LLVM 22.0.0git
TargetTransformInfo.h
Go to the documentation of this file.
1//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This pass exposes codegen information to IR-level passes. Every
10/// transformation that uses codegen information is broken into three parts:
11/// 1. The IR-level analysis pass.
12/// 2. The IR-level transformation interface which provides the needed
13/// information.
14/// 3. Codegen-level implementation which uses target-specific hooks.
15///
16/// This file defines #2, which is the interface that IR-level transformations
17/// use for querying the codegen.
18///
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/ArrayRef.h"
27#include "llvm/ADT/Uniformity.h"
30#include "llvm/IR/FMF.h"
31#include "llvm/IR/InstrTypes.h"
32#include "llvm/IR/PassManager.h"
33#include "llvm/Pass.h"
38#include <functional>
39#include <optional>
40#include <utility>
41
42namespace llvm {
43
44namespace Intrinsic {
45typedef unsigned ID;
46}
47
48class AllocaInst;
49class AssumptionCache;
51class DominatorTree;
52class BranchInst;
53class Function;
54class GlobalValue;
55class InstCombiner;
58class IntrinsicInst;
59class LoadInst;
60class Loop;
61class LoopInfo;
65class SCEV;
66class ScalarEvolution;
67class SmallBitVector;
68class StoreInst;
69class SwitchInst;
71class Type;
72class VPIntrinsic;
73struct KnownBits;
74
75/// Information about a load/store intrinsic defined by the target.
77 /// This is the pointer that the intrinsic is loading from or storing to.
78 /// If this is non-null, then analysis/optimization passes can assume that
79 /// this intrinsic is functionally equivalent to a load/store from this
80 /// pointer.
81 Value *PtrVal = nullptr;
82
83 // Ordering for atomic operations.
85
86 // Same Id is set by the target for corresponding load/store intrinsics.
87 unsigned short MatchingId = 0;
88
89 bool ReadMem = false;
90 bool WriteMem = false;
91 bool IsVolatile = false;
92
94
100};
101
102/// Attributes of a target dependent hardware loop.
106 Loop *L = nullptr;
109 const SCEV *ExitCount = nullptr;
111 Value *LoopDecrement = nullptr; // Decrement the loop counter by this
112 // value in every iteration.
113 bool IsNestingLegal = false; // Can a hardware loop be a parent to
114 // another hardware loop?
115 bool CounterInReg = false; // Should loop counter be updated in
116 // the loop via a phi?
117 bool PerformEntryTest = false; // Generate the intrinsic which also performs
118 // icmp ne zero on the loop counter value and
119 // produces an i1 to guard the loop entry.
121 DominatorTree &DT,
122 bool ForceNestedLoop = false,
123 bool ForceHardwareLoopPHI = false);
124 LLVM_ABI bool canAnalyze(LoopInfo &LI);
125};
126
127/// Information for memory intrinsic cost model.
129 /// Optional context instruction, if one exists, e.g. the
130 /// load/store to transform to the intrinsic.
131 const Instruction *I = nullptr;
132
133 /// Address in memory.
134 const Value *Ptr = nullptr;
135
136 /// Vector type of the data to be loaded or stored.
137 Type *DataTy = nullptr;
138
139 /// ID of the memory intrinsic.
140 Intrinsic::ID IID;
141
142 /// True when the memory access is predicated with a mask
143 /// that is not a compile-time constant.
144 bool VariableMask = true;
145
146 /// Address space of the pointer.
147 unsigned AddressSpace = 0;
148
149 /// Alignment of single element.
150 Align Alignment;
151
152public:
154 const Value *Ptr, bool VariableMask,
155 Align Alignment,
156 const Instruction *I = nullptr)
157 : I(I), Ptr(Ptr), DataTy(DataTy), IID(Id), VariableMask(VariableMask),
158 Alignment(Alignment) {}
159
161 Align Alignment,
162 unsigned AddressSpace = 0)
163 : DataTy(DataTy), IID(Id), AddressSpace(AddressSpace),
164 Alignment(Alignment) {}
165
167 bool VariableMask, Align Alignment,
168 const Instruction *I = nullptr)
169 : I(I), DataTy(DataTy), IID(Id), VariableMask(VariableMask),
170 Alignment(Alignment) {}
171
172 Intrinsic::ID getID() const { return IID; }
173 const Instruction *getInst() const { return I; }
174 const Value *getPointer() const { return Ptr; }
175 Type *getDataType() const { return DataTy; }
176 bool getVariableMask() const { return VariableMask; }
177 unsigned getAddressSpace() const { return AddressSpace; }
178 Align getAlignment() const { return Alignment; }
179};
180
182 const IntrinsicInst *II = nullptr;
183 Type *RetTy = nullptr;
184 Intrinsic::ID IID;
185 SmallVector<Type *, 4> ParamTys;
187 FastMathFlags FMF;
188 // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
189 // arguments and the return value will be computed based on types.
190 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
191 TargetLibraryInfo const *LibInfo = nullptr;
192
193public:
195 Intrinsic::ID Id, const CallBase &CI,
197 bool TypeBasedOnly = false, TargetLibraryInfo const *LibInfo = nullptr);
198
200 Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
201 FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
203
206
210 const IntrinsicInst *I = nullptr,
212 TargetLibraryInfo const *LibInfo = nullptr);
213
214 Intrinsic::ID getID() const { return IID; }
215 const IntrinsicInst *getInst() const { return II; }
216 Type *getReturnType() const { return RetTy; }
217 FastMathFlags getFlags() const { return FMF; }
218 InstructionCost getScalarizationCost() const { return ScalarizationCost; }
219 const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
220 const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
221 const TargetLibraryInfo *getLibInfo() const { return LibInfo; }
222
223 bool isTypeBasedOnly() const {
224 return Arguments.empty();
225 }
226
227 bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
228};
229
231 /// Don't use tail folding
233 /// Use predicate only to mask operations on data in the loop.
234 /// When the VL is not known to be a power-of-2, this method requires a
235 /// runtime overflow check for the i + VL in the loop because it compares the
236 /// scalar induction variable against the tripcount rounded up by VL which may
237 /// overflow. When the VL is a power-of-2, both the increment and uprounded
238 /// tripcount will overflow to 0, which does not require a runtime check
239 /// since the loop is exited when the loop induction variable equals the
240 /// uprounded trip-count, which are both 0.
242 /// Same as Data, but avoids using the get.active.lane.mask intrinsic to
243 /// calculate the mask and instead implements this with a
244 /// splat/stepvector/cmp.
245 /// FIXME: Can this kind be removed now that SelectionDAGBuilder expands the
246 /// active.lane.mask intrinsic when it is not natively supported?
248 /// Use predicate to control both data and control flow.
249 /// This method always requires a runtime overflow check for the i + VL
250 /// increment inside the loop, because it uses the result direclty in the
251 /// active.lane.mask to calculate the mask for the next iteration. If the
252 /// increment overflows, the mask is no longer correct.
254 /// Use predicate to control both data and control flow, but modify
255 /// the trip count so that a runtime overflow check can be avoided
256 /// and such that the scalar epilogue loop can always be removed.
258 /// Use predicated EVL instructions for tail-folding.
259 /// Indicates that VP intrinsics should be used.
261};
262
271
272class TargetTransformInfo;
275
276/// This pass provides access to the codegen interfaces that are needed
277/// for IR-level transformations.
279public:
281
282 /// Get the kind of extension that an instruction represents.
285 /// Get the kind of extension that a cast opcode represents.
288
289 /// Construct a TTI object using a type implementing the \c Concept
290 /// API below.
291 ///
292 /// This is used by targets to construct a TTI wrapping their target-specific
293 /// implementation that encodes appropriate costs for their target.
295 std::unique_ptr<const TargetTransformInfoImplBase> Impl);
296
297 /// Construct a baseline TTI object using a minimal implementation of
298 /// the \c Concept API below.
299 ///
300 /// The TTI implementation will reflect the information in the DataLayout
301 /// provided if non-null.
302 LLVM_ABI explicit TargetTransformInfo(const DataLayout &DL);
303
304 // Provide move semantics.
307
308 // We need to define the destructor out-of-line to define our sub-classes
309 // out-of-line.
311
312 /// Handle the invalidation of this information.
313 ///
314 /// When used as a result of \c TargetIRAnalysis this method will be called
315 /// when the function this was computed for changes. When it returns false,
316 /// the information is preserved across those changes.
318 FunctionAnalysisManager::Invalidator &) {
319 // FIXME: We should probably in some way ensure that the subtarget
320 // information for a function hasn't changed.
321 return false;
322 }
323
324 /// \name Generic Target Information
325 /// @{
326
327 /// The kind of cost model.
328 ///
329 /// There are several different cost models that can be customized by the
330 /// target. The normalization of each cost model may be target specific.
331 /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as
332 /// those derived from MCSchedModel::LoopMicroOpBufferSize etc.
334 TCK_RecipThroughput, ///< Reciprocal throughput.
335 TCK_Latency, ///< The latency of instruction.
336 TCK_CodeSize, ///< Instruction code size.
337 TCK_SizeAndLatency ///< The weighted sum of size and latency.
338 };
339
340 /// Underlying constants for 'cost' values in this interface.
341 ///
342 /// Many APIs in this interface return a cost. This enum defines the
343 /// fundamental values that should be used to interpret (and produce) those
344 /// costs. The costs are returned as an int rather than a member of this
345 /// enumeration because it is expected that the cost of one IR instruction
346 /// may have a multiplicative factor to it or otherwise won't fit directly
347 /// into the enum. Moreover, it is common to sum or average costs which works
348 /// better as simple integral values. Thus this enum only provides constants.
349 /// Also note that the returned costs are signed integers to make it natural
350 /// to add, subtract, and test with zero (a common boundary condition). It is
351 /// not expected that 2^32 is a realistic cost to be modeling at any point.
352 ///
353 /// Note that these costs should usually reflect the intersection of code-size
354 /// cost and execution cost. A free instruction is typically one that folds
355 /// into another instruction. For example, reg-to-reg moves can often be
356 /// skipped by renaming the registers in the CPU, but they still are encoded
357 /// and thus wouldn't be considered 'free' here.
359 TCC_Free = 0, ///< Expected to fold away in lowering.
360 TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
361 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
362 };
363
364 /// Estimate the cost of a GEP operation when lowered.
365 ///
366 /// \p PointeeType is the source element type of the GEP.
367 /// \p Ptr is the base pointer operand.
368 /// \p Operands is the list of indices following the base pointer.
369 ///
370 /// \p AccessType is a hint as to what type of memory might be accessed by
371 /// users of the GEP. getGEPCost will use it to determine if the GEP can be
372 /// folded into the addressing mode of a load/store. If AccessType is null,
373 /// then the resulting target type based off of PointeeType will be used as an
374 /// approximation.
376 getGEPCost(Type *PointeeType, const Value *Ptr,
377 ArrayRef<const Value *> Operands, Type *AccessType = nullptr,
378 TargetCostKind CostKind = TCK_SizeAndLatency) const;
379
380 /// Describe known properties for a set of pointers.
382 /// All the GEPs in a set have same base address.
383 unsigned IsSameBaseAddress : 1;
384 /// These properties only valid if SameBaseAddress is set.
385 /// True if all pointers are separated by a unit stride.
386 unsigned IsUnitStride : 1;
387 /// True if distance between any two neigbouring pointers is a known value.
388 unsigned IsKnownStride : 1;
389 unsigned Reserved : 29;
390
391 bool isSameBase() const { return IsSameBaseAddress; }
392 bool isUnitStride() const { return IsSameBaseAddress && IsUnitStride; }
394
396 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/1,
397 /*IsKnownStride=*/1, 0};
398 }
400 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
401 /*IsKnownStride=*/1, 0};
402 }
404 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
405 /*IsKnownStride=*/0, 0};
406 }
407 };
408 static_assert(sizeof(PointersChainInfo) == 4, "Was size increase justified?");
409
410 /// Estimate the cost of a chain of pointers (typically pointer operands of a
411 /// chain of loads or stores within same block) operations set when lowered.
412 /// \p AccessTy is the type of the loads/stores that will ultimately use the
413 /// \p Ptrs.
416 const PointersChainInfo &Info, Type *AccessTy,
417 TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
418
419 /// \returns A value by which our inlining threshold should be multiplied.
420 /// This is primarily used to bump up the inlining threshold wholesale on
421 /// targets where calls are unusually expensive.
422 ///
423 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
424 /// individual classes of instructions would be better.
426
429
430 /// \returns The bonus of inlining the last call to a static function.
432
433 /// \returns A value to be added to the inlining threshold.
434 LLVM_ABI unsigned adjustInliningThreshold(const CallBase *CB) const;
435
436 /// \returns The cost of having an Alloca in the caller if not inlined, to be
437 /// added to the threshold
438 LLVM_ABI unsigned getCallerAllocaCost(const CallBase *CB,
439 const AllocaInst *AI) const;
440
441 /// \returns Vector bonus in percent.
442 ///
443 /// Vector bonuses: We want to more aggressively inline vector-dense kernels
444 /// and apply this bonus based on the percentage of vector instructions. A
445 /// bonus is applied if the vector instructions exceed 50% and half that
446 /// amount is applied if it exceeds 10%. Note that these bonuses are some what
447 /// arbitrary and evolved over time by accident as much as because they are
448 /// principled bonuses.
449 /// FIXME: It would be nice to base the bonus values on something more
450 /// scientific. A target may has no bonus on vector instructions.
452
453 /// \return the expected cost of a memcpy, which could e.g. depend on the
454 /// source/destination type and alignment and the number of bytes copied.
456
457 /// Returns the maximum memset / memcpy size in bytes that still makes it
458 /// profitable to inline the call.
460
461 /// \return The estimated number of case clusters when lowering \p 'SI'.
462 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
463 /// table.
464 LLVM_ABI unsigned
465 getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
467 BlockFrequencyInfo *BFI) const;
468
469 /// Estimate the cost of a given IR user when lowered.
470 ///
471 /// This can estimate the cost of either a ConstantExpr or Instruction when
472 /// lowered.
473 ///
474 /// \p Operands is a list of operands which can be a result of transformations
475 /// of the current operands. The number of the operands on the list must equal
476 /// to the number of the current operands the IR user has. Their order on the
477 /// list must be the same as the order of the current operands the IR user
478 /// has.
479 ///
480 /// The returned cost is defined in terms of \c TargetCostConstants, see its
481 /// comments for a detailed explanation of the cost values.
484 TargetCostKind CostKind) const;
485
486 /// This is a helper function which calls the three-argument
487 /// getInstructionCost with \p Operands which are the current operands U has.
489 TargetCostKind CostKind) const {
490 SmallVector<const Value *, 4> Operands(U->operand_values());
491 return getInstructionCost(U, Operands, CostKind);
492 }
493
494 /// If a branch or a select condition is skewed in one direction by more than
495 /// this factor, it is very likely to be predicted correctly.
497
498 /// Returns estimated penalty of a branch misprediction in latency. Indicates
499 /// how aggressive the target wants for eliminating unpredictable branches. A
500 /// zero return value means extra optimization applied to them should be
501 /// minimal.
503
504 /// Return true if branch divergence exists.
505 ///
506 /// Branch divergence has a significantly negative impact on GPU performance
507 /// when threads in the same wavefront take different paths due to conditional
508 /// branches.
509 ///
510 /// If \p F is passed, provides a context function. If \p F is known to only
511 /// execute in a single threaded environment, the target may choose to skip
512 /// uniformity analysis and assume all values are uniform.
513 LLVM_ABI bool hasBranchDivergence(const Function *F = nullptr) const;
514
515 /// Get target-specific uniformity information for an instruction.
516 /// This allows targets to provide more fine-grained control over
517 /// uniformity analysis by specifying whether specific instructions
518 /// should always or never be considered uniform, or require custom
519 /// operand-based analysis.
520 /// \param V The value to query for uniformity information.
521 /// \return InstructionUniformity.
523
524 /// Query the target whether the specified address space cast from FromAS to
525 /// ToAS is valid.
526 LLVM_ABI bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
527
528 /// Return false if a \p AS0 address cannot possibly alias a \p AS1 address.
529 LLVM_ABI bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const;
530
531 /// Returns the address space ID for a target's 'flat' address space. Note
532 /// this is not necessarily the same as addrspace(0), which LLVM sometimes
533 /// refers to as the generic address space. The flat address space is a
534 /// generic address space that can be used access multiple segments of memory
535 /// with different address spaces. Access of a memory location through a
536 /// pointer with this address space is expected to be legal but slower
537 /// compared to the same memory location accessed through a pointer with a
538 /// different address space.
539 //
540 /// This is for targets with different pointer representations which can
541 /// be converted with the addrspacecast instruction. If a pointer is converted
542 /// to this address space, optimizations should attempt to replace the access
543 /// with the source address space.
544 ///
545 /// \returns ~0u if the target does not have such a flat address space to
546 /// optimize away.
547 LLVM_ABI unsigned getFlatAddressSpace() const;
548
549 /// Return any intrinsic address operand indexes which may be rewritten if
550 /// they use a flat address space pointer.
551 ///
552 /// \returns true if the intrinsic was handled.
554 Intrinsic::ID IID) const;
555
556 LLVM_ABI bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
557
558 /// Return true if globals in this address space can have initializers other
559 /// than `undef`.
560 LLVM_ABI bool
562
563 LLVM_ABI unsigned getAssumedAddrSpace(const Value *V) const;
564
565 LLVM_ABI bool isSingleThreaded() const;
566
567 LLVM_ABI std::pair<const Value *, unsigned>
568 getPredicatedAddrSpace(const Value *V) const;
569
570 /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
571 /// NewV, which has a different address space. This should happen for every
572 /// operand index that collectFlatAddressOperands returned for the intrinsic.
573 /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
574 /// new value (which may be the original \p II with modified operands).
576 Value *OldV,
577 Value *NewV) const;
578
579 /// Test whether calls to a function lower to actual program function
580 /// calls.
581 ///
582 /// The idea is to test whether the program is likely to require a 'call'
583 /// instruction or equivalent in order to call the given function.
584 ///
585 /// FIXME: It's not clear that this is a good or useful query API. Client's
586 /// should probably move to simpler cost metrics using the above.
587 /// Alternatively, we could split the cost interface into distinct code-size
588 /// and execution-speed costs. This would allow modelling the core of this
589 /// query more accurately as a call is a single small instruction, but
590 /// incurs significant execution cost.
591 LLVM_ABI bool isLoweredToCall(const Function *F) const;
592
593 struct LSRCost {
594 /// TODO: Some of these could be merged. Also, a lexical ordering
595 /// isn't always optimal.
596 unsigned Insns;
597 unsigned NumRegs;
598 unsigned AddRecCost;
599 unsigned NumIVMuls;
600 unsigned NumBaseAdds;
601 unsigned ImmCost;
602 unsigned SetupCost;
603 unsigned ScaleCost;
604 };
605
606 /// Parameters that control the generic loop unrolling transformation.
608 /// The cost threshold for the unrolled loop. Should be relative to the
609 /// getInstructionCost values returned by this API, and the expectation is
610 /// that the unrolled loop's instructions when run through that interface
611 /// should not exceed this cost. However, this is only an estimate. Also,
612 /// specific loops may be unrolled even with a cost above this threshold if
613 /// deemed profitable. Set this to UINT_MAX to disable the loop body cost
614 /// restriction.
615 unsigned Threshold;
616 /// If complete unrolling will reduce the cost of the loop, we will boost
617 /// the Threshold by a certain percent to allow more aggressive complete
618 /// unrolling. This value provides the maximum boost percentage that we
619 /// can apply to Threshold (The value should be no less than 100).
620 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
621 /// MaxPercentThresholdBoost / 100)
622 /// E.g. if complete unrolling reduces the loop execution time by 50%
623 /// then we boost the threshold by the factor of 2x. If unrolling is not
624 /// expected to reduce the running time, then we do not increase the
625 /// threshold.
627 /// The cost threshold for the unrolled loop when optimizing for size (set
628 /// to UINT_MAX to disable).
630 /// The cost threshold for the unrolled loop, like Threshold, but used
631 /// for partial/runtime unrolling (set to UINT_MAX to disable).
633 /// The cost threshold for the unrolled loop when optimizing for size, like
634 /// OptSizeThreshold, but used for partial/runtime unrolling (set to
635 /// UINT_MAX to disable).
637 /// A forced unrolling factor (the number of concatenated bodies of the
638 /// original loop in the unrolled loop body). When set to 0, the unrolling
639 /// transformation will select an unrolling factor based on the current cost
640 /// threshold and other factors.
641 unsigned Count;
642 /// Default unroll count for loops with run-time trip count.
644 // Set the maximum unrolling factor. The unrolling factor may be selected
645 // using the appropriate cost threshold, but may not exceed this number
646 // (set to UINT_MAX to disable). This does not apply in cases where the
647 // loop is being fully unrolled.
648 unsigned MaxCount;
649 /// Set the maximum upper bound of trip count. Allowing the MaxUpperBound
650 /// to be overrided by a target gives more flexiblity on certain cases.
651 /// By default, MaxUpperBound uses UnrollMaxUpperBound which value is 8.
653 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
654 /// applies even if full unrolling is selected. This allows a target to fall
655 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
657 // Represents number of instructions optimized when "back edge"
658 // becomes "fall through" in unrolled loop.
659 // For now we count a conditional branch on a backedge and a comparison
660 // feeding it.
661 unsigned BEInsns;
662 /// Allow partial unrolling (unrolling of loops to expand the size of the
663 /// loop body, not only to eliminate small constant-trip-count loops).
665 /// Allow runtime unrolling (unrolling of loops to expand the size of the
666 /// loop body even when the number of loop iterations is not known at
667 /// compile time).
669 /// Allow generation of a loop remainder (extra iterations after unroll).
671 /// Allow emitting expensive instructions (such as divisions) when computing
672 /// the trip count of a loop for runtime unrolling.
674 /// Apply loop unroll on any kind of loop
675 /// (mainly to loops that fail runtime unrolling).
676 bool Force;
677 /// Allow using trip count upper bound to unroll loops.
679 /// Allow unrolling of all the iterations of the runtime loop remainder.
681 /// Allow unroll and jam. Used to enable unroll and jam for the target.
683 /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
684 /// value above is used during unroll and jam for the outer loop size.
685 /// This value is used in the same manner to limit the size of the inner
686 /// loop.
688 /// Don't allow loop unrolling to simulate more than this number of
689 /// iterations when checking full unroll profitability
691 /// Don't disable runtime unroll for the loops which were vectorized.
693 /// Don't allow runtime unrolling if expanding the trip count takes more
694 /// than SCEVExpansionBudget.
696 /// Allow runtime unrolling multi-exit loops. Should only be set if the
697 /// target determined that multi-exit unrolling is profitable for the loop.
698 /// Fall back to the generic logic to determine whether multi-exit unrolling
699 /// is profitable if set to false.
701 /// Allow unrolling to add parallel reduction phis.
703 };
704
705 /// Get target-customized preferences for the generic loop unrolling
706 /// transformation. The caller will initialize UP with the current
707 /// target-independent defaults.
710 OptimizationRemarkEmitter *ORE) const;
711
712 /// Query the target whether it would be profitable to convert the given loop
713 /// into a hardware loop.
715 AssumptionCache &AC,
716 TargetLibraryInfo *LibInfo,
717 HardwareLoopInfo &HWLoopInfo) const;
718
719 // Query the target for which minimum vectorization factor epilogue
720 // vectorization should be considered.
722
723 /// Query the target whether it would be prefered to create a predicated
724 /// vector loop, which can avoid the need to emit a scalar epilogue loop.
726
727 /// Query the target what the preferred style of tail folding is.
728 /// \param IVUpdateMayOverflow Tells whether it is known if the IV update
729 /// may (or will never) overflow for the suggested VF/UF in the given loop.
730 /// Targets can use this information to select a more optimal tail folding
731 /// style. The value conservatively defaults to true, such that no assumptions
732 /// are made on overflow.
734 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const;
735
736 // Parameters that control the loop peeling transformation
738 /// A forced peeling factor (the number of bodied of the original loop
739 /// that should be peeled off before the loop body). When set to 0, the
740 /// a peeling factor based on profile information and other factors.
741 unsigned PeelCount;
742 /// Allow peeling off loop iterations.
744 /// Allow peeling off loop iterations for loop nests.
746 /// Allow peeling basing on profile. Uses to enable peeling off all
747 /// iterations basing on provided profile.
748 /// If the value is true the peeling cost model can decide to peel only
749 /// some iterations and in this case it will set this to false.
751
752 /// Peel off the last PeelCount loop iterations.
754 };
755
756 /// Get target-customized preferences for the generic loop peeling
757 /// transformation. The caller will initialize \p PP with the current
758 /// target-independent defaults with information from \p L and \p SE.
760 PeelingPreferences &PP) const;
761
762 /// Targets can implement their own combinations for target-specific
763 /// intrinsics. This function will be called from the InstCombine pass every
764 /// time a target-specific intrinsic is encountered.
765 ///
766 /// \returns std::nullopt to not do anything target specific or a value that
767 /// will be returned from the InstCombiner. It is possible to return null and
768 /// stop further processing of the intrinsic by returning nullptr.
769 LLVM_ABI std::optional<Instruction *>
771 /// Can be used to implement target-specific instruction combining.
772 /// \see instCombineIntrinsic
773 LLVM_ABI std::optional<Value *>
775 APInt DemandedMask, KnownBits &Known,
776 bool &KnownBitsComputed) const;
777 /// Can be used to implement target-specific instruction combining.
778 /// \see instCombineIntrinsic
779 LLVM_ABI std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
780 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
781 APInt &UndefElts2, APInt &UndefElts3,
782 std::function<void(Instruction *, unsigned, APInt, APInt &)>
783 SimplifyAndSetOp) const;
784 /// @}
785
786 /// \name Scalar Target Information
787 /// @{
788
789 /// Flags indicating the kind of support for population count.
790 ///
791 /// Compared to the SW implementation, HW support is supposed to
792 /// significantly boost the performance when the population is dense, and it
793 /// may or may not degrade performance if the population is sparse. A HW
794 /// support is considered as "Fast" if it can outperform, or is on a par
795 /// with, SW implementation when the population is sparse; otherwise, it is
796 /// considered as "Slow".
798
799 /// Return true if the specified immediate is legal add immediate, that
800 /// is the target has add instructions which can add a register with the
801 /// immediate without having to materialize the immediate into a register.
802 LLVM_ABI bool isLegalAddImmediate(int64_t Imm) const;
803
804 /// Return true if adding the specified scalable immediate is legal, that is
805 /// the target has add instructions which can add a register with the
806 /// immediate (multiplied by vscale) without having to materialize the
807 /// immediate into a register.
808 LLVM_ABI bool isLegalAddScalableImmediate(int64_t Imm) const;
809
810 /// Return true if the specified immediate is legal icmp immediate,
811 /// that is the target has icmp instructions which can compare a register
812 /// against the immediate without having to materialize the immediate into a
813 /// register.
814 LLVM_ABI bool isLegalICmpImmediate(int64_t Imm) const;
815
816 /// Return true if the addressing mode represented by AM is legal for
817 /// this target, for a load/store of the specified type.
818 /// The type may be VoidTy, in which case only return true if the addressing
819 /// mode is legal for a load/store of any legal type.
820 /// If target returns true in LSRWithInstrQueries(), I may be valid.
821 /// \param ScalableOffset represents a quantity of bytes multiplied by vscale,
822 /// an invariant value known only at runtime. Most targets should not accept
823 /// a scalable offset.
824 ///
825 /// TODO: Handle pre/postinc as well.
827 int64_t BaseOffset, bool HasBaseReg,
828 int64_t Scale, unsigned AddrSpace = 0,
829 Instruction *I = nullptr,
830 int64_t ScalableOffset = 0) const;
831
832 /// Return true if LSR cost of C1 is lower than C2.
834 const TargetTransformInfo::LSRCost &C2) const;
835
836 /// Return true if LSR major cost is number of registers. Targets which
837 /// implement their own isLSRCostLess and unset number of registers as major
838 /// cost should return false, otherwise return true.
840
841 /// Return true if LSR should drop a found solution if it's calculated to be
842 /// less profitable than the baseline.
844
845 /// \returns true if LSR should not optimize a chain that includes \p I.
847
848 /// Return true if the target can fuse a compare and branch.
849 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
850 /// calculation for the instructions in a loop.
851 LLVM_ABI bool canMacroFuseCmp() const;
852
853 /// Return true if the target can save a compare for loop count, for example
854 /// hardware loop saves a compare.
857 TargetLibraryInfo *LibInfo) const;
858
859 /// Which addressing mode Loop Strength Reduction will try to generate.
861 AMK_None = 0x0, ///< Don't prefer any addressing mode
862 AMK_PreIndexed = 0x1, ///< Prefer pre-indexed addressing mode
863 AMK_PostIndexed = 0x2, ///< Prefer post-indexed addressing mode
864 AMK_All = 0x3, ///< Consider all addressing modes
865 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/AMK_All)
866 };
867
868 /// Return the preferred addressing mode LSR should make efforts to generate.
871
872 /// Some targets only support masked load/store with a constant mask.
877
878 /// Return true if the target supports masked store.
879 LLVM_ABI bool
880 isLegalMaskedStore(Type *DataType, Align Alignment, unsigned AddressSpace,
882 /// Return true if the target supports masked load.
883 LLVM_ABI bool
884 isLegalMaskedLoad(Type *DataType, Align Alignment, unsigned AddressSpace,
886
887 /// Return true if the target supports nontemporal store.
888 LLVM_ABI bool isLegalNTStore(Type *DataType, Align Alignment) const;
889 /// Return true if the target supports nontemporal load.
890 LLVM_ABI bool isLegalNTLoad(Type *DataType, Align Alignment) const;
891
892 /// \Returns true if the target supports broadcasting a load to a vector of
893 /// type <NumElements x ElementTy>.
894 LLVM_ABI bool isLegalBroadcastLoad(Type *ElementTy,
895 ElementCount NumElements) const;
896
897 /// Return true if the target supports masked scatter.
898 LLVM_ABI bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
899 /// Return true if the target supports masked gather.
900 LLVM_ABI bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
901 /// Return true if the target forces scalarizing of llvm.masked.gather
902 /// intrinsics.
904 Align Alignment) const;
905 /// Return true if the target forces scalarizing of llvm.masked.scatter
906 /// intrinsics.
908 Align Alignment) const;
909
910 /// Return true if the target supports masked compress store.
912 Align Alignment) const;
913 /// Return true if the target supports masked expand load.
914 LLVM_ABI bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const;
915
916 /// Return true if the target supports strided load.
917 LLVM_ABI bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const;
918
919 /// Return true is the target supports interleaved access for the given vector
920 /// type \p VTy, interleave factor \p Factor, alignment \p Alignment and
921 /// address space \p AddrSpace.
922 LLVM_ABI bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
923 Align Alignment,
924 unsigned AddrSpace) const;
925
926 // Return true if the target supports masked vector histograms.
928 Type *DataType) const;
929
930 /// Return true if this is an alternating opcode pattern that can be lowered
931 /// to a single instruction on the target. In X86 this is for the addsub
932 /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
933 /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
934 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
935 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
936 /// \p VecTy is the vector type of the instruction to be generated.
937 LLVM_ABI bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
938 unsigned Opcode1,
939 const SmallBitVector &OpcodeMask) const;
940
941 /// Return true if we should be enabling ordered reductions for the target.
943
944 /// Return true if the target has a unified operation to calculate division
945 /// and remainder. If so, the additional implicit multiplication and
946 /// subtraction required to calculate a remainder from division are free. This
947 /// can enable more aggressive transformations for division and remainder than
948 /// would typically be allowed using throughput or size cost models.
949 LLVM_ABI bool hasDivRemOp(Type *DataType, bool IsSigned) const;
950
951 /// Return true if the given instruction (assumed to be a memory access
952 /// instruction) has a volatile variant. If that's the case then we can avoid
953 /// addrspacecast to generic AS for volatile loads/stores. Default
954 /// implementation returns false, which prevents address space inference for
955 /// volatile loads/stores.
956 LLVM_ABI bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
957
958 /// Return true if target doesn't mind addresses in vectors.
960
961 /// Return the cost of the scaling factor used in the addressing
962 /// mode represented by AM for this target, for a load/store
963 /// of the specified type.
964 /// If the AM is supported, the return value must be >= 0.
965 /// If the AM is not supported, it returns a negative value.
966 /// TODO: Handle pre/postinc as well.
968 StackOffset BaseOffset,
969 bool HasBaseReg, int64_t Scale,
970 unsigned AddrSpace = 0) const;
971
972 /// Return true if the loop strength reduce pass should make
973 /// Instruction* based TTI queries to isLegalAddressingMode(). This is
974 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
975 /// immediate offset and no index register.
976 LLVM_ABI bool LSRWithInstrQueries() const;
977
978 /// Return true if it's free to truncate a value of type Ty1 to type
979 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
980 /// by referencing its sub-register AX.
981 LLVM_ABI bool isTruncateFree(Type *Ty1, Type *Ty2) const;
982
983 /// Return true if it is profitable to hoist instruction in the
984 /// then/else to before if.
986
987 LLVM_ABI bool useAA() const;
988
989 /// Return true if this type is legal.
990 LLVM_ABI bool isTypeLegal(Type *Ty) const;
991
992 /// Returns the estimated number of registers required to represent \p Ty.
993 LLVM_ABI unsigned getRegUsageForType(Type *Ty) const;
994
995 /// Return true if switches should be turned into lookup tables for the
996 /// target.
998
999 /// Return true if switches should be turned into lookup tables
1000 /// containing this constant value for the target.
1002
1003 /// Return true if lookup tables should be turned into relative lookup tables.
1005
1006 /// Return true if the input function which is cold at all call sites,
1007 /// should use coldcc calling convention.
1009
1010 /// Return true if the input function is internal, should use fastcc calling
1011 /// convention.
1013
1015
1016 /// Identifies if the vector form of the intrinsic has a scalar operand.
1018 unsigned ScalarOpdIdx) const;
1019
1020 /// Identifies if the vector form of the intrinsic is overloaded on the type
1021 /// of the operand at index \p OpdIdx, or on the return type if \p OpdIdx is
1022 /// -1.
1024 int OpdIdx) const;
1025
1026 /// Identifies if the vector form of the intrinsic that returns a struct is
1027 /// overloaded at the struct element index \p RetIdx.
1028 LLVM_ABI bool
1030 int RetIdx) const;
1031
1032 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
1033 /// are set if the demanded result elements need to be inserted and/or
1034 /// extracted from vectors. The involved values may be passed in VL if
1035 /// Insert is true.
1037 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
1038 TTI::TargetCostKind CostKind, bool ForPoisonSrc = true,
1039 ArrayRef<Value *> VL = {}) const;
1040
1041 /// Estimate the overhead of scalarizing operands with the given types. The
1042 /// (potentially vector) types to use for each of argument are passes via Tys.
1045
1046 /// If target has efficient vector element load/store instructions, it can
1047 /// return true here so that insertion/extraction costs are not added to
1048 /// the scalarization cost of a load/store.
1050
1051 /// If the target supports tail calls.
1052 LLVM_ABI bool supportsTailCalls() const;
1053
1054 /// If target supports tail call on \p CB
1055 LLVM_ABI bool supportsTailCallFor(const CallBase *CB) const;
1056
1057 /// Don't restrict interleaved unrolling to small loops.
1058 LLVM_ABI bool enableAggressiveInterleaving(bool LoopHasReductions) const;
1059
1060 /// Returns options for expansion of memcmp. IsZeroCmp is
1061 // true if this is the expansion of memcmp(p1, p2, s) == 0.
1063 // Return true if memcmp expansion is enabled.
1064 operator bool() const { return MaxNumLoads > 0; }
1065
1066 // Maximum number of load operations.
1067 unsigned MaxNumLoads = 0;
1068
1069 // The list of available load sizes (in bytes), sorted in decreasing order.
1071
1072 // For memcmp expansion when the memcmp result is only compared equal or
1073 // not-equal to 0, allow up to this number of load pairs per block. As an
1074 // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
1075 // a0 = load2bytes &a[0]
1076 // b0 = load2bytes &b[0]
1077 // a2 = load1byte &a[2]
1078 // b2 = load1byte &b[2]
1079 // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
1080 unsigned NumLoadsPerBlock = 1;
1081
1082 // Set to true to allow overlapping loads. For example, 7-byte compares can
1083 // be done with two 4-byte compares instead of 4+2+1-byte compares. This
1084 // requires all loads in LoadSizes to be doable in an unaligned way.
1086
1087 // Sometimes, the amount of data that needs to be compared is smaller than
1088 // the standard register size, but it cannot be loaded with just one load
1089 // instruction. For example, if the size of the memory comparison is 6
1090 // bytes, we can handle it more efficiently by loading all 6 bytes in a
1091 // single block and generating an 8-byte number, instead of generating two
1092 // separate blocks with conditional jumps for 4 and 2 byte loads. This
1093 // approach simplifies the process and produces the comparison result as
1094 // normal. This array lists the allowed sizes of memcmp tails that can be
1095 // merged into one block
1097 };
1099 bool IsZeroCmp) const;
1100
1101 /// Should the Select Optimization pass be enabled and ran.
1102 LLVM_ABI bool enableSelectOptimize() const;
1103
1104 /// Should the Select Optimization pass treat the given instruction like a
1105 /// select, potentially converting it to a conditional branch. This can
1106 /// include select-like instructions like or(zext(c), x) that can be converted
1107 /// to selects.
1109
1110 /// Enable matching of interleaved access groups.
1112
1113 /// Enable matching of interleaved access groups that contain predicated
1114 /// accesses or gaps and therefore vectorized using masked
1115 /// vector loads/stores.
1117
1118 /// Indicate that it is potentially unsafe to automatically vectorize
1119 /// floating-point operations because the semantics of vector and scalar
1120 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
1121 /// does not support IEEE-754 denormal numbers, while depending on the
1122 /// platform, scalar floating-point math does.
1123 /// This applies to floating-point math operations and calls, not memory
1124 /// operations, shuffles, or casts.
1126
1127 /// Determine if the target supports unaligned memory accesses.
1129 unsigned BitWidth,
1130 unsigned AddressSpace = 0,
1131 Align Alignment = Align(1),
1132 unsigned *Fast = nullptr) const;
1133
1134 /// Return hardware support for population count.
1135 LLVM_ABI PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
1136
1137 /// Return true if the hardware has a fast square-root instruction.
1138 LLVM_ABI bool haveFastSqrt(Type *Ty) const;
1139
1140 /// Return true if the cost of the instruction is too high to speculatively
1141 /// execute and should be kept behind a branch.
1142 /// This normally just wraps around a getInstructionCost() call, but some
1143 /// targets might report a low TCK_SizeAndLatency value that is incompatible
1144 /// with the fixed TCC_Expensive value.
1145 /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute().
1147
1148 /// Return true if it is faster to check if a floating-point value is NaN
1149 /// (or not-NaN) versus a comparison against a constant FP zero value.
1150 /// Targets should override this if materializing a 0.0 for comparison is
1151 /// generally as cheap as checking for ordered/unordered.
1153
1154 /// Return the expected cost of supporting the floating point operation
1155 /// of the specified type.
1157
1158 /// Return the expected cost of materializing for the given integer
1159 /// immediate of the specified type.
1161 TargetCostKind CostKind) const;
1162
1163 /// Return the expected cost of materialization for the given integer
1164 /// immediate of the specified type for a given instruction. The cost can be
1165 /// zero if the immediate can be folded into the specified instruction.
1166 LLVM_ABI InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
1167 const APInt &Imm, Type *Ty,
1169 Instruction *Inst = nullptr) const;
1171 const APInt &Imm, Type *Ty,
1172 TargetCostKind CostKind) const;
1173
1174 /// Return the expected cost for the given integer when optimising
1175 /// for size. This is different than the other integer immediate cost
1176 /// functions in that it is subtarget agnostic. This is useful when you e.g.
1177 /// target one ISA such as Aarch32 but smaller encodings could be possible
1178 /// with another such as Thumb. This return value is used as a penalty when
1179 /// the total costs for a constant is calculated (the bigger the cost, the
1180 /// more beneficial constant hoisting is).
1181 LLVM_ABI InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1182 const APInt &Imm,
1183 Type *Ty) const;
1184
1185 /// It can be advantageous to detach complex constants from their uses to make
1186 /// their generation cheaper. This hook allows targets to report when such
1187 /// transformations might negatively effect the code generation of the
1188 /// underlying operation. The motivating example is divides whereby hoisting
1189 /// constants prevents the code generator's ability to transform them into
1190 /// combinations of simpler operations.
1192 const Function &Fn) const;
1193
1194 /// @}
1195
1196 /// \name Vector Target Information
1197 /// @{
1198
1199 /// The various kinds of shuffle patterns for vector queries.
1201 SK_Broadcast, ///< Broadcast element 0 to all other elements.
1202 SK_Reverse, ///< Reverse the order of the vector.
1203 SK_Select, ///< Selects elements from the corresponding lane of
1204 ///< either source operand. This is equivalent to a
1205 ///< vector select with a constant condition operand.
1206 SK_Transpose, ///< Transpose two vectors.
1207 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
1208 SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
1209 SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
1210 ///< with any shuffle mask.
1211 SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
1212 ///< shuffle mask.
1213 SK_Splice ///< Concatenates elements from the first input vector
1214 ///< with elements of the second input vector. Returning
1215 ///< a vector of the same type as the input vectors.
1216 ///< Index indicates start offset in first input vector.
1217 };
1218
1219 /// Additional information about an operand's possible values.
1221 OK_AnyValue, // Operand can have any value.
1222 OK_UniformValue, // Operand is uniform (splat of a value).
1223 OK_UniformConstantValue, // Operand is uniform constant.
1224 OK_NonUniformConstantValue // Operand is a non uniform constant value.
1225 };
1226
1227 /// Additional properties of an operand's values.
1233
1234 // Describe the values an operand can take. We're in the process
1235 // of migrating uses of OperandValueKind and OperandValueProperties
1236 // to use this class, and then will change the internal representation.
1240
1241 bool isConstant() const {
1243 }
1244 bool isUniform() const {
1246 }
1247 bool isPowerOf2() const {
1248 return Properties == OP_PowerOf2;
1249 }
1250 bool isNegatedPowerOf2() const {
1252 }
1253
1255 return {Kind, OP_None};
1256 }
1257 };
1258
1259 /// \return the number of registers in the target-provided register class.
1260 LLVM_ABI unsigned getNumberOfRegisters(unsigned ClassID) const;
1261
1262 /// \return true if the target supports load/store that enables fault
1263 /// suppression of memory operands when the source condition is false.
1264 LLVM_ABI bool hasConditionalLoadStoreForType(Type *Ty, bool IsStore) const;
1265
1266 /// \return the target-provided register class ID for the provided type,
1267 /// accounting for type promotion and other type-legalization techniques that
1268 /// the target might apply. However, it specifically does not account for the
1269 /// scalarization or splitting of vector types. Should a vector type require
1270 /// scalarization or splitting into multiple underlying vector registers, that
1271 /// type should be mapped to a register class containing no registers.
1272 /// Specifically, this is designed to provide a simple, high-level view of the
1273 /// register allocation later performed by the backend. These register classes
1274 /// don't necessarily map onto the register classes used by the backend.
1275 /// FIXME: It's not currently possible to determine how many registers
1276 /// are used by the provided type.
1278 Type *Ty = nullptr) const;
1279
1280 /// \return the target-provided register class name
1281 LLVM_ABI const char *getRegisterClassName(unsigned ClassID) const;
1282
1284
1285 /// \return The width of the largest scalar or vector register type.
1286 LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const;
1287
1288 /// \return The width of the smallest vector register type.
1289 LLVM_ABI unsigned getMinVectorRegisterBitWidth() const;
1290
1291 /// \return The maximum value of vscale if the target specifies an
1292 /// architectural maximum vector length, and std::nullopt otherwise.
1293 LLVM_ABI std::optional<unsigned> getMaxVScale() const;
1294
1295 /// \return the value of vscale to tune the cost model for.
1296 LLVM_ABI std::optional<unsigned> getVScaleForTuning() const;
1297
1298 /// \return true if vscale is known to be a power of 2
1300
1301 /// \return True if the vectorization factor should be chosen to
1302 /// make the vector of the smallest element type match the size of a
1303 /// vector register. For wider element types, this could result in
1304 /// creating vectors that span multiple vector registers.
1305 /// If false, the vectorization factor will be chosen based on the
1306 /// size of the widest element type.
1307 /// \p K Register Kind for vectorization.
1308 LLVM_ABI bool
1310
1311 /// \return The minimum vectorization factor for types of given element
1312 /// bit width, or 0 if there is no minimum VF. The returned value only
1313 /// applies when shouldMaximizeVectorBandwidth returns true.
1314 /// If IsScalable is true, the returned ElementCount must be a scalable VF.
1315 LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
1316
1317 /// \return The maximum vectorization factor for types of given element
1318 /// bit width and opcode, or 0 if there is no maximum VF.
1319 /// Currently only used by the SLP vectorizer.
1320 LLVM_ABI unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
1321
1322 /// \return The minimum vectorization factor for the store instruction. Given
1323 /// the initial estimation of the minimum vector factor and store value type,
1324 /// it tries to find possible lowest VF, which still might be profitable for
1325 /// the vectorization.
1326 /// \param VF Initial estimation of the minimum vector factor.
1327 /// \param ScalarMemTy Scalar memory type of the store operation.
1328 /// \param ScalarValTy Scalar type of the stored value.
1329 /// Currently only used by the SLP vectorizer.
1330 LLVM_ABI unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1331 Type *ScalarValTy) const;
1332
1333 /// \return True if it should be considered for address type promotion.
1334 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
1335 /// profitable without finding other extensions fed by the same input.
1337 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
1338
1339 /// \return The size of a cache line in bytes.
1340 LLVM_ABI unsigned getCacheLineSize() const;
1341
1342 /// The possible cache levels
1343 enum class CacheLevel {
1344 L1D, // The L1 data cache
1345 L2D, // The L2 data cache
1346
1347 // We currently do not model L3 caches, as their sizes differ widely between
1348 // microarchitectures. Also, we currently do not have a use for L3 cache
1349 // size modeling yet.
1350 };
1351
1352 /// \return The size of the cache level in bytes, if available.
1353 LLVM_ABI std::optional<unsigned> getCacheSize(CacheLevel Level) const;
1354
1355 /// \return The associativity of the cache level, if available.
1356 LLVM_ABI std::optional<unsigned>
1357 getCacheAssociativity(CacheLevel Level) const;
1358
1359 /// \return The minimum architectural page size for the target.
1360 LLVM_ABI std::optional<unsigned> getMinPageSize() const;
1361
1362 /// \return How much before a load we should place the prefetch
1363 /// instruction. This is currently measured in number of
1364 /// instructions.
1365 LLVM_ABI unsigned getPrefetchDistance() const;
1366
1367 /// Some HW prefetchers can handle accesses up to a certain constant stride.
1368 /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
1369 /// and the arguments provided are meant to serve as a basis for deciding this
1370 /// for a particular loop.
1371 ///
1372 /// \param NumMemAccesses Number of memory accesses in the loop.
1373 /// \param NumStridedMemAccesses Number of the memory accesses that
1374 /// ScalarEvolution could find a known stride
1375 /// for.
1376 /// \param NumPrefetches Number of software prefetches that will be
1377 /// emitted as determined by the addresses
1378 /// involved and the cache line size.
1379 /// \param HasCall True if the loop contains a call.
1380 ///
1381 /// \return This is the minimum stride in bytes where it makes sense to start
1382 /// adding SW prefetches. The default is 1, i.e. prefetch with any
1383 /// stride.
1384 LLVM_ABI unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1385 unsigned NumStridedMemAccesses,
1386 unsigned NumPrefetches,
1387 bool HasCall) const;
1388
1389 /// \return The maximum number of iterations to prefetch ahead. If
1390 /// the required number of iterations is more than this number, no
1391 /// prefetching is performed.
1392 LLVM_ABI unsigned getMaxPrefetchIterationsAhead() const;
1393
1394 /// \return True if prefetching should also be done for writes.
1395 LLVM_ABI bool enableWritePrefetching() const;
1396
1397 /// \return if target want to issue a prefetch in address space \p AS.
1398 LLVM_ABI bool shouldPrefetchAddressSpace(unsigned AS) const;
1399
1400 /// \return The cost of a partial reduction, which is a reduction from a
1401 /// vector to another vector with fewer elements of larger size. They are
1402 /// represented by the llvm.vector.partial.reduce.add intrinsic, which
1403 /// takes an accumulator of type \p AccumType and a second vector operand to
1404 /// be accumulated, whose element count is specified by \p VF. The type of
1405 /// reduction is specified by \p Opcode. The second operand passed to the
1406 /// intrinsic could be the result of an extend, such as sext or zext. In
1407 /// this case \p BinOp is nullopt, \p InputTypeA represents the type being
1408 /// extended and \p OpAExtend the operation, i.e. sign- or zero-extend.
1409 /// Also, \p InputTypeB should be nullptr and OpBExtend should be None.
1410 /// Alternatively, the second operand could be the result of a binary
1411 /// operation performed on two extends, i.e.
1412 /// mul(zext i8 %a -> i32, zext i8 %b -> i32).
1413 /// In this case \p BinOp may specify the opcode of the binary operation,
1414 /// \p InputTypeA and \p InputTypeB the types being extended, and
1415 /// \p OpAExtend, \p OpBExtend the form of extensions. An example of an
1416 /// operation that uses a partial reduction is a dot product, which reduces
1417 /// two vectors in binary mul operation to another of 4 times fewer and 4
1418 /// times larger elements.
1420 unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
1422 PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp,
1424
1425 /// \return The maximum interleave factor that any transform should try to
1426 /// perform for this target. This number depends on the level of parallelism
1427 /// and the number of execution units in the CPU.
1428 LLVM_ABI unsigned getMaxInterleaveFactor(ElementCount VF) const;
1429
1430 /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
1431 LLVM_ABI static OperandValueInfo getOperandInfo(const Value *V);
1432
1433 /// This is an approximation of reciprocal throughput of a math/logic op.
1434 /// A higher cost indicates less expected throughput.
1435 /// From Agner Fog's guides, reciprocal throughput is "the average number of
1436 /// clock cycles per instruction when the instructions are not part of a
1437 /// limiting dependency chain."
1438 /// Therefore, costs should be scaled to account for multiple execution units
1439 /// on the target that can process this type of instruction. For example, if
1440 /// there are 5 scalar integer units and 2 vector integer units that can
1441 /// calculate an 'add' in a single cycle, this model should indicate that the
1442 /// cost of the vector add instruction is 2.5 times the cost of the scalar
1443 /// add instruction.
1444 /// \p Args is an optional argument which holds the instruction operands
1445 /// values so the TTI can analyze those values searching for special
1446 /// cases or optimizations based on those values.
1447 /// \p CxtI is the optional original context instruction, if one exists, to
1448 /// provide even more information.
1449 /// \p TLibInfo is used to search for platform specific vector library
1450 /// functions for instructions that might be converted to calls (e.g. frem).
1452 unsigned Opcode, Type *Ty,
1456 ArrayRef<const Value *> Args = {}, const Instruction *CxtI = nullptr,
1457 const TargetLibraryInfo *TLibInfo = nullptr) const;
1458
1459 /// Returns the cost estimation for alternating opcode pattern that can be
1460 /// lowered to a single instruction on the target. In X86 this is for the
1461 /// addsub instruction which corrsponds to a Shuffle + Fadd + FSub pattern in
1462 /// IR. This function expects two opcodes: \p Opcode1 and \p Opcode2 being
1463 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
1464 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
1465 /// \p VecTy is the vector type of the instruction to be generated.
1467 VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
1468 const SmallBitVector &OpcodeMask,
1470
1471 /// \return The cost of a shuffle instruction of kind Kind with inputs of type
1472 /// SrcTy, producing a vector of type DstTy. The exact mask may be passed as
1473 /// Mask, or else the array will be empty. The Index and SubTp parameters
1474 /// are used by the subvector insertions shuffle kinds to show the insert
1475 /// point and the type of the subvector being inserted. The operands of the
1476 /// shuffle can be passed through \p Args, which helps improve the cost
1477 /// estimation in some cases, like in broadcast loads.
1479 ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy,
1480 ArrayRef<int> Mask = {},
1482 VectorType *SubTp = nullptr, ArrayRef<const Value *> Args = {},
1483 const Instruction *CxtI = nullptr) const;
1484
1485 /// Represents a hint about the context in which a cast is used.
1486 ///
1487 /// For zext/sext, the context of the cast is the operand, which must be a
1488 /// load of some kind. For trunc, the context is of the cast is the single
1489 /// user of the instruction, which must be a store of some kind.
1490 ///
1491 /// This enum allows the vectorizer to give getCastInstrCost an idea of the
1492 /// type of cast it's dealing with, as not every cast is equal. For instance,
1493 /// the zext of a load may be free, but the zext of an interleaving load can
1494 //// be (very) expensive!
1495 ///
1496 /// See \c getCastContextHint to compute a CastContextHint from a cast
1497 /// Instruction*. Callers can use it if they don't need to override the
1498 /// context and just want it to be calculated from the instruction.
1499 ///
1500 /// FIXME: This handles the types of load/store that the vectorizer can
1501 /// produce, which are the cases where the context instruction is most
1502 /// likely to be incorrect. There are other situations where that can happen
1503 /// too, which might be handled here but in the long run a more general
1504 /// solution of costing multiple instructions at the same times may be better.
1506 None, ///< The cast is not used with a load/store of any kind.
1507 Normal, ///< The cast is used with a normal load/store.
1508 Masked, ///< The cast is used with a masked load/store.
1509 GatherScatter, ///< The cast is used with a gather/scatter.
1510 Interleave, ///< The cast is used with an interleaved load/store.
1511 Reversed, ///< The cast is used with a reversed load/store.
1512 };
1513
1514 /// Calculates a CastContextHint from \p I.
1515 /// This should be used by callers of getCastInstrCost if they wish to
1516 /// determine the context from some instruction.
1517 /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
1518 /// or if it's another type of cast.
1520
1521 /// \return The expected cost of cast instructions, such as bitcast, trunc,
1522 /// zext, etc. If there is an existing instruction that holds Opcode, it
1523 /// may be passed in the 'I' parameter.
1525 unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH,
1527 const Instruction *I = nullptr) const;
1528
1529 /// \return The expected cost of a sign- or zero-extended vector extract. Use
1530 /// Index = -1 to indicate that there is no information about the index value.
1532 getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1533 unsigned Index, TTI::TargetCostKind CostKind) const;
1534
1535 /// \return The expected cost of control-flow related instructions such as
1536 /// Phi, Ret, Br, Switch.
1539 const Instruction *I = nullptr) const;
1540
1541 /// \returns The expected cost of compare and select instructions. If there
1542 /// is an existing instruction that holds Opcode, it may be passed in the
1543 /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
1544 /// is using a compare with the specified predicate as condition. When vector
1545 /// types are passed, \p VecPred must be used for all lanes. For a
1546 /// comparison, the two operands are the natural values. For a select, the
1547 /// two operands are the *value* operands, not the condition operand.
1549 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
1551 OperandValueInfo Op1Info = {OK_AnyValue, OP_None},
1552 OperandValueInfo Op2Info = {OK_AnyValue, OP_None},
1553 const Instruction *I = nullptr) const;
1554
1555 /// \return The expected cost of vector Insert and Extract.
1556 /// Use -1 to indicate that there is no information on the index value.
1557 /// This is used when the instruction is not available; a typical use
1558 /// case is to provision the cost of vectorization/scalarization in
1559 /// vectorizer passes.
1560 LLVM_ABI InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
1562 unsigned Index = -1,
1563 const Value *Op0 = nullptr,
1564 const Value *Op1 = nullptr) const;
1565
1566 /// \return The expected cost of vector Insert and Extract.
1567 /// Use -1 to indicate that there is no information on the index value.
1568 /// This is used when the instruction is not available; a typical use
1569 /// case is to provision the cost of vectorization/scalarization in
1570 /// vectorizer passes.
1571 /// \param ScalarUserAndIdx encodes the information about extracts from a
1572 /// vector with 'Scalar' being the value being extracted,'User' being the user
1573 /// of the extract(nullptr if user is not known before vectorization) and
1574 /// 'Idx' being the extract lane.
1576 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
1577 Value *Scalar,
1578 ArrayRef<std::tuple<Value *, User *, int>> ScalarUserAndIdx) const;
1579
1580 /// \return The expected cost of vector Insert and Extract.
1581 /// This is used when instruction is available, and implementation
1582 /// asserts 'I' is not nullptr.
1583 ///
1584 /// A typical suitable use case is cost estimation when vector instruction
1585 /// exists (e.g., from basic blocks during transformation).
1586 LLVM_ABI InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
1588 unsigned Index = -1) const;
1589
1590 /// \return The expected cost of inserting or extracting a lane that is \p
1591 /// Index elements from the end of a vector, i.e. the mathematical expression
1592 /// for the lane is (VF - 1 - Index). This is required for scalable vectors
1593 /// where the exact lane index is unknown at compile time.
1595 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind,
1596 unsigned Index) const;
1597
1598 /// \return The expected cost of aggregate inserts and extracts. This is
1599 /// used when the instruction is not available; a typical use case is to
1600 /// provision the cost of vectorization/scalarization in vectorizer passes.
1602 unsigned Opcode, TTI::TargetCostKind CostKind) const;
1603
1604 /// \return The cost of replication shuffle of \p VF elements typed \p EltTy
1605 /// \p ReplicationFactor times.
1606 ///
1607 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
1608 /// <0,0,0,1,1,1,2,2,2,3,3,3>
1610 Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
1612
1613 /// \return The cost of Load and Store instructions. The operand info
1614 /// \p OpdInfo should refer to the stored value for stores and the address
1615 /// for loads.
1617 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1620 const Instruction *I = nullptr) const;
1621
1622 /// \return The cost of the interleaved memory operation.
1623 /// \p Opcode is the memory operation code
1624 /// \p VecTy is the vector type of the interleaved access.
1625 /// \p Factor is the interleave factor
1626 /// \p Indices is the indices for interleaved load members (as interleaved
1627 /// load allows gaps)
1628 /// \p Alignment is the alignment of the memory operation
1629 /// \p AddressSpace is address space of the pointer.
1630 /// \p UseMaskForCond indicates if the memory access is predicated.
1631 /// \p UseMaskForGaps indicates if gaps should be masked.
1633 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1634 Align Alignment, unsigned AddressSpace,
1636 bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
1637
1638 /// A helper function to determine the type of reduction algorithm used
1639 /// for a given \p Opcode and set of FastMathFlags \p FMF.
1640 static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) {
1641 return FMF && !(*FMF).allowReassoc();
1642 }
1643
1644 /// Calculate the cost of vector reduction intrinsics.
1645 ///
1646 /// This is the cost of reducing the vector value of type \p Ty to a scalar
1647 /// value using the operation denoted by \p Opcode. The FastMathFlags
1648 /// parameter \p FMF indicates what type of reduction we are performing:
1649 /// 1. Tree-wise. This is the typical 'fast' reduction performed that
1650 /// involves successively splitting a vector into half and doing the
1651 /// operation on the pair of halves until you have a scalar value. For
1652 /// example:
1653 /// (v0, v1, v2, v3)
1654 /// ((v0+v2), (v1+v3), undef, undef)
1655 /// ((v0+v2+v1+v3), undef, undef, undef)
1656 /// This is the default behaviour for integer operations, whereas for
1657 /// floating point we only do this if \p FMF indicates that
1658 /// reassociation is allowed.
1659 /// 2. Ordered. For a vector with N elements this involves performing N
1660 /// operations in lane order, starting with an initial scalar value, i.e.
1661 /// result = InitVal + v0
1662 /// result = result + v1
1663 /// result = result + v2
1664 /// result = result + v3
1665 /// This is only the case for FP operations and when reassociation is not
1666 /// allowed.
1667 ///
1669 unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
1671
1675
1676 /// Calculate the cost of an extended reduction pattern, similar to
1677 /// getArithmeticReductionCost of an Add/Sub reduction with multiply and
1678 /// optional extensions. This is the cost of as:
1679 /// * ResTy vecreduce.add/sub(mul (A, B)) or,
1680 /// * ResTy vecreduce.add/sub(mul(ext(Ty A), ext(Ty B)).
1682 bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty,
1684
1685 /// Calculate the cost of an extended reduction pattern, similar to
1686 /// getArithmeticReductionCost of a reduction with an extension.
1687 /// This is the cost of as:
1688 /// ResTy vecreduce.opcode(ext(Ty A)).
1690 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1691 std::optional<FastMathFlags> FMF,
1693
1694 /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
1695 /// Three cases are handled: 1. scalar instruction 2. vector instruction
1696 /// 3. scalar instruction which is to be vectorized.
1699
1700 /// \returns The cost of memory intrinsic instructions.
1701 /// Used when IntrinsicInst is not materialized.
1705
1706 /// \returns The cost of Call instructions.
1708 Function *F, Type *RetTy, ArrayRef<Type *> Tys,
1710
1711 /// \returns The number of pieces into which the provided type must be
1712 /// split during legalization. Zero is returned when the answer is unknown.
1713 LLVM_ABI unsigned getNumberOfParts(Type *Tp) const;
1714
1715 /// \returns The cost of the address computation. For most targets this can be
1716 /// merged into the instruction indexing mode. Some targets might want to
1717 /// distinguish between address computation for memory operations with vector
1718 /// pointer types and scalar pointer types. Such targets should override this
1719 /// function. \p SE holds the pointer for the scalar evolution object which
1720 /// was used in order to get the Ptr step value. \p Ptr holds the SCEV of the
1721 /// access pointer.
1723 getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr,
1725
1726 /// \returns The cost, if any, of keeping values of the given types alive
1727 /// over a callsite.
1728 ///
1729 /// Some types may require the use of register classes that do not have
1730 /// any callee-saved registers, so would require a spill and fill.
1733
1734 /// \returns True if the intrinsic is a supported memory intrinsic. Info
1735 /// will contain additional information - whether the intrinsic may write
1736 /// or read to memory, volatility and the pointer. Info is undefined
1737 /// if false is returned.
1739 MemIntrinsicInfo &Info) const;
1740
1741 /// \returns The maximum element size, in bytes, for an element
1742 /// unordered-atomic memory intrinsic.
1744
1745 /// \returns A value which is the result of the given memory intrinsic. If \p
1746 /// CanCreate is true, new instructions may be created to extract the result
1747 /// from the given intrinsic memory operation. Returns nullptr if the target
1748 /// cannot create a result from the given intrinsic.
1749 LLVM_ABI Value *
1751 bool CanCreate = true) const;
1752
1753 /// \returns The type to use in a loop expansion of a memcpy call.
1755 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1756 unsigned DestAddrSpace, Align SrcAlign, Align DestAlign,
1757 std::optional<uint32_t> AtomicElementSize = std::nullopt) const;
1758
1759 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1760 /// \param RemainingBytes The number of bytes to copy.
1761 ///
1762 /// Calculates the operand types to use when copying \p RemainingBytes of
1763 /// memory, where source and destination alignments are \p SrcAlign and
1764 /// \p DestAlign respectively.
1766 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1767 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1768 Align SrcAlign, Align DestAlign,
1769 std::optional<uint32_t> AtomicCpySize = std::nullopt) const;
1770
1771 /// \returns True if the two functions have compatible attributes for inlining
1772 /// purposes.
1773 LLVM_ABI bool areInlineCompatible(const Function *Caller,
1774 const Function *Callee) const;
1775
1776 /// Returns a penalty for invoking call \p Call in \p F.
1777 /// For example, if a function F calls a function G, which in turn calls
1778 /// function H, then getInlineCallPenalty(F, H()) would return the
1779 /// penalty of calling H from F, e.g. after inlining G into F.
1780 /// \p DefaultCallPenalty is passed to give a default penalty that
1781 /// the target can amend or override.
1782 LLVM_ABI unsigned getInlineCallPenalty(const Function *F,
1783 const CallBase &Call,
1784 unsigned DefaultCallPenalty) const;
1785
1786 /// \returns True if the caller and callee agree on how \p Types will be
1787 /// passed to or returned from the callee.
1788 /// to the callee.
1789 /// \param Types List of types to check.
1790 LLVM_ABI bool areTypesABICompatible(const Function *Caller,
1791 const Function *Callee,
1792 ArrayRef<Type *> Types) const;
1793
1794 /// The type of load/store indexing.
1796 MIM_Unindexed, ///< No indexing.
1797 MIM_PreInc, ///< Pre-incrementing.
1798 MIM_PreDec, ///< Pre-decrementing.
1799 MIM_PostInc, ///< Post-incrementing.
1800 MIM_PostDec ///< Post-decrementing.
1801 };
1802
1803 /// \returns True if the specified indexed load for the given type is legal.
1804 LLVM_ABI bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1805
1806 /// \returns True if the specified indexed store for the given type is legal.
1807 LLVM_ABI bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1808
1809 /// \returns The bitwidth of the largest vector type that should be used to
1810 /// load/store in the given address space.
1811 LLVM_ABI unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1812
1813 /// \returns True if the load instruction is legal to vectorize.
1815
1816 /// \returns True if the store instruction is legal to vectorize.
1818
1819 /// \returns True if it is legal to vectorize the given load chain.
1820 LLVM_ABI bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1821 Align Alignment,
1822 unsigned AddrSpace) const;
1823
1824 /// \returns True if it is legal to vectorize the given store chain.
1825 LLVM_ABI bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1826 Align Alignment,
1827 unsigned AddrSpace) const;
1828
1829 /// \returns True if it is legal to vectorize the given reduction kind.
1831 ElementCount VF) const;
1832
1833 /// \returns True if the given type is supported for scalable vectors
1835
1836 /// \returns The new vector factor value if the target doesn't support \p
1837 /// SizeInBytes loads or has a better vector factor.
1838 LLVM_ABI unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1839 unsigned ChainSizeInBytes,
1840 VectorType *VecTy) const;
1841
1842 /// \returns The new vector factor value if the target doesn't support \p
1843 /// SizeInBytes stores or has a better vector factor.
1844 LLVM_ABI unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1845 unsigned ChainSizeInBytes,
1846 VectorType *VecTy) const;
1847
1848 /// \returns True if the target prefers fixed width vectorization if the
1849 /// loop vectorizer's cost-model assigns an equal cost to the fixed and
1850 /// scalable version of the vectorized loop.
1851 /// \p IsEpilogue is true if the decision is for the epilogue loop.
1852 LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const;
1853
1854 /// \returns True if target prefers SLP vectorizer with altermate opcode
1855 /// vectorization, false - otherwise.
1857
1858 /// \returns True if the target prefers reductions of \p Kind to be performed
1859 /// in the loop.
1860 LLVM_ABI bool preferInLoopReduction(RecurKind Kind, Type *Ty) const;
1861
1862 /// \returns True if the target prefers reductions select kept in the loop
1863 /// when tail folding. i.e.
1864 /// loop:
1865 /// p = phi (0, s)
1866 /// a = add (p, x)
1867 /// s = select (mask, a, p)
1868 /// vecreduce.add(s)
1869 ///
1870 /// As opposed to the normal scheme of p = phi (0, a) which allows the select
1871 /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
1872 /// by the target, this can lead to cleaner code generation.
1874
1875 /// Return true if the loop vectorizer should consider vectorizing an
1876 /// otherwise scalar epilogue loop.
1878
1879 /// \returns True if the loop vectorizer should discard any VFs where the
1880 /// maximum register pressure exceeds getNumberOfRegisters.
1882
1883 /// \returns True if the target wants to expand the given reduction intrinsic
1884 /// into a shuffle sequence.
1886
1888
1889 /// \returns The shuffle sequence pattern used to expand the given reduction
1890 /// intrinsic.
1893
1894 /// \returns the size cost of rematerializing a GlobalValue address relative
1895 /// to a stack reload.
1896 LLVM_ABI unsigned getGISelRematGlobalCost() const;
1897
1898 /// \returns the lower bound of a trip count to decide on vectorization
1899 /// while tail-folding.
1901
1902 /// \returns True if the target supports scalable vectors.
1903 LLVM_ABI bool supportsScalableVectors() const;
1904
1905 /// \return true when scalable vectorization is preferred.
1907
1908 /// \name Vector Predication Information
1909 /// @{
1910 /// Whether the target supports the %evl parameter of VP intrinsic efficiently
1911 /// in hardware. (see LLVM Language Reference - "Vector Predication
1912 /// Intrinsics"). Use of %evl is discouraged when that is not the case.
1913 LLVM_ABI bool hasActiveVectorLength() const;
1914
1915 /// Return true if sinking I's operands to the same basic block as I is
1916 /// profitable, e.g. because the operands can be folded into a target
1917 /// instruction during instruction selection. After calling the function
1918 /// \p Ops contains the Uses to sink ordered by dominance (dominating users
1919 /// come first).
1922
1923 /// Return true if it's significantly cheaper to shift a vector by a uniform
1924 /// scalar than by an amount which will vary across each lane. On x86 before
1925 /// AVX2 for example, there is a "psllw" instruction for the former case, but
1926 /// no simple instruction for a general "a << b" operation on vectors.
1927 /// This should also apply to lowering for vector funnel shifts (rotates).
1929
1932 // keep the predicating parameter
1934 // where legal, discard the predicate parameter
1936 // transform into something else that is also predicating
1938 };
1939
1940 // How to transform the EVL parameter.
1941 // Legal: keep the EVL parameter as it is.
1942 // Discard: Ignore the EVL parameter where it is safe to do so.
1943 // Convert: Fold the EVL into the mask parameter.
1945
1946 // How to transform the operator.
1947 // Legal: The target supports this operator.
1948 // Convert: Convert this to a non-VP operation.
1949 // The 'Discard' strategy is invalid.
1951
1952 bool shouldDoNothing() const {
1953 return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
1954 }
1957 };
1958
1959 /// \returns How the target needs this vector-predicated operation to be
1960 /// transformed.
1962 getVPLegalizationStrategy(const VPIntrinsic &PI) const;
1963 /// @}
1964
1965 /// \returns Whether a 32-bit branch instruction is available in Arm or Thumb
1966 /// state.
1967 ///
1968 /// Used by the LowerTypeTests pass, which constructs an IR inline assembler
1969 /// node containing a jump table in a format suitable for the target, so it
1970 /// needs to know what format of jump table it can legally use.
1971 ///
1972 /// For non-Arm targets, this function isn't used. It defaults to returning
1973 /// false, but it shouldn't matter what it returns anyway.
1974 LLVM_ABI bool hasArmWideBranch(bool Thumb) const;
1975
1976 /// Returns a bitmask constructed from the target-features or fmv-features
1977 /// metadata of a function corresponding to its Arch Extensions.
1978 LLVM_ABI APInt getFeatureMask(const Function &F) const;
1979
1980 /// Returns a bitmask constructed from the target-features or fmv-features
1981 /// metadata of a function corresponding to its FMV priority.
1982 LLVM_ABI APInt getPriorityMask(const Function &F) const;
1983
1984 /// Returns true if this is an instance of a function with multiple versions.
1985 LLVM_ABI bool isMultiversionedFunction(const Function &F) const;
1986
1987 /// \return The maximum number of function arguments the target supports.
1988 LLVM_ABI unsigned getMaxNumArgs() const;
1989
1990 /// \return For an array of given Size, return alignment boundary to
1991 /// pad to. Default is no padding.
1992 LLVM_ABI unsigned getNumBytesToPadGlobalArray(unsigned Size,
1993 Type *ArrayType) const;
1994
1995 /// @}
1996
1997 /// Collect kernel launch bounds for \p F into \p LB.
1999 const Function &F,
2000 SmallVectorImpl<std::pair<StringRef, int64_t>> &LB) const;
2001
2002 /// Returns true if GEP should not be used to index into vectors for this
2003 /// target.
2005
2006private:
2007 std::unique_ptr<const TargetTransformInfoImplBase> TTIImpl;
2008};
2009
2010/// Analysis pass providing the \c TargetTransformInfo.
2011///
2012/// The core idea of the TargetIRAnalysis is to expose an interface through
2013/// which LLVM targets can analyze and provide information about the middle
2014/// end's target-independent IR. This supports use cases such as target-aware
2015/// cost modeling of IR constructs.
2016///
2017/// This is a function analysis because much of the cost modeling for targets
2018/// is done in a subtarget specific way and LLVM supports compiling different
2019/// functions targeting different subtargets in order to support runtime
2020/// dispatch according to the observed subtarget.
2021class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
2022public:
2024
2025 /// Default construct a target IR analysis.
2026 ///
2027 /// This will use the module's datalayout to construct a baseline
2028 /// conservative TTI result.
2030
2031 /// Construct an IR analysis pass around a target-provide callback.
2032 ///
2033 /// The callback will be called with a particular function for which the TTI
2034 /// is needed and must return a TTI object for that function.
2035 LLVM_ABI
2036 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
2037
2038 // Value semantics. We spell out the constructors for MSVC.
2040 : TTICallback(Arg.TTICallback) {}
2042 : TTICallback(std::move(Arg.TTICallback)) {}
2044 TTICallback = RHS.TTICallback;
2045 return *this;
2046 }
2048 TTICallback = std::move(RHS.TTICallback);
2049 return *this;
2050 }
2051
2053
2054private:
2056 LLVM_ABI static AnalysisKey Key;
2057
2058 /// The callback used to produce a result.
2059 ///
2060 /// We use a completely opaque callback so that targets can provide whatever
2061 /// mechanism they desire for constructing the TTI for a given function.
2062 ///
2063 /// FIXME: Should we really use std::function? It's relatively inefficient.
2064 /// It might be possible to arrange for even stateful callbacks to outlive
2065 /// the analysis and thus use a function_ref which would be lighter weight.
2066 /// This may also be less error prone as the callback is likely to reference
2067 /// the external TargetMachine, and that reference needs to never dangle.
2068 std::function<Result(const Function &)> TTICallback;
2069
2070 /// Helper function used as the callback in the default constructor.
2071 static Result getDefaultTTI(const Function &F);
2072};
2073
2074/// Wrapper pass for TargetTransformInfo.
2075///
2076/// This pass can be constructed from a TTI object which it stores internally
2077/// and is queried by passes.
2079 TargetIRAnalysis TIRA;
2080 std::optional<TargetTransformInfo> TTI;
2081
2082 virtual void anchor();
2083
2084public:
2085 static char ID;
2086
2087 /// We must provide a default constructor for the pass but it should
2088 /// never be used.
2089 ///
2090 /// Use the constructor below or call one of the creation routines.
2092
2094
2096};
2097
2098/// Create an analysis pass wrapper around a TTI object.
2099///
2100/// This analysis pass just holds the TTI instance and makes it available to
2101/// clients.
2104
2105} // namespace llvm
2106
2107#endif
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
Analysis containing CSE Info
Definition CSEInfo.cpp:27
#define LLVM_ABI
Definition Compiler.h:213
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
TargetTransformInfo::VPLegalization VPLegalization
static cl::opt< bool > ForceNestedLoop("force-nested-hardware-loop", cl::Hidden, cl::init(false), cl::desc("Force allowance of nested hardware loops"))
static cl::opt< bool > ForceHardwareLoopPHI("force-hardware-loop-phi", cl::Hidden, cl::init(false), cl::desc("Force hardware loop counter to be updated through a phi"))
This header defines various interfaces for pass management in LLVM.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
uint64_t IntrinsicInst * II
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
Value * RHS
Class for arbitrary precision integers.
Definition APInt.h:78
an instruction to allocate memory on the stack
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
Class to represent array types.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
ImmutablePass class - This class is used to provide information that does not need to be run.
Definition Pass.h:285
ImmutablePass(char &pid)
Definition Pass.h:287
The core instruction combiner logic.
static InstructionCost getInvalid(CostType Val=0)
Class to represent integer types.
Drive the analysis of interleaved memory accesses in the loop.
const TargetLibraryInfo * getLibInfo() const
const SmallVectorImpl< Type * > & getArgTypes() const
const SmallVectorImpl< const Value * > & getArgs() const
LLVM_ABI IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarCost=InstructionCost::getInvalid(), bool TypeBasedOnly=false, TargetLibraryInfo const *LibInfo=nullptr)
InstructionCost getScalarizationCost() const
const IntrinsicInst * getInst() const
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
Information for memory intrinsic cost model.
LLVM_ABI MemIntrinsicCostAttributes(Intrinsic::ID Id, Type *DataTy, bool VariableMask, Align Alignment, const Instruction *I=nullptr)
LLVM_ABI MemIntrinsicCostAttributes(Intrinsic::ID Id, Type *DataTy, Align Alignment, unsigned AddressSpace=0)
const Instruction * getInst() const
LLVM_ABI MemIntrinsicCostAttributes(Intrinsic::ID Id, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, const Instruction *I=nullptr)
The optimization diagnostic interface.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
Definition TypeSize.h:30
An instruction for storing to memory.
Multiway switch.
Analysis pass providing the TargetTransformInfo.
TargetIRAnalysis(const TargetIRAnalysis &Arg)
TargetIRAnalysis & operator=(const TargetIRAnalysis &RHS)
LLVM_ABI Result run(const Function &F, FunctionAnalysisManager &)
LLVM_ABI TargetIRAnalysis()
Default construct a target IR analysis.
TargetIRAnalysis & operator=(TargetIRAnalysis &&RHS)
TargetIRAnalysis(TargetIRAnalysis &&Arg)
Provides information about what library functions are available for the current target.
Base class for use as a mix-in that aids implementing a TargetTransformInfo-compatible class.
TargetTransformInfoWrapperPass()
We must provide a default constructor for the pass but it should never be used.
TargetTransformInfo & getTTI(const Function &F)
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const
LLVM_ABI Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType, bool CanCreate=true) const
LLVM_ABI bool isLegalToVectorizeLoad(LoadInst *LI) const
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
static LLVM_ABI CastContextHint getCastContextHint(const Instruction *I)
Calculates a CastContextHint from I.
LLVM_ABI unsigned getMaxNumArgs() const
LLVM_ABI bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const
Return false if a AS0 address cannot possibly alias a AS1 address.
LLVM_ABI bool isLegalMaskedScatter(Type *DataType, Align Alignment) const
Return true if the target supports masked scatter.
LLVM_ABI bool shouldBuildLookupTables() const
Return true if switches should be turned into lookup tables for the target.
LLVM_ABI bool isLegalToVectorizeStore(StoreInst *SI) const
LLVM_ABI InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index=-1, const Value *Op0=nullptr, const Value *Op1=nullptr) const
LLVM_ABI InstructionCost getMulAccReductionCost(bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of an Add/...
LLVM_ABI bool areTypesABICompatible(const Function *Caller, const Function *Callee, ArrayRef< Type * > Types) const
LLVM_ABI bool enableAggressiveInterleaving(bool LoopHasReductions) const
Don't restrict interleaved unrolling to small loops.
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool isMultiversionedFunction(const Function &F) const
Returns true if this is an instance of a function with multiple versions.
LLVM_ABI InstructionUniformity getInstructionUniformity(const Value *V) const
Get target-specific uniformity information for an instruction.
LLVM_ABI bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const
Return true if it is faster to check if a floating-point value is NaN (or not-NaN) versus a compariso...
LLVM_ABI bool isLegalMaskedStore(Type *DataType, Align Alignment, unsigned AddressSpace, MaskKind MaskKind=VariableOrConstantMask) const
Return true if the target supports masked store.
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI unsigned getAssumedAddrSpace(const Value *V) const
LLVM_ABI bool preferAlternateOpcodeVectorization() const
LLVM_ABI bool shouldDropLSRSolutionIfLessProfitable() const
Return true if LSR should drop a found solution if it's calculated to be less profitable than the bas...
LLVM_ABI bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const
Return true if LSR cost of C1 is lower than C2.
LLVM_ABI unsigned getPrefetchDistance() const
LLVM_ABI Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicElementSize=std::nullopt) const
LLVM_ABI bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const
Return true if the target supports masked expand load.
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo Op1Info={OK_AnyValue, OP_None}, OperandValueInfo Op2Info={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI bool hasBranchDivergence(const Function *F=nullptr) const
Return true if branch divergence exists.
LLVM_ABI MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const
bool invalidate(Function &, const PreservedAnalyses &, FunctionAnalysisManager::Invalidator &)
Handle the invalidation of this information.
LLVM_ABI void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const
Get target-customized preferences for the generic loop unrolling transformation.
LLVM_ABI bool shouldBuildLookupTablesForConstant(Constant *C) const
Return true if switches should be turned into lookup tables containing this constant value for the ta...
LLVM_ABI bool supportsTailCallFor(const CallBase *CB) const
If target supports tail call on CB.
LLVM_ABI std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
Targets can implement their own combinations for target-specific intrinsics.
LLVM_ABI bool isProfitableLSRChainElement(Instruction *I) const
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
MaskKind
Some targets only support masked load/store with a constant mask.
LLVM_ABI unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, unsigned DefaultCallPenalty) const
Returns a penalty for invoking call Call in F.
LLVM_ABI bool hasActiveVectorLength() const
LLVM_ABI bool isExpensiveToSpeculativelyExecute(const Instruction *I) const
Return true if the cost of the instruction is too high to speculatively execute and should be kept be...
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI bool isLegalMaskedGather(Type *DataType, Align Alignment) const
Return true if the target supports masked gather.
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI std::optional< unsigned > getMaxVScale() const
LLVM_ABI InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind) const
LLVM_ABI bool allowVectorElementIndexingUsingGEP() const
Returns true if GEP should not be used to index into vectors for this target.
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI bool isSingleThreaded() const
LLVM_ABI std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
Can be used to implement target-specific instruction combining.
LLVM_ABI bool enableOrderedReductions() const
Return true if we should be enabling ordered reductions for the target.
InstructionCost getInstructionCost(const User *U, TargetCostKind CostKind) const
This is a helper function which calls the three-argument getInstructionCost with Operands which are t...
LLVM_ABI unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
LLVM_ABI InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of vector reduction intrinsics.
LLVM_ABI unsigned getAtomicMemIntrinsicMaxElementSize() const
LLVM_ABI InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
LLVM_ABI bool LSRWithInstrQueries() const
Return true if the loop strength reduce pass should make Instruction* based TTI queries to isLegalAdd...
LLVM_ABI unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
LLVM_ABI VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
LLVM_ABI bool shouldConsiderVectorizationRegPressure() const
LLVM_ABI bool enableWritePrefetching() const
LLVM_ABI bool shouldTreatInstructionLikeSelect(const Instruction *I) const
Should the Select Optimization pass treat the given instruction like a select, potentially converting...
LLVM_ABI bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
LLVM_ABI bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const
LLVM_ABI TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Query the target what the preferred style of tail folding is.
LLVM_ABI InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType=nullptr, TargetCostKind CostKind=TCK_SizeAndLatency) const
Estimate the cost of a GEP operation when lowered.
LLVM_ABI bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
LLVM_ABI bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace) const
Return true is the target supports interleaved access for the given vector type VTy,...
LLVM_ABI unsigned getRegUsageForType(Type *Ty) const
Returns the estimated number of registers required to represent Ty.
LLVM_ABI bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const
\Returns true if the target supports broadcasting a load to a vector of type <NumElements x ElementTy...
LLVM_ABI bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const
LLVM_ABI std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const
LLVM_ABI InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of a reduc...
LLVM_ABI unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const
LLVM_ABI ReductionShuffle getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const
LLVM_ABI bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0, Instruction *I=nullptr, int64_t ScalableOffset=0) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
LLVM_ABI PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const
Return hardware support for population count.
LLVM_ABI unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.gather intrinsics.
LLVM_ABI unsigned getMaxPrefetchIterationsAhead() const
LLVM_ABI bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const
Return true if globals in this address space can have initializers other than undef.
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
LLVM_ABI InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
LLVM_ABI bool enableMaskedInterleavedAccessVectorization() const
Enable matching of interleaved access groups that contain predicated accesses or gaps and therefore v...
LLVM_ABI InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst=nullptr) const
Return the expected cost of materialization for the given integer immediate of the specified type for...
LLVM_ABI bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const
Return true if the target supports strided load.
LLVM_ABI TargetTransformInfo & operator=(TargetTransformInfo &&RHS)
LLVM_ABI InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF=FastMathFlags(), TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr, const TargetLibraryInfo *TLibInfo=nullptr) const
This is an approximation of reciprocal throughput of a math/logic op.
LLVM_ABI bool enableSelectOptimize() const
Should the Select Optimization pass be enabled and ran.
LLVM_ABI bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
Return any intrinsic address operand indexes which may be rewritten if they use a flat address space ...
OperandValueProperties
Additional properties of an operand's values.
LLVM_ABI int getInliningLastCallToStaticBonus() const
LLVM_ABI InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const PointersChainInfo &Info, Type *AccessTy, TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Estimate the cost of a chain of pointers (typically pointer operands of a chain of loads or stores wi...
LLVM_ABI bool isVScaleKnownToBeAPowerOfTwo() const
LLVM_ABI bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const
LLVM_ABI unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const
LLVM_ABI bool isLegalICmpImmediate(int64_t Imm) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
LLVM_ABI bool isTypeLegal(Type *Ty) const
Return true if this type is legal.
static bool requiresOrderedReduction(std::optional< FastMathFlags > FMF)
A helper function to determine the type of reduction algorithm used for a given Opcode and set of Fas...
LLVM_ABI bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const
LLVM_ABI std::optional< unsigned > getCacheAssociativity(CacheLevel Level) const
LLVM_ABI bool isLegalNTLoad(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal load.
LLVM_ABI InstructionCost getMemcpyCost(const Instruction *I) const
LLVM_ABI unsigned adjustInliningThreshold(const CallBase *CB) const
LLVM_ABI bool isLegalAddImmediate(int64_t Imm) const
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
LLVM_ABI bool isTargetIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx) const
Identifies if the vector form of the intrinsic that returns a struct is overloaded at the struct elem...
LLVM_ABI unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
LLVM_ABI InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
LLVM_ABI bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) const
Return true if the target can save a compare for loop count, for example hardware loop saves a compar...
LLVM_ABI bool isTargetIntrinsicTriviallyScalarizable(Intrinsic::ID ID) const
LLVM_ABI Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
Rewrite intrinsic call II such that OldV will be replaced with NewV, which has a different address sp...
LLVM_ABI InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const
LLVM_ABI unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const
Some HW prefetchers can handle accesses up to a certain constant stride.
LLVM_ABI bool shouldPrefetchAddressSpace(unsigned AS) const
LLVM_ABI InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
Return the expected cost of materializing for the given integer immediate of the specified type.
LLVM_ABI unsigned getMinVectorRegisterBitWidth() const
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI bool isLegalNTStore(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal store.
LLVM_ABI InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, PartialReductionExtendKind OpAExtend, PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const
LLVM_ABI unsigned getFlatAddressSpace() const
Returns the address space ID for a target's 'flat' address space.
LLVM_ABI bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const
It can be advantageous to detach complex constants from their uses to make their generation cheaper.
LLVM_ABI bool hasArmWideBranch(bool Thumb) const
LLVM_ABI const char * getRegisterClassName(unsigned ClassID) const
LLVM_ABI bool preferEpilogueVectorization() const
Return true if the loop vectorizer should consider vectorizing an otherwise scalar epilogue loop.
LLVM_ABI bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const
LLVM_ABI APInt getPriorityMask(const Function &F) const
Returns a bitmask constructed from the target-features or fmv-features metadata of a function corresp...
LLVM_ABI BranchProbability getPredictableBranchThreshold() const
If a branch or a select condition is skewed in one direction by more than this factor,...
LLVM_ABI TargetTransformInfo(std::unique_ptr< const TargetTransformInfoImplBase > Impl)
Construct a TTI object using a type implementing the Concept API below.
LLVM_ABI bool preferInLoopReduction(RecurKind Kind, Type *Ty) const
LLVM_ABI unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const
LLVM_ABI bool hasConditionalLoadStoreForType(Type *Ty, bool IsStore) const
LLVM_ABI unsigned getCacheLineSize() const
LLVM_ABI bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace=0, Align Alignment=Align(1), unsigned *Fast=nullptr) const
Determine if the target supports unaligned memory accesses.
LLVM_ABI int getInlinerVectorBonusPercent() const
LLVM_ABI unsigned getEpilogueVectorizationMinVF() const
LLVM_ABI void collectKernelLaunchBounds(const Function &F, SmallVectorImpl< std::pair< StringRef, int64_t > > &LB) const
Collect kernel launch bounds for F into LB.
PopcntSupportKind
Flags indicating the kind of support for population count.
LLVM_ABI bool preferPredicatedReductionSelect() const
LLVM_ABI InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty) const
Return the expected cost for the given integer when optimising for size.
LLVM_ABI AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const
Return the preferred addressing mode LSR should make efforts to generate.
LLVM_ABI bool isLoweredToCall(const Function *F) const
Test whether calls to a function lower to actual program function calls.
LLVM_ABI bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
LLVM_ABI bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const
Query the target whether it would be profitable to convert the given loop into a hardware loop.
LLVM_ABI unsigned getInliningThresholdMultiplier() const
LLVM_ABI InstructionCost getBranchMispredictPenalty() const
Returns estimated penalty of a branch misprediction in latency.
LLVM_ABI unsigned getNumberOfRegisters(unsigned ClassID) const
LLVM_ABI bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const
Return true if this is an alternating opcode pattern that can be lowered to a single instruction on t...
LLVM_ABI bool isProfitableToHoist(Instruction *I) const
Return true if it is profitable to hoist instruction in the then/else to before if.
LLVM_ABI bool supportsScalableVectors() const
LLVM_ABI bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const
Return true if the given instruction (assumed to be a memory access instruction) has a volatile varia...
LLVM_ABI bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const
Return true if the target supports masked compress store.
LLVM_ABI std::optional< unsigned > getMinPageSize() const
LLVM_ABI bool isFPVectorizationPotentiallyUnsafe() const
Indicate that it is potentially unsafe to automatically vectorize floating-point operations because t...
LLVM_ABI InstructionCost getInsertExtractValueCost(unsigned Opcode, TTI::TargetCostKind CostKind) const
LLVM_ABI bool shouldBuildRelLookupTables() const
Return true if lookup tables should be turned into relative lookup tables.
LLVM_ABI unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const
LLVM_ABI std::optional< unsigned > getCacheSize(CacheLevel Level) const
LLVM_ABI std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const
Can be used to implement target-specific instruction combining.
LLVM_ABI bool isLegalAddScalableImmediate(int64_t Imm) const
Return true if adding the specified scalable immediate is legal, that is the target has add instructi...
LLVM_ABI bool isTargetIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx) const
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI bool hasDivRemOp(Type *DataType, bool IsSigned) const
Return true if the target has a unified operation to calculate division and remainder.
LLVM_ABI InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Returns the cost estimation for alternating opcode pattern that can be lowered to a single instructio...
TargetCostConstants
Underlying constants for 'cost' values in this interface.
@ TCC_Expensive
The cost of a 'div' instruction on x86.
@ TCC_Free
Expected to fold away in lowering.
@ TCC_Basic
The cost of a typical 'add' instruction.
LLVM_ABI bool enableInterleavedAccessVectorization() const
Enable matching of interleaved access groups.
LLVM_ABI unsigned getMinTripCountTailFoldingThreshold() const
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI unsigned getMaxInterleaveFactor(ElementCount VF) const
LLVM_ABI bool enableScalableVectorization() const
LLVM_ABI bool useFastCCForInternalCall(Function &F) const
Return true if the input function is internal, should use fastcc calling convention.
LLVM_ABI bool isVectorShiftByScalarCheap(Type *Ty) const
Return true if it's significantly cheaper to shift a vector by a uniform scalar than by an amount whi...
LLVM_ABI bool isNumRegsMajorCostOfLSR() const
Return true if LSR major cost is number of registers.
LLVM_ABI unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const
LLVM_ABI bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) const
LLVM_ABI unsigned getGISelRematGlobalCost() const
LLVM_ABI unsigned getNumBytesToPadGlobalArray(unsigned Size, Type *ArrayType) const
MemIndexedMode
The type of load/store indexing.
LLVM_ABI bool isLegalMaskedLoad(Type *DataType, Align Alignment, unsigned AddressSpace, MaskKind MaskKind=VariableOrConstantMask) const
Return true if the target supports masked load.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI bool areInlineCompatible(const Function *Caller, const Function *Callee) const
LLVM_ABI bool useColdCCForColdCall(Function &F) const
Return true if the input function which is cold at all call sites, should use coldcc calling conventi...
LLVM_ABI InstructionCost getFPOpCost(Type *Ty) const
Return the expected cost of supporting the floating point operation of the specified type.
LLVM_ABI bool supportsTailCalls() const
If the target supports tail calls.
LLVM_ABI bool canMacroFuseCmp() const
Return true if the target can fuse a compare and branch.
LLVM_ABI bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Query the target whether the specified address space cast from FromAS to ToAS is valid.
LLVM_ABI unsigned getNumberOfParts(Type *Tp) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
AddressingModeKind
Which addressing mode Loop Strength Reduction will try to generate.
@ AMK_PostIndexed
Prefer post-indexed addressing mode.
@ AMK_All
Consider all addressing modes.
@ AMK_PreIndexed
Prefer pre-indexed addressing mode.
@ AMK_None
Don't prefer any addressing mode.
LLVM_ABI InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0) const
Return the cost of the scaling factor used in the addressing mode represented by AM for this target,...
LLVM_ABI bool isTruncateFree(Type *Ty1, Type *Ty2) const
Return true if it's free to truncate a value of type Ty1 to type Ty2.
LLVM_ABI bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const
Return true if sinking I's operands to the same basic block as I is profitable, e....
LLVM_ABI void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicCpySize=std::nullopt) const
LLVM_ABI bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const
Query the target whether it would be prefered to create a predicated vector loop, which can avoid the...
LLVM_ABI bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.scatter intrinsics.
LLVM_ABI bool isTargetIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx) const
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
LLVM_ABI bool haveFastSqrt(Type *Ty) const
Return true if the hardware has a fast square-root instruction.
LLVM_ABI bool shouldExpandReduction(const IntrinsicInst *II) const
LLVM_ABI uint64_t getMaxMemIntrinsicInlineSizeThreshold() const
Returns the maximum memset / memcpy size in bytes that still makes it profitable to inline the call.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Transpose
Transpose two vectors.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
LLVM_ABI APInt getFeatureMask(const Function &F) const
Returns a bitmask constructed from the target-features or fmv-features metadata of a function corresp...
LLVM_ABI void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP) const
Get target-customized preferences for the generic loop peeling transformation.
LLVM_ABI InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency) const
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
LLVM_ABI InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index, TTI::TargetCostKind CostKind) const
OperandValueKind
Additional information about an operand's possible values.
CacheLevel
The possible cache levels.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Base class of all SIMD vector types.
CallInst * Call
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
@ Length
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ LLVM_MARK_AS_BITMASK_ENUM
Definition ModRef.h:37
TargetTransformInfo TTI
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI ImmutablePass * createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA)
Create an analysis pass wrapper around a TTI object.
RecurKind
These are the kinds of recurrences that we support.
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1879
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
InstructionUniformity
Enum describing how instructions behave with respect to uniformity and divergence,...
Definition Uniformity.h:18
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:870
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A CRTP mix-in that provides informational APIs needed for analysis passes.
Definition PassManager.h:92
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
Attributes of a target dependent hardware loop.
LLVM_ABI bool canAnalyze(LoopInfo &LI)
LLVM_ABI bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, bool ForceNestedLoop=false, bool ForceHardwareLoopPHI=false)
Information about a load/store intrinsic defined by the target.
SmallVector< InterestingMemoryOperand, 1 > InterestingOperands
Value * PtrVal
This is the pointer that the intrinsic is loading from or storing to.
InterleavedAccessInfo * IAI
TailFoldingInfo(TargetLibraryInfo *TLI, LoopVectorizationLegality *LVL, InterleavedAccessInfo *IAI)
TargetLibraryInfo * TLI
LoopVectorizationLegality * LVL
unsigned Insns
TODO: Some of these could be merged.
Returns options for expansion of memcmp. IsZeroCmp is.
bool AllowPeeling
Allow peeling off loop iterations.
bool AllowLoopNestsPeeling
Allow peeling off loop iterations for loop nests.
bool PeelLast
Peel off the last PeelCount loop iterations.
bool PeelProfiledIterations
Allow peeling basing on profile.
unsigned PeelCount
A forced peeling factor (the number of bodied of the original loop that should be peeled off before t...
Describe known properties for a set of pointers.
unsigned IsKnownStride
True if distance between any two neigbouring pointers is a known value.
unsigned IsUnitStride
These properties only valid if SameBaseAddress is set.
unsigned IsSameBaseAddress
All the GEPs in a set have same base address.
Parameters that control the generic loop unrolling transformation.
unsigned Count
A forced unrolling factor (the number of concatenated bodies of the original loop in the unrolled loo...
bool UpperBound
Allow using trip count upper bound to unroll loops.
unsigned Threshold
The cost threshold for the unrolled loop.
bool Force
Apply loop unroll on any kind of loop (mainly to loops that fail runtime unrolling).
unsigned PartialOptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size, like OptSizeThreshold,...
bool UnrollVectorizedLoop
Don't disable runtime unroll for the loops which were vectorized.
unsigned DefaultUnrollRuntimeCount
Default unroll count for loops with run-time trip count.
unsigned MaxPercentThresholdBoost
If complete unrolling will reduce the cost of the loop, we will boost the Threshold by a certain perc...
bool RuntimeUnrollMultiExit
Allow runtime unrolling multi-exit loops.
unsigned SCEVExpansionBudget
Don't allow runtime unrolling if expanding the trip count takes more than SCEVExpansionBudget.
bool AddAdditionalAccumulators
Allow unrolling to add parallel reduction phis.
unsigned UnrollAndJamInnerLoopThreshold
Threshold for unroll and jam, for inner loop size.
unsigned MaxIterationsCountToAnalyze
Don't allow loop unrolling to simulate more than this number of iterations when checking full unroll ...
bool AllowRemainder
Allow generation of a loop remainder (extra iterations after unroll).
bool UnrollAndJam
Allow unroll and jam. Used to enable unroll and jam for the target.
bool UnrollRemainder
Allow unrolling of all the iterations of the runtime loop remainder.
unsigned FullUnrollMaxCount
Set the maximum unrolling factor for full unrolling.
unsigned PartialThreshold
The cost threshold for the unrolled loop, like Threshold, but used for partial/runtime unrolling (set...
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...
unsigned OptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size (set to UINT_MAX to disable).
bool AllowExpensiveTripCount
Allow emitting expensive instructions (such as divisions) when computing the trip count of a loop for...
unsigned MaxUpperBound
Set the maximum upper bound of trip count.
VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)