14#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
15#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
60 for (
const Value *Operand : Operands)
81 return SI.getNumCases();
163 virtual std::pair<const Value *, unsigned>
165 return std::make_pair(
nullptr, -1);
175 assert(
F &&
"A concrete function must be provided to this routine.");
182 if (
F->isIntrinsic())
185 if (
F->hasLocalLinkage() || !
F->hasName())
192 if (Name ==
"copysign" || Name ==
"copysignf" || Name ==
"copysignl" ||
193 Name ==
"fabs" || Name ==
"fabsf" || Name ==
"fabsl" ||
194 Name ==
"fmin" || Name ==
"fminf" || Name ==
"fminl" ||
195 Name ==
"fmax" || Name ==
"fmaxf" || Name ==
"fmaxl" ||
196 Name ==
"sin" || Name ==
"sinf" || Name ==
"sinl" ||
197 Name ==
"cos" || Name ==
"cosf" || Name ==
"cosl" ||
198 Name ==
"tan" || Name ==
"tanf" || Name ==
"tanl" ||
199 Name ==
"asin" || Name ==
"asinf" || Name ==
"asinl" ||
200 Name ==
"acos" || Name ==
"acosf" || Name ==
"acosl" ||
201 Name ==
"atan" || Name ==
"atanf" || Name ==
"atanl" ||
202 Name ==
"atan2" || Name ==
"atan2f" || Name ==
"atan2l"||
203 Name ==
"sinh" || Name ==
"sinhf" || Name ==
"sinhl" ||
204 Name ==
"cosh" || Name ==
"coshf" || Name ==
"coshl" ||
205 Name ==
"tanh" || Name ==
"tanhf" || Name ==
"tanhl" ||
206 Name ==
"sqrt" || Name ==
"sqrtf" || Name ==
"sqrtl" ||
207 Name ==
"exp10" || Name ==
"exp10l" || Name ==
"exp10f")
211 if (Name ==
"pow" || Name ==
"powf" || Name ==
"powl" || Name ==
"exp2" ||
212 Name ==
"exp2l" || Name ==
"exp2f" || Name ==
"floor" ||
213 Name ==
"floorf" || Name ==
"ceil" || Name ==
"round" ||
214 Name ==
"ffs" || Name ==
"ffsl" || Name ==
"abs" || Name ==
"labs" ||
239 virtual std::optional<Instruction *>
244 virtual std::optional<Value *>
247 bool &KnownBitsComputed)
const {
255 SimplifyAndSetOp)
const {
273 int64_t BaseOffset,
bool HasBaseReg,
274 int64_t Scale,
unsigned AddrSpace,
276 int64_t ScalableOffset = 0)
const {
279 return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
324 unsigned DataSize =
DL.getTypeStoreSize(DataType);
331 unsigned DataSize =
DL.getTypeStoreSize(DataType);
349 Align Alignment)
const {
354 Align Alignment)
const {
359 Align Alignment)
const {
379 unsigned AddrSpace)
const {
384 Type *DataType)
const {
402 bool HasBaseReg, int64_t Scale,
403 unsigned AddrSpace)
const {
406 Scale, AddrSpace,
nullptr,
418 virtual bool useAA()
const {
return false; }
441 unsigned ScalarOpdIdx)
const {
513 unsigned *
Fast)
const {
569 Type *Ty =
nullptr)
const {
576 return "Generic::Unknown Register Class";
578 return "Generic::ScalarRC";
580 return "Generic::VectorRC";
591 virtual std::optional<unsigned>
getMaxVScale()
const {
return std::nullopt; }
606 virtual unsigned getMaximumVF(
unsigned ElemWidth,
unsigned Opcode)
const {
614 const Instruction &
I,
bool &AllowPromotionWithoutCommonHeader)
const {
615 AllowPromotionWithoutCommonHeader =
false;
620 virtual std::optional<unsigned>
631 virtual std::optional<unsigned>
647 unsigned NumStridedMemAccesses,
648 unsigned NumPrefetches,
649 bool HasCall)
const {
657 unsigned Opcode,
Type *InputTypeA,
Type *InputTypeB,
Type *AccumType,
672 auto IsWidenableCondition = [](
const Value *V) {
674 if (
II->getIntrinsicID() == Intrinsic::experimental_widenable_condition)
683 case Instruction::FDiv:
684 case Instruction::FRem:
685 case Instruction::SDiv:
686 case Instruction::SRem:
687 case Instruction::UDiv:
688 case Instruction::URem:
691 case Instruction::And:
692 case Instruction::Or:
693 if (
any_of(Args, IsWidenableCondition))
700 if (Ty->getScalarType()->isFloatingPointTy())
728 case Instruction::IntToPtr: {
729 unsigned SrcSize = Src->getScalarSizeInBits();
730 if (
DL.isLegalInteger(SrcSize) &&
731 SrcSize <=
DL.getPointerTypeSizeInBits(Dst))
735 case Instruction::PtrToAddr: {
736 unsigned DstSize = Dst->getScalarSizeInBits();
737 assert(DstSize ==
DL.getAddressSizeInBits(Src));
738 if (
DL.isLegalInteger(DstSize))
742 case Instruction::PtrToInt: {
743 unsigned DstSize = Dst->getScalarSizeInBits();
744 if (
DL.isLegalInteger(DstSize) &&
745 DstSize >=
DL.getPointerTypeSizeInBits(Src))
749 case Instruction::BitCast:
750 if (Dst == Src || (Dst->isPointerTy() && Src->isPointerTy()))
754 case Instruction::Trunc: {
791 unsigned Index,
const Value *Op0,
792 const Value *Op1)
const {
803 ArrayRef<std::tuple<Value *, User *, int>> ScalarUserAndIdx)
const {
809 unsigned Index)
const {
816 unsigned Index)
const {
822 const APInt &DemandedDstElts,
833 if (Opcode == Instruction::InsertValue &&
854 bool VariableMask,
Align Alignment,
861 unsigned Opcode,
Type *DataTy,
bool VariableMask,
Align Alignment,
868 bool VariableMask,
Align Alignment,
877 bool UseMaskForCond,
bool UseMaskForGaps)
const {
884 switch (ICA.
getID()) {
887 case Intrinsic::allow_runtime_check:
888 case Intrinsic::allow_ubsan_check:
889 case Intrinsic::annotation:
890 case Intrinsic::assume:
891 case Intrinsic::sideeffect:
892 case Intrinsic::pseudoprobe:
893 case Intrinsic::arithmetic_fence:
894 case Intrinsic::dbg_assign:
895 case Intrinsic::dbg_declare:
896 case Intrinsic::dbg_value:
897 case Intrinsic::dbg_label:
898 case Intrinsic::invariant_start:
899 case Intrinsic::invariant_end:
900 case Intrinsic::launder_invariant_group:
901 case Intrinsic::strip_invariant_group:
902 case Intrinsic::is_constant:
903 case Intrinsic::lifetime_start:
904 case Intrinsic::lifetime_end:
905 case Intrinsic::experimental_noalias_scope_decl:
906 case Intrinsic::objectsize:
907 case Intrinsic::ptr_annotation:
908 case Intrinsic::var_annotation:
909 case Intrinsic::experimental_gc_result:
910 case Intrinsic::experimental_gc_relocate:
911 case Intrinsic::coro_alloc:
912 case Intrinsic::coro_begin:
913 case Intrinsic::coro_begin_custom_abi:
914 case Intrinsic::coro_free:
915 case Intrinsic::coro_end:
916 case Intrinsic::coro_frame:
917 case Intrinsic::coro_size:
918 case Intrinsic::coro_align:
919 case Intrinsic::coro_suspend:
920 case Intrinsic::coro_subfn_addr:
921 case Intrinsic::threadlocal_address:
922 case Intrinsic::experimental_widenable_condition:
923 case Intrinsic::ssa_copy:
948 std::optional<FastMathFlags> FMF,
961 VectorType *Ty, std::optional<FastMathFlags> FMF,
993 bool CanCreate =
true)
const {
999 unsigned SrcAddrSpace,
unsigned DestAddrSpace,
1001 std::optional<uint32_t> AtomicElementSize)
const {
1002 return AtomicElementSize ?
Type::getIntNTy(Context, *AtomicElementSize * 8)
1008 unsigned RemainingBytes,
unsigned SrcAddrSpace,
unsigned DestAddrSpace,
1010 std::optional<uint32_t> AtomicCpySize)
const {
1011 unsigned OpSizeInBytes = AtomicCpySize.value_or(1);
1013 for (
unsigned i = 0; i != RemainingBytes; i += OpSizeInBytes)
1019 return (Caller->getFnAttribute(
"target-cpu") ==
1020 Callee->getFnAttribute(
"target-cpu")) &&
1021 (Caller->getFnAttribute(
"target-features") ==
1022 Callee->getFnAttribute(
"target-features"));
1026 unsigned DefaultCallPenalty)
const {
1027 return DefaultCallPenalty;
1033 return (Caller->getFnAttribute(
"target-cpu") ==
1034 Callee->getFnAttribute(
"target-cpu")) &&
1035 (Caller->getFnAttribute(
"target-features") ==
1036 Callee->getFnAttribute(
"target-features"));
1057 unsigned AddrSpace)
const {
1063 unsigned AddrSpace)
const {
1077 unsigned ChainSizeInBytes,
1083 unsigned ChainSizeInBytes,
1174 unsigned MaxRequiredSize =
1175 VT->getElementType()->getPrimitiveSizeInBits().getFixedValue();
1177 unsigned MinRequiredSize = 0;
1178 for (
unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
1179 if (
auto *IntElement =
1181 bool signedElement = IntElement->getValue().isNegative();
1183 unsigned ElementMinRequiredSize =
1184 IntElement->getValue().getSignificantBits() - 1;
1188 MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
1191 return MaxRequiredSize;
1194 return MinRequiredSize;
1198 isSigned = CI->getValue().isNegative();
1199 return CI->getValue().getSignificantBits() - 1;
1204 return Cast->getSrcTy()->getScalarSizeInBits() - 1;
1209 return Cast->getSrcTy()->getScalarSizeInBits();
1221 const SCEV *Ptr)
const {
1229 int64_t MergeDistance)
const {
1243template <
typename T>
1255 assert(PointeeType && Ptr &&
"can't get GEPCost of nullptr");
1257 bool HasBaseReg = (BaseGV ==
nullptr);
1259 auto PtrSizeBits =
DL.getPointerTypeSizeInBits(Ptr->
getType());
1260 APInt BaseOffset(PtrSizeBits, 0);
1264 Type *TargetType =
nullptr;
1268 if (Operands.
empty())
1271 for (
auto I = Operands.
begin();
I != Operands.
end(); ++
I, ++GTI) {
1272 TargetType = GTI.getIndexedType();
1279 if (
StructType *STy = GTI.getStructTypeOrNull()) {
1281 assert(ConstIdx &&
"Unexpected GEP index");
1283 BaseOffset +=
DL.getStructLayout(STy)->getElementOffset(
Field);
1289 int64_t ElementSize =
1290 GTI.getSequentialElementStride(
DL).getFixedValue();
1299 Scale = ElementSize;
1314 AccessType = TargetType;
1345 for (
const Value *V : Ptrs) {
1349 if (
Info.isSameBase() && V !=
Base) {
1350 if (
GEP->hasAllConstantIndices())
1354 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
1359 GEP->getSourceElementType(),
GEP->getPointerOperand(), Indices,
1371 auto *TargetTTI =
static_cast<const T *
>(
this);
1376 if (
const Function *
F = CB->getCalledFunction()) {
1377 if (!TargetTTI->isLoweredToCall(
F))
1386 Type *Ty = U->getType();
1392 case Instruction::Call: {
1396 return TargetTTI->getIntrinsicInstrCost(CostAttrs,
CostKind);
1398 case Instruction::Br:
1399 case Instruction::Ret:
1400 case Instruction::PHI:
1401 case Instruction::Switch:
1402 return TargetTTI->getCFInstrCost(Opcode,
CostKind,
I);
1403 case Instruction::Freeze:
1405 case Instruction::ExtractValue:
1406 case Instruction::InsertValue:
1407 return TargetTTI->getInsertExtractValueCost(Opcode,
CostKind);
1408 case Instruction::Alloca:
1412 case Instruction::GetElementPtr: {
1414 Type *AccessType =
nullptr;
1417 if (
GEP->hasOneUser() &&
I)
1418 AccessType =
I->user_back()->getAccessType();
1420 return TargetTTI->getGEPCost(
GEP->getSourceElementType(),
1424 case Instruction::Add:
1425 case Instruction::FAdd:
1426 case Instruction::Sub:
1427 case Instruction::FSub:
1428 case Instruction::Mul:
1429 case Instruction::FMul:
1430 case Instruction::UDiv:
1431 case Instruction::SDiv:
1432 case Instruction::FDiv:
1433 case Instruction::URem:
1434 case Instruction::SRem:
1435 case Instruction::FRem:
1436 case Instruction::Shl:
1437 case Instruction::LShr:
1438 case Instruction::AShr:
1439 case Instruction::And:
1440 case Instruction::Or:
1441 case Instruction::Xor:
1442 case Instruction::FNeg: {
1445 if (Opcode != Instruction::FNeg)
1447 return TargetTTI->getArithmeticInstrCost(Opcode, Ty,
CostKind, Op1Info,
1448 Op2Info, Operands,
I);
1450 case Instruction::IntToPtr:
1451 case Instruction::PtrToAddr:
1452 case Instruction::PtrToInt:
1453 case Instruction::SIToFP:
1454 case Instruction::UIToFP:
1455 case Instruction::FPToUI:
1456 case Instruction::FPToSI:
1457 case Instruction::Trunc:
1458 case Instruction::FPTrunc:
1459 case Instruction::BitCast:
1460 case Instruction::FPExt:
1461 case Instruction::SExt:
1462 case Instruction::ZExt:
1463 case Instruction::AddrSpaceCast: {
1464 Type *OpTy = Operands[0]->getType();
1465 return TargetTTI->getCastInstrCost(
1468 case Instruction::Store: {
1470 Type *ValTy = Operands[0]->getType();
1472 return TargetTTI->getMemoryOpCost(Opcode, ValTy,
SI->getAlign(),
1476 case Instruction::Load: {
1481 Type *LoadType = U->getType();
1492 LoadType = TI->getDestTy();
1494 return TargetTTI->getMemoryOpCost(Opcode, LoadType, LI->getAlign(),
1496 {TTI::OK_AnyValue, TTI::OP_None},
I);
1498 case Instruction::Select: {
1499 const Value *Op0, *Op1;
1510 return TargetTTI->getArithmeticInstrCost(
1512 CostKind, Op1Info, Op2Info, Operands,
I);
1516 Type *CondTy = Operands[0]->getType();
1517 return TargetTTI->getCmpSelInstrCost(Opcode, U->getType(), CondTy,
1521 case Instruction::ICmp:
1522 case Instruction::FCmp: {
1525 Type *ValTy = Operands[0]->getType();
1527 return TargetTTI->getCmpSelInstrCost(Opcode, ValTy, U->getType(),
1532 case Instruction::InsertElement: {
1538 if (CI->getValue().getActiveBits() <= 32)
1539 Idx = CI->getZExtValue();
1540 return TargetTTI->getVectorInstrCost(*IE, Ty,
CostKind, Idx);
1542 case Instruction::ShuffleVector: {
1550 int NumSubElts, SubIndex;
1553 if (
all_of(Mask, [](
int M) {
return M < 0; }))
1557 if (Shuffle->changesLength()) {
1559 if (Shuffle->increasesLength() && Shuffle->isIdentityWithPadding())
1562 if (Shuffle->isExtractSubvectorMask(SubIndex))
1564 VecSrcTy, Mask,
CostKind, SubIndex,
1565 VecTy, Operands, Shuffle);
1567 if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
1568 return TargetTTI->getShuffleCost(
1574 int ReplicationFactor, VF;
1575 if (Shuffle->isReplicationMask(ReplicationFactor, VF)) {
1579 DemandedDstElts.
setBit(
I.index());
1581 return TargetTTI->getReplicationShuffleCost(
1582 VecSrcTy->getElementType(), ReplicationFactor, VF,
1587 NumSubElts = VecSrcTy->getElementCount().getKnownMinValue();
1593 if (Shuffle->increasesLength()) {
1594 for (
int &M : AdjustMask)
1595 M = M >= NumSubElts ? (M + (Mask.size() - NumSubElts)) : M;
1597 return TargetTTI->getShuffleCost(
1599 VecTy, AdjustMask,
CostKind, 0,
nullptr, Operands, Shuffle);
1610 VecSrcTy, VecSrcTy, AdjustMask,
CostKind, 0,
nullptr, Operands,
1614 std::iota(ExtractMask.
begin(), ExtractMask.
end(), 0);
1615 return ShuffleCost + TargetTTI->getShuffleCost(
1617 ExtractMask,
CostKind, 0, VecTy, {}, Shuffle);
1620 if (Shuffle->isIdentity())
1623 if (Shuffle->isReverse())
1624 return TargetTTI->getShuffleCost(
TTI::SK_Reverse, VecTy, VecSrcTy, Mask,
1628 if (Shuffle->isTranspose())
1630 Mask,
CostKind, 0,
nullptr, Operands,
1633 if (Shuffle->isZeroEltSplat())
1635 Mask,
CostKind, 0,
nullptr, Operands,
1638 if (Shuffle->isSingleSource())
1640 VecSrcTy, Mask,
CostKind, 0,
nullptr,
1643 if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
1644 return TargetTTI->getShuffleCost(
1649 if (Shuffle->isSelect())
1650 return TargetTTI->getShuffleCost(
TTI::SK_Select, VecTy, VecSrcTy, Mask,
1654 if (Shuffle->isSplice(SubIndex))
1655 return TargetTTI->getShuffleCost(
TTI::SK_Splice, VecTy, VecSrcTy, Mask,
1656 CostKind, SubIndex,
nullptr, Operands,
1660 Mask,
CostKind, 0,
nullptr, Operands,
1663 case Instruction::ExtractElement: {
1669 if (CI->getValue().getActiveBits() <= 32)
1670 Idx = CI->getZExtValue();
1671 Type *DstTy = Operands[0]->getType();
1672 return TargetTTI->getVectorInstrCost(*EEI, DstTy,
CostKind, Idx);
1681 auto *TargetTTI =
static_cast<const T *
>(
this);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Analysis containing CSE Info
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static bool isSigned(unsigned int Opcode)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
static SymbolRef::Type getType(const Symbol *Sym)
Class for arbitrary precision integers.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
unsigned getBitWidth() const
Return the number of bits in the APInt.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
int64_t getSExtValue() const
Get sign extended value.
an instruction to allocate memory on the stack
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
const T & front() const
front - Get the first element.
bool empty() const
empty - Check if the array is empty.
Class to represent array types.
A cache of @llvm.assume calls within a function.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
This is the shared class of boolean and integer constants.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Convenience struct for specifying and reasoning about fast-math flags.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
The core instruction combiner logic.
static InstructionCost getInvalid(CostType Val=0)
Intrinsic::ID getID() const
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Represents a single loop in the control flow graph.
Information for memory intrinsic cost model.
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
This class represents a constant integer value.
const APInt & getAPInt() const
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
static StackOffset getScalable(int64_t Scalable)
static StackOffset getFixed(int64_t Fixed)
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Class to represent struct types.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Base class of all SIMD vector types.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
FunctionAddr VTableAddr uintptr_t uintptr_t DataSize
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
RecurKind
These are the kinds of recurrences that we support.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
gep_type_iterator gep_type_begin(const User *GEP)
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Attributes of a target dependent hardware loop.
Information about a load/store intrinsic defined by the target.