LLVM 19.0.0git
TargetTransformInfoImpl.h
Go to the documentation of this file.
1//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file provides helpers for the implementation of
10/// a TargetTransformInfo-conforming class.
11///
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
15#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
16
20#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Operator.h"
25#include <optional>
26#include <utility>
27
28namespace llvm {
29
30class Function;
31
32/// Base class for use as a mix-in that aids implementing
33/// a TargetTransformInfo-compatible class.
35
36protected:
38
39 const DataLayout &DL;
40
42
43public:
44 // Provide value semantics. MSVC requires that we spell all of these out.
47
48 const DataLayout &getDataLayout() const { return DL; }
49
50 InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
53 // In the basic model, we just assume that all-constant GEPs will be folded
54 // into their uses via addressing modes.
55 for (const Value *Operand : Operands)
56 if (!isa<Constant>(Operand))
57 return TTI::TCC_Basic;
58
59 return TTI::TCC_Free;
60 }
61
63 unsigned &JTSize,
65 BlockFrequencyInfo *BFI) const {
66 (void)PSI;
67 (void)BFI;
68 JTSize = 0;
69 return SI.getNumCases();
70 }
71
72 unsigned getInliningThresholdMultiplier() const { return 1; }
75 return 8;
76 }
77 unsigned adjustInliningThreshold(const CallBase *CB) const { return 0; }
78 unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const {
79 return 0;
80 };
81
82 int getInlinerVectorBonusPercent() const { return 150; }
83
85 return TTI::TCC_Expensive;
86 }
87
89 return 64;
90 }
91
92 // Although this default value is arbitrary, it is not random. It is assumed
93 // that a condition that evaluates the same way by a higher percentage than
94 // this is best represented as control flow. Therefore, the default value N
95 // should be set such that the win from N% correct executions is greater than
96 // the loss from (100 - N)% mispredicted executions for the majority of
97 // intended targets.
99 return BranchProbability(99, 100);
100 }
101
102 bool hasBranchDivergence(const Function *F = nullptr) const { return false; }
103
104 bool isSourceOfDivergence(const Value *V) const { return false; }
105
106 bool isAlwaysUniform(const Value *V) const { return false; }
107
108 bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
109 return false;
110 }
111
112 bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const {
113 return true;
114 }
115
116 unsigned getFlatAddressSpace() const { return -1; }
117
119 Intrinsic::ID IID) const {
120 return false;
121 }
122
123 bool isNoopAddrSpaceCast(unsigned, unsigned) const { return false; }
125 return AS == 0;
126 };
127
128 unsigned getAssumedAddrSpace(const Value *V) const { return -1; }
129
130 bool isSingleThreaded() const { return false; }
131
132 std::pair<const Value *, unsigned>
134 return std::make_pair(nullptr, -1);
135 }
136
138 Value *NewV) const {
139 return nullptr;
140 }
141
142 bool isLoweredToCall(const Function *F) const {
143 assert(F && "A concrete function must be provided to this routine.");
144
145 // FIXME: These should almost certainly not be handled here, and instead
146 // handled with the help of TLI or the target itself. This was largely
147 // ported from existing analysis heuristics here so that such refactorings
148 // can take place in the future.
149
150 if (F->isIntrinsic())
151 return false;
152
153 if (F->hasLocalLinkage() || !F->hasName())
154 return true;
155
156 StringRef Name = F->getName();
157
158 // These will all likely lower to a single selection DAG node.
159 // clang-format off
160 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
161 Name == "fabs" || Name == "fabsf" || Name == "fabsl" ||
162 Name == "fmin" || Name == "fminf" || Name == "fminl" ||
163 Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
164 Name == "sin" || Name == "sinf" || Name == "sinl" ||
165 Name == "cos" || Name == "cosf" || Name == "cosl" ||
166 Name == "tan" || Name == "tanf" || Name == "tanl" ||
167 Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
168 return false;
169 // clang-format on
170 // These are all likely to be optimized into something smaller.
171 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
172 Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
173 Name == "floorf" || Name == "ceil" || Name == "round" ||
174 Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
175 Name == "llabs")
176 return false;
177
178 return true;
179 }
180
183 HardwareLoopInfo &HWLoopInfo) const {
184 return false;
185 }
186
187 bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const { return false; }
188
190 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
192 }
193
194 std::optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
195 IntrinsicInst &II) const {
196 return std::nullopt;
197 }
198
199 std::optional<Value *>
201 APInt DemandedMask, KnownBits &Known,
202 bool &KnownBitsComputed) const {
203 return std::nullopt;
204 }
205
207 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
208 APInt &UndefElts2, APInt &UndefElts3,
209 std::function<void(Instruction *, unsigned, APInt, APInt &)>
210 SimplifyAndSetOp) const {
211 return std::nullopt;
212 }
213
216 OptimizationRemarkEmitter *) const {}
217
219 TTI::PeelingPreferences &) const {}
220
221 bool isLegalAddImmediate(int64_t Imm) const { return false; }
222
223 bool isLegalAddScalableImmediate(int64_t Imm) const { return false; }
224
225 bool isLegalICmpImmediate(int64_t Imm) const { return false; }
226
227 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
228 bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
229 Instruction *I = nullptr,
230 int64_t ScalableOffset = 0) const {
231 // Guess that only reg and reg+reg addressing is allowed. This heuristic is
232 // taken from the implementation of LSR.
233 return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
234 }
235
236 bool isLSRCostLess(const TTI::LSRCost &C1, const TTI::LSRCost &C2) const {
237 return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
238 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
239 std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
240 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
241 }
242
243 bool isNumRegsMajorCostOfLSR() const { return true; }
244
245 bool shouldFoldTerminatingConditionAfterLSR() const { return false; }
246
247 bool shouldDropLSRSolutionIfLessProfitable() const { return false; }
248
249 bool isProfitableLSRChainElement(Instruction *I) const { return false; }
250
251 bool canMacroFuseCmp() const { return false; }
252
255 TargetLibraryInfo *LibInfo) const {
256 return false;
257 }
258
261 return TTI::AMK_None;
262 }
263
264 bool isLegalMaskedStore(Type *DataType, Align Alignment) const {
265 return false;
266 }
267
268 bool isLegalMaskedLoad(Type *DataType, Align Alignment) const {
269 return false;
270 }
271
272 bool isLegalNTStore(Type *DataType, Align Alignment) const {
273 // By default, assume nontemporal memory stores are available for stores
274 // that are aligned and have a size that is a power of 2.
275 unsigned DataSize = DL.getTypeStoreSize(DataType);
276 return Alignment >= DataSize && isPowerOf2_32(DataSize);
277 }
278
279 bool isLegalNTLoad(Type *DataType, Align Alignment) const {
280 // By default, assume nontemporal memory loads are available for loads that
281 // are aligned and have a size that is a power of 2.
282 unsigned DataSize = DL.getTypeStoreSize(DataType);
283 return Alignment >= DataSize && isPowerOf2_32(DataSize);
284 }
285
286 bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const {
287 return false;
288 }
289
290 bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
291 return false;
292 }
293
294 bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
295 return false;
296 }
297
298 bool forceScalarizeMaskedGather(VectorType *DataType, Align Alignment) const {
299 return false;
300 }
301
303 Align Alignment) const {
304 return false;
305 }
306
307 bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const {
308 return false;
309 }
310
311 bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
312 const SmallBitVector &OpcodeMask) const {
313 return false;
314 }
315
316 bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const {
317 return false;
318 }
319
320 bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const {
321 return false;
322 }
323
324 bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) const {
325 return false;
326 }
327
328 bool enableOrderedReductions() const { return false; }
329
330 bool hasDivRemOp(Type *DataType, bool IsSigned) const { return false; }
331
332 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const {
333 return false;
334 }
335
336 bool prefersVectorizedAddressing() const { return true; }
337
339 StackOffset BaseOffset, bool HasBaseReg,
340 int64_t Scale,
341 unsigned AddrSpace) const {
342 // Guess that all legal addressing mode are free.
343 if (isLegalAddressingMode(Ty, BaseGV, BaseOffset.getFixed(), HasBaseReg,
344 Scale, AddrSpace, /*I=*/nullptr,
345 BaseOffset.getScalable()))
346 return 0;
347 return -1;
348 }
349
350 bool LSRWithInstrQueries() const { return false; }
351
352 bool isTruncateFree(Type *Ty1, Type *Ty2) const { return false; }
353
354 bool isProfitableToHoist(Instruction *I) const { return true; }
355
356 bool useAA() const { return false; }
357
358 bool isTypeLegal(Type *Ty) const { return false; }
359
360 unsigned getRegUsageForType(Type *Ty) const { return 1; }
361
362 bool shouldBuildLookupTables() const { return true; }
363
364 bool shouldBuildLookupTablesForConstant(Constant *C) const { return true; }
365
366 bool shouldBuildRelLookupTables() const { return false; }
367
368 bool useColdCCForColdCall(Function &F) const { return false; }
369
371 const APInt &DemandedElts,
372 bool Insert, bool Extract,
374 return 0;
375 }
376
381 return 0;
382 }
383
384 bool supportsEfficientVectorElementLoadStore() const { return false; }
385
386 bool supportsTailCalls() const { return true; }
387
388 bool enableAggressiveInterleaving(bool LoopHasReductions) const {
389 return false;
390 }
391
393 bool IsZeroCmp) const {
394 return {};
395 }
396
397 bool enableSelectOptimize() const { return true; }
398
400 // If the select is a logical-and/logical-or then it is better treated as a
401 // and/or by the backend.
402 using namespace llvm::PatternMatch;
403 return isa<SelectInst>(I) &&
406 }
407
408 bool enableInterleavedAccessVectorization() const { return false; }
409
410 bool enableMaskedInterleavedAccessVectorization() const { return false; }
411
412 bool isFPVectorizationPotentiallyUnsafe() const { return false; }
413
415 unsigned AddressSpace, Align Alignment,
416 unsigned *Fast) const {
417 return false;
418 }
419
420 TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const {
421 return TTI::PSK_Software;
422 }
423
424 bool haveFastSqrt(Type *Ty) const { return false; }
425
426 bool isExpensiveToSpeculativelyExecute(const Instruction *I) { return true; }
427
428 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { return true; }
429
432 }
433
434 InstructionCost getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
435 const APInt &Imm, Type *Ty) const {
436 return 0;
437 }
438
441 return TTI::TCC_Basic;
442 }
443
444 InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
445 const APInt &Imm, Type *Ty,
447 Instruction *Inst = nullptr) const {
448 return TTI::TCC_Free;
449 }
450
452 const APInt &Imm, Type *Ty,
454 return TTI::TCC_Free;
455 }
456
458 const Function &Fn) const {
459 return false;
460 }
461
462 unsigned getNumberOfRegisters(unsigned ClassID) const { return 8; }
463 bool hasConditionalLoadStoreForType(Type *Ty) const { return false; }
464
465 unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const {
466 return Vector ? 1 : 0;
467 };
468
469 const char *getRegisterClassName(unsigned ClassID) const {
470 switch (ClassID) {
471 default:
472 return "Generic::Unknown Register Class";
473 case 0:
474 return "Generic::ScalarRC";
475 case 1:
476 return "Generic::VectorRC";
477 }
478 }
479
481 return TypeSize::getFixed(32);
482 }
483
484 unsigned getMinVectorRegisterBitWidth() const { return 128; }
485
486 std::optional<unsigned> getMaxVScale() const { return std::nullopt; }
487 std::optional<unsigned> getVScaleForTuning() const { return std::nullopt; }
488 bool isVScaleKnownToBeAPowerOfTwo() const { return false; }
489
490 bool
492 return false;
493 }
494
495 ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const {
496 return ElementCount::get(0, IsScalable);
497 }
498
499 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { return 0; }
500 unsigned getStoreMinimumVF(unsigned VF, Type *, Type *) const { return VF; }
501
503 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
504 AllowPromotionWithoutCommonHeader = false;
505 return false;
506 }
507
508 unsigned getCacheLineSize() const { return 0; }
509 std::optional<unsigned>
511 switch (Level) {
513 [[fallthrough]];
515 return std::nullopt;
516 }
517 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
518 }
519
520 std::optional<unsigned>
522 switch (Level) {
524 [[fallthrough]];
526 return std::nullopt;
527 }
528
529 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
530 }
531
532 std::optional<unsigned> getMinPageSize() const { return {}; }
533
534 unsigned getPrefetchDistance() const { return 0; }
535 unsigned getMinPrefetchStride(unsigned NumMemAccesses,
536 unsigned NumStridedMemAccesses,
537 unsigned NumPrefetches, bool HasCall) const {
538 return 1;
539 }
540 unsigned getMaxPrefetchIterationsAhead() const { return UINT_MAX; }
541 bool enableWritePrefetching() const { return false; }
542 bool shouldPrefetchAddressSpace(unsigned AS) const { return !AS; }
543
544 unsigned getMaxInterleaveFactor(ElementCount VF) const { return 1; }
545
547 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
550 const Instruction *CxtI = nullptr) const {
551 // Widenable conditions will eventually lower into constants, so some
552 // operations with them will be trivially optimized away.
553 auto IsWidenableCondition = [](const Value *V) {
554 if (auto *II = dyn_cast<IntrinsicInst>(V))
555 if (II->getIntrinsicID() == Intrinsic::experimental_widenable_condition)
556 return true;
557 return false;
558 };
559 // FIXME: A number of transformation tests seem to require these values
560 // which seems a little odd for how arbitary there are.
561 switch (Opcode) {
562 default:
563 break;
564 case Instruction::FDiv:
565 case Instruction::FRem:
566 case Instruction::SDiv:
567 case Instruction::SRem:
568 case Instruction::UDiv:
569 case Instruction::URem:
570 // FIXME: Unlikely to be true for CodeSize.
571 return TTI::TCC_Expensive;
572 case Instruction::And:
573 case Instruction::Or:
574 if (any_of(Args, IsWidenableCondition))
575 return TTI::TCC_Free;
576 break;
577 }
578
579 // Assume a 3cy latency for fp arithmetic ops.
581 if (Ty->getScalarType()->isFloatingPointTy())
582 return 3;
583
584 return 1;
585 }
586
588 unsigned Opcode1,
589 const SmallBitVector &OpcodeMask,
592 }
593
595 ArrayRef<int> Mask,
597 VectorType *SubTp,
598 ArrayRef<const Value *> Args = std::nullopt,
599 const Instruction *CxtI = nullptr) const {
600 return 1;
601 }
602
603 InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
606 const Instruction *I) const {
607 switch (Opcode) {
608 default:
609 break;
610 case Instruction::IntToPtr: {
611 unsigned SrcSize = Src->getScalarSizeInBits();
612 if (DL.isLegalInteger(SrcSize) &&
613 SrcSize <= DL.getPointerTypeSizeInBits(Dst))
614 return 0;
615 break;
616 }
617 case Instruction::PtrToInt: {
618 unsigned DstSize = Dst->getScalarSizeInBits();
619 if (DL.isLegalInteger(DstSize) &&
620 DstSize >= DL.getPointerTypeSizeInBits(Src))
621 return 0;
622 break;
623 }
624 case Instruction::BitCast:
625 if (Dst == Src || (Dst->isPointerTy() && Src->isPointerTy()))
626 // Identity and pointer-to-pointer casts are free.
627 return 0;
628 break;
629 case Instruction::Trunc: {
630 // trunc to a native type is free (assuming the target has compare and
631 // shift-right of the same width).
632 TypeSize DstSize = DL.getTypeSizeInBits(Dst);
633 if (!DstSize.isScalable() && DL.isLegalInteger(DstSize.getFixedValue()))
634 return 0;
635 break;
636 }
637 }
638 return 1;
639 }
640
642 VectorType *VecTy,
643 unsigned Index) const {
644 return 1;
645 }
646
648 const Instruction *I = nullptr) const {
649 // A phi would be free, unless we're costing the throughput because it
650 // will require a register.
651 if (Opcode == Instruction::PHI && CostKind != TTI::TCK_RecipThroughput)
652 return 0;
653 return 1;
654 }
655
656 InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
657 CmpInst::Predicate VecPred,
659 const Instruction *I) const {
660 return 1;
661 }
662
665 unsigned Index, Value *Op0,
666 Value *Op1) const {
667 return 1;
668 }
669
672 unsigned Index) const {
673 return 1;
674 }
675
676 unsigned getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
677 const APInt &DemandedDstElts,
679 return 1;
680 }
681
682 InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
683 unsigned AddressSpace,
686 const Instruction *I) const {
687 return 1;
688 }
689
690 InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
691 unsigned AddressSpace,
693 const Instruction *I) const {
694 return 1;
695 }
696
698 Align Alignment, unsigned AddressSpace,
700 return 1;
701 }
702
704 const Value *Ptr, bool VariableMask,
705 Align Alignment,
707 const Instruction *I = nullptr) const {
708 return 1;
709 }
710
712 const Value *Ptr, bool VariableMask,
713 Align Alignment,
715 const Instruction *I = nullptr) const {
717 }
718
720 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
721 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
722 bool UseMaskForCond, bool UseMaskForGaps) const {
723 return 1;
724 }
725
728 switch (ICA.getID()) {
729 default:
730 break;
731 case Intrinsic::allow_runtime_check:
732 case Intrinsic::allow_ubsan_check:
733 case Intrinsic::annotation:
734 case Intrinsic::assume:
735 case Intrinsic::sideeffect:
736 case Intrinsic::pseudoprobe:
737 case Intrinsic::arithmetic_fence:
738 case Intrinsic::dbg_assign:
739 case Intrinsic::dbg_declare:
740 case Intrinsic::dbg_value:
741 case Intrinsic::dbg_label:
742 case Intrinsic::invariant_start:
743 case Intrinsic::invariant_end:
744 case Intrinsic::launder_invariant_group:
745 case Intrinsic::strip_invariant_group:
746 case Intrinsic::is_constant:
747 case Intrinsic::lifetime_start:
748 case Intrinsic::lifetime_end:
749 case Intrinsic::experimental_noalias_scope_decl:
750 case Intrinsic::objectsize:
751 case Intrinsic::ptr_annotation:
752 case Intrinsic::var_annotation:
753 case Intrinsic::experimental_gc_result:
754 case Intrinsic::experimental_gc_relocate:
755 case Intrinsic::coro_alloc:
756 case Intrinsic::coro_begin:
757 case Intrinsic::coro_free:
758 case Intrinsic::coro_end:
759 case Intrinsic::coro_frame:
760 case Intrinsic::coro_size:
761 case Intrinsic::coro_align:
762 case Intrinsic::coro_suspend:
763 case Intrinsic::coro_subfn_addr:
764 case Intrinsic::threadlocal_address:
765 case Intrinsic::experimental_widenable_condition:
766 case Intrinsic::ssa_copy:
767 // These intrinsics don't actually represent code after lowering.
768 return 0;
769 }
770 return 1;
771 }
772
776 return 1;
777 }
778
779 // Assume that we have a register of the right size for the type.
780 unsigned getNumberOfParts(Type *Tp) const { return 1; }
781
783 const SCEV *) const {
784 return 0;
785 }
786
788 std::optional<FastMathFlags> FMF,
789 TTI::TargetCostKind) const {
790 return 1;
791 }
792
795 TTI::TargetCostKind) const {
796 return 1;
797 }
798
799 InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned,
800 Type *ResTy, VectorType *Ty,
801 FastMathFlags FMF,
803 return 1;
804 }
805
807 VectorType *Ty,
809 return 1;
810 }
811
813 return 0;
814 }
815
817 return false;
818 }
819
821 // Note for overrides: You must ensure for all element unordered-atomic
822 // memory intrinsics that all power-of-2 element sizes up to, and
823 // including, the return value of this method have a corresponding
824 // runtime lib call. These runtime lib call definitions can be found
825 // in RuntimeLibcalls.h
826 return 0;
827 }
828
830 Type *ExpectedType) const {
831 return nullptr;
832 }
833
834 Type *
836 unsigned SrcAddrSpace, unsigned DestAddrSpace,
837 unsigned SrcAlign, unsigned DestAlign,
838 std::optional<uint32_t> AtomicElementSize) const {
839 return AtomicElementSize ? Type::getIntNTy(Context, *AtomicElementSize * 8)
840 : Type::getInt8Ty(Context);
841 }
842
844 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
845 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
846 unsigned SrcAlign, unsigned DestAlign,
847 std::optional<uint32_t> AtomicCpySize) const {
848 unsigned OpSizeInBytes = AtomicCpySize ? *AtomicCpySize : 1;
849 Type *OpType = Type::getIntNTy(Context, OpSizeInBytes * 8);
850 for (unsigned i = 0; i != RemainingBytes; i += OpSizeInBytes)
851 OpsOut.push_back(OpType);
852 }
853
854 bool areInlineCompatible(const Function *Caller,
855 const Function *Callee) const {
856 return (Caller->getFnAttribute("target-cpu") ==
857 Callee->getFnAttribute("target-cpu")) &&
858 (Caller->getFnAttribute("target-features") ==
859 Callee->getFnAttribute("target-features"));
860 }
861
862 unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
863 unsigned DefaultCallPenalty) const {
864 return DefaultCallPenalty;
865 }
866
867 bool areTypesABICompatible(const Function *Caller, const Function *Callee,
868 const ArrayRef<Type *> &Types) const {
869 return (Caller->getFnAttribute("target-cpu") ==
870 Callee->getFnAttribute("target-cpu")) &&
871 (Caller->getFnAttribute("target-features") ==
872 Callee->getFnAttribute("target-features"));
873 }
874
876 const DataLayout &DL) const {
877 return false;
878 }
879
881 const DataLayout &DL) const {
882 return false;
883 }
884
885 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
886
887 bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
888
889 bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
890
891 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
892 unsigned AddrSpace) const {
893 return true;
894 }
895
896 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
897 unsigned AddrSpace) const {
898 return true;
899 }
900
902 ElementCount VF) const {
903 return true;
904 }
905
906 bool isElementTypeLegalForScalableVector(Type *Ty) const { return true; }
907
908 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
909 unsigned ChainSizeInBytes,
910 VectorType *VecTy) const {
911 return VF;
912 }
913
914 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
915 unsigned ChainSizeInBytes,
916 VectorType *VecTy) const {
917 return VF;
918 }
919
920 bool preferInLoopReduction(unsigned Opcode, Type *Ty,
921 TTI::ReductionFlags Flags) const {
922 return false;
923 }
924
925 bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
926 TTI::ReductionFlags Flags) const {
927 return false;
928 }
929
931 return true;
932 }
933
934 bool shouldExpandReduction(const IntrinsicInst *II) const { return true; }
935
936 unsigned getGISelRematGlobalCost() const { return 1; }
937
938 unsigned getMinTripCountTailFoldingThreshold() const { return 0; }
939
940 bool supportsScalableVectors() const { return false; }
941
942 bool enableScalableVectorization() const { return false; }
943
944 bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
945 Align Alignment) const {
946 return false;
947 }
948
953 /* OperatorStrategy */ TargetTransformInfo::VPLegalization::Convert);
954 }
955
956 bool hasArmWideBranch(bool) const { return false; }
957
958 unsigned getMaxNumArgs() const { return UINT_MAX; }
959
960protected:
961 // Obtain the minimum required size to hold the value (without the sign)
962 // In case of a vector it returns the min required size for one element.
963 unsigned minRequiredElementSize(const Value *Val, bool &isSigned) const {
964 if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
965 const auto *VectorValue = cast<Constant>(Val);
966
967 // In case of a vector need to pick the max between the min
968 // required size for each element
969 auto *VT = cast<FixedVectorType>(Val->getType());
970
971 // Assume unsigned elements
972 isSigned = false;
973
974 // The max required size is the size of the vector element type
975 unsigned MaxRequiredSize =
976 VT->getElementType()->getPrimitiveSizeInBits().getFixedValue();
977
978 unsigned MinRequiredSize = 0;
979 for (unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
980 if (auto *IntElement =
981 dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
982 bool signedElement = IntElement->getValue().isNegative();
983 // Get the element min required size.
984 unsigned ElementMinRequiredSize =
985 IntElement->getValue().getSignificantBits() - 1;
986 // In case one element is signed then all the vector is signed.
987 isSigned |= signedElement;
988 // Save the max required bit size between all the elements.
989 MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
990 } else {
991 // not an int constant element
992 return MaxRequiredSize;
993 }
994 }
995 return MinRequiredSize;
996 }
997
998 if (const auto *CI = dyn_cast<ConstantInt>(Val)) {
999 isSigned = CI->getValue().isNegative();
1000 return CI->getValue().getSignificantBits() - 1;
1001 }
1002
1003 if (const auto *Cast = dyn_cast<SExtInst>(Val)) {
1004 isSigned = true;
1005 return Cast->getSrcTy()->getScalarSizeInBits() - 1;
1006 }
1007
1008 if (const auto *Cast = dyn_cast<ZExtInst>(Val)) {
1009 isSigned = false;
1010 return Cast->getSrcTy()->getScalarSizeInBits();
1011 }
1012
1013 isSigned = false;
1014 return Val->getType()->getScalarSizeInBits();
1015 }
1016
1017 bool isStridedAccess(const SCEV *Ptr) const {
1018 return Ptr && isa<SCEVAddRecExpr>(Ptr);
1019 }
1020
1022 const SCEV *Ptr) const {
1023 if (!isStridedAccess(Ptr))
1024 return nullptr;
1025 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
1026 return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
1027 }
1028
1030 int64_t MergeDistance) const {
1031 const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
1032 if (!Step)
1033 return false;
1034 APInt StrideVal = Step->getAPInt();
1035 if (StrideVal.getBitWidth() > 64)
1036 return false;
1037 // FIXME: Need to take absolute value for negative stride case.
1038 return StrideVal.getSExtValue() < MergeDistance;
1039 }
1040};
1041
1042/// CRTP base class for use as a mix-in that aids implementing
1043/// a TargetTransformInfo-compatible class.
1044template <typename T>
1046private:
1048
1049protected:
1051
1052public:
1054
1058 assert(PointeeType && Ptr && "can't get GEPCost of nullptr");
1059 auto *BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
1060 bool HasBaseReg = (BaseGV == nullptr);
1061
1062 auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
1063 APInt BaseOffset(PtrSizeBits, 0);
1064 int64_t Scale = 0;
1065
1066 auto GTI = gep_type_begin(PointeeType, Operands);
1067 Type *TargetType = nullptr;
1068
1069 // Handle the case where the GEP instruction has a single operand,
1070 // the basis, therefore TargetType is a nullptr.
1071 if (Operands.empty())
1072 return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
1073
1074 for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
1075 TargetType = GTI.getIndexedType();
1076 // We assume that the cost of Scalar GEP with constant index and the
1077 // cost of Vector GEP with splat constant index are the same.
1078 const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
1079 if (!ConstIdx)
1080 if (auto Splat = getSplatValue(*I))
1081 ConstIdx = dyn_cast<ConstantInt>(Splat);
1082 if (StructType *STy = GTI.getStructTypeOrNull()) {
1083 // For structures the index is always splat or scalar constant
1084 assert(ConstIdx && "Unexpected GEP index");
1085 uint64_t Field = ConstIdx->getZExtValue();
1086 BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
1087 } else {
1088 // If this operand is a scalable type, bail out early.
1089 // TODO: Make isLegalAddressingMode TypeSize aware.
1090 if (TargetType->isScalableTy())
1091 return TTI::TCC_Basic;
1092 int64_t ElementSize =
1093 GTI.getSequentialElementStride(DL).getFixedValue();
1094 if (ConstIdx) {
1095 BaseOffset +=
1096 ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
1097 } else {
1098 // Needs scale register.
1099 if (Scale != 0)
1100 // No addressing mode takes two scale registers.
1101 return TTI::TCC_Basic;
1102 Scale = ElementSize;
1103 }
1104 }
1105 }
1106
1107 // If we haven't been provided a hint, use the target type for now.
1108 //
1109 // TODO: Take a look at potentially removing this: This is *slightly* wrong
1110 // as it's possible to have a GEP with a foldable target type but a memory
1111 // access that isn't foldable. For example, this load isn't foldable on
1112 // RISC-V:
1113 //
1114 // %p = getelementptr i32, ptr %base, i32 42
1115 // %x = load <2 x i32>, ptr %p
1116 if (!AccessType)
1117 AccessType = TargetType;
1118
1119 // If the final address of the GEP is a legal addressing mode for the given
1120 // access type, then we can fold it into its users.
1121 if (static_cast<T *>(this)->isLegalAddressingMode(
1122 AccessType, const_cast<GlobalValue *>(BaseGV),
1123 BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale,
1124 Ptr->getType()->getPointerAddressSpace()))
1125 return TTI::TCC_Free;
1126
1127 // TODO: Instead of returning TCC_Basic here, we should use
1128 // getArithmeticInstrCost. Or better yet, provide a hook to let the target
1129 // model it.
1130 return TTI::TCC_Basic;
1131 }
1132
1134 const Value *Base,
1136 Type *AccessTy,
1139 // In the basic model we take into account GEP instructions only
1140 // (although here can come alloca instruction, a value, constants and/or
1141 // constant expressions, PHIs, bitcasts ... whatever allowed to be used as a
1142 // pointer). Typically, if Base is a not a GEP-instruction and all the
1143 // pointers are relative to the same base address, all the rest are
1144 // either GEP instructions, PHIs, bitcasts or constants. When we have same
1145 // base, we just calculate cost of each non-Base GEP as an ADD operation if
1146 // any their index is a non-const.
1147 // If no known dependecies between the pointers cost is calculated as a sum
1148 // of costs of GEP instructions.
1149 for (const Value *V : Ptrs) {
1150 const auto *GEP = dyn_cast<GetElementPtrInst>(V);
1151 if (!GEP)
1152 continue;
1153 if (Info.isSameBase() && V != Base) {
1154 if (GEP->hasAllConstantIndices())
1155 continue;
1156 Cost += static_cast<T *>(this)->getArithmeticInstrCost(
1157 Instruction::Add, GEP->getType(), CostKind,
1159 std::nullopt);
1160 } else {
1161 SmallVector<const Value *> Indices(GEP->indices());
1162 Cost += static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(),
1163 GEP->getPointerOperand(),
1164 Indices, AccessTy, CostKind);
1165 }
1166 }
1167 return Cost;
1168 }
1169
1173 using namespace llvm::PatternMatch;
1174
1175 auto *TargetTTI = static_cast<T *>(this);
1176 // Handle non-intrinsic calls, invokes, and callbr.
1177 // FIXME: Unlikely to be true for anything but CodeSize.
1178 auto *CB = dyn_cast<CallBase>(U);
1179 if (CB && !isa<IntrinsicInst>(U)) {
1180 if (const Function *F = CB->getCalledFunction()) {
1181 if (!TargetTTI->isLoweredToCall(F))
1182 return TTI::TCC_Basic; // Give a basic cost if it will be lowered
1183
1184 return TTI::TCC_Basic * (F->getFunctionType()->getNumParams() + 1);
1185 }
1186 // For indirect or other calls, scale cost by number of arguments.
1187 return TTI::TCC_Basic * (CB->arg_size() + 1);
1188 }
1189
1190 Type *Ty = U->getType();
1191 unsigned Opcode = Operator::getOpcode(U);
1192 auto *I = dyn_cast<Instruction>(U);
1193 switch (Opcode) {
1194 default:
1195 break;
1196 case Instruction::Call: {
1197 assert(isa<IntrinsicInst>(U) && "Unexpected non-intrinsic call");
1198 auto *Intrinsic = cast<IntrinsicInst>(U);
1199 IntrinsicCostAttributes CostAttrs(Intrinsic->getIntrinsicID(), *CB);
1200 return TargetTTI->getIntrinsicInstrCost(CostAttrs, CostKind);
1201 }
1202 case Instruction::Br:
1203 case Instruction::Ret:
1204 case Instruction::PHI:
1205 case Instruction::Switch:
1206 return TargetTTI->getCFInstrCost(Opcode, CostKind, I);
1207 case Instruction::ExtractValue:
1208 case Instruction::Freeze:
1209 return TTI::TCC_Free;
1210 case Instruction::Alloca:
1211 if (cast<AllocaInst>(U)->isStaticAlloca())
1212 return TTI::TCC_Free;
1213 break;
1214 case Instruction::GetElementPtr: {
1215 const auto *GEP = cast<GEPOperator>(U);
1216 Type *AccessType = nullptr;
1217 // For now, only provide the AccessType in the simple case where the GEP
1218 // only has one user.
1219 if (GEP->hasOneUser() && I)
1220 AccessType = I->user_back()->getAccessType();
1221
1222 return TargetTTI->getGEPCost(GEP->getSourceElementType(),
1223 Operands.front(), Operands.drop_front(),
1224 AccessType, CostKind);
1225 }
1226 case Instruction::Add:
1227 case Instruction::FAdd:
1228 case Instruction::Sub:
1229 case Instruction::FSub:
1230 case Instruction::Mul:
1231 case Instruction::FMul:
1232 case Instruction::UDiv:
1233 case Instruction::SDiv:
1234 case Instruction::FDiv:
1235 case Instruction::URem:
1236 case Instruction::SRem:
1237 case Instruction::FRem:
1238 case Instruction::Shl:
1239 case Instruction::LShr:
1240 case Instruction::AShr:
1241 case Instruction::And:
1242 case Instruction::Or:
1243 case Instruction::Xor:
1244 case Instruction::FNeg: {
1246 TTI::OperandValueInfo Op2Info;
1247 if (Opcode != Instruction::FNeg)
1248 Op2Info = TTI::getOperandInfo(Operands[1]);
1249 return TargetTTI->getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
1250 Op2Info, Operands, I);
1251 }
1252 case Instruction::IntToPtr:
1253 case Instruction::PtrToInt:
1254 case Instruction::SIToFP:
1255 case Instruction::UIToFP:
1256 case Instruction::FPToUI:
1257 case Instruction::FPToSI:
1258 case Instruction::Trunc:
1259 case Instruction::FPTrunc:
1260 case Instruction::BitCast:
1261 case Instruction::FPExt:
1262 case Instruction::SExt:
1263 case Instruction::ZExt:
1264 case Instruction::AddrSpaceCast: {
1265 Type *OpTy = Operands[0]->getType();
1266 return TargetTTI->getCastInstrCost(
1267 Opcode, Ty, OpTy, TTI::getCastContextHint(I), CostKind, I);
1268 }
1269 case Instruction::Store: {
1270 auto *SI = cast<StoreInst>(U);
1271 Type *ValTy = Operands[0]->getType();
1273 return TargetTTI->getMemoryOpCost(Opcode, ValTy, SI->getAlign(),
1274 SI->getPointerAddressSpace(), CostKind,
1275 OpInfo, I);
1276 }
1277 case Instruction::Load: {
1278 // FIXME: Arbitary cost which could come from the backend.
1280 return 4;
1281 auto *LI = cast<LoadInst>(U);
1282 Type *LoadType = U->getType();
1283 // If there is a non-register sized type, the cost estimation may expand
1284 // it to be several instructions to load into multiple registers on the
1285 // target. But, if the only use of the load is a trunc instruction to a
1286 // register sized type, the instruction selector can combine these
1287 // instructions to be a single load. So, in this case, we use the
1288 // destination type of the trunc instruction rather than the load to
1289 // accurately estimate the cost of this load instruction.
1290 if (CostKind == TTI::TCK_CodeSize && LI->hasOneUse() &&
1291 !LoadType->isVectorTy()) {
1292 if (const TruncInst *TI = dyn_cast<TruncInst>(*LI->user_begin()))
1293 LoadType = TI->getDestTy();
1294 }
1295 return TargetTTI->getMemoryOpCost(Opcode, LoadType, LI->getAlign(),
1297 {TTI::OK_AnyValue, TTI::OP_None}, I);
1298 }
1299 case Instruction::Select: {
1300 const Value *Op0, *Op1;
1301 if (match(U, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
1302 match(U, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
1303 // select x, y, false --> x & y
1304 // select x, true, y --> x | y
1305 const auto Op1Info = TTI::getOperandInfo(Op0);
1306 const auto Op2Info = TTI::getOperandInfo(Op1);
1307 assert(Op0->getType()->getScalarSizeInBits() == 1 &&
1308 Op1->getType()->getScalarSizeInBits() == 1);
1309
1311 return TargetTTI->getArithmeticInstrCost(
1312 match(U, m_LogicalOr()) ? Instruction::Or : Instruction::And, Ty,
1313 CostKind, Op1Info, Op2Info, Operands, I);
1314 }
1315 Type *CondTy = Operands[0]->getType();
1316 return TargetTTI->getCmpSelInstrCost(Opcode, U->getType(), CondTy,
1318 CostKind, I);
1319 }
1320 case Instruction::ICmp:
1321 case Instruction::FCmp: {
1322 Type *ValTy = Operands[0]->getType();
1323 // TODO: Also handle ICmp/FCmp constant expressions.
1324 return TargetTTI->getCmpSelInstrCost(Opcode, ValTy, U->getType(),
1325 I ? cast<CmpInst>(I)->getPredicate()
1327 CostKind, I);
1328 }
1329 case Instruction::InsertElement: {
1330 auto *IE = dyn_cast<InsertElementInst>(U);
1331 if (!IE)
1332 return TTI::TCC_Basic; // FIXME
1333 unsigned Idx = -1;
1334 if (auto *CI = dyn_cast<ConstantInt>(Operands[2]))
1335 if (CI->getValue().getActiveBits() <= 32)
1336 Idx = CI->getZExtValue();
1337 return TargetTTI->getVectorInstrCost(*IE, Ty, CostKind, Idx);
1338 }
1339 case Instruction::ShuffleVector: {
1340 auto *Shuffle = dyn_cast<ShuffleVectorInst>(U);
1341 if (!Shuffle)
1342 return TTI::TCC_Basic; // FIXME
1343
1344 auto *VecTy = cast<VectorType>(U->getType());
1345 auto *VecSrcTy = cast<VectorType>(Operands[0]->getType());
1346 ArrayRef<int> Mask = Shuffle->getShuffleMask();
1347 int NumSubElts, SubIndex;
1348
1349 // TODO: move more of this inside improveShuffleKindFromMask.
1350 if (Shuffle->changesLength()) {
1351 // Treat a 'subvector widening' as a free shuffle.
1352 if (Shuffle->increasesLength() && Shuffle->isIdentityWithPadding())
1353 return 0;
1354
1355 if (Shuffle->isExtractSubvectorMask(SubIndex))
1356 return TargetTTI->getShuffleCost(TTI::SK_ExtractSubvector, VecSrcTy,
1357 Mask, CostKind, SubIndex, VecTy,
1358 Operands, Shuffle);
1359
1360 if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
1361 return TargetTTI->getShuffleCost(
1362 TTI::SK_InsertSubvector, VecTy, Mask, CostKind, SubIndex,
1363 FixedVectorType::get(VecTy->getScalarType(), NumSubElts),
1364 Operands, Shuffle);
1365
1366 int ReplicationFactor, VF;
1367 if (Shuffle->isReplicationMask(ReplicationFactor, VF)) {
1368 APInt DemandedDstElts = APInt::getZero(Mask.size());
1369 for (auto I : enumerate(Mask)) {
1370 if (I.value() != PoisonMaskElem)
1371 DemandedDstElts.setBit(I.index());
1372 }
1373 return TargetTTI->getReplicationShuffleCost(
1374 VecSrcTy->getElementType(), ReplicationFactor, VF,
1375 DemandedDstElts, CostKind);
1376 }
1377
1378 bool IsUnary = isa<UndefValue>(Operands[1]);
1379 NumSubElts = VecSrcTy->getElementCount().getKnownMinValue();
1380 SmallVector<int, 16> AdjustMask(Mask.begin(), Mask.end());
1381
1382 // Widening shuffle - widening the source(s) to the new length
1383 // (treated as free - see above), and then perform the adjusted
1384 // shuffle at that width.
1385 if (Shuffle->increasesLength()) {
1386 for (int &M : AdjustMask)
1387 M = M >= NumSubElts ? (M + (Mask.size() - NumSubElts)) : M;
1388
1389 return TargetTTI->getShuffleCost(
1391 AdjustMask, CostKind, 0, nullptr, Operands, Shuffle);
1392 }
1393
1394 // Narrowing shuffle - perform shuffle at original wider width and
1395 // then extract the lower elements.
1396 AdjustMask.append(NumSubElts - Mask.size(), PoisonMaskElem);
1397
1398 InstructionCost ShuffleCost = TargetTTI->getShuffleCost(
1400 VecSrcTy, AdjustMask, CostKind, 0, nullptr, Operands, Shuffle);
1401
1402 SmallVector<int, 16> ExtractMask(Mask.size());
1403 std::iota(ExtractMask.begin(), ExtractMask.end(), 0);
1404 return ShuffleCost + TargetTTI->getShuffleCost(
1405 TTI::SK_ExtractSubvector, VecSrcTy,
1406 ExtractMask, CostKind, 0, VecTy, {}, Shuffle);
1407 }
1408
1409 if (Shuffle->isIdentity())
1410 return 0;
1411
1412 if (Shuffle->isReverse())
1413 return TargetTTI->getShuffleCost(TTI::SK_Reverse, VecTy, Mask, CostKind,
1414 0, nullptr, Operands, Shuffle);
1415
1416 if (Shuffle->isSelect())
1417 return TargetTTI->getShuffleCost(TTI::SK_Select, VecTy, Mask, CostKind,
1418 0, nullptr, Operands, Shuffle);
1419
1420 if (Shuffle->isTranspose())
1421 return TargetTTI->getShuffleCost(TTI::SK_Transpose, VecTy, Mask,
1422 CostKind, 0, nullptr, Operands,
1423 Shuffle);
1424
1425 if (Shuffle->isZeroEltSplat())
1426 return TargetTTI->getShuffleCost(TTI::SK_Broadcast, VecTy, Mask,
1427 CostKind, 0, nullptr, Operands,
1428 Shuffle);
1429
1430 if (Shuffle->isSingleSource())
1431 return TargetTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, VecTy, Mask,
1432 CostKind, 0, nullptr, Operands,
1433 Shuffle);
1434
1435 if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
1436 return TargetTTI->getShuffleCost(
1437 TTI::SK_InsertSubvector, VecTy, Mask, CostKind, SubIndex,
1438 FixedVectorType::get(VecTy->getScalarType(), NumSubElts), Operands,
1439 Shuffle);
1440
1441 if (Shuffle->isSplice(SubIndex))
1442 return TargetTTI->getShuffleCost(TTI::SK_Splice, VecTy, Mask, CostKind,
1443 SubIndex, nullptr, Operands, Shuffle);
1444
1445 return TargetTTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, Mask,
1446 CostKind, 0, nullptr, Operands, Shuffle);
1447 }
1448 case Instruction::ExtractElement: {
1449 auto *EEI = dyn_cast<ExtractElementInst>(U);
1450 if (!EEI)
1451 return TTI::TCC_Basic; // FIXME
1452 unsigned Idx = -1;
1453 if (auto *CI = dyn_cast<ConstantInt>(Operands[1]))
1454 if (CI->getValue().getActiveBits() <= 32)
1455 Idx = CI->getZExtValue();
1456 Type *DstTy = Operands[0]->getType();
1457 return TargetTTI->getVectorInstrCost(*EEI, DstTy, CostKind, Idx);
1458 }
1459 }
1460
1461 // By default, just classify everything as 'basic' or -1 to represent that
1462 // don't know the throughput cost.
1464 }
1465
1467 auto *TargetTTI = static_cast<T *>(this);
1468 SmallVector<const Value *, 4> Ops(I->operand_values());
1469 InstructionCost Cost = TargetTTI->getInstructionCost(
1472 }
1473
1474 bool supportsTailCallFor(const CallBase *CB) const {
1475 return static_cast<const T *>(this)->supportsTailCalls();
1476 }
1477};
1478} // namespace llvm
1479
1480#endif
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
std::string Name
static bool isSigned(unsigned int Opcode)
Hexagon Common GEP
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
uint64_t IntrinsicInst * II
static cl::opt< RegAllocEvictionAdvisorAnalysis::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Development, "development", "for training")))
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:40
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
Definition: APInt.h:77
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition: APInt.h:1309
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1447
APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition: APInt.cpp:1010
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition: APInt.h:179
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1521
an instruction to allocate memory on the stack
Definition: Instructions.h:60
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
A cache of @llvm.assume calls within a function.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1236
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:757
This is the shared class of boolean and integer constants.
Definition: Constants.h:81
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:155
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:146
This is an important base class in LLVM.
Definition: Constant.h:41
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
bool isLegalInteger(uint64_t Width) const
Returns true if the specified type is known to be a native integer type supported by the CPU.
Definition: DataLayout.h:260
const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
Definition: DataLayout.cpp:720
unsigned getPointerTypeSizeInBits(Type *) const
Layout pointer size, in bits, based on the type.
Definition: DataLayout.cpp:763
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:672
TypeSize getTypeStoreSize(Type *Ty) const
Returns the maximum number of bytes that may be overwritten by storing the specified type.
Definition: DataLayout.h:472
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition: TypeSize.h:314
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition: Type.cpp:692
The core instruction combiner logic.
Definition: InstCombiner.h:47
static InstructionCost getInvalid(CostType Val=0)
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:173
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition: Operator.h:42
The optimization diagnostic interface.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
Definition: IVDescriptors.h:71
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
This class represents a constant integer value.
const APInt & getAPInt() const
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:696
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StackOffset holds a fixed and a scalable offset in bytes.
Definition: TypeSize.h:33
static StackOffset getScalable(int64_t Scalable)
Definition: TypeSize.h:43
static StackOffset getFixed(int64_t Fixed)
Definition: TypeSize.h:42
An instruction for storing to memory.
Definition: Instructions.h:289
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TypeSize getElementOffset(unsigned Idx) const
Definition: DataLayout.h:651
Class to represent struct types.
Definition: DerivedTypes.h:216
Multiway switch.
Provides information about what library functions are available for the current target.
Base class for use as a mix-in that aids implementing a TargetTransformInfo-compatible class.
const DataLayout & getDataLayout() const
void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional< uint32_t > AtomicCpySize) const
bool isLegalToVectorizeStore(StoreInst *SI) const
bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const
bool shouldTreatInstructionLikeSelect(const Instruction *I)
bool isLegalToVectorizeLoad(LoadInst *LI) const
bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const
std::optional< unsigned > getVScaleForTuning() const
bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const
bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) const
bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const
std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
bool isLegalICmpImmediate(int64_t Imm) const
bool hasConditionalLoadStoreForType(Type *Ty) const
unsigned getRegUsageForType(Type *Ty) const
unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) const
bool areTypesABICompatible(const Function *Caller, const Function *Callee, const ArrayRef< Type * > &Types) const
void getPeelingPreferences(Loop *, ScalarEvolution &, TTI::PeelingPreferences &) const
bool isAlwaysUniform(const Value *V) const
bool isProfitableToHoist(Instruction *I) const
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind, Instruction *Inst=nullptr) const
bool isLSRCostLess(const TTI::LSRCost &C1, const TTI::LSRCost &C2) const
bool isExpensiveToSpeculativelyExecute(const Instruction *I)
bool isTruncateFree(Type *Ty1, Type *Ty2) const
bool isStridedAccess(const SCEV *Ptr) const
InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
InstructionCost getArithmeticReductionCost(unsigned, VectorType *, std::optional< FastMathFlags > FMF, TTI::TargetCostKind) const
InstructionCost getFPOpCost(Type *Ty) const
bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const
bool areInlineCompatible(const Function *Caller, const Function *Callee) const
std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const
InstructionCost getMemcpyCost(const Instruction *I) const
unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
std::optional< unsigned > getMaxVScale() const
TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const
unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const
bool isProfitableLSRChainElement(Instruction *I) const
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Ty, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args=std::nullopt, const Instruction *CxtI=nullptr) const
InstructionCost getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) const
bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const
Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType) const
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
bool isLegalMaskedStore(Type *DataType, Align Alignment) const
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const
unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, unsigned DefaultCallPenalty) const
InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, const Instruction *I) const
InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const
bool isNoopAddrSpaceCast(unsigned, unsigned) const
unsigned getStoreMinimumVF(unsigned VF, Type *, Type *) const
InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const
TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg)
TargetTransformInfo::VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const
void getUnrollingPreferences(Loop *, ScalarEvolution &, TTI::UnrollingPreferences &, OptimizationRemarkEmitter *) const
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I=nullptr, int64_t ScalableOffset=0) const
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const
unsigned minRequiredElementSize(const Value *Val, bool &isSigned) const
Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional< uint32_t > AtomicElementSize) const
std::optional< unsigned > getCacheSize(TargetTransformInfo::CacheLevel Level) const
unsigned getAssumedAddrSpace(const Value *V) const
bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const
bool isLegalNTStore(Type *DataType, Align Alignment) const
unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const
bool isLegalMaskedGather(Type *DataType, Align Alignment) const
unsigned adjustInliningThreshold(const CallBase *CB) const
BranchProbability getPredictableBranchThreshold() const
std::optional< unsigned > getMinPageSize() const
bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, Align Alignment, unsigned *Fast) const
const SCEVConstant * getConstantStrideStep(ScalarEvolution *SE, const SCEV *Ptr) const
unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty, const DataLayout &DL) const
bool shouldPrefetchAddressSpace(unsigned AS) const
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const
unsigned getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind)
bool isSourceOfDivergence(const Value *V) const
bool enableAggressiveInterleaving(bool LoopHasReductions) const
unsigned getMaxInterleaveFactor(ElementCount VF) const
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) const
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I) const
std::optional< unsigned > getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info, TTI::OperandValueInfo Opd2Info, ArrayRef< const Value * > Args, const Instruction *CxtI=nullptr) const
TTI::AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const
bool forceScalarizeMaskedGather(VectorType *DataType, Align Alignment) const
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const
unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const
bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const
InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind) const
bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty, const DataLayout &DL) const
bool hasDivRemOp(Type *DataType, bool IsSigned) const
InstructionCost getAddressComputationCost(Type *Tp, ScalarEvolution *, const SCEV *) const
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, const Instruction *I) const
TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const
bool preferInLoopReduction(unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const
InstructionCost getOperandsScalarizationOverhead(ArrayRef< const Value * > Args, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const
bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr, int64_t MergeDistance) const
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind) const
bool isLoweredToCall(const Function *F) const
bool hasBranchDivergence(const Function *F=nullptr) const
TargetTransformInfoImplBase(const DataLayout &DL)
bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) const
const char * getRegisterClassName(unsigned ClassID) const
bool isElementTypeLegalForScalableVector(Type *Ty) const
bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const
InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind) const
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const
TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *, FastMathFlags, TTI::TargetCostKind) const
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1) const
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo, const Instruction *I) const
bool useColdCCForColdCall(Function &F) const
bool shouldExpandReduction(const IntrinsicInst *II) const
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const
unsigned getNumberOfRegisters(unsigned ClassID) const
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType, TTI::TargetCostKind CostKind) const
bool isLegalNTLoad(Type *DataType, Align Alignment) const
std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const
bool forceScalarizeMaskedScatter(VectorType *DataType, Align Alignment) const
bool hasActiveVectorLength(unsigned Opcode, Type *DataType, Align Alignment) const
bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const
bool isLegalMaskedLoad(Type *DataType, Align Alignment) const
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
bool isLegalAddScalableImmediate(int64_t Imm) const
bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const
InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask, TTI::TargetCostKind CostKind) const
TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)=default
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
bool shouldBuildLookupTablesForConstant(Constant *C) const
Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
CRTP base class for use as a mix-in that aids implementing a TargetTransformInfo-compatible class.
bool supportsTailCallFor(const CallBase *CB) const
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType, TTI::TargetCostKind CostKind)
InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const TTI::PointersChainInfo &Info, Type *AccessTy, TTI::TargetCostKind CostKind)
InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TTI::TargetCostKind CostKind)
bool isExpensiveToSpeculativelyExecute(const Instruction *I)
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static CastContextHint getCastContextHint(const Instruction *I)
Calculates a CastContextHint from I.
static OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
PopcntSupportKind
Flags indicating the kind of support for population count.
@ TCC_Expensive
The cost of a 'div' instruction on x86.
@ TCC_Free
Expected to fold away in lowering.
@ TCC_Basic
The cost of a typical 'add' instruction.
MemIndexedMode
The type of load/store indexing.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Transpose
Transpose two vectors.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
CastContextHint
Represents a hint about the context in which a cast is used.
CacheLevel
The possible cache levels.
This class represents a truncation of integer types.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition: TypeSize.h:342
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:265
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static IntegerType * getInt8Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition: Type.h:185
bool isScalableTy() const
Return true if this is a type whose size is a known multiple of vscale.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:348
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
Base class of all SIMD vector types.
Definition: DerivedTypes.h:403
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:199
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:239
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Length
Definition: DWP.cpp:480
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are are tuples (A,...
Definition: STLExtras.h:2400
AddressSpace
Definition: NVPTXBaseInfo.h:21
Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:275
constexpr int PoisonMaskElem
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
gep_type_iterator gep_type_begin(const User *GEP)
InstructionCost Cost
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Attributes of a target dependent hardware loop.
Information about a load/store intrinsic defined by the target.
Returns options for expansion of memcmp. IsZeroCmp is.
Describe known properties for a set of pointers.
Flags describing the kind of vector reduction.
Parameters that control the generic loop unrolling transformation.