter, ScalarEvolution *SE, SCEVExpander &Rewriter, SmallVectorImpl< WeakTrackingVH > &DeadInsts)
static Value * createInvariantCond(const Loop *L, BasicBlock *ExitingBB, const ScalarEvolution::LoopInvariantPredicate &LIP, SCEVExpander &Rewriter)
static bool isLoopCounter(PHINode *Phi, Loop *L, ScalarEvolution *SE)
Return true if the given phi is a "counter" in L.
static std::optional< Value * > createReplacement(ICmpInst *ICmp, const Loop *L, BasicBlock *ExitingBB, const SCEV *MaxIter, bool Inverted, bool SkipLastIter, ScalarEvolution *SE, SCEVExpander &Rewriter)
static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl< Value * > &Visited, unsigned Depth)
Recursive helper for hasConcreteDef().
static bool hasConcreteDef(Value *V)
Return true if the given value is concrete.
static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken, SmallVectorImpl< WeakTrackingVH > &DeadInsts)
static PHINode * getLoopPhiForCounter(Value *IncV, Loop *L)
Given an Value which is hoped to be part of an add recurance in the given loop, return the associated...
static Constant * createFoldedExitCond(const Loop *L, BasicBlock *ExitingBB, bool IsTaken)
static cl::opt< bool > UsePostIncrementRanges("indvars-post-increment-ranges", cl::Hidden, cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), cl::init(true))
static PHINode * FindLoopCounter(Loop *L, BasicBlock *ExitingBB, const SCEV *BECount, ScalarEvolution *SE, DominatorTree *DT)
Search the loop header for a loop counter (anadd rec w/step of one) suitable for use by LFTR.
static cl::opt< bool > AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true), cl::desc("Allow widening of indvars to eliminate s/zext"))
static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal)
Convert APF to an integer, if possible.
static cl::opt< bool > LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), cl::desc("Predicate conditions in read only loops"))
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Virtual Register Rewriter
static const uint32_t IV[8]
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setCondition(Value *V)
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Represents analyses that only rely on functions' control flow.
This is the base class for all instructions that perform data casts.
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
This is an important base class in LLVM.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
bool isLegalInteger(uint64_t Width) const
Returns true if the specified type is known to be a native integer type supported by the CPU.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
This instruction compares its operands according to the predicate given to the constructor.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Interface for visiting interesting IV users that are recognized but not simplified by this utility.
virtual void visitCast(CastInst *Cast)=0
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
Class to represent integer types.
This class provides an interface for updating the loop pass manager based on mutations to the loop ne...
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
bool replacementPreservesLCSSAForm(Instruction *From, Value *To)
Returns true if replacing From with To everywhere is guaranteed to preserve LCSSA form.
Represents a single loop in the control flow graph.
An analysis that produces MemorySSA for a function.
Encapsulates MemorySSA, including all data associated with memory accesses.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
void setIncomingValue(unsigned i, Value *V)
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
static unsigned getIncomingValueNumForOperand(unsigned i)
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStart() const
const SCEV * evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const
Return the value of this chain of recurrences at the specified iteration number.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
const SCEVAddRecExpr * getPostIncExpr(ScalarEvolution &SE) const
Return an expression representing the value of this expression one iteration of the loop ahead.
const Loop * getLoop() const
This class uses information about analyze scalars to rewrite expressions in canonical form.
bool hasNoUnsignedWrap() const
bool hasNoSignedWrap() const
This class represents an analyzed expression in the program.
bool isOne() const
Return true if the expression is a constant one.
bool isZero() const
Return true if the expression is a constant zero.
Type * getType() const
Return the LLVM type of this SCEV expression.
This class represents a cast from signed integer to floating point.
The main scalar evolution driver.
Type * getWiderType(Type *Ty1, Type *Ty2) const
const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates=false)
Compute the number of times the backedge of the specified loop will execute if its exit condition wer...
uint64_t getTypeSizeInBits(Type *Ty) const
Return the size in bits of the specified type, for which isSCEVable must return true.
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
std::optional< bool > evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Check whether the condition described by Pred, LHS, and RHS is true or false in the given Context.
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
const SCEV * getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
Promote the operands to the wider of the types using zero-extension, and then perform a umin operatio...
const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L at given Context duri...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isPointerTy() const
True if this is an instance of PointerType.
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVMContext & getContext() const
All values hold a context through their type.
user_iterator_impl< User > user_iterator
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
Value handle that is nullable, but tries to track the Value.
const ParentTy * getParent() const
self_iterator getIterator()
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Function * getDeclarationIfExists(Module *M, ID id, ArrayRef< Type * > Tys, FunctionType *FT=nullptr)
This version supports overloaded intrinsics.
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
This is an optimization pass for GlobalISel generic memory operations.
bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
PHINode * createWideIV(const WideIVInfo &WI, LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, DominatorTree *DT, SmallVectorImpl< WeakTrackingVH > &DeadInsts, unsigned &NumElimExt, unsigned &NumWidened, bool HasGuards, bool UsePostIncrementRanges)
Widen Induction Variables - Extend the width of an IV to cover its widest uses.
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Examine each PHI in the given block and delete it if it is dead.
void sort(IteratorTy Start, IteratorTy End)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
cl::opt< unsigned > SCEVCheapExpansionBudget
std::pair< bool, bool > simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, LoopInfo *LI, const TargetTransformInfo *TTI, SmallVectorImpl< WeakTrackingVH > &Dead, SCEVExpander &Rewriter, IVVisitor *V=nullptr)
simplifyUsersOfIV - Simplify instructions that use this induction variable by using ScalarEvolution t...
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
bool VerifyMemorySSA
Enables verification of MemorySSA.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
PreservedAnalyses getLoopPassPreservedAnalyses()
Returns the minimum set of Analyses that all loop passes must preserve.
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
bool isAlmostDeadIV(PHINode *IV, BasicBlock *LatchBlock, Value *Cond)
Return true if the induction variable IV in a Loop whose latch is LatchBlock would become dead if the...
int rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, ScalarEvolution *SE, const TargetTransformInfo *TTI, SCEVExpander &Rewriter, DominatorTree *DT, ReplaceExitVal ReplaceExitValue, SmallVector< WeakTrackingVH, 16 > &DeadInsts)
If the final value of any expressions that are recurrent in the loop can be computed,...
bool RecursivelyDeleteDeadPHINode(PHINode *PN, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
If the specified value is an effectively dead PHI node, due to being a def-use chain of single-use no...
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...
TargetTransformInfo & TTI
Collect information about induction variables that are used by sign/zero extend operations.