34#define DEBUG_TYPE "indvars"
36STATISTIC(NumElimIdentity,
"Number of IV identities eliminated");
37STATISTIC(NumElimOperand,
"Number of IV operands folded into a use");
38STATISTIC(NumFoldedUser,
"Number of IV users folded into a constant");
39STATISTIC(NumElimRem ,
"Number of IV remainder operations eliminated");
42 "Number of IV signed division operations converted to unsigned division");
45 "Number of IV signed remainder operations converted to unsigned remainder");
46STATISTIC(NumElimCmp ,
"Number of IV comparisons eliminated");
53 class SimplifyIndvar {
63 bool RunUnswitching =
false;
72 assert(LI &&
"IV simplification requires LoopInfo");
75 bool hasChanged()
const {
return Changed; }
76 bool runUnswitching()
const {
return RunUnswitching; }
91 bool replaceIVUserWithLoopInvariant(
Instruction *UseInst);
92 bool replaceFloatIVWithIntegerIV(
Instruction *UseInst);
119 for (
auto *
Insn : Instructions)
122 assert(CommonDom &&
"Common dominator not found?");
135 Value *IVSrc =
nullptr;
136 const unsigned OperIdx = 0;
137 const SCEV *FoldedExpr =
nullptr;
138 bool MustDropExactFlag =
false;
142 case Instruction::UDiv:
143 case Instruction::LShr:
146 if (IVOperand != UseInst->
getOperand(OperIdx) ||
152 if (!isa<BinaryOperator>(IVOperand)
153 || !isa<ConstantInt>(IVOperand->
getOperand(1)))
158 assert(SE->isSCEVable(IVSrc->
getType()) &&
"Expect SCEVable IV operand");
161 if (UseInst->
getOpcode() == Instruction::LShr) {
170 const SCEV *
LHS = SE->getSCEV(IVSrc);
172 FoldedExpr = SE->getUDivExpr(LHS, RHS);
175 if (UseInst->
isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS))
176 MustDropExactFlag =
true;
179 if (!SE->isSCEVable(UseInst->
getType()))
183 if (SE->getSCEV(UseInst) != FoldedExpr)
186 LLVM_DEBUG(
dbgs() <<
"INDVARS: Eliminated IV operand: " << *IVOperand
187 <<
" -> " << *UseInst <<
'\n');
190 assert(SE->getSCEV(UseInst) == FoldedExpr &&
"bad SCEV with folded oper");
192 if (MustDropExactFlag)
198 DeadInsts.emplace_back(IVOperand);
202bool SimplifyIndvar::makeIVComparisonInvariant(
ICmpInst *ICmp,
204 auto *Preheader =
L->getLoopPreheader();
207 unsigned IVOperIdx = 0;
213 Pred = ICmpInst::getSwappedPredicate(Pred);
219 const SCEV *S = SE->getSCEVAtScope(ICmp->
getOperand(IVOperIdx), ICmpLoop);
220 const SCEV *
X = SE->getSCEVAtScope(ICmp->
getOperand(1 - IVOperIdx), ICmpLoop);
221 auto LIP = SE->getLoopInvariantPredicate(Pred, S,
X, L, ICmp);
225 const SCEV *InvariantLHS = LIP->LHS;
226 const SCEV *InvariantRHS = LIP->RHS;
229 auto *PHTerm = Preheader->getTerminator();
230 if (
Rewriter.isHighCostExpansion({InvariantLHS, InvariantRHS}, L,
232 !
Rewriter.isSafeToExpandAt(InvariantLHS, PHTerm) ||
233 !
Rewriter.isSafeToExpandAt(InvariantRHS, PHTerm))
239 LLVM_DEBUG(
dbgs() <<
"INDVARS: Simplified comparison: " << *ICmp <<
'\n');
243 RunUnswitching =
true;
249void SimplifyIndvar::eliminateIVComparison(
ICmpInst *ICmp,
251 unsigned IVOperIdx = 0;
258 Pred = ICmpInst::getSwappedPredicate(Pred);
264 const SCEV *S = SE->getSCEVAtScope(ICmp->
getOperand(IVOperIdx), ICmpLoop);
265 const SCEV *
X = SE->getSCEVAtScope(ICmp->
getOperand(1 - IVOperIdx), ICmpLoop);
270 for (
auto *U : ICmp->
users())
271 Users.push_back(cast<Instruction>(U));
273 if (
auto Ev = SE->evaluatePredicateAt(Pred, S,
X, CtxI)) {
274 SE->forgetValue(ICmp);
276 DeadInsts.emplace_back(ICmp);
277 LLVM_DEBUG(
dbgs() <<
"INDVARS: Eliminated comparison: " << *ICmp <<
'\n');
278 }
else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
280 }
else if (ICmpInst::isSigned(OriginalPred) &&
281 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(
X)) {
288 LLVM_DEBUG(
dbgs() <<
"INDVARS: Turn to unsigned comparison: " << *ICmp
305 N = SE->getSCEVAtScope(
N, L);
306 D = SE->getSCEVAtScope(
D, L);
309 if (SE->isKnownNonNegative(
N) && SE->isKnownNonNegative(
D)) {
313 UDiv->setIsExact(SDiv->
isExact());
316 LLVM_DEBUG(
dbgs() <<
"INDVARS: Simplified sdiv: " << *SDiv <<
'\n');
319 DeadInsts.push_back(SDiv);
333 LLVM_DEBUG(
dbgs() <<
"INDVARS: Simplified srem: " << *Rem <<
'\n');
336 DeadInsts.emplace_back(Rem);
340void SimplifyIndvar::replaceRemWithNumerator(
BinaryOperator *Rem) {
342 LLVM_DEBUG(
dbgs() <<
"INDVARS: Simplified rem: " << *Rem <<
'\n');
345 DeadInsts.emplace_back(Rem);
349void SimplifyIndvar::replaceRemWithNumeratorOrZero(
BinaryOperator *Rem) {
357 LLVM_DEBUG(
dbgs() <<
"INDVARS: Simplified rem: " << *Rem <<
'\n');
360 DeadInsts.emplace_back(Rem);
373 bool UsedAsNumerator = IVOperand == NValue;
374 if (!UsedAsNumerator && !IsSigned)
377 const SCEV *
N = SE->getSCEV(NValue);
381 N = SE->getSCEVAtScope(
N, ICmpLoop);
383 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(
N);
386 if (!IsNumeratorNonNegative)
389 const SCEV *
D = SE->getSCEV(DValue);
390 D = SE->getSCEVAtScope(
D, ICmpLoop);
392 if (UsedAsNumerator) {
393 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
394 if (SE->isKnownPredicate(LT,
N,
D)) {
395 replaceRemWithNumerator(Rem);
400 const SCEV *NLessOne = SE->getMinusSCEV(
N, SE->getOne(
T));
401 if (SE->isKnownPredicate(LT, NLessOne,
D)) {
402 replaceRemWithNumeratorOrZero(Rem);
409 if (!IsSigned || !SE->isKnownNonNegative(
D))
412 replaceSRemWithURem(Rem);
434 for (
auto *U : WO->
users()) {
435 if (
auto *EVI = dyn_cast<ExtractValueInst>(U)) {
436 if (EVI->getIndices()[0] == 1)
439 assert(EVI->getIndices()[0] == 0 &&
"Only two possibilities!");
440 EVI->replaceAllUsesWith(NewResult);
447 for (
auto *EVI : ToDelete)
448 EVI->eraseFromParent();
457bool SimplifyIndvar::eliminateSaturatingIntrinsic(
SaturatingInst *SI) {
458 const SCEV *
LHS = SE->getSCEV(
SI->getLHS());
459 const SCEV *
RHS = SE->getSCEV(
SI->getRHS());
460 if (!SE->willNotOverflow(
SI->getBinaryOp(),
SI->isSigned(), LHS, RHS))
464 SI->getBinaryOp(),
SI->getLHS(),
SI->getRHS(),
SI->getName(),
SI->getIterator());
470 SI->replaceAllUsesWith(BO);
472 DeadInsts.emplace_back(SI);
477bool SimplifyIndvar::eliminateTrunc(
TruncInst *TI) {
495 Type *IVTy =
IV->getType();
496 const SCEV *IVSCEV = SE->getSCEV(
IV);
497 const SCEV *TISCEV = SE->getSCEV(TI);
501 bool DoesSExtCollapse =
false;
502 bool DoesZExtCollapse =
false;
503 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
504 DoesSExtCollapse =
true;
505 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
506 DoesZExtCollapse =
true;
510 if (!DoesSExtCollapse && !DoesZExtCollapse)
516 for (
auto *U : TI->
users()) {
518 if (isa<Instruction>(U) &&
521 ICmpInst *ICI = dyn_cast<ICmpInst>(U);
522 if (!ICI)
return false;
528 if (ICI->
isSigned() && !DoesSExtCollapse)
536 auto CanUseZExt = [&](
ICmpInst *ICI) {
541 if (!DoesZExtCollapse)
552 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
555 for (
auto *ICI : ICmpUsers) {
556 bool IsSwapped =
L->isLoopInvariant(ICI->
getOperand(0));
567 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
568 if (CanUseZExt(ICI)) {
569 assert(DoesZExtCollapse &&
"Unprofitable zext?");
570 Ext = Builder.CreateZExt(Op1, IVTy,
"zext");
573 assert(DoesSExtCollapse &&
"Unprofitable sext?");
574 Ext = Builder.CreateSExt(Op1, IVTy,
"sext");
578 L->makeLoopInvariant(Ext, Changed);
580 auto *NewCmp = Builder.CreateICmp(Pred,
IV, Ext);
582 DeadInsts.emplace_back(ICI);
587 DeadInsts.emplace_back(TI);
594bool SimplifyIndvar::eliminateIVUser(
Instruction *UseInst,
596 if (
ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
597 eliminateIVComparison(ICmp, IVOperand);
601 bool IsSRem =
Bin->getOpcode() == Instruction::SRem;
602 if (IsSRem ||
Bin->getOpcode() == Instruction::URem) {
603 simplifyIVRemainder(
Bin, IVOperand, IsSRem);
607 if (
Bin->getOpcode() == Instruction::SDiv)
608 return eliminateSDiv(
Bin);
611 if (
auto *WO = dyn_cast<WithOverflowInst>(UseInst))
612 if (eliminateOverflowIntrinsic(WO))
615 if (
auto *SI = dyn_cast<SaturatingInst>(UseInst))
616 if (eliminateSaturatingIntrinsic(SI))
619 if (
auto *TI = dyn_cast<TruncInst>(UseInst))
620 if (eliminateTrunc(TI))
623 if (eliminateIdentitySCEV(UseInst, IVOperand))
630 if (
auto *BB = L->getLoopPreheader())
631 return BB->getTerminator();
637bool SimplifyIndvar::replaceIVUserWithLoopInvariant(
Instruction *
I) {
638 if (!SE->isSCEVable(
I->getType()))
642 const SCEV *S = SE->getSCEV(
I);
644 if (!SE->isLoopInvariant(S, L))
653 if (!
Rewriter.isSafeToExpandAt(S, IP)) {
655 <<
" with non-speculable loop invariant: " << *S <<
'\n');
659 auto *Invariant =
Rewriter.expandCodeFor(S,
I->getType(), IP);
660 bool NeedToEmitLCSSAPhis =
false;
661 if (!LI->replacementPreservesLCSSAForm(
I, Invariant))
662 NeedToEmitLCSSAPhis =
true;
664 I->replaceAllUsesWith(Invariant);
666 <<
" with loop invariant: " << *S <<
'\n');
668 if (NeedToEmitLCSSAPhis) {
670 NeedsLCSSAPhis.
push_back(cast<Instruction>(Invariant));
673 <<
" inserting LCSSA Phis" <<
'\n');
677 DeadInsts.emplace_back(
I);
682bool SimplifyIndvar::replaceFloatIVWithIntegerIV(
Instruction *UseInst) {
683 if (UseInst->
getOpcode() != CastInst::SIToFP &&
684 UseInst->
getOpcode() != CastInst::UIToFP)
689 const SCEV *
IV = SE->getSCEV(IVOperand);
691 if (UseInst->
getOpcode() == CastInst::SIToFP)
692 MaskBits = (int)SE->getSignedRange(
IV).getMinSignedBits();
694 MaskBits = (int)SE->getUnsignedRange(
IV).getActiveBits();
696 if (MaskBits <= DestNumSigBits) {
699 auto *CI = dyn_cast<CastInst>(U);
704 if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI)
707 Value *Conv =
nullptr;
708 if (IVOperand->
getType() != CI->getType()) {
713 if (SE->getTypeSizeInBits(IVOperand->
getType()) >
714 SE->getTypeSizeInBits(CI->getType())) {
715 Conv = Builder.CreateTrunc(IVOperand, CI->getType(),
Name +
".trunc");
716 }
else if (Opcode == CastInst::FPToUI ||
717 UseInst->
getOpcode() == CastInst::UIToFP) {
718 Conv = Builder.CreateZExt(IVOperand, CI->getType(),
Name +
".zext");
720 Conv = Builder.CreateSExt(IVOperand, CI->getType(),
Name +
".sext");
726 DeadInsts.push_back(CI);
728 <<
" with: " << *Conv <<
'\n');
739bool SimplifyIndvar::eliminateIdentitySCEV(
Instruction *UseInst,
741 if (!SE->isSCEVable(UseInst->
getType()) ||
745 const SCEV *UseSCEV = SE->getSCEV(UseInst);
746 if (UseSCEV != SE->getSCEV(IVOperand))
765 if (isa<PHINode>(UseInst))
768 if (!DT || !DT->
dominates(IVOperand, UseInst))
771 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
777 if (!SE->canReuseInstruction(UseSCEV, IVOperand, DropPoisonGeneratingInsts))
781 I->dropPoisonGeneratingAnnotations();
784 LLVM_DEBUG(
dbgs() <<
"INDVARS: Eliminated identity: " << *UseInst <<
'\n');
786 SE->forgetValue(UseInst);
790 DeadInsts.emplace_back(UseInst);
796 return (isa<OverflowingBinaryOperator>(BO) &&
797 strengthenOverflowingOperation(BO, IVOperand)) ||
798 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand));
803bool SimplifyIndvar::strengthenOverflowingOperation(
BinaryOperator *BO,
805 auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp(
806 cast<OverflowingBinaryOperator>(BO));
829 if (BO->
getOpcode() == Instruction::Shl) {
830 bool Changed =
false;
831 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
832 for (
auto *U : BO->
users()) {
852void SimplifyIndvar::pushIVUsers(
854 SmallVectorImpl<std::pair<Instruction *, Instruction *>> &SimpleIVUsers) {
867 if (!
L->contains(UI))
874 SimpleIVUsers.push_back(std::make_pair(UI, Def));
912 if (!SE->isSCEVable(CurrIV->
getType()))
924 pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
926 while (!SimpleIVUsers.
empty()) {
927 std::pair<Instruction*, Instruction*> UseOper =
936 DeadInsts.emplace_back(UseInst);
941 if (UseInst == CurrIV)
continue;
945 if (replaceIVUserWithLoopInvariant(UseInst))
950 if ((isa<PtrToIntInst>(UseInst)) || (isa<TruncInst>(UseInst)))
951 for (
Use &U : UseInst->
uses()) {
953 if (replaceIVUserWithLoopInvariant(
User))
958 for (
unsigned N = 0; IVOperand; ++
N) {
962 Value *NewOper = foldIVUser(UseInst, IVOperand);
965 IVOperand = dyn_cast<Instruction>(NewOper);
970 if (eliminateIVUser(UseInst, IVOperand)) {
971 pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
976 if (strengthenBinaryOp(BO, IVOperand)) {
979 pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
984 if (replaceFloatIVWithIntegerIV(UseInst)) {
986 pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
990 CastInst *Cast = dyn_cast<CastInst>(UseInst);
996 pushIVUsers(UseInst, Simplified, SimpleIVUsers);
1017 SIV.simplifyUsers(CurrIV, V);
1018 return {SIV.hasChanged(), SIV.runUnswitching()};
1027#if LLVM_ENABLE_ABI_BREAKING_CHECKS
1030 bool Changed =
false;
1032 const auto &[
C,
_] =
1062 bool UsePostIncrementRanges;
1065 unsigned NumElimExt = 0;
1066 unsigned NumWidened = 0;
1071 const SCEV *WideIncExpr =
nullptr;
1092 std::optional<ConstantRange> getPostIncRangeInfo(
Value *Def,
1094 DefUserPair
Key(Def, UseI);
1095 auto It = PostIncRangeInfos.
find(Key);
1096 return It == PostIncRangeInfos.
end()
1097 ? std::optional<ConstantRange>(std::nullopt)
1101 void calculatePostIncRanges(
PHINode *OrigPhi);
1105 DefUserPair
Key(Def, UseI);
1108 It->second =
R.intersectWith(It->second);
1115 struct NarrowIVDefUse {
1123 bool NeverNegative =
false;
1127 : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1128 NeverNegative(NeverNegative) {}
1133 bool HasGuards,
bool UsePostIncrementRanges =
true);
1137 unsigned getNumElimExt() {
return NumElimExt; };
1138 unsigned getNumWidened() {
return NumWidened; };
1141 Value *createExtendInst(
Value *NarrowOper,
Type *WideType,
bool IsSigned,
1145 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1147 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1151 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1153 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1155 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1157 const SCEV *getSCEVByOpCode(
const SCEV *LHS,
const SCEV *RHS,
1158 unsigned OpCode)
const;
1162 void truncateIVUse(NarrowIVDefUse DU);
1164 bool widenLoopCompare(NarrowIVDefUse DU);
1165 bool widenWithVariantUse(NarrowIVDefUse DU);
1187 for (
unsigned i = 0, e =
PHI->getNumIncomingValues(); i != e; ++i) {
1188 if (
PHI->getIncomingValue(i) != Def)
1209 auto *DefI = dyn_cast<Instruction>(Def);
1213 assert(DT->
dominates(DefI, InsertPt) &&
"def does not dominate all uses");
1218 for (
auto *DTN = (*DT)[InsertPt->
getParent()]; DTN; DTN = DTN->getIDom())
1220 return DTN->getBlock()->getTerminator();
1228 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1229 L(LI->getLoopFor(OrigPhi->
getParent())), SE(SEv), DT(DTree),
1232 assert(L->getHeader() == OrigPhi->
getParent() &&
"Phi must be an IV");
1233 ExtendKindMap[OrigPhi] = WI.
IsSigned ? ExtendKind::Sign : ExtendKind::Zero;
1236Value *WidenIV::createExtendInst(
Value *NarrowOper,
Type *WideType,
1242 L &&
L->getLoopPreheader() &&
L->isLoopInvariant(NarrowOper);
1243 L =
L->getParentLoop())
1244 Builder.SetInsertPoint(
L->getLoopPreheader()->getTerminator());
1246 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1247 Builder.CreateZExt(NarrowOper, WideType);
1253Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1255 unsigned Opcode = DU.NarrowUse->
getOpcode();
1259 case Instruction::Add:
1260 case Instruction::Mul:
1261 case Instruction::UDiv:
1262 case Instruction::Sub:
1263 return cloneArithmeticIVUser(DU, WideAR);
1265 case Instruction::And:
1266 case Instruction::Or:
1267 case Instruction::Xor:
1268 case Instruction::Shl:
1269 case Instruction::LShr:
1270 case Instruction::AShr:
1271 return cloneBitwiseIVUser(DU);
1275Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1280 LLVM_DEBUG(
dbgs() <<
"Cloning bitwise IVUser: " << *NarrowUse <<
"\n");
1286 bool IsSigned = getExtendKind(NarrowDef) == ExtendKind::Sign;
1289 : createExtendInst(NarrowUse->
getOperand(0), WideType,
1290 IsSigned, NarrowUse);
1293 : createExtendInst(NarrowUse->
getOperand(1), WideType,
1294 IsSigned, NarrowUse);
1296 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1298 NarrowBO->getName());
1300 Builder.Insert(WideBO);
1301 WideBO->copyIRFlags(NarrowBO);
1305Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1311 LLVM_DEBUG(
dbgs() <<
"Cloning arithmetic IVUser: " << *NarrowUse <<
"\n");
1313 unsigned IVOpIdx = (NarrowUse->
getOperand(0) == NarrowDef) ? 0 : 1;
1324 auto GuessNonIVOperand = [&](
bool SignExt) {
1325 const SCEV *WideLHS;
1326 const SCEV *WideRHS;
1328 auto GetExtend = [
this, SignExt](
const SCEV *S,
Type *Ty) {
1335 WideLHS = SE->
getSCEV(WideDef);
1337 WideRHS = GetExtend(NarrowRHS, WideType);
1340 WideLHS = GetExtend(NarrowLHS, WideType);
1341 WideRHS = SE->
getSCEV(WideDef);
1345 const SCEV *WideUse =
1346 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->
getOpcode());
1348 return WideUse == WideAR;
1351 bool SignExtend = getExtendKind(NarrowDef) == ExtendKind::Sign;
1352 if (!GuessNonIVOperand(SignExtend)) {
1353 SignExtend = !SignExtend;
1354 if (!GuessNonIVOperand(SignExtend))
1360 : createExtendInst(NarrowUse->
getOperand(0), WideType,
1361 SignExtend, NarrowUse);
1364 : createExtendInst(NarrowUse->
getOperand(1), WideType,
1365 SignExtend, NarrowUse);
1367 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1369 NarrowBO->getName());
1372 Builder.Insert(WideBO);
1373 WideBO->copyIRFlags(NarrowBO);
1377WidenIV::ExtendKind WidenIV::getExtendKind(
Instruction *
I) {
1378 auto It = ExtendKindMap.
find(
I);
1379 assert(It != ExtendKindMap.
end() &&
"Instruction not yet extended!");
1383const SCEV *WidenIV::getSCEVByOpCode(
const SCEV *LHS,
const SCEV *RHS,
1384 unsigned OpCode)
const {
1386 case Instruction::Add:
1388 case Instruction::Sub:
1390 case Instruction::Mul:
1392 case Instruction::UDiv:
1413 if (
auto *OBO = dyn_cast<OverflowingBinaryOperator>(
Op)) {
1414 IsNSW = OBO->hasNoSignedWrap();
1415 IsNUW = OBO->hasNoUnsignedWrap();
1420 bool IsNSW =
false,
bool IsNUW =
false)
1421 : Opcode(Opcode),
Operands({
LHS,
RHS}), IsNSW(IsNSW), IsNUW(IsNUW) {}
1427 switch (
Op->getOpcode()) {
1428 case Instruction::Add:
1429 case Instruction::Sub:
1430 case Instruction::Mul:
1431 return BinaryOp(
Op);
1432 case Instruction::Or: {
1434 if (cast<PossiblyDisjointInst>(
Op)->isDisjoint())
1435 return BinaryOp(Instruction::Add,
Op->getOperand(0),
Op->getOperand(1),
1439 case Instruction::Shl: {
1440 if (
ConstantInt *SA = dyn_cast<ConstantInt>(
Op->getOperand(1))) {
1441 unsigned BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
1447 if (SA->getValue().ult(
BitWidth)) {
1452 bool IsNUW =
Op->hasNoUnsignedWrap();
1453 bool IsNSW =
Op->hasNoSignedWrap() &&
1454 (IsNUW || SA->getValue().ult(
BitWidth - 1));
1457 ConstantInt::get(
Op->getContext(),
1459 return BinaryOp(Instruction::Mul,
Op->getOperand(0),
X, IsNSW, IsNUW);
1467 return std::nullopt;
1475WidenIV::WidenedRecTy
1476WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1479 return {
nullptr, ExtendKind::Unknown};
1481 assert((
Op->Opcode == Instruction::Add ||
Op->Opcode == Instruction::Sub ||
1482 Op->Opcode == Instruction::Mul) &&
1483 "Unexpected opcode");
1487 const unsigned ExtendOperIdx =
Op->Operands[0] == DU.NarrowDef ? 1 : 0;
1488 assert(
Op->Operands[1 - ExtendOperIdx] == DU.NarrowDef &&
"bad DU");
1490 ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1491 if (!(ExtKind == ExtendKind::Sign &&
Op->IsNSW) &&
1492 !(ExtKind == ExtendKind::Zero &&
Op->IsNUW)) {
1493 ExtKind = ExtendKind::Unknown;
1499 if (DU.NeverNegative) {
1501 ExtKind = ExtendKind::Sign;
1502 }
else if (
Op->IsNUW) {
1503 ExtKind = ExtendKind::Zero;
1508 const SCEV *ExtendOperExpr = SE->
getSCEV(
Op->Operands[ExtendOperIdx]);
1509 if (ExtKind == ExtendKind::Sign)
1511 else if (ExtKind == ExtendKind::Zero)
1514 return {
nullptr, ExtendKind::Unknown};
1522 const SCEV *rhs = ExtendOperExpr;
1526 if (ExtendOperIdx == 0)
1529 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs,
Op->Opcode));
1531 if (!AddRec || AddRec->
getLoop() != L)
1532 return {
nullptr, ExtendKind::Unknown};
1534 return {AddRec, ExtKind};
1542WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1543 if (!DU.NarrowUse->getType()->isIntegerTy())
1544 return {
nullptr, ExtendKind::Unknown};
1546 const SCEV *NarrowExpr = SE->
getSCEV(DU.NarrowUse);
1551 return {
nullptr, ExtendKind::Unknown};
1554 const SCEV *WideExpr;
1556 if (DU.NeverNegative) {
1558 if (isa<SCEVAddRecExpr>(WideExpr))
1559 ExtKind = ExtendKind::Sign;
1562 ExtKind = ExtendKind::Zero;
1564 }
else if (getExtendKind(DU.NarrowDef) == ExtendKind::Sign) {
1566 ExtKind = ExtendKind::Sign;
1569 ExtKind = ExtendKind::Zero;
1571 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1572 if (!AddRec || AddRec->
getLoop() != L)
1573 return {
nullptr, ExtendKind::Unknown};
1574 return {AddRec, ExtKind};
1579void WidenIV::truncateIVUse(NarrowIVDefUse DU) {
1583 LLVM_DEBUG(
dbgs() <<
"INDVARS: Truncate IV " << *DU.WideDef <<
" for user "
1584 << *DU.NarrowUse <<
"\n");
1585 ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1588 Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType(),
"",
1589 DU.NeverNegative || ExtKind == ExtendKind::Zero,
1590 DU.NeverNegative || ExtKind == ExtendKind::Sign);
1591 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1597bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1616 bool IsSigned = getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
1617 if (!(DU.NeverNegative || IsSigned ==
Cmp->isSigned()))
1620 Value *
Op =
Cmp->getOperand(
Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1623 assert(CastWidth <= IVWidth &&
"Unexpected width while widening compare.");
1626 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1629 if (CastWidth < IVWidth) {
1630 Value *ExtOp = createExtendInst(
Op, WideType,
Cmp->isSigned(), Cmp);
1631 DU.NarrowUse->replaceUsesOfWith(
Op, ExtOp);
1656bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1664 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1665 OpCode != Instruction::Mul)
1675 cast<OverflowingBinaryOperator>(NarrowUse);
1676 ExtendKind ExtKind = getExtendKind(NarrowDef);
1677 bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->
hasNoSignedWrap();
1679 auto AnotherOpExtKind = ExtKind;
1689 for (
Use &U : NarrowUse->
uses()) {
1691 if (
User == NarrowDef)
1693 if (!
L->contains(
User)) {
1694 auto *LCSSAPhi = cast<PHINode>(
User);
1697 if (LCSSAPhi->getNumOperands() != 1)
1702 if (
auto *ICmp = dyn_cast<ICmpInst>(
User)) {
1708 if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(Pred))
1710 if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(Pred))
1715 if (ExtKind == ExtendKind::Sign)
1723 if (ExtUsers.
empty()) {
1733 if (!CanSignExtend && !CanZeroExtend) {
1736 if (OpCode != Instruction::Add)
1738 if (ExtKind != ExtendKind::Zero)
1753 AnotherOpExtKind = ExtendKind::Sign;
1759 if (!AddRecOp1 || AddRecOp1->
getLoop() != L)
1762 LLVM_DEBUG(
dbgs() <<
"Cloning arithmetic IVUser: " << *NarrowUse <<
"\n");
1768 : createExtendInst(NarrowUse->
getOperand(0), WideType,
1769 AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
1773 : createExtendInst(NarrowUse->
getOperand(1), WideType,
1774 AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
1776 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1778 NarrowBO->getName());
1780 Builder.Insert(WideBO);
1781 WideBO->copyIRFlags(NarrowBO);
1782 ExtendKindMap[NarrowUse] = ExtKind;
1787 << *WideBO <<
"\n");
1795 Builder.SetInsertPoint(
User);
1797 Builder.CreatePHI(WideBO->getType(), 1,
User->
getName() +
".wide");
1798 BasicBlock *LoopExitingBlock =
User->getParent()->getSinglePredecessor();
1799 assert(LoopExitingBlock &&
L->contains(LoopExitingBlock) &&
1800 "Not a LCSSA Phi?");
1801 WidePN->addIncoming(WideBO, LoopExitingBlock);
1802 Builder.SetInsertPoint(
User->getParent(),
1803 User->getParent()->getFirstInsertionPt());
1804 auto *TruncPN = Builder.CreateTrunc(WidePN,
User->
getType());
1810 Builder.SetInsertPoint(
User);
1814 if (ExtKind == ExtendKind::Zero)
1815 return Builder.CreateZExt(V, WideBO->getType());
1817 return Builder.CreateSExt(V, WideBO->getType());
1819 auto Pred =
User->getPredicate();
1823 Builder.CreateICmp(Pred, LHS, RHS,
User->
getName() +
".wide");
1833Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU,
1837 "Should already know the kind of extension used to widen NarrowDef");
1841 bool CanWidenBySExt =
1842 DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
1843 bool CanWidenByZExt =
1844 DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Zero;
1847 if (
PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1848 if (LI->
getLoopFor(UsePhi->getParent()) != L) {
1852 if (UsePhi->getNumOperands() != 1)
1858 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1862 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() +
".wide",
1863 UsePhi->getIterator());
1864 WidePhi->
addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1867 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType(),
"",
1868 CanWidenByZExt, CanWidenBySExt);
1871 LLVM_DEBUG(
dbgs() <<
"INDVARS: Widen lcssa phi " << *UsePhi <<
" to "
1872 << *WidePhi <<
"\n");
1880 (isa<ZExtInst>(DU.NarrowUse) && CanWidenByZExt)) {
1881 Value *NewDef = DU.WideDef;
1882 if (DU.NarrowUse->getType() != WideType) {
1885 if (CastWidth < IVWidth) {
1888 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType(),
"",
1889 CanWidenByZExt, CanWidenBySExt);
1896 <<
" not wide enough to subsume " << *DU.NarrowUse
1898 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1899 NewDef = DU.NarrowUse;
1902 if (NewDef != DU.NarrowUse) {
1904 <<
" replaced by " << *DU.WideDef <<
"\n");
1906 DU.NarrowUse->replaceAllUsesWith(NewDef);
1921 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1922 if (!WideAddRec.first)
1923 WideAddRec = getWideRecurrence(DU);
1924 assert((WideAddRec.first ==
nullptr) ==
1925 (WideAddRec.second == ExtendKind::Unknown));
1926 if (!WideAddRec.first)
1929 auto CanUseWideInc = [&]() {
1936 bool NeedToRecomputeFlags =
1938 OrigPhi, WidePhi, DU.NarrowUse, WideInc) ||
1941 return WideAddRec.first == WideIncExpr &&
1942 Rewriter.hoistIVInc(WideInc, DU.NarrowUse, NeedToRecomputeFlags);
1946 if (CanUseWideInc())
1949 WideUse = cloneIVUser(DU, WideAddRec.first);
1958 if (WideAddRec.first != SE->
getSCEV(WideUse)) {
1959 LLVM_DEBUG(
dbgs() <<
"Wide use expression mismatch: " << *WideUse <<
": "
1960 << *SE->
getSCEV(WideUse) <<
" != " << *WideAddRec.first
1970 ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1975 if (
auto *
I = tryAddRecExpansion())
1980 if (widenLoopCompare(DU))
1988 if (widenWithVariantUse(DU))
2001 bool NonNegativeDef =
2008 if (!Widened.
insert(NarrowUser).second)
2011 bool NonNegativeUse =
false;
2012 if (!NonNegativeDef) {
2014 if (
auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
2015 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
2018 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
2019 NonNegativeDef || NonNegativeUse);
2038 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == ExtendKind::Sign
2043 "Expect the new IV expression to preserve its type");
2046 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
2047 if (!AddRec || AddRec->
getLoop() != L)
2056 "Loop header phi recurrence inputs do not dominate the loop");
2069 calculatePostIncRanges(OrigPhi);
2075 Instruction *InsertPt = &*
L->getHeader()->getFirstInsertionPt();
2076 Value *ExpandInst =
Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
2079 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
2084 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
2097 WideIncExpr = SE->
getSCEV(WideInc);
2114 OrigInc, WideInc) &&
2115 isa<OverflowingBinaryOperator>(OrigInc) &&
2116 isa<OverflowingBinaryOperator>(WideInc)) {
2118 OrigInc->hasNoUnsignedWrap());
2120 OrigInc->hasNoSignedWrap());
2129 assert(Widened.
empty() && NarrowIVUsers.empty() &&
"expect initial state" );
2132 pushNarrowIVUsers(OrigPhi, WidePhi);
2134 while (!NarrowIVUsers.empty()) {
2135 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
2139 Instruction *WideUse = widenIVUse(DU, Rewriter, OrigPhi, WidePhi);
2143 pushNarrowIVUsers(DU.NarrowUse, WideUse);
2146 if (DU.NarrowDef->use_empty())
2158void WidenIV::calculatePostIncRange(
Instruction *NarrowDef,
2160 Value *NarrowDefLHS;
2161 const APInt *NarrowDefRHS;
2167 auto UpdateRangeFromCondition = [&](
Value *Condition,
bool TrueDest) {
2177 auto CmpConstrainedLHSRange =
2179 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
2182 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
2185 auto UpdateRangeFromGuards = [&](
Instruction *Ctx) {
2190 Ctx->getParent()->rend())) {
2192 if (
match(&
I, m_Intrinsic<Intrinsic::experimental_guard>(
m_Value(
C))))
2193 UpdateRangeFromCondition(
C,
true);
2197 UpdateRangeFromGuards(NarrowUser);
2205 for (
auto *DTB = (*DT)[NarrowUserBB]->getIDom();
2206 L->contains(DTB->getBlock());
2207 DTB = DTB->getIDom()) {
2208 auto *BB = DTB->getBlock();
2209 auto *TI = BB->getTerminator();
2210 UpdateRangeFromGuards(TI);
2212 auto *BI = dyn_cast<BranchInst>(TI);
2213 if (!BI || !BI->isConditional())
2216 auto *TrueSuccessor = BI->getSuccessor(0);
2217 auto *FalseSuccessor = BI->getSuccessor(1);
2219 auto DominatesNarrowUser = [
this, NarrowUser] (
BasicBlockEdge BBE) {
2220 return BBE.isSingleEdge() &&
2225 UpdateRangeFromCondition(BI->getCondition(),
true);
2228 UpdateRangeFromCondition(BI->getCondition(),
false);
2233void WidenIV::calculatePostIncRanges(
PHINode *OrigPhi) {
2239 while (!Worklist.
empty()) {
2242 for (
Use &U : NarrowDef->
uses()) {
2243 auto *NarrowUser = cast<Instruction>(
U.getUser());
2246 auto *NarrowUserLoop = (*LI)[NarrowUser->
getParent()];
2247 if (!NarrowUserLoop || !
L->contains(NarrowUserLoop))
2250 if (!Visited.
insert(NarrowUser).second)
2255 calculatePostIncRange(NarrowDef, NarrowUser);
2263 unsigned &NumElimExt,
unsigned &NumWidened,
2267 NumElimExt = Widener.getNumElimExt();
2268 NumWidened = Widener.getNumWidened();
SmallVector< AArch64_IMM::ImmInsnModel, 4 > Insn
static const Function * getParent(const Value *V)
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
iv Induction Variable Users
static cl::opt< bool > UsePostIncrementRanges("indvars-post-increment-ranges", cl::Hidden, cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), cl::init(true))
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
mir Rename Register Operands
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static Instruction * GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint)
static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE)
Return true if this instruction generates a simple SCEV expression in terms of that IV.
static Instruction * findCommonDominator(ArrayRef< Instruction * > Instructions, DominatorTree &DT)
Find a point in code which dominates all given instructions.
static Instruction * getInsertPointForUses(Instruction *User, Value *Def, DominatorTree *DT, LoopInfo *LI)
Determine the insertion point for this user.
static std::optional< BinaryOp > matchBinaryOp(Instruction *Op)
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Virtual Register Rewriter
static const uint32_t IV[8]
Class for arbitrary precision integers.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Value handle that asserts if the Value is deleted.
LLVM Basic Block Representation.
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
bool isSigned() const
Whether the intrinsic is signed or unsigned.
Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
This is the base class for all instructions that perform data casts.
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Predicate getPredicate() const
Return the predicate for this instruction.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static ConstantInt * getFalse(LLVMContext &Context)
static ConstantInt * getBool(LLVMContext &Context, bool V)
This class represents a range of values.
APInt getUnsignedMin() const
Return the smallest unsigned value contained in the ConstantRange.
static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
This class represents an Operation in the Expression.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Instruction * findNearestCommonDominator(Instruction *I1, Instruction *I2) const
Find the nearest instruction I that dominates both I1 and I2, in the sense that a result produced bef...
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getInverseCmpPredicate() const
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Interface for visiting interesting IV users that are recognized but not simplified by this utility.
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStart() const
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
const Loop * getLoop() const
This class uses information about analyze scalars to rewrite expressions in canonical form.
static bool canReuseFlagsFromOriginalIVInc(PHINode *OrigPhi, PHINode *WidePhi, Instruction *OrigInc, Instruction *WideInc)
Return true if both increments directly increment the corresponding IV PHI nodes and have the same op...
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
Represents a saturating add/sub intrinsic.
The main scalar evolution driver.
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
uint64_t getTypeSizeInBits(Type *Ty) const
Return the size in bits of the specified type, for which isSCEVable must return true.
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
ConstantRange getSignedRange(const SCEV *S)
Determine the signed range for a particular SCEV.
bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
const SCEV * getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask)
Convenient NoWrapFlags manipulation that hides enum casts and is visible in the ScalarEvolution name ...
bool properlyDominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV properly dominate the specified basic block.
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
int getFPMantissaWidth() const
Return the width of the mantissa of this type.
A Use represents the edge between a Value definition and its users.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
StringRef getName() const
Return a constant reference to the value's name.
Represents an op.with.overflow intrinsic.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
NodeAddr< DefNode * > Def
This is an optimization pass for GlobalISel generic memory operations.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
PHINode * createWideIV(const WideIVInfo &WI, LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, DominatorTree *DT, SmallVectorImpl< WeakTrackingVH > &DeadInsts, unsigned &NumElimExt, unsigned &NumWidened, bool HasGuards, bool UsePostIncrementRanges)
Widen Induction Variables - Extend the width of an IV to cover its widest uses.
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
cl::opt< unsigned > SCEVCheapExpansionBudget
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, LoopInfo *LI, const TargetTransformInfo *TTI, SmallVectorImpl< WeakTrackingVH > &Dead)
SimplifyLoopIVs - Simplify users of induction variables within this loop.
bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
std::pair< bool, bool > simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, LoopInfo *LI, const TargetTransformInfo *TTI, SmallVectorImpl< WeakTrackingVH > &Dead, SCEVExpander &Rewriter, IVVisitor *V=nullptr)
simplifyUsersOfIV - Simplify instructions that use this induction variable by using ScalarEvolution t...
constexpr unsigned BitWidth
bool formLCSSAForInstructions(SmallVectorImpl< Instruction * > &Worklist, const DominatorTree &DT, const LoopInfo &LI, ScalarEvolution *SE, SmallVectorImpl< PHINode * > *PHIsToRemove=nullptr, SmallVectorImpl< PHINode * > *InsertedPHIs=nullptr)
Ensures LCSSA form for every instruction from the Worklist in the scope of innermost containing loop.
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Collect information about induction variables that are used by sign/zero extend operations.