LLVM 20.0.0git
ValueMapper.cpp
Go to the documentation of this file.
1//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the MapValue function, which is shared by various parts of
10// the lib/Transforms/Utils library.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/STLExtras.h"
20#include "llvm/IR/Argument.h"
21#include "llvm/IR/BasicBlock.h"
22#include "llvm/IR/Constant.h"
23#include "llvm/IR/Constants.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/GlobalAlias.h"
28#include "llvm/IR/GlobalIFunc.h"
31#include "llvm/IR/InlineAsm.h"
32#include "llvm/IR/Instruction.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
40#include "llvm/Support/Debug.h"
41#include <cassert>
42#include <limits>
43#include <memory>
44#include <utility>
45
46using namespace llvm;
47
48#define DEBUG_TYPE "value-mapper"
49
50// Out of line method to get vtable etc for class.
51void ValueMapTypeRemapper::anchor() {}
52void ValueMaterializer::anchor() {}
53
54namespace {
55
56/// A basic block used in a BlockAddress whose function body is not yet
57/// materialized.
58struct DelayedBasicBlock {
59 BasicBlock *OldBB;
60 std::unique_ptr<BasicBlock> TempBB;
61
62 DelayedBasicBlock(const BlockAddress &Old)
63 : OldBB(Old.getBasicBlock()),
64 TempBB(BasicBlock::Create(Old.getContext())) {}
65};
66
67struct WorklistEntry {
68 enum EntryKind {
69 MapGlobalInit,
70 MapAppendingVar,
71 MapAliasOrIFunc,
73 };
74 struct GVInitTy {
77 };
78 struct AppendingGVTy {
80 Constant *InitPrefix;
81 };
82 struct AliasOrIFuncTy {
83 GlobalValue *GV;
85 };
86
87 unsigned Kind : 2;
88 unsigned MCID : 29;
89 unsigned AppendingGVIsOldCtorDtor : 1;
90 unsigned AppendingGVNumNewMembers;
91 union {
92 GVInitTy GVInit;
93 AppendingGVTy AppendingGV;
94 AliasOrIFuncTy AliasOrIFunc;
95 Function *RemapF;
96 } Data;
97};
98
99struct MappingContext {
101 ValueMaterializer *Materializer = nullptr;
102
103 /// Construct a MappingContext with a value map and materializer.
104 explicit MappingContext(ValueToValueMapTy &VM,
105 ValueMaterializer *Materializer = nullptr)
106 : VM(&VM), Materializer(Materializer) {}
107};
108
109class Mapper {
110 friend class MDNodeMapper;
111
112#ifndef NDEBUG
113 DenseSet<GlobalValue *> AlreadyScheduled;
114#endif
115
117 ValueMapTypeRemapper *TypeMapper;
118 unsigned CurrentMCID = 0;
122 SmallVector<Constant *, 16> AppendingInits;
123
124public:
125 Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
126 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
127 : Flags(Flags), TypeMapper(TypeMapper),
128 MCs(1, MappingContext(VM, Materializer)) {}
129
130 /// ValueMapper should explicitly call \a flush() before destruction.
131 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
132
133 bool hasWorkToDo() const { return !Worklist.empty(); }
134
135 unsigned
136 registerAlternateMappingContext(ValueToValueMapTy &VM,
137 ValueMaterializer *Materializer = nullptr) {
138 MCs.push_back(MappingContext(VM, Materializer));
139 return MCs.size() - 1;
140 }
141
142 void addFlags(RemapFlags Flags);
143
144 void remapGlobalObjectMetadata(GlobalObject &GO);
145
146 Value *mapValue(const Value *V);
147 void remapInstruction(Instruction *I);
148 void remapFunction(Function &F);
149 void remapDbgRecord(DbgRecord &DVR);
150
151 Constant *mapConstant(const Constant *C) {
152 return cast_or_null<Constant>(mapValue(C));
153 }
154
155 /// Map metadata.
156 ///
157 /// Find the mapping for MD. Guarantees that the return will be resolved
158 /// (not an MDNode, or MDNode::isResolved() returns true).
159 Metadata *mapMetadata(const Metadata *MD);
160
161 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
162 unsigned MCID);
163 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
164 bool IsOldCtorDtor,
165 ArrayRef<Constant *> NewMembers,
166 unsigned MCID);
167 void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
168 unsigned MCID);
169 void scheduleRemapFunction(Function &F, unsigned MCID);
170
171 void flush();
172
173private:
174 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
175 bool IsOldCtorDtor,
176 ArrayRef<Constant *> NewMembers);
177
178 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
179 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
180
181 Value *mapBlockAddress(const BlockAddress &BA);
182
183 /// Map metadata that doesn't require visiting operands.
184 std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
185
186 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
187 Metadata *mapToSelf(const Metadata *MD);
188};
189
190class MDNodeMapper {
191 Mapper &M;
192
193 /// Data about a node in \a UniquedGraph.
194 struct Data {
195 bool HasChanged = false;
196 unsigned ID = std::numeric_limits<unsigned>::max();
197 TempMDNode Placeholder;
198 };
199
200 /// A graph of uniqued nodes.
201 struct UniquedGraph {
203 SmallVector<MDNode *, 16> POT; // Post-order traversal.
204
205 /// Propagate changed operands through the post-order traversal.
206 ///
207 /// Iteratively update \a Data::HasChanged for each node based on \a
208 /// Data::HasChanged of its operands, until fixed point.
209 void propagateChanges();
210
211 /// Get a forward reference to a node to use as an operand.
212 Metadata &getFwdReference(MDNode &Op);
213 };
214
215 /// Worklist of distinct nodes whose operands need to be remapped.
216 SmallVector<MDNode *, 16> DistinctWorklist;
217
218 // Storage for a UniquedGraph.
220 SmallVector<MDNode *, 16> POTStorage;
221
222public:
223 MDNodeMapper(Mapper &M) : M(M) {}
224
225 /// Map a metadata node (and its transitive operands).
226 ///
227 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative
228 /// algorithm handles distinct nodes and uniqued node subgraphs using
229 /// different strategies.
230 ///
231 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
232 /// using \a mapDistinctNode(). Their mapping can always be computed
233 /// immediately without visiting operands, even if their operands change.
234 ///
235 /// The mapping for uniqued nodes depends on whether their operands change.
236 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
237 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are
238 /// added to \a DistinctWorklist with \a mapDistinctNode().
239 ///
240 /// After mapping \c N itself, this function remaps the operands of the
241 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
242 /// N has been mapped.
243 Metadata *map(const MDNode &N);
244
245private:
246 /// Map a top-level uniqued node and the uniqued subgraph underneath it.
247 ///
248 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
249 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses
250 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
251 /// operands uses the identity mapping.
252 ///
253 /// The algorithm works as follows:
254 ///
255 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
256 /// save the post-order traversal in the given \a UniquedGraph, tracking
257 /// nodes' operands change.
258 ///
259 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands
260 /// through the \a UniquedGraph until fixed point, following the rule
261 /// that if a node changes, any node that references must also change.
262 ///
263 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
264 /// (referencing new operands) where necessary.
265 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
266
267 /// Try to map the operand of an \a MDNode.
268 ///
269 /// If \c Op is already mapped, return the mapping. If it's not an \a
270 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode,
271 /// return the result of \a mapDistinctNode().
272 ///
273 /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode.
274 /// \post getMappedOp(Op) only returns std::nullopt if this returns
275 /// std::nullopt.
276 std::optional<Metadata *> tryToMapOperand(const Metadata *Op);
277
278 /// Map a distinct node.
279 ///
280 /// Return the mapping for the distinct node \c N, saving the result in \a
281 /// DistinctWorklist for later remapping.
282 ///
283 /// \pre \c N is not yet mapped.
284 /// \pre \c N.isDistinct().
285 MDNode *mapDistinctNode(const MDNode &N);
286
287 /// Get a previously mapped node.
288 std::optional<Metadata *> getMappedOp(const Metadata *Op) const;
289
290 /// Create a post-order traversal of an unmapped uniqued node subgraph.
291 ///
292 /// This traverses the metadata graph deeply enough to map \c FirstN. It
293 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
294 /// metadata that has already been mapped will not be part of the POT.
295 ///
296 /// Each node that has a changed operand from outside the graph (e.g., a
297 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
298 /// is marked with \a Data::HasChanged.
299 ///
300 /// \return \c true if any nodes in \c G have \a Data::HasChanged.
301 /// \post \c G.POT is a post-order traversal ending with \c FirstN.
302 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
303 /// to change because of operands outside the graph.
304 bool createPOT(UniquedGraph &G, const MDNode &FirstN);
305
306 /// Visit the operands of a uniqued node in the POT.
307 ///
308 /// Visit the operands in the range from \c I to \c E, returning the first
309 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to
310 /// where to continue the loop through the operands.
311 ///
312 /// This sets \c HasChanged if any of the visited operands change.
313 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
314 MDNode::op_iterator E, bool &HasChanged);
315
316 /// Map all the nodes in the given uniqued graph.
317 ///
318 /// This visits all the nodes in \c G in post-order, using the identity
319 /// mapping or creating a new node depending on \a Data::HasChanged.
320 ///
321 /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for
322 /// any of their operands outside of \c G. \pre \a Data::HasChanged is true
323 /// for a node in \c G iff any of its operands have changed. \post \a
324 /// getMappedOp() returns the mapped node for every node in \c G.
325 void mapNodesInPOT(UniquedGraph &G);
326
327 /// Remap a node's operands using the given functor.
328 ///
329 /// Iterate through the operands of \c N and update them in place using \c
330 /// mapOperand.
331 ///
332 /// \pre N.isDistinct() or N.isTemporary().
333 template <class OperandMapper>
334 void remapOperands(MDNode &N, OperandMapper mapOperand);
335};
336
337} // end anonymous namespace
338
339Value *Mapper::mapValue(const Value *V) {
340 ValueToValueMapTy::iterator I = getVM().find(V);
341
342 // If the value already exists in the map, use it.
343 if (I != getVM().end()) {
344 assert(I->second && "Unexpected null mapping");
345 return I->second;
346 }
347
348 // If we have a materializer and it can materialize a value, use that.
349 if (auto *Materializer = getMaterializer()) {
350 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
351 getVM()[V] = NewV;
352 return NewV;
353 }
354 }
355
356 // Global values do not need to be seeded into the VM if they
357 // are using the identity mapping.
358 if (isa<GlobalValue>(V)) {
360 return nullptr;
361 return getVM()[V] = const_cast<Value *>(V);
362 }
363
364 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
365 // Inline asm may need *type* remapping.
366 FunctionType *NewTy = IA->getFunctionType();
367 if (TypeMapper) {
368 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
369
370 if (NewTy != IA->getFunctionType())
371 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
372 IA->hasSideEffects(), IA->isAlignStack(),
373 IA->getDialect(), IA->canThrow());
374 }
375
376 return getVM()[V] = const_cast<Value *>(V);
377 }
378
379 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
380 const Metadata *MD = MDV->getMetadata();
381
382 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
383 // Look through to grab the local value.
384 if (Value *LV = mapValue(LAM->getValue())) {
385 if (V == LAM->getValue())
386 return const_cast<Value *>(V);
387 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
388 }
389
390 // FIXME: always return nullptr once Verifier::verifyDominatesUse()
391 // ensures metadata operands only reference defined SSA values.
392 return (Flags & RF_IgnoreMissingLocals)
393 ? nullptr
394 : MetadataAsValue::get(V->getContext(),
395 MDTuple::get(V->getContext(), {}));
396 }
397 if (auto *AL = dyn_cast<DIArgList>(MD)) {
399 for (auto *VAM : AL->getArgs()) {
400 // Map both Local and Constant VAMs here; they will both ultimately
401 // be mapped via mapValue. The exceptions are constants when we have no
402 // module level changes and locals when they have no existing mapped
403 // value and RF_IgnoreMissingLocals is set; these have identity
404 // mappings.
405 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) {
406 MappedArgs.push_back(VAM);
407 } else if (Value *LV = mapValue(VAM->getValue())) {
408 MappedArgs.push_back(
409 LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV));
410 } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(VAM)) {
411 MappedArgs.push_back(VAM);
412 } else {
413 // If we cannot map the value, set the argument as undef.
415 UndefValue::get(VAM->getValue()->getType())));
416 }
417 }
418 return MetadataAsValue::get(V->getContext(),
419 DIArgList::get(V->getContext(), MappedArgs));
420 }
421
422 // If this is a module-level metadata and we know that nothing at the module
423 // level is changing, then use an identity mapping.
424 if (Flags & RF_NoModuleLevelChanges)
425 return getVM()[V] = const_cast<Value *>(V);
426
427 // Map the metadata and turn it into a value.
428 auto *MappedMD = mapMetadata(MD);
429 if (MD == MappedMD)
430 return getVM()[V] = const_cast<Value *>(V);
431 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
432 }
433
434 // Okay, this either must be a constant (which may or may not be mappable) or
435 // is something that is not in the mapping table.
436 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
437 if (!C)
438 return nullptr;
439
440 if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
441 return mapBlockAddress(*BA);
442
443 if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) {
444 auto *Val = mapValue(E->getGlobalValue());
445 GlobalValue *GV = dyn_cast<GlobalValue>(Val);
446 if (GV)
447 return getVM()[E] = DSOLocalEquivalent::get(GV);
448
449 auto *Func = cast<Function>(Val->stripPointerCastsAndAliases());
450 Type *NewTy = E->getType();
451 if (TypeMapper)
452 NewTy = TypeMapper->remapType(NewTy);
453 return getVM()[E] = llvm::ConstantExpr::getBitCast(
454 DSOLocalEquivalent::get(Func), NewTy);
455 }
456
457 if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
458 auto *Val = mapValue(NC->getGlobalValue());
459 GlobalValue *GV = cast<GlobalValue>(Val);
460 return getVM()[NC] = NoCFIValue::get(GV);
461 }
462
463 auto mapValueOrNull = [this](Value *V) {
464 auto Mapped = mapValue(V);
465 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
466 "Unexpected null mapping for constant operand without "
467 "NullMapMissingGlobalValues flag");
468 return Mapped;
469 };
470
471 // Otherwise, we have some other constant to remap. Start by checking to see
472 // if all operands have an identity remapping.
473 unsigned OpNo = 0, NumOperands = C->getNumOperands();
474 Value *Mapped = nullptr;
475 for (; OpNo != NumOperands; ++OpNo) {
476 Value *Op = C->getOperand(OpNo);
477 Mapped = mapValueOrNull(Op);
478 if (!Mapped)
479 return nullptr;
480 if (Mapped != Op)
481 break;
482 }
483
484 // See if the type mapper wants to remap the type as well.
485 Type *NewTy = C->getType();
486 if (TypeMapper)
487 NewTy = TypeMapper->remapType(NewTy);
488
489 // If the result type and all operands match up, then just insert an identity
490 // mapping.
491 if (OpNo == NumOperands && NewTy == C->getType())
492 return getVM()[V] = C;
493
494 // Okay, we need to create a new constant. We've already processed some or
495 // all of the operands, set them all up now.
497 Ops.reserve(NumOperands);
498 for (unsigned j = 0; j != OpNo; ++j)
499 Ops.push_back(cast<Constant>(C->getOperand(j)));
500
501 // If one of the operands mismatch, push it and the other mapped operands.
502 if (OpNo != NumOperands) {
503 Ops.push_back(cast<Constant>(Mapped));
504
505 // Map the rest of the operands that aren't processed yet.
506 for (++OpNo; OpNo != NumOperands; ++OpNo) {
507 Mapped = mapValueOrNull(C->getOperand(OpNo));
508 if (!Mapped)
509 return nullptr;
510 Ops.push_back(cast<Constant>(Mapped));
511 }
512 }
513 Type *NewSrcTy = nullptr;
514 if (TypeMapper)
515 if (auto *GEPO = dyn_cast<GEPOperator>(C))
516 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
517
518 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
519 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
520 if (isa<ConstantArray>(C))
521 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
522 if (isa<ConstantStruct>(C))
523 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
524 if (isa<ConstantVector>(C))
525 return getVM()[V] = ConstantVector::get(Ops);
526 // If this is a no-operand constant, it must be because the type was remapped.
527 if (isa<PoisonValue>(C))
528 return getVM()[V] = PoisonValue::get(NewTy);
529 if (isa<UndefValue>(C))
530 return getVM()[V] = UndefValue::get(NewTy);
531 if (isa<ConstantAggregateZero>(C))
532 return getVM()[V] = ConstantAggregateZero::get(NewTy);
533 if (isa<ConstantTargetNone>(C))
534 return getVM()[V] = Constant::getNullValue(NewTy);
535 assert(isa<ConstantPointerNull>(C));
536 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
537}
538
539void Mapper::remapDbgRecord(DbgRecord &DR) {
540 // Remap DILocations.
541 auto *MappedDILoc = mapMetadata(DR.getDebugLoc());
542 DR.setDebugLoc(DebugLoc(cast<DILocation>(MappedDILoc)));
543
544 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
545 // Remap labels.
546 DLR->setLabel(cast<DILabel>(mapMetadata(DLR->getLabel())));
547 return;
548 }
549
550 DbgVariableRecord &V = cast<DbgVariableRecord>(DR);
551 // Remap variables.
552 auto *MappedVar = mapMetadata(V.getVariable());
553 V.setVariable(cast<DILocalVariable>(MappedVar));
554
555 bool IgnoreMissingLocals = Flags & RF_IgnoreMissingLocals;
556
557 if (V.isDbgAssign()) {
558 auto *NewAddr = mapValue(V.getAddress());
559 if (!IgnoreMissingLocals && !NewAddr)
560 V.setKillAddress();
561 else if (NewAddr)
562 V.setAddress(NewAddr);
563 V.setAssignId(cast<DIAssignID>(mapMetadata(V.getAssignID())));
564 }
565
566 // Find Value operands and remap those.
567 SmallVector<Value *, 4> Vals(V.location_ops());
569 for (Value *Val : Vals)
570 NewVals.push_back(mapValue(Val));
571
572 // If there are no changes to the Value operands, finished.
573 if (Vals == NewVals)
574 return;
575
576 // Otherwise, do some replacement.
577 if (!IgnoreMissingLocals && llvm::is_contained(NewVals, nullptr)) {
578 V.setKillLocation();
579 } else {
580 // Either we have all non-empty NewVals, or we're permitted to ignore
581 // missing locals.
582 for (unsigned int I = 0; I < Vals.size(); ++I)
583 if (NewVals[I])
584 V.replaceVariableLocationOp(I, NewVals[I]);
585 }
586}
587
588Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
589 Function *F = cast<Function>(mapValue(BA.getFunction()));
590
591 // F may not have materialized its initializer. In that case, create a
592 // dummy basic block for now, and replace it once we've materialized all
593 // the initializers.
594 BasicBlock *BB;
595 if (F->empty()) {
596 DelayedBBs.push_back(DelayedBasicBlock(BA));
597 BB = DelayedBBs.back().TempBB.get();
598 } else {
599 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
600 }
601
602 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
603}
604
605Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
606 getVM().MD()[Key].reset(Val);
607 return Val;
608}
609
610Metadata *Mapper::mapToSelf(const Metadata *MD) {
611 return mapToMetadata(MD, const_cast<Metadata *>(MD));
612}
613
614std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
615 if (!Op)
616 return nullptr;
617
618 if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
619#ifndef NDEBUG
620 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
621 assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
622 M.getVM().getMappedMD(Op)) &&
623 "Expected Value to be memoized");
624 else
625 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
626 "Expected result to be memoized");
627#endif
628 return *MappedOp;
629 }
630
631 const MDNode &N = *cast<MDNode>(Op);
632 if (N.isDistinct())
633 return mapDistinctNode(N);
634 return std::nullopt;
635}
636
637MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
638 assert(N.isDistinct() && "Expected a distinct node");
639 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
640 Metadata *NewM = nullptr;
641
642 if (M.Flags & RF_ReuseAndMutateDistinctMDs) {
643 NewM = M.mapToSelf(&N);
644 } else {
645 NewM = MDNode::replaceWithDistinct(N.clone());
646 LLVM_DEBUG(dbgs() << "\nMap " << N << "\n"
647 << "To " << *NewM << "\n\n");
648 M.mapToMetadata(&N, NewM);
649 }
650 DistinctWorklist.push_back(cast<MDNode>(NewM));
651
652 return DistinctWorklist.back();
653}
654
656 Value *MappedV) {
657 if (CMD.getValue() == MappedV)
658 return const_cast<ConstantAsMetadata *>(&CMD);
659 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
660}
661
662std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
663 if (!Op)
664 return nullptr;
665
666 if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
667 return *MappedOp;
668
669 if (isa<MDString>(Op))
670 return const_cast<Metadata *>(Op);
671
672 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
673 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
674
675 return std::nullopt;
676}
677
678Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
679 auto Where = Info.find(&Op);
680 assert(Where != Info.end() && "Expected a valid reference");
681
682 auto &OpD = Where->second;
683 if (!OpD.HasChanged)
684 return Op;
685
686 // Lazily construct a temporary node.
687 if (!OpD.Placeholder)
688 OpD.Placeholder = Op.clone();
689
690 return *OpD.Placeholder;
691}
692
693template <class OperandMapper>
694void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
695 assert(!N.isUniqued() && "Expected distinct or temporary nodes");
696 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
697 Metadata *Old = N.getOperand(I);
698 Metadata *New = mapOperand(Old);
699 if (Old != New)
700 LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in "
701 << N << "\n");
702
703 if (Old != New)
704 N.replaceOperandWith(I, New);
705 }
706}
707
708namespace {
709
710/// An entry in the worklist for the post-order traversal.
711struct POTWorklistEntry {
712 MDNode *N; ///< Current node.
713 MDNode::op_iterator Op; ///< Current operand of \c N.
714
715 /// Keep a flag of whether operands have changed in the worklist to avoid
716 /// hitting the map in \a UniquedGraph.
717 bool HasChanged = false;
718
719 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
720};
721
722} // end anonymous namespace
723
724bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
725 assert(G.Info.empty() && "Expected a fresh traversal");
726 assert(FirstN.isUniqued() && "Expected uniqued node in POT");
727
728 // Construct a post-order traversal of the uniqued subgraph under FirstN.
729 bool AnyChanges = false;
731 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
732 (void)G.Info[&FirstN];
733 while (!Worklist.empty()) {
734 // Start or continue the traversal through the this node's operands.
735 auto &WE = Worklist.back();
736 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
737 // Push a new node to traverse first.
738 Worklist.push_back(POTWorklistEntry(*N));
739 continue;
740 }
741
742 // Push the node onto the POT.
743 assert(WE.N->isUniqued() && "Expected only uniqued nodes");
744 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
745 auto &D = G.Info[WE.N];
746 AnyChanges |= D.HasChanged = WE.HasChanged;
747 D.ID = G.POT.size();
748 G.POT.push_back(WE.N);
749
750 // Pop the node off the worklist.
751 Worklist.pop_back();
752 }
753 return AnyChanges;
754}
755
756MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
757 MDNode::op_iterator E, bool &HasChanged) {
758 while (I != E) {
759 Metadata *Op = *I++; // Increment even on early return.
760 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
761 // Check if the operand changes.
762 HasChanged |= Op != *MappedOp;
763 continue;
764 }
765
766 // A uniqued metadata node.
767 MDNode &OpN = *cast<MDNode>(Op);
768 assert(OpN.isUniqued() &&
769 "Only uniqued operands cannot be mapped immediately");
770 if (G.Info.insert(std::make_pair(&OpN, Data())).second)
771 return &OpN; // This is a new one. Return it.
772 }
773 return nullptr;
774}
775
776void MDNodeMapper::UniquedGraph::propagateChanges() {
777 bool AnyChanges;
778 do {
779 AnyChanges = false;
780 for (MDNode *N : POT) {
781 auto &D = Info[N];
782 if (D.HasChanged)
783 continue;
784
785 if (llvm::none_of(N->operands(), [&](const Metadata *Op) {
786 auto Where = Info.find(Op);
787 return Where != Info.end() && Where->second.HasChanged;
788 }))
789 continue;
790
791 AnyChanges = D.HasChanged = true;
792 }
793 } while (AnyChanges);
794}
795
796void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
797 // Construct uniqued nodes, building forward references as necessary.
798 SmallVector<MDNode *, 16> CyclicNodes;
799 for (auto *N : G.POT) {
800 auto &D = G.Info[N];
801 if (!D.HasChanged) {
802 // The node hasn't changed.
803 M.mapToSelf(N);
804 continue;
805 }
806
807 // Remember whether this node had a placeholder.
808 bool HadPlaceholder(D.Placeholder);
809
810 // Clone the uniqued node and remap the operands.
811 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
812 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
813 if (std::optional<Metadata *> MappedOp = getMappedOp(Old))
814 return *MappedOp;
815 (void)D;
816 assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
817 return &G.getFwdReference(*cast<MDNode>(Old));
818 });
819
820 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
821 if (N && NewN && N != NewN) {
822 LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n"
823 << "To " << *NewN << "\n\n");
824 }
825
826 M.mapToMetadata(N, NewN);
827
828 // Nodes that were referenced out of order in the POT are involved in a
829 // uniquing cycle.
830 if (HadPlaceholder)
831 CyclicNodes.push_back(NewN);
832 }
833
834 // Resolve cycles.
835 for (auto *N : CyclicNodes)
836 if (!N->isResolved())
837 N->resolveCycles();
838}
839
840Metadata *MDNodeMapper::map(const MDNode &N) {
841 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
842 assert(!(M.Flags & RF_NoModuleLevelChanges) &&
843 "MDNodeMapper::map assumes module-level changes");
844
845 // Require resolved nodes whenever metadata might be remapped.
846 assert(N.isResolved() && "Unexpected unresolved node");
847
848 Metadata *MappedN =
849 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
850 while (!DistinctWorklist.empty())
851 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
852 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Old))
853 return *MappedOp;
854 return mapTopLevelUniquedNode(*cast<MDNode>(Old));
855 });
856 return MappedN;
857}
858
859Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
860 assert(FirstN.isUniqued() && "Expected uniqued node");
861
862 // Create a post-order traversal of uniqued nodes under FirstN.
863 UniquedGraph G;
864 if (!createPOT(G, FirstN)) {
865 // Return early if no nodes have changed.
866 for (const MDNode *N : G.POT)
867 M.mapToSelf(N);
868 return &const_cast<MDNode &>(FirstN);
869 }
870
871 // Update graph with all nodes that have changed.
872 G.propagateChanges();
873
874 // Map all the nodes in the graph.
875 mapNodesInPOT(G);
876
877 // Return the original node, remapped.
878 return *getMappedOp(&FirstN);
879}
880
881std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
882 // If the value already exists in the map, use it.
883 if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD))
884 return *NewMD;
885
886 if (isa<MDString>(MD))
887 return const_cast<Metadata *>(MD);
888
889 // This is a module-level metadata. If nothing at the module level is
890 // changing, use an identity mapping.
891 if ((Flags & RF_NoModuleLevelChanges))
892 return const_cast<Metadata *>(MD);
893
894 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
895 // Don't memoize ConstantAsMetadata. Instead of lasting until the
896 // LLVMContext is destroyed, they can be deleted when the GlobalValue they
897 // reference is destructed. These aren't super common, so the extra
898 // indirection isn't that expensive.
899 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
900 }
901
902 assert(isa<MDNode>(MD) && "Expected a metadata node");
903
904 return std::nullopt;
905}
906
907Metadata *Mapper::mapMetadata(const Metadata *MD) {
908 assert(MD && "Expected valid metadata");
909 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
910
911 if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD))
912 return *NewMD;
913
914 return MDNodeMapper(*this).map(*cast<MDNode>(MD));
915}
916
917void Mapper::flush() {
918 // Flush out the worklist of global values.
919 while (!Worklist.empty()) {
920 WorklistEntry E = Worklist.pop_back_val();
921 CurrentMCID = E.MCID;
922 switch (E.Kind) {
923 case WorklistEntry::MapGlobalInit:
924 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
925 remapGlobalObjectMetadata(*E.Data.GVInit.GV);
926 break;
927 case WorklistEntry::MapAppendingVar: {
928 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
929 // mapAppendingVariable call can change AppendingInits if initalizer for
930 // the variable depends on another appending global, because of that inits
931 // need to be extracted and updated before the call.
933 drop_begin(AppendingInits, PrefixSize));
934 AppendingInits.resize(PrefixSize);
935 mapAppendingVariable(*E.Data.AppendingGV.GV,
936 E.Data.AppendingGV.InitPrefix,
937 E.AppendingGVIsOldCtorDtor, ArrayRef(NewInits));
938 break;
939 }
940 case WorklistEntry::MapAliasOrIFunc: {
941 GlobalValue *GV = E.Data.AliasOrIFunc.GV;
942 Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target);
943 if (auto *GA = dyn_cast<GlobalAlias>(GV))
944 GA->setAliasee(Target);
945 else if (auto *GI = dyn_cast<GlobalIFunc>(GV))
946 GI->setResolver(Target);
947 else
948 llvm_unreachable("Not alias or ifunc");
949 break;
950 }
951 case WorklistEntry::RemapFunction:
952 remapFunction(*E.Data.RemapF);
953 break;
954 }
955 }
956 CurrentMCID = 0;
957
958 // Finish logic for block addresses now that all global values have been
959 // handled.
960 while (!DelayedBBs.empty()) {
961 DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
962 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
963 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
964 }
965}
966
967void Mapper::remapInstruction(Instruction *I) {
968 // Remap operands.
969 for (Use &Op : I->operands()) {
970 Value *V = mapValue(Op);
971 // If we aren't ignoring missing entries, assert that something happened.
972 if (V)
973 Op = V;
974 else
975 assert((Flags & RF_IgnoreMissingLocals) &&
976 "Referenced value not in value map!");
977 }
978
979 // Remap phi nodes' incoming blocks.
980 if (PHINode *PN = dyn_cast<PHINode>(I)) {
981 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
982 Value *V = mapValue(PN->getIncomingBlock(i));
983 // If we aren't ignoring missing entries, assert that something happened.
984 if (V)
985 PN->setIncomingBlock(i, cast<BasicBlock>(V));
986 else
987 assert((Flags & RF_IgnoreMissingLocals) &&
988 "Referenced block not in value map!");
989 }
990 }
991
992 // Remap attached metadata.
994 I->getAllMetadata(MDs);
995 for (const auto &MI : MDs) {
996 MDNode *Old = MI.second;
997 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
998 if (New != Old)
999 I->setMetadata(MI.first, New);
1000 }
1001
1002 if (!TypeMapper)
1003 return;
1004
1005 // If the instruction's type is being remapped, do so now.
1006 if (auto *CB = dyn_cast<CallBase>(I)) {
1008 FunctionType *FTy = CB->getFunctionType();
1009 Tys.reserve(FTy->getNumParams());
1010 for (Type *Ty : FTy->params())
1011 Tys.push_back(TypeMapper->remapType(Ty));
1012 CB->mutateFunctionType(FunctionType::get(
1013 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
1014
1015 LLVMContext &C = CB->getContext();
1016 AttributeList Attrs = CB->getAttributes();
1017 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
1018 for (int AttrIdx = Attribute::FirstTypeAttr;
1019 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
1020 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
1021 if (Type *Ty =
1022 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) {
1023 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr,
1024 TypeMapper->remapType(Ty));
1025 break;
1026 }
1027 }
1028 }
1029 CB->setAttributes(Attrs);
1030 return;
1031 }
1032 if (auto *AI = dyn_cast<AllocaInst>(I))
1033 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
1034 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
1035 GEP->setSourceElementType(
1036 TypeMapper->remapType(GEP->getSourceElementType()));
1037 GEP->setResultElementType(
1038 TypeMapper->remapType(GEP->getResultElementType()));
1039 }
1040 I->mutateType(TypeMapper->remapType(I->getType()));
1041}
1042
1043void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
1045 GO.getAllMetadata(MDs);
1046 GO.clearMetadata();
1047 for (const auto &I : MDs)
1048 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
1049}
1050
1051void Mapper::remapFunction(Function &F) {
1052 // Remap the operands.
1053 for (Use &Op : F.operands())
1054 if (Op)
1055 Op = mapValue(Op);
1056
1057 // Remap the metadata attachments.
1058 remapGlobalObjectMetadata(F);
1059
1060 // Remap the argument types.
1061 if (TypeMapper)
1062 for (Argument &A : F.args())
1063 A.mutateType(TypeMapper->remapType(A.getType()));
1064
1065 // Remap the instructions.
1066 for (BasicBlock &BB : F) {
1067 for (Instruction &I : BB) {
1068 remapInstruction(&I);
1069 for (DbgRecord &DR : I.getDbgRecordRange())
1070 remapDbgRecord(DR);
1071 }
1072 }
1073}
1074
1075void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
1076 bool IsOldCtorDtor,
1077 ArrayRef<Constant *> NewMembers) {
1079 if (InitPrefix) {
1080 unsigned NumElements =
1081 cast<ArrayType>(InitPrefix->getType())->getNumElements();
1082 for (unsigned I = 0; I != NumElements; ++I)
1083 Elements.push_back(InitPrefix->getAggregateElement(I));
1084 }
1085
1086 PointerType *VoidPtrTy;
1087 Type *EltTy;
1088 if (IsOldCtorDtor) {
1089 // FIXME: This upgrade is done during linking to support the C API. See
1090 // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
1091 VoidPtrTy = PointerType::getUnqual(GV.getContext());
1092 auto &ST = *cast<StructType>(NewMembers.front()->getType());
1093 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
1094 EltTy = StructType::get(GV.getContext(), Tys, false);
1095 }
1096
1097 for (auto *V : NewMembers) {
1098 Constant *NewV;
1099 if (IsOldCtorDtor) {
1100 auto *S = cast<ConstantStruct>(V);
1101 auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
1102 auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
1103 Constant *Null = Constant::getNullValue(VoidPtrTy);
1104 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
1105 } else {
1106 NewV = cast_or_null<Constant>(mapValue(V));
1107 }
1108 Elements.push_back(NewV);
1109 }
1110
1111 GV.setInitializer(
1112 ConstantArray::get(cast<ArrayType>(GV.getValueType()), Elements));
1113}
1114
1115void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
1116 unsigned MCID) {
1117 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1118 assert(MCID < MCs.size() && "Invalid mapping context");
1119
1120 WorklistEntry WE;
1121 WE.Kind = WorklistEntry::MapGlobalInit;
1122 WE.MCID = MCID;
1123 WE.Data.GVInit.GV = &GV;
1124 WE.Data.GVInit.Init = &Init;
1125 Worklist.push_back(WE);
1126}
1127
1128void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1129 Constant *InitPrefix,
1130 bool IsOldCtorDtor,
1131 ArrayRef<Constant *> NewMembers,
1132 unsigned MCID) {
1133 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1134 assert(MCID < MCs.size() && "Invalid mapping context");
1135
1136 WorklistEntry WE;
1137 WE.Kind = WorklistEntry::MapAppendingVar;
1138 WE.MCID = MCID;
1139 WE.Data.AppendingGV.GV = &GV;
1140 WE.Data.AppendingGV.InitPrefix = InitPrefix;
1141 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1142 WE.AppendingGVNumNewMembers = NewMembers.size();
1143 Worklist.push_back(WE);
1144 AppendingInits.append(NewMembers.begin(), NewMembers.end());
1145}
1146
1147void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
1148 unsigned MCID) {
1149 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1150 assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) &&
1151 "Should be alias or ifunc");
1152 assert(MCID < MCs.size() && "Invalid mapping context");
1153
1154 WorklistEntry WE;
1155 WE.Kind = WorklistEntry::MapAliasOrIFunc;
1156 WE.MCID = MCID;
1157 WE.Data.AliasOrIFunc.GV = &GV;
1158 WE.Data.AliasOrIFunc.Target = &Target;
1159 Worklist.push_back(WE);
1160}
1161
1162void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1163 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1164 assert(MCID < MCs.size() && "Invalid mapping context");
1165
1166 WorklistEntry WE;
1167 WE.Kind = WorklistEntry::RemapFunction;
1168 WE.MCID = MCID;
1169 WE.Data.RemapF = &F;
1170 Worklist.push_back(WE);
1171}
1172
1173void Mapper::addFlags(RemapFlags Flags) {
1174 assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1175 this->Flags = this->Flags | Flags;
1176}
1177
1178static Mapper *getAsMapper(void *pImpl) {
1179 return reinterpret_cast<Mapper *>(pImpl);
1180}
1181
1182namespace {
1183
1184class FlushingMapper {
1185 Mapper &M;
1186
1187public:
1188 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1189 assert(!M.hasWorkToDo() && "Expected to be flushed");
1190 }
1191
1192 ~FlushingMapper() { M.flush(); }
1193
1194 Mapper *operator->() const { return &M; }
1195};
1196
1197} // end anonymous namespace
1198
1200 ValueMapTypeRemapper *TypeMapper,
1201 ValueMaterializer *Materializer)
1202 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1203
1205
1206unsigned
1208 ValueMaterializer *Materializer) {
1209 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1210}
1211
1213 FlushingMapper(pImpl)->addFlags(Flags);
1214}
1215
1217 return FlushingMapper(pImpl)->mapValue(&V);
1218}
1219
1221 return cast_or_null<Constant>(mapValue(C));
1222}
1223
1225 return FlushingMapper(pImpl)->mapMetadata(&MD);
1226}
1227
1229 return cast_or_null<MDNode>(mapMetadata(N));
1230}
1231
1233 FlushingMapper(pImpl)->remapInstruction(&I);
1234}
1235
1237 FlushingMapper(pImpl)->remapDbgRecord(DR);
1238}
1239
1242 for (DbgRecord &DR : Range) {
1243 remapDbgRecord(M, DR);
1244 }
1245}
1246
1248 FlushingMapper(pImpl)->remapFunction(F);
1249}
1250
1252 FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO);
1253}
1254
1256 Constant &Init,
1257 unsigned MCID) {
1258 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1259}
1260
1262 Constant *InitPrefix,
1263 bool IsOldCtorDtor,
1264 ArrayRef<Constant *> NewMembers,
1265 unsigned MCID) {
1266 getAsMapper(pImpl)->scheduleMapAppendingVariable(
1267 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1268}
1269
1271 unsigned MCID) {
1272 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID);
1273}
1274
1276 unsigned MCID) {
1277 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID);
1278}
1279
1281 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1282}
static unsigned getMappedOp(unsigned PseudoOp)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
Hexagon Common GEP
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
This file contains the declarations for metadata subclasses.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
while(!ToSimplify.empty())
LoopAnalysisManager LAM
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, DenseMap< VPValue *, VPValue * > &Old2NewVPValues)
Definition: VPlan.cpp:1181
static Mapper * getAsMapper(void *pImpl)
static ConstantAsMetadata * wrapConstantAsMetadata(const ConstantAsMetadata &CMD, Value *MappedV)
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
const T & front() const
front - Get the first element.
Definition: ArrayRef.h:171
iterator end() const
Definition: ArrayRef.h:157
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
iterator begin() const
Definition: ArrayRef.h:156
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
Definition: Attributes.h:86
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
The address of a basic block.
Definition: Constants.h:893
Function * getFunction() const
Definition: Constants.h:923
BasicBlock * getBasicBlock() const
Definition: Constants.h:924
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1897
static ConstantAggregateZero * get(Type *Ty)
Definition: Constants.cpp:1672
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1312
Constant * getValue() const
Definition: Metadata.h:536
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:1108
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2321
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
Definition: Constants.cpp:1826
static Constant * get(StructType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1378
static Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:1421
This is an important base class in LLVM.
Definition: Constant.h:42
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:435
static DIArgList * get(LLVMContext &Context, ArrayRef< ValueAsMetadata * > Args)
static DSOLocalEquivalent * get(GlobalValue *GV)
Return a DSOLocalEquivalent for the specified global value.
Definition: Constants.cpp:1970
This class represents an Operation in the Expression.
Records a position in IR for a source label (DILabel).
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
void setDebugLoc(DebugLoc Loc)
Record of a variable value-assignment, aka a non instruction representation of the dbg....
A debug info location.
Definition: DebugLoc.h:33
Implements a dense probed hash-table based set.
Definition: DenseSet.h:278
static FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
Definition: Metadata.cpp:1521
void addMetadata(unsigned KindID, MDNode &MD)
Add a metadata attachment.
Definition: Metadata.cpp:1565
void clearMetadata()
Erase all metadata attached to this Value.
Definition: Metadata.cpp:1603
Type * getValueType() const
Definition: GlobalValue.h:296
void setInitializer(Constant *InitVal)
setInitializer - Sets the initializer for this global variable, removing any existing initializer if ...
Definition: Globals.cpp:492
static InlineAsm * get(FunctionType *Ty, StringRef AsmString, StringRef Constraints, bool hasSideEffects, bool isAlignStack=false, AsmDialect asmDialect=AD_ATT, bool canThrow=false)
InlineAsm::get - Return the specified uniqued inline asm string.
Definition: InlineAsm.cpp:43
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
Metadata node.
Definition: Metadata.h:1069
static std::enable_if_t< std::is_base_of< MDNode, T >::value, T * > replaceWithDistinct(std::unique_ptr< T, TempMDNodeDeleter > N)
Replace a temporary node with a distinct one.
Definition: Metadata.h:1311
bool isUniqued() const
Definition: Metadata.h:1251
static std::enable_if_t< std::is_base_of< MDNode, T >::value, T * > replaceWithUniqued(std::unique_ptr< T, TempMDNodeDeleter > N)
Replace a temporary node with a uniqued one.
Definition: Metadata.h:1301
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:891
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1500
static MetadataAsValue * get(LLVMContext &Context, Metadata *MD)
Definition: Metadata.cpp:103
Root of the metadata hierarchy.
Definition: Metadata.h:62
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
static NoCFIValue * get(GlobalValue *GV)
Return a NoCFIValue for the specified function.
Definition: Constants.cpp:2028
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Definition: DerivedTypes.h:686
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
Interface for looking up the initializer for a variable name, used by Init::resolveReferences.
Definition: Record.h:2203
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
void reserve(size_type N)
Definition: SmallVector.h:663
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:683
void resize(size_type N)
Definition: SmallVector.h:638
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:406
Target - Wrapper for Target specific information.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1859
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
static ValueAsMetadata * get(Value *V)
Definition: Metadata.cpp:501
static ConstantAsMetadata * getConstant(Value *C)
Definition: Metadata.h:472
This is a class that can be implemented by clients to remap types when cloning constants and instruct...
Definition: ValueMapper.h:41
virtual Type * remapType(Type *SrcTy)=0
The client should implement this method if they want to remap types while mapping values.
void remapDbgRecord(Module *M, DbgRecord &V)
void remapDbgRecordRange(Module *M, iterator_range< DbgRecordIterator > Range)
MDNode * mapMDNode(const MDNode &N)
Metadata * mapMetadata(const Metadata &MD)
void remapInstruction(Instruction &I)
void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, unsigned MappingContextID=0)
void scheduleRemapFunction(Function &F, unsigned MappingContextID=0)
void scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, unsigned MappingContextID=0)
unsigned registerAlternateMappingContext(ValueToValueMapTy &VM, ValueMaterializer *Materializer=nullptr)
Register an alternate mapping context.
void remapFunction(Function &F)
Constant * mapConstant(const Constant &C)
ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef< Constant * > NewMembers, unsigned MappingContextID=0)
void scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, unsigned MappingContextID=0)
void remapGlobalObjectMetadata(GlobalObject &GO)
Value * mapValue(const Value &V)
void addFlags(RemapFlags Flags)
Add to the current RemapFlags.
This is a class that can be implemented by clients to materialize Values on demand.
Definition: ValueMapper.h:54
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:213
A range adaptor for a pair of iterators.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
Key
PAL metadata keys.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
ID ArrayRef< Type * > Tys
Definition: Intrinsics.h:102
@ CE
Windows NT (Windows on ARM)
NodeAddr< FuncNode * > Func
Definition: RDFGraph.h:393
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:235
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
RemapFlags
These are flags that the value mapping APIs allow.
Definition: ValueMapper.h:70
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
Definition: ValueMapper.h:94
@ RF_NullMapMissingGlobalValues
Any global values not in value map are mapped to null instead of mapping to self.
Definition: ValueMapper.h:104
@ RF_NoModuleLevelChanges
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:76
@ RF_ReuseAndMutateDistinctMDs
Instruct the remapper to reuse and mutate distinct metadata (remapping them in place) instead of clon...
Definition: ValueMapper.h:100
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1753
DWARFExpression::Operation Op
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
void RemapFunction(Function &F, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Remap the operands, metadata, arguments, and instructions of a function.
Definition: ValueMapper.h:297
#define N
#define NC
Definition: regutils.h:42