LLVM 19.0.0git
SPIRVBuiltins.cpp
Go to the documentation of this file.
1//===- SPIRVBuiltins.cpp - SPIR-V Built-in Functions ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements lowering builtin function calls and types using their
10// demangled names and TableGen records.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SPIRVBuiltins.h"
15#include "SPIRV.h"
16#include "SPIRVSubtarget.h"
17#include "SPIRVUtils.h"
20#include "llvm/IR/IntrinsicsSPIRV.h"
21#include <string>
22#include <tuple>
23
24#define DEBUG_TYPE "spirv-builtins"
25
26namespace llvm {
27namespace SPIRV {
28#define GET_BuiltinGroup_DECL
29#include "SPIRVGenTables.inc"
30
33 InstructionSet::InstructionSet Set;
34 BuiltinGroup Group;
35 uint8_t MinNumArgs;
36 uint8_t MaxNumArgs;
37};
38
39#define GET_DemangledBuiltins_DECL
40#define GET_DemangledBuiltins_IMPL
41
43 const std::string BuiltinName;
45
49
56
57 bool isSpirvOp() const { return BuiltinName.rfind("__spirv_", 0) == 0; }
58};
59
62 InstructionSet::InstructionSet Set;
64};
65
66#define GET_NativeBuiltins_DECL
67#define GET_NativeBuiltins_IMPL
68
73 bool IsElect;
83};
84
85#define GET_GroupBuiltins_DECL
86#define GET_GroupBuiltins_IMPL
87
91 bool IsBlock;
92 bool IsWrite;
93};
94
95#define GET_IntelSubgroupsBuiltins_DECL
96#define GET_IntelSubgroupsBuiltins_IMPL
97
101};
102
103#define GET_AtomicFloatingBuiltins_DECL
104#define GET_AtomicFloatingBuiltins_IMPL
109};
110
111#define GET_GroupUniformBuiltins_DECL
112#define GET_GroupUniformBuiltins_IMPL
113
116 InstructionSet::InstructionSet Set;
117 BuiltIn::BuiltIn Value;
118};
119
120using namespace BuiltIn;
121#define GET_GetBuiltins_DECL
122#define GET_GetBuiltins_IMPL
123
126 InstructionSet::InstructionSet Set;
128};
129
130#define GET_ImageQueryBuiltins_DECL
131#define GET_ImageQueryBuiltins_IMPL
132
135 InstructionSet::InstructionSet Set;
140 FPRoundingMode::FPRoundingMode RoundingMode;
141};
142
145 InstructionSet::InstructionSet Set;
149 FPRoundingMode::FPRoundingMode RoundingMode;
150};
151
152using namespace FPRoundingMode;
153#define GET_ConvertBuiltins_DECL
154#define GET_ConvertBuiltins_IMPL
155
156using namespace InstructionSet;
157#define GET_VectorLoadStoreBuiltins_DECL
158#define GET_VectorLoadStoreBuiltins_IMPL
159
160#define GET_CLMemoryScope_DECL
161#define GET_CLSamplerAddressingMode_DECL
162#define GET_CLMemoryFenceFlags_DECL
163#define GET_ExtendedBuiltins_DECL
164#include "SPIRVGenTables.inc"
165} // namespace SPIRV
166
167//===----------------------------------------------------------------------===//
168// Misc functions for looking up builtins and veryfying requirements using
169// TableGen records
170//===----------------------------------------------------------------------===//
171
172/// Looks up the demangled builtin call in the SPIRVBuiltins.td records using
173/// the provided \p DemangledCall and specified \p Set.
174///
175/// The lookup follows the following algorithm, returning the first successful
176/// match:
177/// 1. Search with the plain demangled name (expecting a 1:1 match).
178/// 2. Search with the prefix before or suffix after the demangled name
179/// signyfying the type of the first argument.
180///
181/// \returns Wrapper around the demangled call and found builtin definition.
182static std::unique_ptr<const SPIRV::IncomingCall>
184 SPIRV::InstructionSet::InstructionSet Set,
185 Register ReturnRegister, const SPIRVType *ReturnType,
187 // Extract the builtin function name and types of arguments from the call
188 // skeleton.
189 std::string BuiltinName =
190 DemangledCall.substr(0, DemangledCall.find('(')).str();
191
192 // Check if the extracted name contains type information between angle
193 // brackets. If so, the builtin is an instantiated template - needs to have
194 // the information after angle brackets and return type removed.
195 if (BuiltinName.find('<') && BuiltinName.back() == '>') {
196 BuiltinName = BuiltinName.substr(0, BuiltinName.find('<'));
197 BuiltinName = BuiltinName.substr(BuiltinName.find_last_of(' ') + 1);
198 }
199
200 // Check if the extracted name begins with "__spirv_ImageSampleExplicitLod"
201 // contains return type information at the end "_R<type>", if so extract the
202 // plain builtin name without the type information.
203 if (StringRef(BuiltinName).contains("__spirv_ImageSampleExplicitLod") &&
204 StringRef(BuiltinName).contains("_R")) {
205 BuiltinName = BuiltinName.substr(0, BuiltinName.find("_R"));
206 }
207
208 SmallVector<StringRef, 10> BuiltinArgumentTypes;
209 StringRef BuiltinArgs =
210 DemangledCall.slice(DemangledCall.find('(') + 1, DemangledCall.find(')'));
211 BuiltinArgs.split(BuiltinArgumentTypes, ',', -1, false);
212
213 // Look up the builtin in the defined set. Start with the plain demangled
214 // name, expecting a 1:1 match in the defined builtin set.
215 const SPIRV::DemangledBuiltin *Builtin;
216 if ((Builtin = SPIRV::lookupBuiltin(BuiltinName, Set)))
217 return std::make_unique<SPIRV::IncomingCall>(
218 BuiltinName, Builtin, ReturnRegister, ReturnType, Arguments);
219
220 // If the initial look up was unsuccessful and the demangled call takes at
221 // least 1 argument, add a prefix or suffix signifying the type of the first
222 // argument and repeat the search.
223 if (BuiltinArgumentTypes.size() >= 1) {
224 char FirstArgumentType = BuiltinArgumentTypes[0][0];
225 // Prefix to be added to the builtin's name for lookup.
226 // For example, OpenCL "abs" taking an unsigned value has a prefix "u_".
227 std::string Prefix;
228
229 switch (FirstArgumentType) {
230 // Unsigned:
231 case 'u':
232 if (Set == SPIRV::InstructionSet::OpenCL_std)
233 Prefix = "u_";
234 else if (Set == SPIRV::InstructionSet::GLSL_std_450)
235 Prefix = "u";
236 break;
237 // Signed:
238 case 'c':
239 case 's':
240 case 'i':
241 case 'l':
242 if (Set == SPIRV::InstructionSet::OpenCL_std)
243 Prefix = "s_";
244 else if (Set == SPIRV::InstructionSet::GLSL_std_450)
245 Prefix = "s";
246 break;
247 // Floating-point:
248 case 'f':
249 case 'd':
250 case 'h':
251 if (Set == SPIRV::InstructionSet::OpenCL_std ||
252 Set == SPIRV::InstructionSet::GLSL_std_450)
253 Prefix = "f";
254 break;
255 }
256
257 // If argument-type name prefix was added, look up the builtin again.
258 if (!Prefix.empty() &&
259 (Builtin = SPIRV::lookupBuiltin(Prefix + BuiltinName, Set)))
260 return std::make_unique<SPIRV::IncomingCall>(
261 BuiltinName, Builtin, ReturnRegister, ReturnType, Arguments);
262
263 // If lookup with a prefix failed, find a suffix to be added to the
264 // builtin's name for lookup. For example, OpenCL "group_reduce_max" taking
265 // an unsigned value has a suffix "u".
266 std::string Suffix;
267
268 switch (FirstArgumentType) {
269 // Unsigned:
270 case 'u':
271 Suffix = "u";
272 break;
273 // Signed:
274 case 'c':
275 case 's':
276 case 'i':
277 case 'l':
278 Suffix = "s";
279 break;
280 // Floating-point:
281 case 'f':
282 case 'd':
283 case 'h':
284 Suffix = "f";
285 break;
286 }
287
288 // If argument-type name suffix was added, look up the builtin again.
289 if (!Suffix.empty() &&
290 (Builtin = SPIRV::lookupBuiltin(BuiltinName + Suffix, Set)))
291 return std::make_unique<SPIRV::IncomingCall>(
292 BuiltinName, Builtin, ReturnRegister, ReturnType, Arguments);
293 }
294
295 // No builtin with such name was found in the set.
296 return nullptr;
297}
298
299//===----------------------------------------------------------------------===//
300// Helper functions for building misc instructions
301//===----------------------------------------------------------------------===//
302
303/// Helper function building either a resulting scalar or vector bool register
304/// depending on the expected \p ResultType.
305///
306/// \returns Tuple of the resulting register and its type.
307static std::tuple<Register, SPIRVType *>
308buildBoolRegister(MachineIRBuilder &MIRBuilder, const SPIRVType *ResultType,
310 LLT Type;
311 SPIRVType *BoolType = GR->getOrCreateSPIRVBoolType(MIRBuilder);
312
313 if (ResultType->getOpcode() == SPIRV::OpTypeVector) {
314 unsigned VectorElements = ResultType->getOperand(2).getImm();
315 BoolType =
316 GR->getOrCreateSPIRVVectorType(BoolType, VectorElements, MIRBuilder);
318 cast<FixedVectorType>(GR->getTypeForSPIRVType(BoolType));
319 Type = LLT::vector(LLVMVectorType->getElementCount(), 1);
320 } else {
321 Type = LLT::scalar(1);
322 }
323
324 Register ResultRegister =
326 MIRBuilder.getMRI()->setRegClass(ResultRegister, &SPIRV::IDRegClass);
327 GR->assignSPIRVTypeToVReg(BoolType, ResultRegister, MIRBuilder.getMF());
328 return std::make_tuple(ResultRegister, BoolType);
329}
330
331/// Helper function for building either a vector or scalar select instruction
332/// depending on the expected \p ResultType.
333static bool buildSelectInst(MachineIRBuilder &MIRBuilder,
334 Register ReturnRegister, Register SourceRegister,
335 const SPIRVType *ReturnType,
337 Register TrueConst, FalseConst;
338
339 if (ReturnType->getOpcode() == SPIRV::OpTypeVector) {
340 unsigned Bits = GR->getScalarOrVectorBitWidth(ReturnType);
342 TrueConst = GR->getOrCreateConsIntVector(AllOnes, MIRBuilder, ReturnType);
343 FalseConst = GR->getOrCreateConsIntVector(0, MIRBuilder, ReturnType);
344 } else {
345 TrueConst = GR->buildConstantInt(1, MIRBuilder, ReturnType);
346 FalseConst = GR->buildConstantInt(0, MIRBuilder, ReturnType);
347 }
348 return MIRBuilder.buildSelect(ReturnRegister, SourceRegister, TrueConst,
349 FalseConst);
350}
351
352/// Helper function for building a load instruction loading into the
353/// \p DestinationReg.
355 MachineIRBuilder &MIRBuilder,
356 SPIRVGlobalRegistry *GR, LLT LowLevelType,
357 Register DestinationReg = Register(0)) {
358 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
359 if (!DestinationReg.isValid()) {
360 DestinationReg = MRI->createVirtualRegister(&SPIRV::IDRegClass);
361 MRI->setType(DestinationReg, LLT::scalar(32));
362 GR->assignSPIRVTypeToVReg(BaseType, DestinationReg, MIRBuilder.getMF());
363 }
364 // TODO: consider using correct address space and alignment (p0 is canonical
365 // type for selection though).
367 MIRBuilder.buildLoad(DestinationReg, PtrRegister, PtrInfo, Align());
368 return DestinationReg;
369}
370
371/// Helper function for building a load instruction for loading a builtin global
372/// variable of \p BuiltinValue value.
374 MachineIRBuilder &MIRBuilder, SPIRVType *VariableType,
375 SPIRVGlobalRegistry *GR, SPIRV::BuiltIn::BuiltIn BuiltinValue, LLT LLType,
376 Register Reg = Register(0), bool isConst = true, bool hasLinkageTy = true) {
377 Register NewRegister =
378 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::IDRegClass);
379 MIRBuilder.getMRI()->setType(NewRegister,
380 LLT::pointer(0, GR->getPointerSize()));
382 VariableType, MIRBuilder, SPIRV::StorageClass::Input);
383 GR->assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
384
385 // Set up the global OpVariable with the necessary builtin decorations.
386 Register Variable = GR->buildGlobalVariable(
387 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltinValue), nullptr,
388 SPIRV::StorageClass::Input, nullptr, /* isConst= */ isConst,
389 /* HasLinkageTy */ hasLinkageTy, SPIRV::LinkageType::Import, MIRBuilder,
390 false);
391
392 // Load the value from the global variable.
393 Register LoadedRegister =
394 buildLoadInst(VariableType, Variable, MIRBuilder, GR, LLType, Reg);
395 MIRBuilder.getMRI()->setType(LoadedRegister, LLType);
396 return LoadedRegister;
397}
398
399/// Helper external function for inserting ASSIGN_TYPE instuction between \p Reg
400/// and its definition, set the new register as a destination of the definition,
401/// assign SPIRVType to both registers. If SpirvTy is provided, use it as
402/// SPIRVType in ASSIGN_TYPE, otherwise create it from \p Ty. Defined in
403/// SPIRVPreLegalizer.cpp.
404extern Register insertAssignInstr(Register Reg, Type *Ty, SPIRVType *SpirvTy,
405 SPIRVGlobalRegistry *GR,
406 MachineIRBuilder &MIB,
407 MachineRegisterInfo &MRI);
408
409// TODO: Move to TableGen.
410static SPIRV::MemorySemantics::MemorySemantics
411getSPIRVMemSemantics(std::memory_order MemOrder) {
412 switch (MemOrder) {
413 case std::memory_order::memory_order_relaxed:
414 return SPIRV::MemorySemantics::None;
415 case std::memory_order::memory_order_acquire:
416 return SPIRV::MemorySemantics::Acquire;
417 case std::memory_order::memory_order_release:
418 return SPIRV::MemorySemantics::Release;
419 case std::memory_order::memory_order_acq_rel:
420 return SPIRV::MemorySemantics::AcquireRelease;
421 case std::memory_order::memory_order_seq_cst:
422 return SPIRV::MemorySemantics::SequentiallyConsistent;
423 default:
424 report_fatal_error("Unknown CL memory scope");
425 }
426}
427
428static SPIRV::Scope::Scope getSPIRVScope(SPIRV::CLMemoryScope ClScope) {
429 switch (ClScope) {
430 case SPIRV::CLMemoryScope::memory_scope_work_item:
431 return SPIRV::Scope::Invocation;
432 case SPIRV::CLMemoryScope::memory_scope_work_group:
433 return SPIRV::Scope::Workgroup;
434 case SPIRV::CLMemoryScope::memory_scope_device:
435 return SPIRV::Scope::Device;
436 case SPIRV::CLMemoryScope::memory_scope_all_svm_devices:
437 return SPIRV::Scope::CrossDevice;
438 case SPIRV::CLMemoryScope::memory_scope_sub_group:
439 return SPIRV::Scope::Subgroup;
440 }
441 report_fatal_error("Unknown CL memory scope");
442}
443
446 unsigned BitWidth = 32) {
447 SPIRVType *IntType = GR->getOrCreateSPIRVIntegerType(BitWidth, MIRBuilder);
448 return GR->buildConstantInt(Val, MIRBuilder, IntType);
449}
450
451static Register buildScopeReg(Register CLScopeRegister,
452 SPIRV::Scope::Scope Scope,
453 MachineIRBuilder &MIRBuilder,
456 if (CLScopeRegister.isValid()) {
457 auto CLScope =
458 static_cast<SPIRV::CLMemoryScope>(getIConstVal(CLScopeRegister, MRI));
459 Scope = getSPIRVScope(CLScope);
460
461 if (CLScope == static_cast<unsigned>(Scope)) {
462 MRI->setRegClass(CLScopeRegister, &SPIRV::IDRegClass);
463 return CLScopeRegister;
464 }
465 }
466 return buildConstantIntReg(Scope, MIRBuilder, GR);
467}
468
469static Register buildMemSemanticsReg(Register SemanticsRegister,
470 Register PtrRegister, unsigned &Semantics,
471 MachineIRBuilder &MIRBuilder,
473 if (SemanticsRegister.isValid()) {
474 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
475 std::memory_order Order =
476 static_cast<std::memory_order>(getIConstVal(SemanticsRegister, MRI));
477 Semantics =
478 getSPIRVMemSemantics(Order) |
480
481 if (Order == Semantics) {
482 MRI->setRegClass(SemanticsRegister, &SPIRV::IDRegClass);
483 return SemanticsRegister;
484 }
485 }
486 return buildConstantIntReg(Semantics, MIRBuilder, GR);
487}
488
489static bool buildOpFromWrapper(MachineIRBuilder &MIRBuilder, unsigned Opcode,
490 const SPIRV::IncomingCall *Call,
491 Register TypeReg = Register(0)) {
492 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
493 auto MIB = MIRBuilder.buildInstr(Opcode);
494 if (TypeReg.isValid())
495 MIB.addDef(Call->ReturnRegister).addUse(TypeReg);
496 for (Register ArgReg : Call->Arguments) {
497 if (!MRI->getRegClassOrNull(ArgReg))
498 MRI->setRegClass(ArgReg, &SPIRV::IDRegClass);
499 MIB.addUse(ArgReg);
500 }
501 return true;
502}
503
504/// Helper function for translating atomic init to OpStore.
506 MachineIRBuilder &MIRBuilder) {
507 if (Call->isSpirvOp())
508 return buildOpFromWrapper(MIRBuilder, SPIRV::OpStore, Call);
509
510 assert(Call->Arguments.size() == 2 &&
511 "Need 2 arguments for atomic init translation");
512 MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
513 MIRBuilder.getMRI()->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
514 MIRBuilder.buildInstr(SPIRV::OpStore)
515 .addUse(Call->Arguments[0])
516 .addUse(Call->Arguments[1]);
517 return true;
518}
519
520/// Helper function for building an atomic load instruction.
522 MachineIRBuilder &MIRBuilder,
524 Register TypeReg = GR->getSPIRVTypeID(Call->ReturnType);
525 if (Call->isSpirvOp())
526 return buildOpFromWrapper(MIRBuilder, SPIRV::OpAtomicLoad, Call, TypeReg);
527
528 Register PtrRegister = Call->Arguments[0];
529 MIRBuilder.getMRI()->setRegClass(PtrRegister, &SPIRV::IDRegClass);
530 // TODO: if true insert call to __translate_ocl_memory_sccope before
531 // OpAtomicLoad and the function implementation. We can use Translator's
532 // output for transcoding/atomic_explicit_arguments.cl as an example.
533 Register ScopeRegister;
534 if (Call->Arguments.size() > 1) {
535 ScopeRegister = Call->Arguments[1];
536 MIRBuilder.getMRI()->setRegClass(ScopeRegister, &SPIRV::IDRegClass);
537 } else
538 ScopeRegister = buildConstantIntReg(SPIRV::Scope::Device, MIRBuilder, GR);
539
540 Register MemSemanticsReg;
541 if (Call->Arguments.size() > 2) {
542 // TODO: Insert call to __translate_ocl_memory_order before OpAtomicLoad.
543 MemSemanticsReg = Call->Arguments[2];
544 MIRBuilder.getMRI()->setRegClass(MemSemanticsReg, &SPIRV::IDRegClass);
545 } else {
546 int Semantics =
547 SPIRV::MemorySemantics::SequentiallyConsistent |
549 MemSemanticsReg = buildConstantIntReg(Semantics, MIRBuilder, GR);
550 }
551
552 MIRBuilder.buildInstr(SPIRV::OpAtomicLoad)
553 .addDef(Call->ReturnRegister)
554 .addUse(TypeReg)
555 .addUse(PtrRegister)
556 .addUse(ScopeRegister)
557 .addUse(MemSemanticsReg);
558 return true;
559}
560
561/// Helper function for building an atomic store instruction.
563 MachineIRBuilder &MIRBuilder,
565 if (Call->isSpirvOp())
566 return buildOpFromWrapper(MIRBuilder, SPIRV::OpAtomicStore, Call);
567
568 Register ScopeRegister =
569 buildConstantIntReg(SPIRV::Scope::Device, MIRBuilder, GR);
570 Register PtrRegister = Call->Arguments[0];
571 MIRBuilder.getMRI()->setRegClass(PtrRegister, &SPIRV::IDRegClass);
572 int Semantics =
573 SPIRV::MemorySemantics::SequentiallyConsistent |
575 Register MemSemanticsReg = buildConstantIntReg(Semantics, MIRBuilder, GR);
576 MIRBuilder.getMRI()->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
577 MIRBuilder.buildInstr(SPIRV::OpAtomicStore)
578 .addUse(PtrRegister)
579 .addUse(ScopeRegister)
580 .addUse(MemSemanticsReg)
581 .addUse(Call->Arguments[1]);
582 return true;
583}
584
585/// Helper function for building an atomic compare-exchange instruction.
587 const SPIRV::IncomingCall *Call, const SPIRV::DemangledBuiltin *Builtin,
588 unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR) {
589 if (Call->isSpirvOp())
590 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
591 GR->getSPIRVTypeID(Call->ReturnType));
592
593 bool IsCmpxchg = Call->Builtin->Name.contains("cmpxchg");
594 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
595
596 Register ObjectPtr = Call->Arguments[0]; // Pointer (volatile A *object.)
597 Register ExpectedArg = Call->Arguments[1]; // Comparator (C* expected).
598 Register Desired = Call->Arguments[2]; // Value (C Desired).
599 MRI->setRegClass(ObjectPtr, &SPIRV::IDRegClass);
600 MRI->setRegClass(ExpectedArg, &SPIRV::IDRegClass);
601 MRI->setRegClass(Desired, &SPIRV::IDRegClass);
602 SPIRVType *SpvDesiredTy = GR->getSPIRVTypeForVReg(Desired);
603 LLT DesiredLLT = MRI->getType(Desired);
604
605 assert(GR->getSPIRVTypeForVReg(ObjectPtr)->getOpcode() ==
606 SPIRV::OpTypePointer);
607 unsigned ExpectedType = GR->getSPIRVTypeForVReg(ExpectedArg)->getOpcode();
608 (void)ExpectedType;
609 assert(IsCmpxchg ? ExpectedType == SPIRV::OpTypeInt
610 : ExpectedType == SPIRV::OpTypePointer);
611 assert(GR->isScalarOfType(Desired, SPIRV::OpTypeInt));
612
613 SPIRVType *SpvObjectPtrTy = GR->getSPIRVTypeForVReg(ObjectPtr);
614 assert(SpvObjectPtrTy->getOperand(2).isReg() && "SPIRV type is expected");
615 auto StorageClass = static_cast<SPIRV::StorageClass::StorageClass>(
616 SpvObjectPtrTy->getOperand(1).getImm());
617 auto MemSemStorage = getMemSemanticsForStorageClass(StorageClass);
618
619 Register MemSemEqualReg;
620 Register MemSemUnequalReg;
621 uint64_t MemSemEqual =
622 IsCmpxchg
623 ? SPIRV::MemorySemantics::None
624 : SPIRV::MemorySemantics::SequentiallyConsistent | MemSemStorage;
625 uint64_t MemSemUnequal =
626 IsCmpxchg
627 ? SPIRV::MemorySemantics::None
628 : SPIRV::MemorySemantics::SequentiallyConsistent | MemSemStorage;
629 if (Call->Arguments.size() >= 4) {
630 assert(Call->Arguments.size() >= 5 &&
631 "Need 5+ args for explicit atomic cmpxchg");
632 auto MemOrdEq =
633 static_cast<std::memory_order>(getIConstVal(Call->Arguments[3], MRI));
634 auto MemOrdNeq =
635 static_cast<std::memory_order>(getIConstVal(Call->Arguments[4], MRI));
636 MemSemEqual = getSPIRVMemSemantics(MemOrdEq) | MemSemStorage;
637 MemSemUnequal = getSPIRVMemSemantics(MemOrdNeq) | MemSemStorage;
638 if (MemOrdEq == MemSemEqual)
639 MemSemEqualReg = Call->Arguments[3];
640 if (MemOrdNeq == MemSemEqual)
641 MemSemUnequalReg = Call->Arguments[4];
642 MRI->setRegClass(Call->Arguments[3], &SPIRV::IDRegClass);
643 MRI->setRegClass(Call->Arguments[4], &SPIRV::IDRegClass);
644 }
645 if (!MemSemEqualReg.isValid())
646 MemSemEqualReg = buildConstantIntReg(MemSemEqual, MIRBuilder, GR);
647 if (!MemSemUnequalReg.isValid())
648 MemSemUnequalReg = buildConstantIntReg(MemSemUnequal, MIRBuilder, GR);
649
650 Register ScopeReg;
651 auto Scope = IsCmpxchg ? SPIRV::Scope::Workgroup : SPIRV::Scope::Device;
652 if (Call->Arguments.size() >= 6) {
653 assert(Call->Arguments.size() == 6 &&
654 "Extra args for explicit atomic cmpxchg");
655 auto ClScope = static_cast<SPIRV::CLMemoryScope>(
656 getIConstVal(Call->Arguments[5], MRI));
657 Scope = getSPIRVScope(ClScope);
658 if (ClScope == static_cast<unsigned>(Scope))
659 ScopeReg = Call->Arguments[5];
660 MRI->setRegClass(Call->Arguments[5], &SPIRV::IDRegClass);
661 }
662 if (!ScopeReg.isValid())
663 ScopeReg = buildConstantIntReg(Scope, MIRBuilder, GR);
664
665 Register Expected = IsCmpxchg
666 ? ExpectedArg
667 : buildLoadInst(SpvDesiredTy, ExpectedArg, MIRBuilder,
668 GR, LLT::scalar(32));
669 MRI->setType(Expected, DesiredLLT);
670 Register Tmp = !IsCmpxchg ? MRI->createGenericVirtualRegister(DesiredLLT)
671 : Call->ReturnRegister;
672 if (!MRI->getRegClassOrNull(Tmp))
673 MRI->setRegClass(Tmp, &SPIRV::IDRegClass);
674 GR->assignSPIRVTypeToVReg(SpvDesiredTy, Tmp, MIRBuilder.getMF());
675
676 SPIRVType *IntTy = GR->getOrCreateSPIRVIntegerType(32, MIRBuilder);
677 MIRBuilder.buildInstr(Opcode)
678 .addDef(Tmp)
679 .addUse(GR->getSPIRVTypeID(IntTy))
680 .addUse(ObjectPtr)
681 .addUse(ScopeReg)
682 .addUse(MemSemEqualReg)
683 .addUse(MemSemUnequalReg)
684 .addUse(Desired)
686 if (!IsCmpxchg) {
687 MIRBuilder.buildInstr(SPIRV::OpStore).addUse(ExpectedArg).addUse(Tmp);
688 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Call->ReturnRegister, Tmp, Expected);
689 }
690 return true;
691}
692
693/// Helper function for building an atomic load instruction.
694static bool buildAtomicRMWInst(const SPIRV::IncomingCall *Call, unsigned Opcode,
695 MachineIRBuilder &MIRBuilder,
697 if (Call->isSpirvOp())
698 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
699 GR->getSPIRVTypeID(Call->ReturnType));
700
701 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
702 Register ScopeRegister =
703 Call->Arguments.size() >= 4 ? Call->Arguments[3] : Register();
704
705 assert(Call->Arguments.size() <= 4 &&
706 "Too many args for explicit atomic RMW");
707 ScopeRegister = buildScopeReg(ScopeRegister, SPIRV::Scope::Workgroup,
708 MIRBuilder, GR, MRI);
709
710 Register PtrRegister = Call->Arguments[0];
711 unsigned Semantics = SPIRV::MemorySemantics::None;
712 MRI->setRegClass(PtrRegister, &SPIRV::IDRegClass);
713 Register MemSemanticsReg =
714 Call->Arguments.size() >= 3 ? Call->Arguments[2] : Register();
715 MemSemanticsReg = buildMemSemanticsReg(MemSemanticsReg, PtrRegister,
716 Semantics, MIRBuilder, GR);
717 MRI->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
718 MIRBuilder.buildInstr(Opcode)
719 .addDef(Call->ReturnRegister)
720 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
721 .addUse(PtrRegister)
722 .addUse(ScopeRegister)
723 .addUse(MemSemanticsReg)
724 .addUse(Call->Arguments[1]);
725 return true;
726}
727
728/// Helper function for building an atomic floating-type instruction.
730 unsigned Opcode,
731 MachineIRBuilder &MIRBuilder,
733 assert(Call->Arguments.size() == 4 &&
734 "Wrong number of atomic floating-type builtin");
735
736 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
737
738 Register PtrReg = Call->Arguments[0];
739 MRI->setRegClass(PtrReg, &SPIRV::IDRegClass);
740
741 Register ScopeReg = Call->Arguments[1];
742 MRI->setRegClass(ScopeReg, &SPIRV::IDRegClass);
743
744 Register MemSemanticsReg = Call->Arguments[2];
745 MRI->setRegClass(MemSemanticsReg, &SPIRV::IDRegClass);
746
747 Register ValueReg = Call->Arguments[3];
748 MRI->setRegClass(ValueReg, &SPIRV::IDRegClass);
749
750 MIRBuilder.buildInstr(Opcode)
751 .addDef(Call->ReturnRegister)
752 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
753 .addUse(PtrReg)
754 .addUse(ScopeReg)
755 .addUse(MemSemanticsReg)
756 .addUse(ValueReg);
757 return true;
758}
759
760/// Helper function for building atomic flag instructions (e.g.
761/// OpAtomicFlagTestAndSet).
763 unsigned Opcode, MachineIRBuilder &MIRBuilder,
765 bool IsSet = Opcode == SPIRV::OpAtomicFlagTestAndSet;
766 Register TypeReg = GR->getSPIRVTypeID(Call->ReturnType);
767 if (Call->isSpirvOp())
768 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
769 IsSet ? TypeReg : Register(0));
770
771 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
772 Register PtrRegister = Call->Arguments[0];
773 unsigned Semantics = SPIRV::MemorySemantics::SequentiallyConsistent;
774 Register MemSemanticsReg =
775 Call->Arguments.size() >= 2 ? Call->Arguments[1] : Register();
776 MemSemanticsReg = buildMemSemanticsReg(MemSemanticsReg, PtrRegister,
777 Semantics, MIRBuilder, GR);
778
779 assert((Opcode != SPIRV::OpAtomicFlagClear ||
780 (Semantics != SPIRV::MemorySemantics::Acquire &&
781 Semantics != SPIRV::MemorySemantics::AcquireRelease)) &&
782 "Invalid memory order argument!");
783
784 Register ScopeRegister =
785 Call->Arguments.size() >= 3 ? Call->Arguments[2] : Register();
786 ScopeRegister =
787 buildScopeReg(ScopeRegister, SPIRV::Scope::Device, MIRBuilder, GR, MRI);
788
789 auto MIB = MIRBuilder.buildInstr(Opcode);
790 if (IsSet)
791 MIB.addDef(Call->ReturnRegister).addUse(TypeReg);
792
793 MIB.addUse(PtrRegister).addUse(ScopeRegister).addUse(MemSemanticsReg);
794 return true;
795}
796
797/// Helper function for building barriers, i.e., memory/control ordering
798/// operations.
799static bool buildBarrierInst(const SPIRV::IncomingCall *Call, unsigned Opcode,
800 MachineIRBuilder &MIRBuilder,
802 if (Call->isSpirvOp())
803 return buildOpFromWrapper(MIRBuilder, Opcode, Call);
804
805 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
806 unsigned MemFlags = getIConstVal(Call->Arguments[0], MRI);
807 unsigned MemSemantics = SPIRV::MemorySemantics::None;
808
809 if (MemFlags & SPIRV::CLK_LOCAL_MEM_FENCE)
810 MemSemantics |= SPIRV::MemorySemantics::WorkgroupMemory;
811
812 if (MemFlags & SPIRV::CLK_GLOBAL_MEM_FENCE)
813 MemSemantics |= SPIRV::MemorySemantics::CrossWorkgroupMemory;
814
815 if (MemFlags & SPIRV::CLK_IMAGE_MEM_FENCE)
816 MemSemantics |= SPIRV::MemorySemantics::ImageMemory;
817
818 if (Opcode == SPIRV::OpMemoryBarrier) {
819 std::memory_order MemOrder =
820 static_cast<std::memory_order>(getIConstVal(Call->Arguments[1], MRI));
821 MemSemantics = getSPIRVMemSemantics(MemOrder) | MemSemantics;
822 } else {
823 MemSemantics |= SPIRV::MemorySemantics::SequentiallyConsistent;
824 }
825
826 Register MemSemanticsReg;
827 if (MemFlags == MemSemantics) {
828 MemSemanticsReg = Call->Arguments[0];
829 MRI->setRegClass(MemSemanticsReg, &SPIRV::IDRegClass);
830 } else
831 MemSemanticsReg = buildConstantIntReg(MemSemantics, MIRBuilder, GR);
832
833 Register ScopeReg;
834 SPIRV::Scope::Scope Scope = SPIRV::Scope::Workgroup;
835 SPIRV::Scope::Scope MemScope = Scope;
836 if (Call->Arguments.size() >= 2) {
837 assert(
838 ((Opcode != SPIRV::OpMemoryBarrier && Call->Arguments.size() == 2) ||
839 (Opcode == SPIRV::OpMemoryBarrier && Call->Arguments.size() == 3)) &&
840 "Extra args for explicitly scoped barrier");
841 Register ScopeArg = (Opcode == SPIRV::OpMemoryBarrier) ? Call->Arguments[2]
842 : Call->Arguments[1];
843 SPIRV::CLMemoryScope CLScope =
844 static_cast<SPIRV::CLMemoryScope>(getIConstVal(ScopeArg, MRI));
845 MemScope = getSPIRVScope(CLScope);
846 if (!(MemFlags & SPIRV::CLK_LOCAL_MEM_FENCE) ||
847 (Opcode == SPIRV::OpMemoryBarrier))
848 Scope = MemScope;
849
850 if (CLScope == static_cast<unsigned>(Scope)) {
851 ScopeReg = Call->Arguments[1];
852 MRI->setRegClass(ScopeReg, &SPIRV::IDRegClass);
853 }
854 }
855
856 if (!ScopeReg.isValid())
857 ScopeReg = buildConstantIntReg(Scope, MIRBuilder, GR);
858
859 auto MIB = MIRBuilder.buildInstr(Opcode).addUse(ScopeReg);
860 if (Opcode != SPIRV::OpMemoryBarrier)
861 MIB.addUse(buildConstantIntReg(MemScope, MIRBuilder, GR));
862 MIB.addUse(MemSemanticsReg);
863 return true;
864}
865
866static unsigned getNumComponentsForDim(SPIRV::Dim::Dim dim) {
867 switch (dim) {
868 case SPIRV::Dim::DIM_1D:
869 case SPIRV::Dim::DIM_Buffer:
870 return 1;
871 case SPIRV::Dim::DIM_2D:
872 case SPIRV::Dim::DIM_Cube:
873 case SPIRV::Dim::DIM_Rect:
874 return 2;
875 case SPIRV::Dim::DIM_3D:
876 return 3;
877 default:
878 report_fatal_error("Cannot get num components for given Dim");
879 }
880}
881
882/// Helper function for obtaining the number of size components.
883static unsigned getNumSizeComponents(SPIRVType *imgType) {
884 assert(imgType->getOpcode() == SPIRV::OpTypeImage);
885 auto dim = static_cast<SPIRV::Dim::Dim>(imgType->getOperand(2).getImm());
886 unsigned numComps = getNumComponentsForDim(dim);
887 bool arrayed = imgType->getOperand(4).getImm() == 1;
888 return arrayed ? numComps + 1 : numComps;
889}
890
891//===----------------------------------------------------------------------===//
892// Implementation functions for each builtin group
893//===----------------------------------------------------------------------===//
894
895static bool generateExtInst(const SPIRV::IncomingCall *Call,
896 MachineIRBuilder &MIRBuilder,
898 // Lookup the extended instruction number in the TableGen records.
899 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
901 SPIRV::lookupExtendedBuiltin(Builtin->Name, Builtin->Set)->Number;
902
903 // Build extended instruction.
904 auto MIB =
905 MIRBuilder.buildInstr(SPIRV::OpExtInst)
906 .addDef(Call->ReturnRegister)
907 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
908 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
909 .addImm(Number);
910
911 for (auto Argument : Call->Arguments)
912 MIB.addUse(Argument);
913 return true;
914}
915
917 MachineIRBuilder &MIRBuilder,
919 // Lookup the instruction opcode in the TableGen records.
920 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
921 unsigned Opcode =
922 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
923
924 Register CompareRegister;
925 SPIRVType *RelationType;
926 std::tie(CompareRegister, RelationType) =
927 buildBoolRegister(MIRBuilder, Call->ReturnType, GR);
928
929 // Build relational instruction.
930 auto MIB = MIRBuilder.buildInstr(Opcode)
931 .addDef(CompareRegister)
932 .addUse(GR->getSPIRVTypeID(RelationType));
933
934 for (auto Argument : Call->Arguments)
935 MIB.addUse(Argument);
936
937 // Build select instruction.
938 return buildSelectInst(MIRBuilder, Call->ReturnRegister, CompareRegister,
939 Call->ReturnType, GR);
940}
941
943 MachineIRBuilder &MIRBuilder,
945 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
946 const SPIRV::GroupBuiltin *GroupBuiltin =
947 SPIRV::lookupGroupBuiltin(Builtin->Name);
948 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
949 Register Arg0;
950 if (GroupBuiltin->HasBoolArg) {
951 Register ConstRegister = Call->Arguments[0];
952 auto ArgInstruction = getDefInstrMaybeConstant(ConstRegister, MRI);
953 (void)ArgInstruction;
954 // TODO: support non-constant bool values.
955 assert(ArgInstruction->getOpcode() == TargetOpcode::G_CONSTANT &&
956 "Only constant bool value args are supported");
957 if (GR->getSPIRVTypeForVReg(Call->Arguments[0])->getOpcode() !=
958 SPIRV::OpTypeBool)
959 Arg0 = GR->buildConstantInt(getIConstVal(ConstRegister, MRI), MIRBuilder,
960 GR->getOrCreateSPIRVBoolType(MIRBuilder));
961 }
962
963 Register GroupResultRegister = Call->ReturnRegister;
964 SPIRVType *GroupResultType = Call->ReturnType;
965
966 // TODO: maybe we need to check whether the result type is already boolean
967 // and in this case do not insert select instruction.
968 const bool HasBoolReturnTy =
969 GroupBuiltin->IsElect || GroupBuiltin->IsAllOrAny ||
970 GroupBuiltin->IsAllEqual || GroupBuiltin->IsLogical ||
971 GroupBuiltin->IsInverseBallot || GroupBuiltin->IsBallotBitExtract;
972
973 if (HasBoolReturnTy)
974 std::tie(GroupResultRegister, GroupResultType) =
975 buildBoolRegister(MIRBuilder, Call->ReturnType, GR);
976
977 auto Scope = Builtin->Name.starts_with("sub_group") ? SPIRV::Scope::Subgroup
978 : SPIRV::Scope::Workgroup;
979 Register ScopeRegister = buildConstantIntReg(Scope, MIRBuilder, GR);
980
981 // Build work/sub group instruction.
982 auto MIB = MIRBuilder.buildInstr(GroupBuiltin->Opcode)
983 .addDef(GroupResultRegister)
984 .addUse(GR->getSPIRVTypeID(GroupResultType))
985 .addUse(ScopeRegister);
986
987 if (!GroupBuiltin->NoGroupOperation)
988 MIB.addImm(GroupBuiltin->GroupOperation);
989 if (Call->Arguments.size() > 0) {
990 MIB.addUse(Arg0.isValid() ? Arg0 : Call->Arguments[0]);
991 MRI->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
992 for (unsigned i = 1; i < Call->Arguments.size(); i++) {
993 MIB.addUse(Call->Arguments[i]);
994 MRI->setRegClass(Call->Arguments[i], &SPIRV::IDRegClass);
995 }
996 }
997
998 // Build select instruction.
999 if (HasBoolReturnTy)
1000 buildSelectInst(MIRBuilder, Call->ReturnRegister, GroupResultRegister,
1001 Call->ReturnType, GR);
1002 return true;
1003}
1004
1006 MachineIRBuilder &MIRBuilder,
1007 SPIRVGlobalRegistry *GR) {
1008 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1009 MachineFunction &MF = MIRBuilder.getMF();
1010 const auto *ST = static_cast<const SPIRVSubtarget *>(&MF.getSubtarget());
1011 if (!ST->canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1012 std::string DiagMsg = std::string(Builtin->Name) +
1013 ": the builtin requires the following SPIR-V "
1014 "extension: SPV_INTEL_subgroups";
1015 report_fatal_error(DiagMsg.c_str(), false);
1016 }
1017 const SPIRV::IntelSubgroupsBuiltin *IntelSubgroups =
1018 SPIRV::lookupIntelSubgroupsBuiltin(Builtin->Name);
1019 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1020
1021 uint32_t OpCode = IntelSubgroups->Opcode;
1022 if (IntelSubgroups->IsBlock) {
1023 // Minimal number or arguments set in TableGen records is 1
1024 if (SPIRVType *Arg0Type = GR->getSPIRVTypeForVReg(Call->Arguments[0])) {
1025 if (Arg0Type->getOpcode() == SPIRV::OpTypeImage) {
1026 // TODO: add required validation from the specification:
1027 // "'Image' must be an object whose type is OpTypeImage with a 'Sampled'
1028 // operand of 0 or 2. If the 'Sampled' operand is 2, then some
1029 // dimensions require a capability."
1030 switch (OpCode) {
1031 case SPIRV::OpSubgroupBlockReadINTEL:
1032 OpCode = SPIRV::OpSubgroupImageBlockReadINTEL;
1033 break;
1034 case SPIRV::OpSubgroupBlockWriteINTEL:
1035 OpCode = SPIRV::OpSubgroupImageBlockWriteINTEL;
1036 break;
1037 }
1038 }
1039 }
1040 }
1041
1042 // TODO: opaque pointers types should be eventually resolved in such a way
1043 // that validation of block read is enabled with respect to the following
1044 // specification requirement:
1045 // "'Result Type' may be a scalar or vector type, and its component type must
1046 // be equal to the type pointed to by 'Ptr'."
1047 // For example, function parameter type should not be default i8 pointer, but
1048 // depend on the result type of the instruction where it is used as a pointer
1049 // argument of OpSubgroupBlockReadINTEL
1050
1051 // Build Intel subgroups instruction
1053 IntelSubgroups->IsWrite
1054 ? MIRBuilder.buildInstr(OpCode)
1055 : MIRBuilder.buildInstr(OpCode)
1056 .addDef(Call->ReturnRegister)
1057 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
1058 for (size_t i = 0; i < Call->Arguments.size(); ++i) {
1059 MIB.addUse(Call->Arguments[i]);
1060 MRI->setRegClass(Call->Arguments[i], &SPIRV::IDRegClass);
1061 }
1062
1063 return true;
1064}
1065
1067 MachineIRBuilder &MIRBuilder,
1068 SPIRVGlobalRegistry *GR) {
1069 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1070 MachineFunction &MF = MIRBuilder.getMF();
1071 const auto *ST = static_cast<const SPIRVSubtarget *>(&MF.getSubtarget());
1072 if (!ST->canUseExtension(
1073 SPIRV::Extension::SPV_KHR_uniform_group_instructions)) {
1074 std::string DiagMsg = std::string(Builtin->Name) +
1075 ": the builtin requires the following SPIR-V "
1076 "extension: SPV_KHR_uniform_group_instructions";
1077 report_fatal_error(DiagMsg.c_str(), false);
1078 }
1079 const SPIRV::GroupUniformBuiltin *GroupUniform =
1080 SPIRV::lookupGroupUniformBuiltin(Builtin->Name);
1081 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1082
1083 Register GroupResultReg = Call->ReturnRegister;
1084 MRI->setRegClass(GroupResultReg, &SPIRV::IDRegClass);
1085
1086 // Scope
1087 Register ScopeReg = Call->Arguments[0];
1088 MRI->setRegClass(ScopeReg, &SPIRV::IDRegClass);
1089
1090 // Group Operation
1091 Register ConstGroupOpReg = Call->Arguments[1];
1092 const MachineInstr *Const = getDefInstrMaybeConstant(ConstGroupOpReg, MRI);
1093 if (!Const || Const->getOpcode() != TargetOpcode::G_CONSTANT)
1095 "expect a constant group operation for a uniform group instruction",
1096 false);
1097 const MachineOperand &ConstOperand = Const->getOperand(1);
1098 if (!ConstOperand.isCImm())
1099 report_fatal_error("uniform group instructions: group operation must be an "
1100 "integer constant",
1101 false);
1102
1103 // Value
1104 Register ValueReg = Call->Arguments[2];
1105 MRI->setRegClass(ValueReg, &SPIRV::IDRegClass);
1106
1107 auto MIB = MIRBuilder.buildInstr(GroupUniform->Opcode)
1108 .addDef(GroupResultReg)
1109 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1110 .addUse(ScopeReg);
1111 addNumImm(ConstOperand.getCImm()->getValue(), MIB);
1112 MIB.addUse(ValueReg);
1113
1114 return true;
1115}
1116
1117// These queries ask for a single size_t result for a given dimension index, e.g
1118// size_t get_global_id(uint dimindex). In SPIR-V, the builtins corresonding to
1119// these values are all vec3 types, so we need to extract the correct index or
1120// return defaultVal (0 or 1 depending on the query). We also handle extending
1121// or tuncating in case size_t does not match the expected result type's
1122// bitwidth.
1123//
1124// For a constant index >= 3 we generate:
1125// %res = OpConstant %SizeT 0
1126//
1127// For other indices we generate:
1128// %g = OpVariable %ptr_V3_SizeT Input
1129// OpDecorate %g BuiltIn XXX
1130// OpDecorate %g LinkageAttributes "__spirv_BuiltInXXX"
1131// OpDecorate %g Constant
1132// %loadedVec = OpLoad %V3_SizeT %g
1133//
1134// Then, if the index is constant < 3, we generate:
1135// %res = OpCompositeExtract %SizeT %loadedVec idx
1136// If the index is dynamic, we generate:
1137// %tmp = OpVectorExtractDynamic %SizeT %loadedVec %idx
1138// %cmp = OpULessThan %bool %idx %const_3
1139// %res = OpSelect %SizeT %cmp %tmp %const_0
1140//
1141// If the bitwidth of %res does not match the expected return type, we add an
1142// extend or truncate.
1144 MachineIRBuilder &MIRBuilder,
1146 SPIRV::BuiltIn::BuiltIn BuiltinValue,
1147 uint64_t DefaultValue) {
1148 Register IndexRegister = Call->Arguments[0];
1149 const unsigned ResultWidth = Call->ReturnType->getOperand(1).getImm();
1150 const unsigned PointerSize = GR->getPointerSize();
1151 const SPIRVType *PointerSizeType =
1152 GR->getOrCreateSPIRVIntegerType(PointerSize, MIRBuilder);
1153 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1154 auto IndexInstruction = getDefInstrMaybeConstant(IndexRegister, MRI);
1155
1156 // Set up the final register to do truncation or extension on at the end.
1157 Register ToTruncate = Call->ReturnRegister;
1158
1159 // If the index is constant, we can statically determine if it is in range.
1160 bool IsConstantIndex =
1161 IndexInstruction->getOpcode() == TargetOpcode::G_CONSTANT;
1162
1163 // If it's out of range (max dimension is 3), we can just return the constant
1164 // default value (0 or 1 depending on which query function).
1165 if (IsConstantIndex && getIConstVal(IndexRegister, MRI) >= 3) {
1166 Register DefaultReg = Call->ReturnRegister;
1167 if (PointerSize != ResultWidth) {
1168 DefaultReg = MRI->createGenericVirtualRegister(LLT::scalar(PointerSize));
1169 MRI->setRegClass(DefaultReg, &SPIRV::IDRegClass);
1170 GR->assignSPIRVTypeToVReg(PointerSizeType, DefaultReg,
1171 MIRBuilder.getMF());
1172 ToTruncate = DefaultReg;
1173 }
1174 auto NewRegister =
1175 GR->buildConstantInt(DefaultValue, MIRBuilder, PointerSizeType);
1176 MIRBuilder.buildCopy(DefaultReg, NewRegister);
1177 } else { // If it could be in range, we need to load from the given builtin.
1178 auto Vec3Ty =
1179 GR->getOrCreateSPIRVVectorType(PointerSizeType, 3, MIRBuilder);
1180 Register LoadedVector =
1181 buildBuiltinVariableLoad(MIRBuilder, Vec3Ty, GR, BuiltinValue,
1182 LLT::fixed_vector(3, PointerSize));
1183 // Set up the vreg to extract the result to (possibly a new temporary one).
1184 Register Extracted = Call->ReturnRegister;
1185 if (!IsConstantIndex || PointerSize != ResultWidth) {
1186 Extracted = MRI->createGenericVirtualRegister(LLT::scalar(PointerSize));
1187 MRI->setRegClass(Extracted, &SPIRV::IDRegClass);
1188 GR->assignSPIRVTypeToVReg(PointerSizeType, Extracted, MIRBuilder.getMF());
1189 }
1190 // Use Intrinsic::spv_extractelt so dynamic vs static extraction is
1191 // handled later: extr = spv_extractelt LoadedVector, IndexRegister.
1192 MachineInstrBuilder ExtractInst = MIRBuilder.buildIntrinsic(
1193 Intrinsic::spv_extractelt, ArrayRef<Register>{Extracted}, true, false);
1194 ExtractInst.addUse(LoadedVector).addUse(IndexRegister);
1195
1196 // If the index is dynamic, need check if it's < 3, and then use a select.
1197 if (!IsConstantIndex) {
1198 insertAssignInstr(Extracted, nullptr, PointerSizeType, GR, MIRBuilder,
1199 *MRI);
1200
1201 auto IndexType = GR->getSPIRVTypeForVReg(IndexRegister);
1202 auto BoolType = GR->getOrCreateSPIRVBoolType(MIRBuilder);
1203
1204 Register CompareRegister =
1205 MRI->createGenericVirtualRegister(LLT::scalar(1));
1206 MRI->setRegClass(CompareRegister, &SPIRV::IDRegClass);
1207 GR->assignSPIRVTypeToVReg(BoolType, CompareRegister, MIRBuilder.getMF());
1208
1209 // Use G_ICMP to check if idxVReg < 3.
1210 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CompareRegister, IndexRegister,
1211 GR->buildConstantInt(3, MIRBuilder, IndexType));
1212
1213 // Get constant for the default value (0 or 1 depending on which
1214 // function).
1215 Register DefaultRegister =
1216 GR->buildConstantInt(DefaultValue, MIRBuilder, PointerSizeType);
1217
1218 // Get a register for the selection result (possibly a new temporary one).
1219 Register SelectionResult = Call->ReturnRegister;
1220 if (PointerSize != ResultWidth) {
1221 SelectionResult =
1222 MRI->createGenericVirtualRegister(LLT::scalar(PointerSize));
1223 MRI->setRegClass(SelectionResult, &SPIRV::IDRegClass);
1224 GR->assignSPIRVTypeToVReg(PointerSizeType, SelectionResult,
1225 MIRBuilder.getMF());
1226 }
1227 // Create the final G_SELECT to return the extracted value or the default.
1228 MIRBuilder.buildSelect(SelectionResult, CompareRegister, Extracted,
1229 DefaultRegister);
1230 ToTruncate = SelectionResult;
1231 } else {
1232 ToTruncate = Extracted;
1233 }
1234 }
1235 // Alter the result's bitwidth if it does not match the SizeT value extracted.
1236 if (PointerSize != ResultWidth)
1237 MIRBuilder.buildZExtOrTrunc(Call->ReturnRegister, ToTruncate);
1238 return true;
1239}
1240
1242 MachineIRBuilder &MIRBuilder,
1243 SPIRVGlobalRegistry *GR) {
1244 // Lookup the builtin variable record.
1245 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1246 SPIRV::BuiltIn::BuiltIn Value =
1247 SPIRV::lookupGetBuiltin(Builtin->Name, Builtin->Set)->Value;
1248
1249 if (Value == SPIRV::BuiltIn::GlobalInvocationId)
1250 return genWorkgroupQuery(Call, MIRBuilder, GR, Value, 0);
1251
1252 // Build a load instruction for the builtin variable.
1253 unsigned BitWidth = GR->getScalarOrVectorBitWidth(Call->ReturnType);
1254 LLT LLType;
1255 if (Call->ReturnType->getOpcode() == SPIRV::OpTypeVector)
1256 LLType =
1257 LLT::fixed_vector(Call->ReturnType->getOperand(2).getImm(), BitWidth);
1258 else
1259 LLType = LLT::scalar(BitWidth);
1260
1261 return buildBuiltinVariableLoad(MIRBuilder, Call->ReturnType, GR, Value,
1262 LLType, Call->ReturnRegister);
1263}
1264
1266 MachineIRBuilder &MIRBuilder,
1267 SPIRVGlobalRegistry *GR) {
1268 // Lookup the instruction opcode in the TableGen records.
1269 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1270 unsigned Opcode =
1271 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1272
1273 switch (Opcode) {
1274 case SPIRV::OpStore:
1275 return buildAtomicInitInst(Call, MIRBuilder);
1276 case SPIRV::OpAtomicLoad:
1277 return buildAtomicLoadInst(Call, MIRBuilder, GR);
1278 case SPIRV::OpAtomicStore:
1279 return buildAtomicStoreInst(Call, MIRBuilder, GR);
1280 case SPIRV::OpAtomicCompareExchange:
1281 case SPIRV::OpAtomicCompareExchangeWeak:
1282 return buildAtomicCompareExchangeInst(Call, Builtin, Opcode, MIRBuilder,
1283 GR);
1284 case SPIRV::OpAtomicIAdd:
1285 case SPIRV::OpAtomicISub:
1286 case SPIRV::OpAtomicOr:
1287 case SPIRV::OpAtomicXor:
1288 case SPIRV::OpAtomicAnd:
1289 case SPIRV::OpAtomicExchange:
1290 return buildAtomicRMWInst(Call, Opcode, MIRBuilder, GR);
1291 case SPIRV::OpMemoryBarrier:
1292 return buildBarrierInst(Call, SPIRV::OpMemoryBarrier, MIRBuilder, GR);
1293 case SPIRV::OpAtomicFlagTestAndSet:
1294 case SPIRV::OpAtomicFlagClear:
1295 return buildAtomicFlagInst(Call, Opcode, MIRBuilder, GR);
1296 default:
1297 return false;
1298 }
1299}
1300
1302 MachineIRBuilder &MIRBuilder,
1303 SPIRVGlobalRegistry *GR) {
1304 // Lookup the instruction opcode in the TableGen records.
1305 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1306 unsigned Opcode = SPIRV::lookupAtomicFloatingBuiltin(Builtin->Name)->Opcode;
1307
1308 switch (Opcode) {
1309 case SPIRV::OpAtomicFAddEXT:
1310 case SPIRV::OpAtomicFMinEXT:
1311 case SPIRV::OpAtomicFMaxEXT:
1312 return buildAtomicFloatingRMWInst(Call, Opcode, MIRBuilder, GR);
1313 default:
1314 return false;
1315 }
1316}
1317
1319 MachineIRBuilder &MIRBuilder,
1320 SPIRVGlobalRegistry *GR) {
1321 // Lookup the instruction opcode in the TableGen records.
1322 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1323 unsigned Opcode =
1324 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1325
1326 return buildBarrierInst(Call, Opcode, MIRBuilder, GR);
1327}
1328
1330 MachineIRBuilder &MIRBuilder,
1331 SPIRVGlobalRegistry *GR) {
1332 unsigned Opcode = GR->getSPIRVTypeForVReg(Call->Arguments[0])->getOpcode();
1333 bool IsVec = Opcode == SPIRV::OpTypeVector;
1334 // Use OpDot only in case of vector args and OpFMul in case of scalar args.
1335 MIRBuilder.buildInstr(IsVec ? SPIRV::OpDot : SPIRV::OpFMulS)
1336 .addDef(Call->ReturnRegister)
1337 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1338 .addUse(Call->Arguments[0])
1339 .addUse(Call->Arguments[1]);
1340 return true;
1341}
1342
1344 MachineIRBuilder &MIRBuilder,
1345 SPIRVGlobalRegistry *GR) {
1346 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1347 SPIRV::BuiltIn::BuiltIn Value =
1348 SPIRV::lookupGetBuiltin(Builtin->Name, Builtin->Set)->Value;
1349
1350 // For now, we only support a single Wave intrinsic with a single return type.
1351 assert(Call->ReturnType->getOpcode() == SPIRV::OpTypeInt);
1352 LLT LLType = LLT::scalar(GR->getScalarOrVectorBitWidth(Call->ReturnType));
1353
1355 MIRBuilder, Call->ReturnType, GR, Value, LLType, Call->ReturnRegister,
1356 /* isConst= */ false, /* hasLinkageTy= */ false);
1357}
1358
1360 MachineIRBuilder &MIRBuilder,
1361 SPIRVGlobalRegistry *GR) {
1362 // Lookup the builtin record.
1363 SPIRV::BuiltIn::BuiltIn Value =
1364 SPIRV::lookupGetBuiltin(Call->Builtin->Name, Call->Builtin->Set)->Value;
1365 uint64_t IsDefault = (Value == SPIRV::BuiltIn::GlobalSize ||
1366 Value == SPIRV::BuiltIn::WorkgroupSize ||
1367 Value == SPIRV::BuiltIn::EnqueuedWorkgroupSize);
1368 return genWorkgroupQuery(Call, MIRBuilder, GR, Value, IsDefault ? 1 : 0);
1369}
1370
1372 MachineIRBuilder &MIRBuilder,
1373 SPIRVGlobalRegistry *GR) {
1374 // Lookup the image size query component number in the TableGen records.
1375 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1376 uint32_t Component =
1377 SPIRV::lookupImageQueryBuiltin(Builtin->Name, Builtin->Set)->Component;
1378 // Query result may either be a vector or a scalar. If return type is not a
1379 // vector, expect only a single size component. Otherwise get the number of
1380 // expected components.
1381 SPIRVType *RetTy = Call->ReturnType;
1382 unsigned NumExpectedRetComponents = RetTy->getOpcode() == SPIRV::OpTypeVector
1383 ? RetTy->getOperand(2).getImm()
1384 : 1;
1385 // Get the actual number of query result/size components.
1386 SPIRVType *ImgType = GR->getSPIRVTypeForVReg(Call->Arguments[0]);
1387 unsigned NumActualRetComponents = getNumSizeComponents(ImgType);
1388 Register QueryResult = Call->ReturnRegister;
1389 SPIRVType *QueryResultType = Call->ReturnType;
1390 if (NumExpectedRetComponents != NumActualRetComponents) {
1391 QueryResult = MIRBuilder.getMRI()->createGenericVirtualRegister(
1392 LLT::fixed_vector(NumActualRetComponents, 32));
1393 MIRBuilder.getMRI()->setRegClass(QueryResult, &SPIRV::IDRegClass);
1394 SPIRVType *IntTy = GR->getOrCreateSPIRVIntegerType(32, MIRBuilder);
1395 QueryResultType = GR->getOrCreateSPIRVVectorType(
1396 IntTy, NumActualRetComponents, MIRBuilder);
1397 GR->assignSPIRVTypeToVReg(QueryResultType, QueryResult, MIRBuilder.getMF());
1398 }
1399 bool IsDimBuf = ImgType->getOperand(2).getImm() == SPIRV::Dim::DIM_Buffer;
1400 unsigned Opcode =
1401 IsDimBuf ? SPIRV::OpImageQuerySize : SPIRV::OpImageQuerySizeLod;
1402 MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
1403 auto MIB = MIRBuilder.buildInstr(Opcode)
1404 .addDef(QueryResult)
1405 .addUse(GR->getSPIRVTypeID(QueryResultType))
1406 .addUse(Call->Arguments[0]);
1407 if (!IsDimBuf)
1408 MIB.addUse(buildConstantIntReg(0, MIRBuilder, GR)); // Lod id.
1409 if (NumExpectedRetComponents == NumActualRetComponents)
1410 return true;
1411 if (NumExpectedRetComponents == 1) {
1412 // Only 1 component is expected, build OpCompositeExtract instruction.
1413 unsigned ExtractedComposite =
1414 Component == 3 ? NumActualRetComponents - 1 : Component;
1415 assert(ExtractedComposite < NumActualRetComponents &&
1416 "Invalid composite index!");
1417 MIRBuilder.buildInstr(SPIRV::OpCompositeExtract)
1418 .addDef(Call->ReturnRegister)
1419 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1420 .addUse(QueryResult)
1421 .addImm(ExtractedComposite);
1422 } else {
1423 // More than 1 component is expected, fill a new vector.
1424 auto MIB = MIRBuilder.buildInstr(SPIRV::OpVectorShuffle)
1425 .addDef(Call->ReturnRegister)
1426 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1427 .addUse(QueryResult)
1428 .addUse(QueryResult);
1429 for (unsigned i = 0; i < NumExpectedRetComponents; ++i)
1430 MIB.addImm(i < NumActualRetComponents ? i : 0xffffffff);
1431 }
1432 return true;
1433}
1434
1436 MachineIRBuilder &MIRBuilder,
1437 SPIRVGlobalRegistry *GR) {
1438 assert(Call->ReturnType->getOpcode() == SPIRV::OpTypeInt &&
1439 "Image samples query result must be of int type!");
1440
1441 // Lookup the instruction opcode in the TableGen records.
1442 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1443 unsigned Opcode =
1444 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1445
1446 Register Image = Call->Arguments[0];
1447 MIRBuilder.getMRI()->setRegClass(Image, &SPIRV::IDRegClass);
1448 SPIRV::Dim::Dim ImageDimensionality = static_cast<SPIRV::Dim::Dim>(
1449 GR->getSPIRVTypeForVReg(Image)->getOperand(2).getImm());
1450 (void)ImageDimensionality;
1451
1452 switch (Opcode) {
1453 case SPIRV::OpImageQuerySamples:
1454 assert(ImageDimensionality == SPIRV::Dim::DIM_2D &&
1455 "Image must be of 2D dimensionality");
1456 break;
1457 case SPIRV::OpImageQueryLevels:
1458 assert((ImageDimensionality == SPIRV::Dim::DIM_1D ||
1459 ImageDimensionality == SPIRV::Dim::DIM_2D ||
1460 ImageDimensionality == SPIRV::Dim::DIM_3D ||
1461 ImageDimensionality == SPIRV::Dim::DIM_Cube) &&
1462 "Image must be of 1D/2D/3D/Cube dimensionality");
1463 break;
1464 }
1465
1466 MIRBuilder.buildInstr(Opcode)
1467 .addDef(Call->ReturnRegister)
1468 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1469 .addUse(Image);
1470 return true;
1471}
1472
1473// TODO: Move to TableGen.
1474static SPIRV::SamplerAddressingMode::SamplerAddressingMode
1476 switch (Bitmask & SPIRV::CLK_ADDRESS_MODE_MASK) {
1477 case SPIRV::CLK_ADDRESS_CLAMP:
1478 return SPIRV::SamplerAddressingMode::Clamp;
1479 case SPIRV::CLK_ADDRESS_CLAMP_TO_EDGE:
1480 return SPIRV::SamplerAddressingMode::ClampToEdge;
1481 case SPIRV::CLK_ADDRESS_REPEAT:
1482 return SPIRV::SamplerAddressingMode::Repeat;
1483 case SPIRV::CLK_ADDRESS_MIRRORED_REPEAT:
1484 return SPIRV::SamplerAddressingMode::RepeatMirrored;
1485 case SPIRV::CLK_ADDRESS_NONE:
1486 return SPIRV::SamplerAddressingMode::None;
1487 default:
1488 report_fatal_error("Unknown CL address mode");
1489 }
1490}
1491
1492static unsigned getSamplerParamFromBitmask(unsigned Bitmask) {
1493 return (Bitmask & SPIRV::CLK_NORMALIZED_COORDS_TRUE) ? 1 : 0;
1494}
1495
1496static SPIRV::SamplerFilterMode::SamplerFilterMode
1498 if (Bitmask & SPIRV::CLK_FILTER_LINEAR)
1499 return SPIRV::SamplerFilterMode::Linear;
1500 if (Bitmask & SPIRV::CLK_FILTER_NEAREST)
1501 return SPIRV::SamplerFilterMode::Nearest;
1502 return SPIRV::SamplerFilterMode::Nearest;
1503}
1504
1505static bool generateReadImageInst(const StringRef DemangledCall,
1506 const SPIRV::IncomingCall *Call,
1507 MachineIRBuilder &MIRBuilder,
1508 SPIRVGlobalRegistry *GR) {
1509 Register Image = Call->Arguments[0];
1510 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1511 MRI->setRegClass(Image, &SPIRV::IDRegClass);
1512 MRI->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
1513 bool HasOclSampler = DemangledCall.contains_insensitive("ocl_sampler");
1514 bool HasMsaa = DemangledCall.contains_insensitive("msaa");
1515 if (HasOclSampler || HasMsaa)
1516 MRI->setRegClass(Call->Arguments[2], &SPIRV::IDRegClass);
1517 if (HasOclSampler) {
1518 Register Sampler = Call->Arguments[1];
1519
1520 if (!GR->isScalarOfType(Sampler, SPIRV::OpTypeSampler) &&
1521 getDefInstrMaybeConstant(Sampler, MRI)->getOperand(1).isCImm()) {
1522 uint64_t SamplerMask = getIConstVal(Sampler, MRI);
1523 Sampler = GR->buildConstantSampler(
1525 getSamplerParamFromBitmask(SamplerMask),
1526 getSamplerFilterModeFromBitmask(SamplerMask), MIRBuilder,
1527 GR->getSPIRVTypeForVReg(Sampler));
1528 }
1529 SPIRVType *ImageType = GR->getSPIRVTypeForVReg(Image);
1530 SPIRVType *SampledImageType =
1531 GR->getOrCreateOpTypeSampledImage(ImageType, MIRBuilder);
1532 Register SampledImage = MRI->createVirtualRegister(&SPIRV::IDRegClass);
1533
1534 MIRBuilder.buildInstr(SPIRV::OpSampledImage)
1535 .addDef(SampledImage)
1536 .addUse(GR->getSPIRVTypeID(SampledImageType))
1537 .addUse(Image)
1538 .addUse(Sampler);
1539
1541 MIRBuilder);
1542 SPIRVType *TempType = Call->ReturnType;
1543 bool NeedsExtraction = false;
1544 if (TempType->getOpcode() != SPIRV::OpTypeVector) {
1545 TempType =
1546 GR->getOrCreateSPIRVVectorType(Call->ReturnType, 4, MIRBuilder);
1547 NeedsExtraction = true;
1548 }
1549 LLT LLType = LLT::scalar(GR->getScalarOrVectorBitWidth(TempType));
1550 Register TempRegister = MRI->createGenericVirtualRegister(LLType);
1551 MRI->setRegClass(TempRegister, &SPIRV::IDRegClass);
1552 GR->assignSPIRVTypeToVReg(TempType, TempRegister, MIRBuilder.getMF());
1553
1554 MIRBuilder.buildInstr(SPIRV::OpImageSampleExplicitLod)
1555 .addDef(NeedsExtraction ? TempRegister : Call->ReturnRegister)
1556 .addUse(GR->getSPIRVTypeID(TempType))
1557 .addUse(SampledImage)
1558 .addUse(Call->Arguments[2]) // Coordinate.
1559 .addImm(SPIRV::ImageOperand::Lod)
1560 .addUse(Lod);
1561
1562 if (NeedsExtraction)
1563 MIRBuilder.buildInstr(SPIRV::OpCompositeExtract)
1564 .addDef(Call->ReturnRegister)
1565 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1566 .addUse(TempRegister)
1567 .addImm(0);
1568 } else if (HasMsaa) {
1569 MIRBuilder.buildInstr(SPIRV::OpImageRead)
1570 .addDef(Call->ReturnRegister)
1571 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1572 .addUse(Image)
1573 .addUse(Call->Arguments[1]) // Coordinate.
1574 .addImm(SPIRV::ImageOperand::Sample)
1575 .addUse(Call->Arguments[2]);
1576 } else {
1577 MIRBuilder.buildInstr(SPIRV::OpImageRead)
1578 .addDef(Call->ReturnRegister)
1579 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1580 .addUse(Image)
1581 .addUse(Call->Arguments[1]); // Coordinate.
1582 }
1583 return true;
1584}
1585
1587 MachineIRBuilder &MIRBuilder,
1588 SPIRVGlobalRegistry *GR) {
1589 MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
1590 MIRBuilder.getMRI()->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
1591 MIRBuilder.getMRI()->setRegClass(Call->Arguments[2], &SPIRV::IDRegClass);
1592 MIRBuilder.buildInstr(SPIRV::OpImageWrite)
1593 .addUse(Call->Arguments[0]) // Image.
1594 .addUse(Call->Arguments[1]) // Coordinate.
1595 .addUse(Call->Arguments[2]); // Texel.
1596 return true;
1597}
1598
1599static bool generateSampleImageInst(const StringRef DemangledCall,
1600 const SPIRV::IncomingCall *Call,
1601 MachineIRBuilder &MIRBuilder,
1602 SPIRVGlobalRegistry *GR) {
1603 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1604 if (Call->Builtin->Name.contains_insensitive(
1605 "__translate_sampler_initializer")) {
1606 // Build sampler literal.
1607 uint64_t Bitmask = getIConstVal(Call->Arguments[0], MRI);
1608 Register Sampler = GR->buildConstantSampler(
1609 Call->ReturnRegister, getSamplerAddressingModeFromBitmask(Bitmask),
1611 getSamplerFilterModeFromBitmask(Bitmask), MIRBuilder, Call->ReturnType);
1612 return Sampler.isValid();
1613 } else if (Call->Builtin->Name.contains_insensitive("__spirv_SampledImage")) {
1614 // Create OpSampledImage.
1615 Register Image = Call->Arguments[0];
1616 SPIRVType *ImageType = GR->getSPIRVTypeForVReg(Image);
1617 SPIRVType *SampledImageType =
1618 GR->getOrCreateOpTypeSampledImage(ImageType, MIRBuilder);
1619 Register SampledImage =
1620 Call->ReturnRegister.isValid()
1621 ? Call->ReturnRegister
1622 : MRI->createVirtualRegister(&SPIRV::IDRegClass);
1623 MIRBuilder.buildInstr(SPIRV::OpSampledImage)
1624 .addDef(SampledImage)
1625 .addUse(GR->getSPIRVTypeID(SampledImageType))
1626 .addUse(Image)
1627 .addUse(Call->Arguments[1]); // Sampler.
1628 return true;
1629 } else if (Call->Builtin->Name.contains_insensitive(
1630 "__spirv_ImageSampleExplicitLod")) {
1631 // Sample an image using an explicit level of detail.
1632 std::string ReturnType = DemangledCall.str();
1633 if (DemangledCall.contains("_R")) {
1634 ReturnType = ReturnType.substr(ReturnType.find("_R") + 2);
1635 ReturnType = ReturnType.substr(0, ReturnType.find('('));
1636 }
1637 SPIRVType *Type =
1638 Call->ReturnType
1639 ? Call->ReturnType
1640 : GR->getOrCreateSPIRVTypeByName(ReturnType, MIRBuilder);
1641 if (!Type) {
1642 std::string DiagMsg =
1643 "Unable to recognize SPIRV type name: " + ReturnType;
1644 report_fatal_error(DiagMsg.c_str());
1645 }
1646 MRI->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
1647 MRI->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
1648 MRI->setRegClass(Call->Arguments[3], &SPIRV::IDRegClass);
1649
1650 MIRBuilder.buildInstr(SPIRV::OpImageSampleExplicitLod)
1651 .addDef(Call->ReturnRegister)
1653 .addUse(Call->Arguments[0]) // Image.
1654 .addUse(Call->Arguments[1]) // Coordinate.
1655 .addImm(SPIRV::ImageOperand::Lod)
1656 .addUse(Call->Arguments[3]);
1657 return true;
1658 }
1659 return false;
1660}
1661
1663 MachineIRBuilder &MIRBuilder) {
1664 MIRBuilder.buildSelect(Call->ReturnRegister, Call->Arguments[0],
1665 Call->Arguments[1], Call->Arguments[2]);
1666 return true;
1667}
1668
1670 MachineIRBuilder &MIRBuilder,
1671 SPIRVGlobalRegistry *GR) {
1672 // Lookup the instruction opcode in the TableGen records.
1673 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1674 unsigned Opcode =
1675 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1676 const MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1677
1678 switch (Opcode) {
1679 case SPIRV::OpSpecConstant: {
1680 // Build the SpecID decoration.
1681 unsigned SpecId =
1682 static_cast<unsigned>(getIConstVal(Call->Arguments[0], MRI));
1683 buildOpDecorate(Call->ReturnRegister, MIRBuilder, SPIRV::Decoration::SpecId,
1684 {SpecId});
1685 // Determine the constant MI.
1686 Register ConstRegister = Call->Arguments[1];
1687 const MachineInstr *Const = getDefInstrMaybeConstant(ConstRegister, MRI);
1688 assert(Const &&
1689 (Const->getOpcode() == TargetOpcode::G_CONSTANT ||
1690 Const->getOpcode() == TargetOpcode::G_FCONSTANT) &&
1691 "Argument should be either an int or floating-point constant");
1692 // Determine the opcode and built the OpSpec MI.
1693 const MachineOperand &ConstOperand = Const->getOperand(1);
1694 if (Call->ReturnType->getOpcode() == SPIRV::OpTypeBool) {
1695 assert(ConstOperand.isCImm() && "Int constant operand is expected");
1696 Opcode = ConstOperand.getCImm()->getValue().getZExtValue()
1697 ? SPIRV::OpSpecConstantTrue
1698 : SPIRV::OpSpecConstantFalse;
1699 }
1700 auto MIB = MIRBuilder.buildInstr(Opcode)
1701 .addDef(Call->ReturnRegister)
1702 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
1703
1704 if (Call->ReturnType->getOpcode() != SPIRV::OpTypeBool) {
1705 if (Const->getOpcode() == TargetOpcode::G_CONSTANT)
1706 addNumImm(ConstOperand.getCImm()->getValue(), MIB);
1707 else
1708 addNumImm(ConstOperand.getFPImm()->getValueAPF().bitcastToAPInt(), MIB);
1709 }
1710 return true;
1711 }
1712 case SPIRV::OpSpecConstantComposite: {
1713 auto MIB = MIRBuilder.buildInstr(Opcode)
1714 .addDef(Call->ReturnRegister)
1715 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
1716 for (unsigned i = 0; i < Call->Arguments.size(); i++)
1717 MIB.addUse(Call->Arguments[i]);
1718 return true;
1719 }
1720 default:
1721 return false;
1722 }
1723}
1724
1725static bool buildNDRange(const SPIRV::IncomingCall *Call,
1726 MachineIRBuilder &MIRBuilder,
1727 SPIRVGlobalRegistry *GR) {
1728 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1729 MRI->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
1730 SPIRVType *PtrType = GR->getSPIRVTypeForVReg(Call->Arguments[0]);
1731 assert(PtrType->getOpcode() == SPIRV::OpTypePointer &&
1732 PtrType->getOperand(2).isReg());
1733 Register TypeReg = PtrType->getOperand(2).getReg();
1735 MachineFunction &MF = MIRBuilder.getMF();
1736 Register TmpReg = MRI->createVirtualRegister(&SPIRV::IDRegClass);
1737 GR->assignSPIRVTypeToVReg(StructType, TmpReg, MF);
1738 // Skip the first arg, it's the destination pointer. OpBuildNDRange takes
1739 // three other arguments, so pass zero constant on absence.
1740 unsigned NumArgs = Call->Arguments.size();
1741 assert(NumArgs >= 2);
1742 Register GlobalWorkSize = Call->Arguments[NumArgs < 4 ? 1 : 2];
1743 MRI->setRegClass(GlobalWorkSize, &SPIRV::IDRegClass);
1744 Register LocalWorkSize =
1745 NumArgs == 2 ? Register(0) : Call->Arguments[NumArgs < 4 ? 2 : 3];
1746 if (LocalWorkSize.isValid())
1747 MRI->setRegClass(LocalWorkSize, &SPIRV::IDRegClass);
1748 Register GlobalWorkOffset = NumArgs <= 3 ? Register(0) : Call->Arguments[1];
1749 if (GlobalWorkOffset.isValid())
1750 MRI->setRegClass(GlobalWorkOffset, &SPIRV::IDRegClass);
1751 if (NumArgs < 4) {
1752 Register Const;
1753 SPIRVType *SpvTy = GR->getSPIRVTypeForVReg(GlobalWorkSize);
1754 if (SpvTy->getOpcode() == SPIRV::OpTypePointer) {
1755 MachineInstr *DefInstr = MRI->getUniqueVRegDef(GlobalWorkSize);
1756 assert(DefInstr && isSpvIntrinsic(*DefInstr, Intrinsic::spv_gep) &&
1757 DefInstr->getOperand(3).isReg());
1758 Register GWSPtr = DefInstr->getOperand(3).getReg();
1759 if (!MRI->getRegClassOrNull(GWSPtr))
1760 MRI->setRegClass(GWSPtr, &SPIRV::IDRegClass);
1761 // TODO: Maybe simplify generation of the type of the fields.
1762 unsigned Size = Call->Builtin->Name.equals("ndrange_3D") ? 3 : 2;
1763 unsigned BitWidth = GR->getPointerSize() == 64 ? 64 : 32;
1765 Type *FieldTy = ArrayType::get(BaseTy, Size);
1766 SPIRVType *SpvFieldTy = GR->getOrCreateSPIRVType(FieldTy, MIRBuilder);
1767 GlobalWorkSize = MRI->createVirtualRegister(&SPIRV::IDRegClass);
1768 GR->assignSPIRVTypeToVReg(SpvFieldTy, GlobalWorkSize, MF);
1769 MIRBuilder.buildInstr(SPIRV::OpLoad)
1770 .addDef(GlobalWorkSize)
1771 .addUse(GR->getSPIRVTypeID(SpvFieldTy))
1772 .addUse(GWSPtr);
1773 Const = GR->getOrCreateConsIntArray(0, MIRBuilder, SpvFieldTy);
1774 } else {
1775 Const = GR->buildConstantInt(0, MIRBuilder, SpvTy);
1776 }
1777 if (!LocalWorkSize.isValid())
1778 LocalWorkSize = Const;
1779 if (!GlobalWorkOffset.isValid())
1780 GlobalWorkOffset = Const;
1781 }
1782 assert(LocalWorkSize.isValid() && GlobalWorkOffset.isValid());
1783 MIRBuilder.buildInstr(SPIRV::OpBuildNDRange)
1784 .addDef(TmpReg)
1785 .addUse(TypeReg)
1786 .addUse(GlobalWorkSize)
1787 .addUse(LocalWorkSize)
1788 .addUse(GlobalWorkOffset);
1789 return MIRBuilder.buildInstr(SPIRV::OpStore)
1790 .addUse(Call->Arguments[0])
1791 .addUse(TmpReg);
1792}
1793
1796 // We expect the following sequence of instructions:
1797 // %0:_(pN) = G_INTRINSIC_W_SIDE_EFFECTS intrinsic(@llvm.spv.alloca)
1798 // or = G_GLOBAL_VALUE @block_literal_global
1799 // %1:_(pN) = G_INTRINSIC_W_SIDE_EFFECTS intrinsic(@llvm.spv.bitcast), %0
1800 // %2:_(p4) = G_ADDRSPACE_CAST %1:_(pN)
1801 MachineInstr *MI = MRI->getUniqueVRegDef(ParamReg);
1802 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST &&
1803 MI->getOperand(1).isReg());
1804 Register BitcastReg = MI->getOperand(1).getReg();
1805 MachineInstr *BitcastMI = MRI->getUniqueVRegDef(BitcastReg);
1806 assert(isSpvIntrinsic(*BitcastMI, Intrinsic::spv_bitcast) &&
1807 BitcastMI->getOperand(2).isReg());
1808 Register ValueReg = BitcastMI->getOperand(2).getReg();
1809 MachineInstr *ValueMI = MRI->getUniqueVRegDef(ValueReg);
1810 return ValueMI;
1811}
1812
1813// Return an integer constant corresponding to the given register and
1814// defined in spv_track_constant.
1815// TODO: maybe unify with prelegalizer pass.
1817 MachineInstr *DefMI = MRI->getUniqueVRegDef(Reg);
1818 assert(isSpvIntrinsic(*DefMI, Intrinsic::spv_track_constant) &&
1819 DefMI->getOperand(2).isReg());
1820 MachineInstr *DefMI2 = MRI->getUniqueVRegDef(DefMI->getOperand(2).getReg());
1821 assert(DefMI2->getOpcode() == TargetOpcode::G_CONSTANT &&
1822 DefMI2->getOperand(1).isCImm());
1823 return DefMI2->getOperand(1).getCImm()->getValue().getZExtValue();
1824}
1825
1826// Return type of the instruction result from spv_assign_type intrinsic.
1827// TODO: maybe unify with prelegalizer pass.
1829 MachineInstr *NextMI = MI->getNextNode();
1830 if (isSpvIntrinsic(*NextMI, Intrinsic::spv_assign_name))
1831 NextMI = NextMI->getNextNode();
1832 Register ValueReg = MI->getOperand(0).getReg();
1833 if (!isSpvIntrinsic(*NextMI, Intrinsic::spv_assign_type) ||
1834 NextMI->getOperand(1).getReg() != ValueReg)
1835 return nullptr;
1836 Type *Ty = getMDOperandAsType(NextMI->getOperand(2).getMetadata(), 0);
1837 assert(Ty && "Type is expected");
1838 return Ty;
1839}
1840
1841static const Type *getBlockStructType(Register ParamReg,
1843 // In principle, this information should be passed to us from Clang via
1844 // an elementtype attribute. However, said attribute requires that
1845 // the function call be an intrinsic, which is not. Instead, we rely on being
1846 // able to trace this to the declaration of a variable: OpenCL C specification
1847 // section 6.12.5 should guarantee that we can do this.
1848 MachineInstr *MI = getBlockStructInstr(ParamReg, MRI);
1849 if (MI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE)
1850 return MI->getOperand(1).getGlobal()->getType();
1851 assert(isSpvIntrinsic(*MI, Intrinsic::spv_alloca) &&
1852 "Blocks in OpenCL C must be traceable to allocation site");
1853 return getMachineInstrType(MI);
1854}
1855
1856// TODO: maybe move to the global register.
1857static SPIRVType *
1859 SPIRVGlobalRegistry *GR) {
1860 LLVMContext &Context = MIRBuilder.getMF().getFunction().getContext();
1861 Type *OpaqueType = StructType::getTypeByName(Context, "spirv.DeviceEvent");
1862 if (!OpaqueType)
1863 OpaqueType = StructType::getTypeByName(Context, "opencl.clk_event_t");
1864 if (!OpaqueType)
1865 OpaqueType = StructType::create(Context, "spirv.DeviceEvent");
1866 unsigned SC0 = storageClassToAddressSpace(SPIRV::StorageClass::Function);
1867 unsigned SC1 = storageClassToAddressSpace(SPIRV::StorageClass::Generic);
1868 Type *PtrType = PointerType::get(PointerType::get(OpaqueType, SC0), SC1);
1869 return GR->getOrCreateSPIRVType(PtrType, MIRBuilder);
1870}
1871
1873 MachineIRBuilder &MIRBuilder,
1874 SPIRVGlobalRegistry *GR) {
1875 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1876 const DataLayout &DL = MIRBuilder.getDataLayout();
1877 bool IsSpirvOp = Call->isSpirvOp();
1878 bool HasEvents = Call->Builtin->Name.contains("events") || IsSpirvOp;
1879 const SPIRVType *Int32Ty = GR->getOrCreateSPIRVIntegerType(32, MIRBuilder);
1880
1881 // Make vararg instructions before OpEnqueueKernel.
1882 // Local sizes arguments: Sizes of block invoke arguments. Clang generates
1883 // local size operands as an array, so we need to unpack them.
1884 SmallVector<Register, 16> LocalSizes;
1885 if (Call->Builtin->Name.find("_varargs") != StringRef::npos || IsSpirvOp) {
1886 const unsigned LocalSizeArrayIdx = HasEvents ? 9 : 6;
1887 Register GepReg = Call->Arguments[LocalSizeArrayIdx];
1888 MachineInstr *GepMI = MRI->getUniqueVRegDef(GepReg);
1889 assert(isSpvIntrinsic(*GepMI, Intrinsic::spv_gep) &&
1890 GepMI->getOperand(3).isReg());
1891 Register ArrayReg = GepMI->getOperand(3).getReg();
1892 MachineInstr *ArrayMI = MRI->getUniqueVRegDef(ArrayReg);
1893 const Type *LocalSizeTy = getMachineInstrType(ArrayMI);
1894 assert(LocalSizeTy && "Local size type is expected");
1895 const uint64_t LocalSizeNum =
1896 cast<ArrayType>(LocalSizeTy)->getNumElements();
1897 unsigned SC = storageClassToAddressSpace(SPIRV::StorageClass::Generic);
1898 const LLT LLType = LLT::pointer(SC, GR->getPointerSize());
1899 const SPIRVType *PointerSizeTy = GR->getOrCreateSPIRVPointerType(
1900 Int32Ty, MIRBuilder, SPIRV::StorageClass::Function);
1901 for (unsigned I = 0; I < LocalSizeNum; ++I) {
1902 Register Reg = MRI->createVirtualRegister(&SPIRV::IDRegClass);
1903 MRI->setType(Reg, LLType);
1904 GR->assignSPIRVTypeToVReg(PointerSizeTy, Reg, MIRBuilder.getMF());
1905 auto GEPInst = MIRBuilder.buildIntrinsic(
1906 Intrinsic::spv_gep, ArrayRef<Register>{Reg}, true, false);
1907 GEPInst
1908 .addImm(GepMI->getOperand(2).getImm()) // In bound.
1909 .addUse(ArrayMI->getOperand(0).getReg()) // Alloca.
1910 .addUse(buildConstantIntReg(0, MIRBuilder, GR)) // Indices.
1911 .addUse(buildConstantIntReg(I, MIRBuilder, GR));
1912 LocalSizes.push_back(Reg);
1913 }
1914 }
1915
1916 // SPIRV OpEnqueueKernel instruction has 10+ arguments.
1917 auto MIB = MIRBuilder.buildInstr(SPIRV::OpEnqueueKernel)
1918 .addDef(Call->ReturnRegister)
1920
1921 // Copy all arguments before block invoke function pointer.
1922 const unsigned BlockFIdx = HasEvents ? 6 : 3;
1923 for (unsigned i = 0; i < BlockFIdx; i++)
1924 MIB.addUse(Call->Arguments[i]);
1925
1926 // If there are no event arguments in the original call, add dummy ones.
1927 if (!HasEvents) {
1928 MIB.addUse(buildConstantIntReg(0, MIRBuilder, GR)); // Dummy num events.
1929 Register NullPtr = GR->getOrCreateConstNullPtr(
1930 MIRBuilder, getOrCreateSPIRVDeviceEventPointer(MIRBuilder, GR));
1931 MIB.addUse(NullPtr); // Dummy wait events.
1932 MIB.addUse(NullPtr); // Dummy ret event.
1933 }
1934
1935 MachineInstr *BlockMI = getBlockStructInstr(Call->Arguments[BlockFIdx], MRI);
1936 assert(BlockMI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
1937 // Invoke: Pointer to invoke function.
1938 MIB.addGlobalAddress(BlockMI->getOperand(1).getGlobal());
1939
1940 Register BlockLiteralReg = Call->Arguments[BlockFIdx + 1];
1941 // Param: Pointer to block literal.
1942 MIB.addUse(BlockLiteralReg);
1943
1944 Type *PType = const_cast<Type *>(getBlockStructType(BlockLiteralReg, MRI));
1945 // TODO: these numbers should be obtained from block literal structure.
1946 // Param Size: Size of block literal structure.
1947 MIB.addUse(buildConstantIntReg(DL.getTypeStoreSize(PType), MIRBuilder, GR));
1948 // Param Aligment: Aligment of block literal structure.
1949 MIB.addUse(
1950 buildConstantIntReg(DL.getPrefTypeAlign(PType).value(), MIRBuilder, GR));
1951
1952 for (unsigned i = 0; i < LocalSizes.size(); i++)
1953 MIB.addUse(LocalSizes[i]);
1954 return true;
1955}
1956
1958 MachineIRBuilder &MIRBuilder,
1959 SPIRVGlobalRegistry *GR) {
1960 // Lookup the instruction opcode in the TableGen records.
1961 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1962 unsigned Opcode =
1963 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1964
1965 switch (Opcode) {
1966 case SPIRV::OpRetainEvent:
1967 case SPIRV::OpReleaseEvent:
1968 MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
1969 return MIRBuilder.buildInstr(Opcode).addUse(Call->Arguments[0]);
1970 case SPIRV::OpCreateUserEvent:
1971 case SPIRV::OpGetDefaultQueue:
1972 return MIRBuilder.buildInstr(Opcode)
1973 .addDef(Call->ReturnRegister)
1974 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
1975 case SPIRV::OpIsValidEvent:
1976 MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
1977 return MIRBuilder.buildInstr(Opcode)
1978 .addDef(Call->ReturnRegister)
1979 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1980 .addUse(Call->Arguments[0]);
1981 case SPIRV::OpSetUserEventStatus:
1982 MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
1983 MIRBuilder.getMRI()->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
1984 return MIRBuilder.buildInstr(Opcode)
1985 .addUse(Call->Arguments[0])
1986 .addUse(Call->Arguments[1]);
1987 case SPIRV::OpCaptureEventProfilingInfo:
1988 MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
1989 MIRBuilder.getMRI()->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
1990 MIRBuilder.getMRI()->setRegClass(Call->Arguments[2], &SPIRV::IDRegClass);
1991 return MIRBuilder.buildInstr(Opcode)
1992 .addUse(Call->Arguments[0])
1993 .addUse(Call->Arguments[1])
1994 .addUse(Call->Arguments[2]);
1995 case SPIRV::OpBuildNDRange:
1996 return buildNDRange(Call, MIRBuilder, GR);
1997 case SPIRV::OpEnqueueKernel:
1998 return buildEnqueueKernel(Call, MIRBuilder, GR);
1999 default:
2000 return false;
2001 }
2002}
2003
2005 MachineIRBuilder &MIRBuilder,
2006 SPIRVGlobalRegistry *GR) {
2007 // Lookup the instruction opcode in the TableGen records.
2008 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
2009 unsigned Opcode =
2010 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
2011 auto Scope = buildConstantIntReg(SPIRV::Scope::Workgroup, MIRBuilder, GR);
2012
2013 switch (Opcode) {
2014 case SPIRV::OpGroupAsyncCopy:
2015 return MIRBuilder.buildInstr(Opcode)
2016 .addDef(Call->ReturnRegister)
2017 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
2018 .addUse(Scope)
2019 .addUse(Call->Arguments[0])
2020 .addUse(Call->Arguments[1])
2021 .addUse(Call->Arguments[2])
2022 .addUse(buildConstantIntReg(1, MIRBuilder, GR))
2023 .addUse(Call->Arguments[3]);
2024 case SPIRV::OpGroupWaitEvents:
2025 return MIRBuilder.buildInstr(Opcode)
2026 .addUse(Scope)
2027 .addUse(Call->Arguments[0])
2028 .addUse(Call->Arguments[1]);
2029 default:
2030 return false;
2031 }
2032}
2033
2034static bool generateConvertInst(const StringRef DemangledCall,
2035 const SPIRV::IncomingCall *Call,
2036 MachineIRBuilder &MIRBuilder,
2037 SPIRVGlobalRegistry *GR) {
2038 // Lookup the conversion builtin in the TableGen records.
2039 const SPIRV::ConvertBuiltin *Builtin =
2040 SPIRV::lookupConvertBuiltin(Call->Builtin->Name, Call->Builtin->Set);
2041
2042 if (Builtin->IsSaturated)
2043 buildOpDecorate(Call->ReturnRegister, MIRBuilder,
2044 SPIRV::Decoration::SaturatedConversion, {});
2045 if (Builtin->IsRounded)
2046 buildOpDecorate(Call->ReturnRegister, MIRBuilder,
2047 SPIRV::Decoration::FPRoundingMode,
2048 {(unsigned)Builtin->RoundingMode});
2049
2050 std::string NeedExtMsg; // no errors if empty
2051 bool IsRightComponentsNumber = true; // check if input/output accepts vectors
2052 unsigned Opcode = SPIRV::OpNop;
2053 if (GR->isScalarOrVectorOfType(Call->Arguments[0], SPIRV::OpTypeInt)) {
2054 // Int -> ...
2055 if (GR->isScalarOrVectorOfType(Call->ReturnRegister, SPIRV::OpTypeInt)) {
2056 // Int -> Int
2057 if (Builtin->IsSaturated)
2058 Opcode = Builtin->IsDestinationSigned ? SPIRV::OpSatConvertUToS
2059 : SPIRV::OpSatConvertSToU;
2060 else
2061 Opcode = Builtin->IsDestinationSigned ? SPIRV::OpUConvert
2062 : SPIRV::OpSConvert;
2063 } else if (GR->isScalarOrVectorOfType(Call->ReturnRegister,
2064 SPIRV::OpTypeFloat)) {
2065 // Int -> Float
2066 if (Builtin->IsBfloat16) {
2067 const auto *ST = static_cast<const SPIRVSubtarget *>(
2068 &MIRBuilder.getMF().getSubtarget());
2069 if (!ST->canUseExtension(
2070 SPIRV::Extension::SPV_INTEL_bfloat16_conversion))
2071 NeedExtMsg = "SPV_INTEL_bfloat16_conversion";
2072 IsRightComponentsNumber =
2073 GR->getScalarOrVectorComponentCount(Call->Arguments[0]) ==
2074 GR->getScalarOrVectorComponentCount(Call->ReturnRegister);
2075 Opcode = SPIRV::OpConvertBF16ToFINTEL;
2076 } else {
2077 bool IsSourceSigned =
2078 DemangledCall[DemangledCall.find_first_of('(') + 1] != 'u';
2079 Opcode = IsSourceSigned ? SPIRV::OpConvertSToF : SPIRV::OpConvertUToF;
2080 }
2081 }
2082 } else if (GR->isScalarOrVectorOfType(Call->Arguments[0],
2083 SPIRV::OpTypeFloat)) {
2084 // Float -> ...
2085 if (GR->isScalarOrVectorOfType(Call->ReturnRegister, SPIRV::OpTypeInt)) {
2086 // Float -> Int
2087 if (Builtin->IsBfloat16) {
2088 const auto *ST = static_cast<const SPIRVSubtarget *>(
2089 &MIRBuilder.getMF().getSubtarget());
2090 if (!ST->canUseExtension(
2091 SPIRV::Extension::SPV_INTEL_bfloat16_conversion))
2092 NeedExtMsg = "SPV_INTEL_bfloat16_conversion";
2093 IsRightComponentsNumber =
2094 GR->getScalarOrVectorComponentCount(Call->Arguments[0]) ==
2095 GR->getScalarOrVectorComponentCount(Call->ReturnRegister);
2096 Opcode = SPIRV::OpConvertFToBF16INTEL;
2097 } else {
2098 Opcode = Builtin->IsDestinationSigned ? SPIRV::OpConvertFToS
2099 : SPIRV::OpConvertFToU;
2100 }
2101 } else if (GR->isScalarOrVectorOfType(Call->ReturnRegister,
2102 SPIRV::OpTypeFloat)) {
2103 // Float -> Float
2104 Opcode = SPIRV::OpFConvert;
2105 }
2106 }
2107
2108 if (!NeedExtMsg.empty()) {
2109 std::string DiagMsg = std::string(Builtin->Name) +
2110 ": the builtin requires the following SPIR-V "
2111 "extension: " +
2112 NeedExtMsg;
2113 report_fatal_error(DiagMsg.c_str(), false);
2114 }
2115 if (!IsRightComponentsNumber) {
2116 std::string DiagMsg =
2117 std::string(Builtin->Name) +
2118 ": result and argument must have the same number of components";
2119 report_fatal_error(DiagMsg.c_str(), false);
2120 }
2121 assert(Opcode != SPIRV::OpNop &&
2122 "Conversion between the types not implemented!");
2123
2124 MIRBuilder.buildInstr(Opcode)
2125 .addDef(Call->ReturnRegister)
2126 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
2127 .addUse(Call->Arguments[0]);
2128 return true;
2129}
2130
2132 MachineIRBuilder &MIRBuilder,
2133 SPIRVGlobalRegistry *GR) {
2134 // Lookup the vector load/store builtin in the TableGen records.
2135 const SPIRV::VectorLoadStoreBuiltin *Builtin =
2136 SPIRV::lookupVectorLoadStoreBuiltin(Call->Builtin->Name,
2137 Call->Builtin->Set);
2138 // Build extended instruction.
2139 auto MIB =
2140 MIRBuilder.buildInstr(SPIRV::OpExtInst)
2141 .addDef(Call->ReturnRegister)
2142 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
2143 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
2144 .addImm(Builtin->Number);
2145 for (auto Argument : Call->Arguments)
2146 MIB.addUse(Argument);
2147 if (Builtin->Name.contains("load") && Builtin->ElementCount > 1)
2148 MIB.addImm(Builtin->ElementCount);
2149
2150 // Rounding mode should be passed as a last argument in the MI for builtins
2151 // like "vstorea_halfn_r".
2152 if (Builtin->IsRounded)
2153 MIB.addImm(static_cast<uint32_t>(Builtin->RoundingMode));
2154 return true;
2155}
2156
2158 MachineIRBuilder &MIRBuilder,
2159 SPIRVGlobalRegistry *GR) {
2160 // Lookup the instruction opcode in the TableGen records.
2161 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
2162 unsigned Opcode =
2163 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
2164 bool IsLoad = Opcode == SPIRV::OpLoad;
2165 // Build the instruction.
2166 auto MIB = MIRBuilder.buildInstr(Opcode);
2167 if (IsLoad) {
2168 MIB.addDef(Call->ReturnRegister);
2169 MIB.addUse(GR->getSPIRVTypeID(Call->ReturnType));
2170 }
2171 // Add a pointer to the value to load/store.
2172 MIB.addUse(Call->Arguments[0]);
2173 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2174 MRI->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
2175 // Add a value to store.
2176 if (!IsLoad) {
2177 MIB.addUse(Call->Arguments[1]);
2178 MRI->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
2179 }
2180 // Add optional memory attributes and an alignment.
2181 unsigned NumArgs = Call->Arguments.size();
2182 if ((IsLoad && NumArgs >= 2) || NumArgs >= 3) {
2183 MIB.addImm(getConstFromIntrinsic(Call->Arguments[IsLoad ? 1 : 2], MRI));
2184 MRI->setRegClass(Call->Arguments[IsLoad ? 1 : 2], &SPIRV::IDRegClass);
2185 }
2186 if ((IsLoad && NumArgs >= 3) || NumArgs >= 4) {
2187 MIB.addImm(getConstFromIntrinsic(Call->Arguments[IsLoad ? 2 : 3], MRI));
2188 MRI->setRegClass(Call->Arguments[IsLoad ? 2 : 3], &SPIRV::IDRegClass);
2189 }
2190 return true;
2191}
2192
2193/// Lowers a builtin funtion call using the provided \p DemangledCall skeleton
2194/// and external instruction \p Set.
2195namespace SPIRV {
2196std::optional<bool> lowerBuiltin(const StringRef DemangledCall,
2197 SPIRV::InstructionSet::InstructionSet Set,
2198 MachineIRBuilder &MIRBuilder,
2199 const Register OrigRet, const Type *OrigRetTy,
2200 const SmallVectorImpl<Register> &Args,
2201 SPIRVGlobalRegistry *GR) {
2202 LLVM_DEBUG(dbgs() << "Lowering builtin call: " << DemangledCall << "\n");
2203
2204 // SPIR-V type and return register.
2205 Register ReturnRegister = OrigRet;
2206 SPIRVType *ReturnType = nullptr;
2207 if (OrigRetTy && !OrigRetTy->isVoidTy()) {
2208 ReturnType = GR->assignTypeToVReg(OrigRetTy, OrigRet, MIRBuilder);
2209 if (!MIRBuilder.getMRI()->getRegClassOrNull(ReturnRegister))
2210 MIRBuilder.getMRI()->setRegClass(ReturnRegister, &SPIRV::IDRegClass);
2211 } else if (OrigRetTy && OrigRetTy->isVoidTy()) {
2212 ReturnRegister = MIRBuilder.getMRI()->createVirtualRegister(&IDRegClass);
2213 MIRBuilder.getMRI()->setType(ReturnRegister, LLT::scalar(32));
2214 ReturnType = GR->assignTypeToVReg(OrigRetTy, ReturnRegister, MIRBuilder);
2215 }
2216
2217 // Lookup the builtin in the TableGen records.
2218 std::unique_ptr<const IncomingCall> Call =
2219 lookupBuiltin(DemangledCall, Set, ReturnRegister, ReturnType, Args);
2220
2221 if (!Call) {
2222 LLVM_DEBUG(dbgs() << "Builtin record was not found!\n");
2223 return std::nullopt;
2224 }
2225
2226 // TODO: check if the provided args meet the builtin requirments.
2227 assert(Args.size() >= Call->Builtin->MinNumArgs &&
2228 "Too few arguments to generate the builtin");
2229 if (Call->Builtin->MaxNumArgs && Args.size() > Call->Builtin->MaxNumArgs)
2230 LLVM_DEBUG(dbgs() << "More arguments provided than required!\n");
2231
2232 // Match the builtin with implementation based on the grouping.
2233 switch (Call->Builtin->Group) {
2234 case SPIRV::Extended:
2235 return generateExtInst(Call.get(), MIRBuilder, GR);
2236 case SPIRV::Relational:
2237 return generateRelationalInst(Call.get(), MIRBuilder, GR);
2238 case SPIRV::Group:
2239 return generateGroupInst(Call.get(), MIRBuilder, GR);
2240 case SPIRV::Variable:
2241 return generateBuiltinVar(Call.get(), MIRBuilder, GR);
2242 case SPIRV::Atomic:
2243 return generateAtomicInst(Call.get(), MIRBuilder, GR);
2244 case SPIRV::AtomicFloating:
2245 return generateAtomicFloatingInst(Call.get(), MIRBuilder, GR);
2246 case SPIRV::Barrier:
2247 return generateBarrierInst(Call.get(), MIRBuilder, GR);
2248 case SPIRV::Dot:
2249 return generateDotOrFMulInst(Call.get(), MIRBuilder, GR);
2250 case SPIRV::Wave:
2251 return generateWaveInst(Call.get(), MIRBuilder, GR);
2252 case SPIRV::GetQuery:
2253 return generateGetQueryInst(Call.get(), MIRBuilder, GR);
2254 case SPIRV::ImageSizeQuery:
2255 return generateImageSizeQueryInst(Call.get(), MIRBuilder, GR);
2256 case SPIRV::ImageMiscQuery:
2257 return generateImageMiscQueryInst(Call.get(), MIRBuilder, GR);
2258 case SPIRV::ReadImage:
2259 return generateReadImageInst(DemangledCall, Call.get(), MIRBuilder, GR);
2260 case SPIRV::WriteImage:
2261 return generateWriteImageInst(Call.get(), MIRBuilder, GR);
2262 case SPIRV::SampleImage:
2263 return generateSampleImageInst(DemangledCall, Call.get(), MIRBuilder, GR);
2264 case SPIRV::Select:
2265 return generateSelectInst(Call.get(), MIRBuilder);
2266 case SPIRV::SpecConstant:
2267 return generateSpecConstantInst(Call.get(), MIRBuilder, GR);
2268 case SPIRV::Enqueue:
2269 return generateEnqueueInst(Call.get(), MIRBuilder, GR);
2270 case SPIRV::AsyncCopy:
2271 return generateAsyncCopy(Call.get(), MIRBuilder, GR);
2272 case SPIRV::Convert:
2273 return generateConvertInst(DemangledCall, Call.get(), MIRBuilder, GR);
2274 case SPIRV::VectorLoadStore:
2275 return generateVectorLoadStoreInst(Call.get(), MIRBuilder, GR);
2276 case SPIRV::LoadStore:
2277 return generateLoadStoreInst(Call.get(), MIRBuilder, GR);
2278 case SPIRV::IntelSubgroups:
2279 return generateIntelSubgroupsInst(Call.get(), MIRBuilder, GR);
2280 case SPIRV::GroupUniform:
2281 return generateGroupUniformInst(Call.get(), MIRBuilder, GR);
2282 }
2283 return false;
2284}
2285
2287 unsigned ArgIdx, LLVMContext &Ctx) {
2288 SmallVector<StringRef, 10> BuiltinArgsTypeStrs;
2289 StringRef BuiltinArgs =
2290 DemangledCall.slice(DemangledCall.find('(') + 1, DemangledCall.find(')'));
2291 BuiltinArgs.split(BuiltinArgsTypeStrs, ',', -1, false);
2292 if (ArgIdx >= BuiltinArgsTypeStrs.size())
2293 return nullptr;
2294 StringRef TypeStr = BuiltinArgsTypeStrs[ArgIdx].trim();
2295
2296 // Parse strings representing OpenCL builtin types.
2297 if (hasBuiltinTypePrefix(TypeStr)) {
2298 // OpenCL builtin types in demangled call strings have the following format:
2299 // e.g. ocl_image2d_ro
2300 bool IsOCLBuiltinType = TypeStr.consume_front("ocl_");
2301 assert(IsOCLBuiltinType && "Invalid OpenCL builtin prefix");
2302
2303 // Check if this is pointer to a builtin type and not just pointer
2304 // representing a builtin type. In case it is a pointer to builtin type,
2305 // this will require additional handling in the method calling
2306 // parseBuiltinCallArgumentBaseType(...) as this function only retrieves the
2307 // base types.
2308 if (TypeStr.ends_with("*"))
2309 TypeStr = TypeStr.slice(0, TypeStr.find_first_of(" "));
2310
2311 return parseBuiltinTypeNameToTargetExtType("opencl." + TypeStr.str() + "_t",
2312 Ctx);
2313 }
2314
2315 // Parse type name in either "typeN" or "type vector[N]" format, where
2316 // N is the number of elements of the vector.
2317 Type *BaseType;
2318 unsigned VecElts = 0;
2319
2320 BaseType = parseBasicTypeName(TypeStr, Ctx);
2321 if (!BaseType)
2322 // Unable to recognize SPIRV type name.
2323 return nullptr;
2324
2325 if (BaseType->isVoidTy())
2327
2328 // Handle "typeN*" or "type vector[N]*".
2329 TypeStr.consume_back("*");
2330
2331 if (TypeStr.consume_front(" vector["))
2332 TypeStr = TypeStr.substr(0, TypeStr.find(']'));
2333
2334 TypeStr.getAsInteger(10, VecElts);
2335 if (VecElts > 0)
2336 BaseType = VectorType::get(BaseType, VecElts, false);
2337
2338 return BaseType;
2339}
2340
2344};
2345
2346#define GET_BuiltinTypes_DECL
2347#define GET_BuiltinTypes_IMPL
2348
2352};
2353
2354#define GET_OpenCLTypes_DECL
2355#define GET_OpenCLTypes_IMPL
2356
2357#include "SPIRVGenTables.inc"
2358} // namespace SPIRV
2359
2360//===----------------------------------------------------------------------===//
2361// Misc functions for parsing builtin types.
2362//===----------------------------------------------------------------------===//
2363
2365 if (Name.starts_with("void"))
2366 return Type::getVoidTy(Context);
2367 else if (Name.starts_with("int") || Name.starts_with("uint"))
2368 return Type::getInt32Ty(Context);
2369 else if (Name.starts_with("float"))
2370 return Type::getFloatTy(Context);
2371 else if (Name.starts_with("half"))
2372 return Type::getHalfTy(Context);
2373 report_fatal_error("Unable to recognize type!");
2374}
2375
2376//===----------------------------------------------------------------------===//
2377// Implementation functions for builtin types.
2378//===----------------------------------------------------------------------===//
2379
2381 const SPIRV::BuiltinType *TypeRecord,
2382 MachineIRBuilder &MIRBuilder,
2383 SPIRVGlobalRegistry *GR) {
2384 unsigned Opcode = TypeRecord->Opcode;
2385 // Create or get an existing type from GlobalRegistry.
2386 return GR->getOrCreateOpTypeByOpcode(ExtensionType, MIRBuilder, Opcode);
2387}
2388
2390 SPIRVGlobalRegistry *GR) {
2391 // Create or get an existing type from GlobalRegistry.
2392 return GR->getOrCreateOpTypeSampler(MIRBuilder);
2393}
2394
2395static SPIRVType *getPipeType(const TargetExtType *ExtensionType,
2396 MachineIRBuilder &MIRBuilder,
2397 SPIRVGlobalRegistry *GR) {
2398 assert(ExtensionType->getNumIntParameters() == 1 &&
2399 "Invalid number of parameters for SPIR-V pipe builtin!");
2400 // Create or get an existing type from GlobalRegistry.
2401 return GR->getOrCreateOpTypePipe(MIRBuilder,
2402 SPIRV::AccessQualifier::AccessQualifier(
2403 ExtensionType->getIntParameter(0)));
2404}
2405
2406static SPIRVType *
2407getImageType(const TargetExtType *ExtensionType,
2408 const SPIRV::AccessQualifier::AccessQualifier Qualifier,
2409 MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR) {
2410 assert(ExtensionType->getNumTypeParameters() == 1 &&
2411 "SPIR-V image builtin type must have sampled type parameter!");
2412 const SPIRVType *SampledType =
2413 GR->getOrCreateSPIRVType(ExtensionType->getTypeParameter(0), MIRBuilder);
2414 assert(ExtensionType->getNumIntParameters() == 7 &&
2415 "Invalid number of parameters for SPIR-V image builtin!");
2416 // Create or get an existing type from GlobalRegistry.
2417 return GR->getOrCreateOpTypeImage(
2418 MIRBuilder, SampledType,
2419 SPIRV::Dim::Dim(ExtensionType->getIntParameter(0)),
2420 ExtensionType->getIntParameter(1), ExtensionType->getIntParameter(2),
2421 ExtensionType->getIntParameter(3), ExtensionType->getIntParameter(4),
2422 SPIRV::ImageFormat::ImageFormat(ExtensionType->getIntParameter(5)),
2423 Qualifier == SPIRV::AccessQualifier::WriteOnly
2424 ? SPIRV::AccessQualifier::WriteOnly
2425 : SPIRV::AccessQualifier::AccessQualifier(
2426 ExtensionType->getIntParameter(6)));
2427}
2428
2430 MachineIRBuilder &MIRBuilder,
2431 SPIRVGlobalRegistry *GR) {
2432 SPIRVType *OpaqueImageType = getImageType(
2433 OpaqueType, SPIRV::AccessQualifier::ReadOnly, MIRBuilder, GR);
2434 // Create or get an existing type from GlobalRegistry.
2435 return GR->getOrCreateOpTypeSampledImage(OpaqueImageType, MIRBuilder);
2436}
2437
2438namespace SPIRV {
2440 LLVMContext &Context) {
2441 StringRef NameWithParameters = TypeName;
2442
2443 // Pointers-to-opaque-structs representing OpenCL types are first translated
2444 // to equivalent SPIR-V types. OpenCL builtin type names should have the
2445 // following format: e.g. %opencl.event_t
2446 if (NameWithParameters.starts_with("opencl.")) {
2447 const SPIRV::OpenCLType *OCLTypeRecord =
2448 SPIRV::lookupOpenCLType(NameWithParameters);
2449 if (!OCLTypeRecord)
2450 report_fatal_error("Missing TableGen record for OpenCL type: " +
2451 NameWithParameters);
2452 NameWithParameters = OCLTypeRecord->SpirvTypeLiteral;
2453 // Continue with the SPIR-V builtin type...
2454 }
2455
2456 // Names of the opaque structs representing a SPIR-V builtins without
2457 // parameters should have the following format: e.g. %spirv.Event
2458 assert(NameWithParameters.starts_with("spirv.") &&
2459 "Unknown builtin opaque type!");
2460
2461 // Parameterized SPIR-V builtins names follow this format:
2462 // e.g. %spirv.Image._void_1_0_0_0_0_0_0, %spirv.Pipe._0
2463 if (!NameWithParameters.contains('_'))
2464 return TargetExtType::get(Context, NameWithParameters);
2465
2466 SmallVector<StringRef> Parameters;
2467 unsigned BaseNameLength = NameWithParameters.find('_') - 1;
2468 SplitString(NameWithParameters.substr(BaseNameLength + 1), Parameters, "_");
2469
2470 SmallVector<Type *, 1> TypeParameters;
2471 bool HasTypeParameter = !isDigit(Parameters[0][0]);
2472 if (HasTypeParameter)
2473 TypeParameters.push_back(parseTypeString(Parameters[0], Context));
2474 SmallVector<unsigned> IntParameters;
2475 for (unsigned i = HasTypeParameter ? 1 : 0; i < Parameters.size(); i++) {
2476 unsigned IntParameter = 0;
2477 bool ValidLiteral = !Parameters[i].getAsInteger(10, IntParameter);
2478 (void)ValidLiteral;
2479 assert(ValidLiteral &&
2480 "Invalid format of SPIR-V builtin parameter literal!");
2481 IntParameters.push_back(IntParameter);
2482 }
2484 NameWithParameters.substr(0, BaseNameLength),
2485 TypeParameters, IntParameters);
2486}
2487
2489 SPIRV::AccessQualifier::AccessQualifier AccessQual,
2490 MachineIRBuilder &MIRBuilder,
2491 SPIRVGlobalRegistry *GR) {
2492 // In LLVM IR, SPIR-V and OpenCL builtin types are represented as either
2493 // target(...) target extension types or pointers-to-opaque-structs. The
2494 // approach relying on structs is deprecated and works only in the non-opaque
2495 // pointer mode (-opaque-pointers=0).
2496 // In order to maintain compatibility with LLVM IR generated by older versions
2497 // of Clang and LLVM/SPIR-V Translator, the pointers-to-opaque-structs are
2498 // "translated" to target extension types. This translation is temporary and
2499 // will be removed in the future release of LLVM.
2500 const TargetExtType *BuiltinType = dyn_cast<TargetExtType>(OpaqueType);
2501 if (!BuiltinType)
2503 OpaqueType->getStructName().str(), MIRBuilder.getContext());
2504
2505 unsigned NumStartingVRegs = MIRBuilder.getMRI()->getNumVirtRegs();
2506
2507 const StringRef Name = BuiltinType->getName();
2508 LLVM_DEBUG(dbgs() << "Lowering builtin type: " << Name << "\n");
2509
2510 // Lookup the demangled builtin type in the TableGen records.
2511 const SPIRV::BuiltinType *TypeRecord = SPIRV::lookupBuiltinType(Name);
2512 if (!TypeRecord)
2513 report_fatal_error("Missing TableGen record for builtin type: " + Name);
2514
2515 // "Lower" the BuiltinType into TargetType. The following get<...>Type methods
2516 // use the implementation details from TableGen records or TargetExtType
2517 // parameters to either create a new OpType<...> machine instruction or get an
2518 // existing equivalent SPIRVType from GlobalRegistry.
2519 SPIRVType *TargetType;
2520 switch (TypeRecord->Opcode) {
2521 case SPIRV::OpTypeImage:
2522 TargetType = getImageType(BuiltinType, AccessQual, MIRBuilder, GR);
2523 break;
2524 case SPIRV::OpTypePipe:
2525 TargetType = getPipeType(BuiltinType, MIRBuilder, GR);
2526 break;
2527 case SPIRV::OpTypeDeviceEvent:
2528 TargetType = GR->getOrCreateOpTypeDeviceEvent(MIRBuilder);
2529 break;
2530 case SPIRV::OpTypeSampler:
2531 TargetType = getSamplerType(MIRBuilder, GR);
2532 break;
2533 case SPIRV::OpTypeSampledImage:
2534 TargetType = getSampledImageType(BuiltinType, MIRBuilder, GR);
2535 break;
2536 default:
2537 TargetType =
2538 getNonParameterizedType(BuiltinType, TypeRecord, MIRBuilder, GR);
2539 break;
2540 }
2541
2542 // Emit OpName instruction if a new OpType<...> instruction was added
2543 // (equivalent type was not found in GlobalRegistry).
2544 if (NumStartingVRegs < MIRBuilder.getMRI()->getNumVirtRegs())
2545 buildOpName(GR->getSPIRVTypeID(TargetType), Name, MIRBuilder);
2546
2547 return TargetType;
2548}
2549} // namespace SPIRV
2550} // namespace llvm
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder MachineInstrBuilder & DefMI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
AMDGPU Lower Kernel Arguments
return RetTy
#define LLVM_DEBUG(X)
Definition: Debug.h:101
std::string Name
uint64_t Size
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned Reg
IntegerType * Int32Ty
LLVMContext & Context
static bool isDigit(const char C)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file contains some functions that are useful when dealing with strings.
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
APInt bitcastToAPInt() const
Definition: APFloat.h:1210
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition: APFloat.h:957
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:212
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1491
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Definition: Type.cpp:647
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:1018
@ ICMP_EQ
equal
Definition: InstrTypes.h:1014
const APFloat & getValueAPF() const
Definition: Constants.h:311
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:145
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
Tagged union holding either a T or a Error.
Definition: Error.h:474
Class to represent fixed width SIMD vectors.
Definition: DerivedTypes.h:539
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition: Function.cpp:356
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:278
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
Definition: LowLevelType.h:64
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
Definition: LowLevelType.h:42
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
Definition: LowLevelType.h:57
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
Definition: LowLevelType.h:100
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Function & getFunction()
Return the LLVM function that this machine code represents.
Helper class to build MachineInstr.
LLVMContext & getContext() const
MachineInstrBuilder buildSelect(const DstOp &Res, const SrcOp &Tst, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_SELECT Tst, Op0, Op1.
MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1)
Build and insert a Res = G_ICMP Pred, Op0, Op1.
MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef< Register > Res, bool HasSideEffects, bool isConvergent)
Build and insert a G_INTRINSIC instruction.
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildZExtOrTrunc(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ZEXT Op, Res = G_TRUNC Op, or Res = COPY Op depending on the differing sizes...
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineFunction & getMF()
Getter for the function we currently build.
MachineRegisterInfo * getMRI()
Getter for MRI.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op)
Build and insert Res = COPY Op.
const DataLayout & getDataLayout() const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:558
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:568
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
const ConstantInt * getCImm() const
bool isCImm() const
isCImm - Test if this is a MO_CImmediate operand.
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
const MDNode * getMetadata() const
Register getReg() const
getReg - Returns the register number.
const ConstantFP * getFPImm() const
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
void setType(Register VReg, LLT Ty)
Set the low-level type of VReg to Ty.
void setRegClass(Register Reg, const TargetRegisterClass *RC)
setRegClass - Set the register class of the specified virtual register.
Register createGenericVirtualRegister(LLT Ty, StringRef Name="")
Create and return a new generic virtual register with low-level type Ty.
const TargetRegisterClass * getRegClassOrNull(Register Reg) const
Return the register class of Reg, or null if Reg has not been assigned a register class yet.
unsigned getNumVirtRegs() const
getNumVirtRegs - Return the number of virtual registers created.
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isValid() const
Definition: Register.h:116
SPIRVType * getOrCreateOpTypePipe(MachineIRBuilder &MIRBuilder, SPIRV::AccessQualifier::AccessQualifier AccQual)
SPIRVType * getSPIRVTypeForVReg(Register VReg, const MachineFunction *MF=nullptr) const
SPIRVType * getOrCreateSPIRVBoolType(MachineIRBuilder &MIRBuilder)
Register getOrCreateConsIntVector(uint64_t Val, MachineIRBuilder &MIRBuilder, SPIRVType *SpvType, bool EmitIR=true)
const Type * getTypeForSPIRVType(const SPIRVType *Ty) const
Register buildConstantSampler(Register Res, unsigned AddrMode, unsigned Param, unsigned FilerMode, MachineIRBuilder &MIRBuilder, SPIRVType *SpvType)
unsigned getScalarOrVectorComponentCount(Register VReg) const
SPIRVType * getOrCreateOpTypeImage(MachineIRBuilder &MIRBuilder, SPIRVType *SampledType, SPIRV::Dim::Dim Dim, uint32_t Depth, uint32_t Arrayed, uint32_t Multisampled, uint32_t Sampled, SPIRV::ImageFormat::ImageFormat ImageFormat, SPIRV::AccessQualifier::AccessQualifier AccQual)
SPIRVType * getOrCreateOpTypeByOpcode(const Type *Ty, MachineIRBuilder &MIRBuilder, unsigned Opcode)
Register buildConstantFP(APFloat Val, MachineIRBuilder &MIRBuilder, SPIRVType *SpvType=nullptr)
Register getSPIRVTypeID(const SPIRVType *SpirvType) const
SPIRVType * getOrCreateSPIRVType(const Type *Type, MachineIRBuilder &MIRBuilder, SPIRV::AccessQualifier::AccessQualifier AQ=SPIRV::AccessQualifier::ReadWrite, bool EmitIR=true)
void assignSPIRVTypeToVReg(SPIRVType *Type, Register VReg, MachineFunction &MF)
bool isScalarOfType(Register VReg, unsigned TypeOpcode) const
Register buildGlobalVariable(Register Reg, SPIRVType *BaseType, StringRef Name, const GlobalValue *GV, SPIRV::StorageClass::StorageClass Storage, const MachineInstr *Init, bool IsConst, bool HasLinkageTy, SPIRV::LinkageType::LinkageType LinkageType, MachineIRBuilder &MIRBuilder, bool IsInstSelector)
SPIRVType * getOrCreateOpTypeSampledImage(SPIRVType *ImageType, MachineIRBuilder &MIRBuilder)
SPIRVType * getOrCreateSPIRVTypeByName(StringRef TypeStr, MachineIRBuilder &MIRBuilder, SPIRV::StorageClass::StorageClass SC=SPIRV::StorageClass::Function, SPIRV::AccessQualifier::AccessQualifier AQ=SPIRV::AccessQualifier::ReadWrite)
SPIRVType * assignTypeToVReg(const Type *Type, Register VReg, MachineIRBuilder &MIRBuilder, SPIRV::AccessQualifier::AccessQualifier AQ=SPIRV::AccessQualifier::ReadWrite, bool EmitIR=true)
bool isScalarOrVectorOfType(Register VReg, unsigned TypeOpcode) const
SPIRVType * getOrCreateOpTypeDeviceEvent(MachineIRBuilder &MIRBuilder)
SPIRVType * getOrCreateSPIRVPointerType(SPIRVType *BaseType, MachineIRBuilder &MIRBuilder, SPIRV::StorageClass::StorageClass SClass=SPIRV::StorageClass::Function)
SPIRVType * getOrCreateSPIRVVectorType(SPIRVType *BaseType, unsigned NumElements, MachineIRBuilder &MIRBuilder)
SPIRVType * getOrCreateSPIRVIntegerType(unsigned BitWidth, MachineIRBuilder &MIRBuilder)
Register getOrCreateConsIntArray(uint64_t Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
SPIRV::StorageClass::StorageClass getPointerStorageClass(Register VReg) const
SPIRVType * getOrCreateOpTypeSampler(MachineIRBuilder &MIRBuilder)
Register buildConstantInt(uint64_t Val, MachineIRBuilder &MIRBuilder, SPIRVType *SpvType=nullptr, bool EmitIR=true)
Register getOrCreateConstNullPtr(MachineIRBuilder &MIRBuilder, SPIRVType *SpvType)
unsigned getScalarOrVectorBitWidth(const SPIRVType *Type) const
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition: StringRef.h:686
bool consume_back(StringRef Suffix)
Returns true if this StringRef has the given suffix and removes that suffix.
Definition: StringRef.h:641
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
Definition: StringRef.h:456
std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:222
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:557
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition: StringRef.h:257
bool contains_insensitive(StringRef Other) const
Return true if the given string is a substring of *this, and false otherwise.
Definition: StringRef.h:422
StringRef slice(size_t Start, size_t End) const
Return a reference to the substring from [Start, End).
Definition: StringRef.h:670
bool contains(StringRef Other) const
Return true if the given string is a substring of *this, and false otherwise.
Definition: StringRef.h:410
bool consume_front(StringRef Prefix)
Returns true if this StringRef has the given prefix and removes that prefix.
Definition: StringRef.h:621
size_t find_first_of(char C, size_t From=0) const
Find the first character in the string that is C, or npos if not found.
Definition: StringRef.h:363
size_t find(char C, size_t From=0) const
Search for the first character C in the string.
Definition: StringRef.h:283
bool ends_with(StringRef Suffix) const
Check if this string ends with the given Suffix.
Definition: StringRef.h:266
static constexpr size_t npos
Definition: StringRef.h:52
Class to represent struct types.
Definition: DerivedTypes.h:216
static StructType * getTypeByName(LLVMContext &C, StringRef Name)
Return the type with the specified name, or null if there is none by that name.
Definition: Type.cpp:632
static StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition: Type.cpp:513
Class to represent target extensions types, which are generally unintrospectable from target-independ...
Definition: DerivedTypes.h:720
unsigned getNumIntParameters() const
Definition: DerivedTypes.h:765
static TargetExtType * get(LLVMContext &Context, StringRef Name, ArrayRef< Type * > Types=std::nullopt, ArrayRef< unsigned > Ints=std::nullopt)
Return a target extension type having the specified name and optional type and integer parameters.
Definition: Type.cpp:796
Type * getTypeParameter(unsigned i) const
Definition: DerivedTypes.h:755
unsigned getNumTypeParameters() const
Definition: DerivedTypes.h:756
unsigned getIntParameter(unsigned i) const
Definition: DerivedTypes.h:764
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static Type * getHalfTy(LLVMContext &C)
StringRef getStructName() const
static Type * getVoidTy(LLVMContext &C)
static IntegerType * getInt8Ty(LLVMContext &C)
static IntegerType * getInt32Ty(LLVMContext &C)
static Type * getFloatTy(LLVMContext &C)
bool isVoidTy() const
Return true if this is 'void'.
Definition: Type.h:140
LLVM Value Representation.
Definition: Value.h:74
Value(Type *Ty, unsigned scid)
Definition: Value.cpp:53
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:676
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:316
LLVMTypeRef LLVMVectorType(LLVMTypeRef ElementType, unsigned ElementCount)
Create a vector type that contains a defined type and has a specific number of elements.
Definition: Core.cpp:864
Type * parseBuiltinCallArgumentBaseType(const StringRef DemangledCall, unsigned ArgIdx, LLVMContext &Ctx)
Parses the provided ArgIdx argument base type in the DemangledCall skeleton.
TargetExtType * parseBuiltinTypeNameToTargetExtType(std::string TypeName, LLVMContext &Context)
Translates a string representing a SPIR-V or OpenCL builtin type to a TargetExtType that can be furth...
std::optional< bool > lowerBuiltin(const StringRef DemangledCall, SPIRV::InstructionSet::InstructionSet Set, MachineIRBuilder &MIRBuilder, const Register OrigRet, const Type *OrigRetTy, const SmallVectorImpl< Register > &Args, SPIRVGlobalRegistry *GR)
SPIRVType * lowerBuiltinType(const Type *OpaqueType, SPIRV::AccessQualifier::AccessQualifier AccessQual, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
StorageClass
Definition: XCOFF.h:170
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void buildOpName(Register Target, const StringRef &Name, MachineIRBuilder &MIRBuilder)
Definition: SPIRVUtils.cpp:100
unsigned storageClassToAddressSpace(SPIRV::StorageClass::StorageClass SC)
Definition: SPIRVUtils.cpp:138
static bool generateGetQueryInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateLoadStoreInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static Register buildConstantIntReg(uint64_t Val, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR, unsigned BitWidth=32)
static bool buildAtomicFlagInst(const SPIRV::IncomingCall *Call, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building atomic flag instructions (e.g.
static Register buildBuiltinVariableLoad(MachineIRBuilder &MIRBuilder, SPIRVType *VariableType, SPIRVGlobalRegistry *GR, SPIRV::BuiltIn::BuiltIn BuiltinValue, LLT LLType, Register Reg=Register(0), bool isConst=true, bool hasLinkageTy=true)
Helper function for building a load instruction for loading a builtin global variable of BuiltinValue...
static bool generateImageSizeQueryInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static SPIRV::SamplerFilterMode::SamplerFilterMode getSamplerFilterModeFromBitmask(unsigned Bitmask)
static bool buildAtomicStoreInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building an atomic store instruction.
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB)
Definition: SPIRVUtils.cpp:80
static const Type * getBlockStructType(Register ParamReg, MachineRegisterInfo *MRI)
static bool generateGroupInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static unsigned getNumComponentsForDim(SPIRV::Dim::Dim dim)
Register insertAssignInstr(Register Reg, Type *Ty, SPIRVType *SpirvTy, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB, MachineRegisterInfo &MRI)
Helper external function for inserting ASSIGN_TYPE instuction between Reg and its definition,...
static Register buildScopeReg(Register CLScopeRegister, SPIRV::Scope::Scope Scope, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR, MachineRegisterInfo *MRI)
static std::tuple< Register, SPIRVType * > buildBoolRegister(MachineIRBuilder &MIRBuilder, const SPIRVType *ResultType, SPIRVGlobalRegistry *GR)
Helper function building either a resulting scalar or vector bool register depending on the expected ...
static unsigned getNumSizeComponents(SPIRVType *imgType)
Helper function for obtaining the number of size components.
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI)
Definition: SPIRVUtils.cpp:241
static SPIRVType * getSampledImageType(const TargetExtType *OpaqueType, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
SPIRV::MemorySemantics::MemorySemantics getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC)
Definition: SPIRVUtils.cpp:190
static bool generateDotOrFMulInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateSampleImageInst(const StringRef DemangledCall, const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateBarrierInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateGroupUniformInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateWaveInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static SPIRVType * getImageType(const TargetExtType *ExtensionType, const SPIRV::AccessQualifier::AccessQualifier Qualifier, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder, SPIRV::Decoration::Decoration Dec, const std::vector< uint32_t > &DecArgs, StringRef StrImm)
Definition: SPIRVUtils.cpp:117
static bool buildBarrierInst(const SPIRV::IncomingCall *Call, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building barriers, i.e., memory/control ordering operations.
static bool generateAsyncCopy(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static SPIRV::Scope::Scope getSPIRVScope(SPIRV::CLMemoryScope ClScope)
static SPIRVType * getSamplerType(MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
static Register buildLoadInst(SPIRVType *BaseType, Register PtrRegister, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR, LLT LowLevelType, Register DestinationReg=Register(0))
Helper function for building a load instruction loading into the DestinationReg.
static bool generateEnqueueInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:156
static bool buildSelectInst(MachineIRBuilder &MIRBuilder, Register ReturnRegister, Register SourceRegister, const SPIRVType *ReturnType, SPIRVGlobalRegistry *GR)
Helper function for building either a vector or scalar select instruction depending on the expected R...
static const Type * getMachineInstrType(MachineInstr *MI)
static SPIRV::SamplerAddressingMode::SamplerAddressingMode getSamplerAddressingModeFromBitmask(unsigned Bitmask)
static bool generateAtomicInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateConvertInst(const StringRef DemangledCall, const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static Register buildMemSemanticsReg(Register SemanticsRegister, Register PtrRegister, unsigned &Semantics, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static unsigned getConstFromIntrinsic(Register Reg, MachineRegisterInfo *MRI)
static bool generateImageMiscQueryInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateSelectInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder)
static bool buildAtomicLoadInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building an atomic load instruction.
static bool generateIntelSubgroupsInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateSpecConstantInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static SPIRVType * getOrCreateSPIRVDeviceEventPointer(MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Type * parseBasicTypeName(StringRef &TypeName, LLVMContext &Ctx)
Definition: SPIRVUtils.cpp:372
static bool generateVectorLoadStoreInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool genWorkgroupQuery(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR, SPIRV::BuiltIn::BuiltIn BuiltinValue, uint64_t DefaultValue)
static bool buildOpFromWrapper(MachineIRBuilder &MIRBuilder, unsigned Opcode, const SPIRV::IncomingCall *Call, Register TypeReg=Register(0))
static std::unique_ptr< const SPIRV::IncomingCall > lookupBuiltin(StringRef DemangledCall, SPIRV::InstructionSet::InstructionSet Set, Register ReturnRegister, const SPIRVType *ReturnType, const SmallVectorImpl< Register > &Arguments)
Looks up the demangled builtin call in the SPIRVBuiltins.td records using the provided DemangledCall ...
static bool buildAtomicFloatingRMWInst(const SPIRV::IncomingCall *Call, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building an atomic floating-type instruction.
MachineInstr * getDefInstrMaybeConstant(Register &ConstReg, const MachineRegisterInfo *MRI)
Definition: SPIRVUtils.cpp:226
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
const MachineInstr SPIRVType
static bool generateReadImageInst(const StringRef DemangledCall, const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
bool hasBuiltinTypePrefix(StringRef Name)
Definition: SPIRVUtils.cpp:344
static bool buildEnqueueKernel(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Type * getMDOperandAsType(const MDNode *N, unsigned I)
Definition: SPIRVUtils.cpp:253
static bool buildAtomicRMWInst(const SPIRV::IncomingCall *Call, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building an atomic load instruction.
static SPIRV::MemorySemantics::MemorySemantics getSPIRVMemSemantics(std::memory_order MemOrder)
static bool generateRelationalInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool buildAtomicInitInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder)
Helper function for translating atomic init to OpStore.
static bool generateWriteImageInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static SPIRVType * getPipeType(const TargetExtType *ExtensionType, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static Type * parseTypeString(const StringRef Name, LLVMContext &Context)
bool isSpvIntrinsic(const MachineInstr &MI, Intrinsic::ID IntrinsicID)
Definition: SPIRVUtils.cpp:247
static bool generateAtomicFloatingInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateExtInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool buildNDRange(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static SPIRVType * getNonParameterizedType(const TargetExtType *ExtensionType, const SPIRV::BuiltinType *TypeRecord, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static MachineInstr * getBlockStructInstr(Register ParamReg, MachineRegisterInfo *MRI)
static unsigned getSamplerParamFromBitmask(unsigned Bitmask)
static bool buildAtomicCompareExchangeInst(const SPIRV::IncomingCall *Call, const SPIRV::DemangledBuiltin *Builtin, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building an atomic compare-exchange instruction.
std::string getLinkStringForBuiltIn(SPIRV::BuiltIn::BuiltIn BuiltInValue)
static bool generateBuiltinVar(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static const fltSemantics & IEEEsingle() LLVM_READNONE
Definition: APFloat.cpp:249
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
This class contains a discriminated union of information about pointers in memory operands,...
FPRoundingMode::FPRoundingMode RoundingMode
InstructionSet::InstructionSet Set
InstructionSet::InstructionSet Set
InstructionSet::InstructionSet Set
BuiltIn::BuiltIn Value
InstructionSet::InstructionSet Set
const SmallVectorImpl< Register > & Arguments
const std::string BuiltinName
const SPIRVType * ReturnType
const Register ReturnRegister
const DemangledBuiltin * Builtin
IncomingCall(const std::string BuiltinName, const DemangledBuiltin *Builtin, const Register ReturnRegister, const SPIRVType *ReturnType, const SmallVectorImpl< Register > &Arguments)
InstructionSet::InstructionSet Set
InstructionSet::InstructionSet Set
FPRoundingMode::FPRoundingMode RoundingMode