LLVM  6.0.0svn
LLParser.cpp
Go to the documentation of this file.
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
44 #include "llvm/Support/Casting.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58  std::string Result;
59  raw_string_ostream Tmp(Result);
60  Tmp << *T;
61  return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66  // Prime the lexer.
67  Lex.Lex();
68 
69  if (Context.shouldDiscardValueNames())
70  return Error(
71  Lex.getLoc(),
72  "Can't read textual IR with a Context that discards named Values");
73 
74  return ParseTopLevelEntities() ||
75  ValidateEndOfModule();
76 }
77 
79  const SlotMapping *Slots) {
80  restoreParsingState(Slots);
81  Lex.Lex();
82 
83  Type *Ty = nullptr;
84  if (ParseType(Ty) || parseConstantValue(Ty, C))
85  return true;
86  if (Lex.getKind() != lltok::Eof)
87  return Error(Lex.getLoc(), "expected end of string");
88  return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92  const SlotMapping *Slots) {
93  restoreParsingState(Slots);
94  Lex.Lex();
95 
96  Read = 0;
97  SMLoc Start = Lex.getLoc();
98  Ty = nullptr;
99  if (ParseType(Ty))
100  return true;
101  SMLoc End = Lex.getLoc();
102  Read = End.getPointer() - Start.getPointer();
103 
104  return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108  if (!Slots)
109  return;
110  NumberedVals = Slots->GlobalValues;
111  NumberedMetadata = Slots->MetadataNodes;
112  for (const auto &I : Slots->NamedTypes)
113  NamedTypes.insert(
114  std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115  for (const auto &I : Slots->Types)
116  NumberedTypes.insert(
117  std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123  // Handle any function attribute group forward references.
124  for (const auto &RAG : ForwardRefAttrGroups) {
125  Value *V = RAG.first;
126  const std::vector<unsigned> &Attrs = RAG.second;
127  AttrBuilder B;
128 
129  for (const auto &Attr : Attrs)
130  B.merge(NumberedAttrBuilders[Attr]);
131 
132  if (Function *Fn = dyn_cast<Function>(V)) {
133  AttributeList AS = Fn->getAttributes();
134  AttrBuilder FnAttrs(AS.getFnAttributes());
136 
137  FnAttrs.merge(B);
138 
139  // If the alignment was parsed as an attribute, move to the alignment
140  // field.
141  if (FnAttrs.hasAlignmentAttr()) {
142  Fn->setAlignment(FnAttrs.getAlignment());
143  FnAttrs.removeAttribute(Attribute::Alignment);
144  }
145 
147  AttributeSet::get(Context, FnAttrs));
148  Fn->setAttributes(AS);
149  } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
150  AttributeList AS = CI->getAttributes();
151  AttrBuilder FnAttrs(AS.getFnAttributes());
153  FnAttrs.merge(B);
155  AttributeSet::get(Context, FnAttrs));
156  CI->setAttributes(AS);
157  } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
158  AttributeList AS = II->getAttributes();
159  AttrBuilder FnAttrs(AS.getFnAttributes());
161  FnAttrs.merge(B);
163  AttributeSet::get(Context, FnAttrs));
164  II->setAttributes(AS);
165  } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
166  AttrBuilder Attrs(GV->getAttributes());
167  Attrs.merge(B);
168  GV->setAttributes(AttributeSet::get(Context,Attrs));
169  } else {
170  llvm_unreachable("invalid object with forward attribute group reference");
171  }
172  }
173 
174  // If there are entries in ForwardRefBlockAddresses at this point, the
175  // function was never defined.
176  if (!ForwardRefBlockAddresses.empty())
177  return Error(ForwardRefBlockAddresses.begin()->first.Loc,
178  "expected function name in blockaddress");
179 
180  for (const auto &NT : NumberedTypes)
181  if (NT.second.second.isValid())
182  return Error(NT.second.second,
183  "use of undefined type '%" + Twine(NT.first) + "'");
184 
185  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
186  NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
187  if (I->second.second.isValid())
188  return Error(I->second.second,
189  "use of undefined type named '" + I->getKey() + "'");
190 
191  if (!ForwardRefComdats.empty())
192  return Error(ForwardRefComdats.begin()->second,
193  "use of undefined comdat '$" +
194  ForwardRefComdats.begin()->first + "'");
195 
196  if (!ForwardRefVals.empty())
197  return Error(ForwardRefVals.begin()->second.second,
198  "use of undefined value '@" + ForwardRefVals.begin()->first +
199  "'");
200 
201  if (!ForwardRefValIDs.empty())
202  return Error(ForwardRefValIDs.begin()->second.second,
203  "use of undefined value '@" +
204  Twine(ForwardRefValIDs.begin()->first) + "'");
205 
206  if (!ForwardRefMDNodes.empty())
207  return Error(ForwardRefMDNodes.begin()->second.second,
208  "use of undefined metadata '!" +
209  Twine(ForwardRefMDNodes.begin()->first) + "'");
210 
211  // Resolve metadata cycles.
212  for (auto &N : NumberedMetadata) {
213  if (N.second && !N.second->isResolved())
214  N.second->resolveCycles();
215  }
216 
217  for (auto *Inst : InstsWithTBAATag) {
218  MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
219  assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
220  auto *UpgradedMD = UpgradeTBAANode(*MD);
221  if (MD != UpgradedMD)
222  Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
223  }
224 
225  // Look for intrinsic functions and CallInst that need to be upgraded
226  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
227  UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
228 
229  // Some types could be renamed during loading if several modules are
230  // loaded in the same LLVMContext (LTO scenario). In this case we should
231  // remangle intrinsics names as well.
232  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
233  Function *F = &*FI++;
234  if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
235  F->replaceAllUsesWith(Remangled.getValue());
236  F->eraseFromParent();
237  }
238  }
239 
240  if (UpgradeDebugInfo)
242 
243  UpgradeModuleFlags(*M);
245 
246  if (!Slots)
247  return false;
248  // Initialize the slot mapping.
249  // Because by this point we've parsed and validated everything, we can "steal"
250  // the mapping from LLParser as it doesn't need it anymore.
251  Slots->GlobalValues = std::move(NumberedVals);
252  Slots->MetadataNodes = std::move(NumberedMetadata);
253  for (const auto &I : NamedTypes)
254  Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
255  for (const auto &I : NumberedTypes)
256  Slots->Types.insert(std::make_pair(I.first, I.second.first));
257 
258  return false;
259 }
260 
261 //===----------------------------------------------------------------------===//
262 // Top-Level Entities
263 //===----------------------------------------------------------------------===//
264 
265 bool LLParser::ParseTopLevelEntities() {
266  while (true) {
267  switch (Lex.getKind()) {
268  default: return TokError("expected top-level entity");
269  case lltok::Eof: return false;
270  case lltok::kw_declare: if (ParseDeclare()) return true; break;
271  case lltok::kw_define: if (ParseDefine()) return true; break;
272  case lltok::kw_module: if (ParseModuleAsm()) return true; break;
273  case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
275  if (ParseSourceFileName())
276  return true;
277  break;
278  case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
279  case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
280  case lltok::LocalVar: if (ParseNamedType()) return true; break;
281  case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
282  case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
283  case lltok::ComdatVar: if (parseComdat()) return true; break;
284  case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
285  case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
286  case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
287  case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
289  if (ParseUseListOrderBB())
290  return true;
291  break;
292  }
293  }
294 }
295 
296 /// toplevelentity
297 /// ::= 'module' 'asm' STRINGCONSTANT
298 bool LLParser::ParseModuleAsm() {
299  assert(Lex.getKind() == lltok::kw_module);
300  Lex.Lex();
301 
302  std::string AsmStr;
303  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
304  ParseStringConstant(AsmStr)) return true;
305 
306  M->appendModuleInlineAsm(AsmStr);
307  return false;
308 }
309 
310 /// toplevelentity
311 /// ::= 'target' 'triple' '=' STRINGCONSTANT
312 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
313 bool LLParser::ParseTargetDefinition() {
314  assert(Lex.getKind() == lltok::kw_target);
315  std::string Str;
316  switch (Lex.Lex()) {
317  default: return TokError("unknown target property");
318  case lltok::kw_triple:
319  Lex.Lex();
320  if (ParseToken(lltok::equal, "expected '=' after target triple") ||
321  ParseStringConstant(Str))
322  return true;
323  M->setTargetTriple(Str);
324  return false;
326  Lex.Lex();
327  if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
328  ParseStringConstant(Str))
329  return true;
330  M->setDataLayout(Str);
331  return false;
332  }
333 }
334 
335 /// toplevelentity
336 /// ::= 'source_filename' '=' STRINGCONSTANT
337 bool LLParser::ParseSourceFileName() {
339  std::string Str;
340  Lex.Lex();
341  if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
342  ParseStringConstant(Str))
343  return true;
344  M->setSourceFileName(Str);
345  return false;
346 }
347 
348 /// toplevelentity
349 /// ::= 'deplibs' '=' '[' ']'
350 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
351 /// FIXME: Remove in 4.0. Currently parse, but ignore.
352 bool LLParser::ParseDepLibs() {
353  assert(Lex.getKind() == lltok::kw_deplibs);
354  Lex.Lex();
355  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
356  ParseToken(lltok::lsquare, "expected '=' after deplibs"))
357  return true;
358 
359  if (EatIfPresent(lltok::rsquare))
360  return false;
361 
362  do {
363  std::string Str;
364  if (ParseStringConstant(Str)) return true;
365  } while (EatIfPresent(lltok::comma));
366 
367  return ParseToken(lltok::rsquare, "expected ']' at end of list");
368 }
369 
370 /// ParseUnnamedType:
371 /// ::= LocalVarID '=' 'type' type
372 bool LLParser::ParseUnnamedType() {
373  LocTy TypeLoc = Lex.getLoc();
374  unsigned TypeID = Lex.getUIntVal();
375  Lex.Lex(); // eat LocalVarID;
376 
377  if (ParseToken(lltok::equal, "expected '=' after name") ||
378  ParseToken(lltok::kw_type, "expected 'type' after '='"))
379  return true;
380 
381  Type *Result = nullptr;
382  if (ParseStructDefinition(TypeLoc, "",
383  NumberedTypes[TypeID], Result)) return true;
384 
385  if (!isa<StructType>(Result)) {
386  std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
387  if (Entry.first)
388  return Error(TypeLoc, "non-struct types may not be recursive");
389  Entry.first = Result;
390  Entry.second = SMLoc();
391  }
392 
393  return false;
394 }
395 
396 /// toplevelentity
397 /// ::= LocalVar '=' 'type' type
398 bool LLParser::ParseNamedType() {
399  std::string Name = Lex.getStrVal();
400  LocTy NameLoc = Lex.getLoc();
401  Lex.Lex(); // eat LocalVar.
402 
403  if (ParseToken(lltok::equal, "expected '=' after name") ||
404  ParseToken(lltok::kw_type, "expected 'type' after name"))
405  return true;
406 
407  Type *Result = nullptr;
408  if (ParseStructDefinition(NameLoc, Name,
409  NamedTypes[Name], Result)) return true;
410 
411  if (!isa<StructType>(Result)) {
412  std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
413  if (Entry.first)
414  return Error(NameLoc, "non-struct types may not be recursive");
415  Entry.first = Result;
416  Entry.second = SMLoc();
417  }
418 
419  return false;
420 }
421 
422 /// toplevelentity
423 /// ::= 'declare' FunctionHeader
424 bool LLParser::ParseDeclare() {
425  assert(Lex.getKind() == lltok::kw_declare);
426  Lex.Lex();
427 
428  std::vector<std::pair<unsigned, MDNode *>> MDs;
429  while (Lex.getKind() == lltok::MetadataVar) {
430  unsigned MDK;
431  MDNode *N;
432  if (ParseMetadataAttachment(MDK, N))
433  return true;
434  MDs.push_back({MDK, N});
435  }
436 
437  Function *F;
438  if (ParseFunctionHeader(F, false))
439  return true;
440  for (auto &MD : MDs)
441  F->addMetadata(MD.first, *MD.second);
442  return false;
443 }
444 
445 /// toplevelentity
446 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
447 bool LLParser::ParseDefine() {
448  assert(Lex.getKind() == lltok::kw_define);
449  Lex.Lex();
450 
451  Function *F;
452  return ParseFunctionHeader(F, true) ||
453  ParseOptionalFunctionMetadata(*F) ||
454  ParseFunctionBody(*F);
455 }
456 
457 /// ParseGlobalType
458 /// ::= 'constant'
459 /// ::= 'global'
460 bool LLParser::ParseGlobalType(bool &IsConstant) {
461  if (Lex.getKind() == lltok::kw_constant)
462  IsConstant = true;
463  else if (Lex.getKind() == lltok::kw_global)
464  IsConstant = false;
465  else {
466  IsConstant = false;
467  return TokError("expected 'global' or 'constant'");
468  }
469  Lex.Lex();
470  return false;
471 }
472 
473 bool LLParser::ParseOptionalUnnamedAddr(
474  GlobalVariable::UnnamedAddr &UnnamedAddr) {
475  if (EatIfPresent(lltok::kw_unnamed_addr))
476  UnnamedAddr = GlobalValue::UnnamedAddr::Global;
477  else if (EatIfPresent(lltok::kw_local_unnamed_addr))
478  UnnamedAddr = GlobalValue::UnnamedAddr::Local;
479  else
480  UnnamedAddr = GlobalValue::UnnamedAddr::None;
481  return false;
482 }
483 
484 /// ParseUnnamedGlobal:
485 /// OptionalVisibility (ALIAS | IFUNC) ...
486 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass
487 /// ... -> global variable
488 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
489 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
490 /// ... -> global variable
491 bool LLParser::ParseUnnamedGlobal() {
492  unsigned VarID = NumberedVals.size();
493  std::string Name;
494  LocTy NameLoc = Lex.getLoc();
495 
496  // Handle the GlobalID form.
497  if (Lex.getKind() == lltok::GlobalID) {
498  if (Lex.getUIntVal() != VarID)
499  return Error(Lex.getLoc(), "variable expected to be numbered '%" +
500  Twine(VarID) + "'");
501  Lex.Lex(); // eat GlobalID;
502 
503  if (ParseToken(lltok::equal, "expected '=' after name"))
504  return true;
505  }
506 
507  bool HasLinkage;
508  unsigned Linkage, Visibility, DLLStorageClass;
510  GlobalVariable::UnnamedAddr UnnamedAddr;
511  if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
512  ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
513  return true;
514 
515  if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
516  return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
517  DLLStorageClass, TLM, UnnamedAddr);
518 
519  return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
520  DLLStorageClass, TLM, UnnamedAddr);
521 }
522 
523 /// ParseNamedGlobal:
524 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
525 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
526 /// ... -> global variable
527 bool LLParser::ParseNamedGlobal() {
528  assert(Lex.getKind() == lltok::GlobalVar);
529  LocTy NameLoc = Lex.getLoc();
530  std::string Name = Lex.getStrVal();
531  Lex.Lex();
532 
533  bool HasLinkage;
534  unsigned Linkage, Visibility, DLLStorageClass;
536  GlobalVariable::UnnamedAddr UnnamedAddr;
537  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
538  ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
539  ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
540  return true;
541 
542  if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
543  return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
544  DLLStorageClass, TLM, UnnamedAddr);
545 
546  return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
547  DLLStorageClass, TLM, UnnamedAddr);
548 }
549 
550 bool LLParser::parseComdat() {
551  assert(Lex.getKind() == lltok::ComdatVar);
552  std::string Name = Lex.getStrVal();
553  LocTy NameLoc = Lex.getLoc();
554  Lex.Lex();
555 
556  if (ParseToken(lltok::equal, "expected '=' here"))
557  return true;
558 
559  if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
560  return TokError("expected comdat type");
561 
563  switch (Lex.getKind()) {
564  default:
565  return TokError("unknown selection kind");
566  case lltok::kw_any:
567  SK = Comdat::Any;
568  break;
570  SK = Comdat::ExactMatch;
571  break;
572  case lltok::kw_largest:
573  SK = Comdat::Largest;
574  break;
577  break;
578  case lltok::kw_samesize:
579  SK = Comdat::SameSize;
580  break;
581  }
582  Lex.Lex();
583 
584  // See if the comdat was forward referenced, if so, use the comdat.
585  Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
586  Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
587  if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
588  return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
589 
590  Comdat *C;
591  if (I != ComdatSymTab.end())
592  C = &I->second;
593  else
594  C = M->getOrInsertComdat(Name);
595  C->setSelectionKind(SK);
596 
597  return false;
598 }
599 
600 // MDString:
601 // ::= '!' STRINGCONSTANT
602 bool LLParser::ParseMDString(MDString *&Result) {
603  std::string Str;
604  if (ParseStringConstant(Str)) return true;
605  Result = MDString::get(Context, Str);
606  return false;
607 }
608 
609 // MDNode:
610 // ::= '!' MDNodeNumber
611 bool LLParser::ParseMDNodeID(MDNode *&Result) {
612  // !{ ..., !42, ... }
613  LocTy IDLoc = Lex.getLoc();
614  unsigned MID = 0;
615  if (ParseUInt32(MID))
616  return true;
617 
618  // If not a forward reference, just return it now.
619  if (NumberedMetadata.count(MID)) {
620  Result = NumberedMetadata[MID];
621  return false;
622  }
623 
624  // Otherwise, create MDNode forward reference.
625  auto &FwdRef = ForwardRefMDNodes[MID];
626  FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
627 
628  Result = FwdRef.first.get();
629  NumberedMetadata[MID].reset(Result);
630  return false;
631 }
632 
633 /// ParseNamedMetadata:
634 /// !foo = !{ !1, !2 }
635 bool LLParser::ParseNamedMetadata() {
637  std::string Name = Lex.getStrVal();
638  Lex.Lex();
639 
640  if (ParseToken(lltok::equal, "expected '=' here") ||
641  ParseToken(lltok::exclaim, "Expected '!' here") ||
642  ParseToken(lltok::lbrace, "Expected '{' here"))
643  return true;
644 
645  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
646  if (Lex.getKind() != lltok::rbrace)
647  do {
648  MDNode *N = nullptr;
649  // Parse DIExpressions inline as a special case. They are still MDNodes,
650  // so they can still appear in named metadata. Remove this logic if they
651  // become plain Metadata.
652  if (Lex.getKind() == lltok::MetadataVar &&
653  Lex.getStrVal() == "DIExpression") {
654  if (ParseDIExpression(N, /*IsDistinct=*/false))
655  return true;
656  } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
657  ParseMDNodeID(N)) {
658  return true;
659  }
660  NMD->addOperand(N);
661  } while (EatIfPresent(lltok::comma));
662 
663  return ParseToken(lltok::rbrace, "expected end of metadata node");
664 }
665 
666 /// ParseStandaloneMetadata:
667 /// !42 = !{...}
668 bool LLParser::ParseStandaloneMetadata() {
669  assert(Lex.getKind() == lltok::exclaim);
670  Lex.Lex();
671  unsigned MetadataID = 0;
672 
673  MDNode *Init;
674  if (ParseUInt32(MetadataID) ||
675  ParseToken(lltok::equal, "expected '=' here"))
676  return true;
677 
678  // Detect common error, from old metadata syntax.
679  if (Lex.getKind() == lltok::Type)
680  return TokError("unexpected type in metadata definition");
681 
682  bool IsDistinct = EatIfPresent(lltok::kw_distinct);
683  if (Lex.getKind() == lltok::MetadataVar) {
684  if (ParseSpecializedMDNode(Init, IsDistinct))
685  return true;
686  } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
687  ParseMDTuple(Init, IsDistinct))
688  return true;
689 
690  // See if this was forward referenced, if so, handle it.
691  auto FI = ForwardRefMDNodes.find(MetadataID);
692  if (FI != ForwardRefMDNodes.end()) {
693  FI->second.first->replaceAllUsesWith(Init);
694  ForwardRefMDNodes.erase(FI);
695 
696  assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
697  } else {
698  if (NumberedMetadata.count(MetadataID))
699  return TokError("Metadata id is already used");
700  NumberedMetadata[MetadataID].reset(Init);
701  }
702 
703  return false;
704 }
705 
706 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
709 }
710 
711 /// parseIndirectSymbol:
712 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility
713 /// OptionalDLLStorageClass OptionalThreadLocal
714 /// OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
715 ///
716 /// IndirectSymbol
717 /// ::= TypeAndValue
718 ///
719 /// Everything through OptionalUnnamedAddr has already been parsed.
720 ///
721 bool LLParser::parseIndirectSymbol(
722  const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility,
723  unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM,
724  GlobalVariable::UnnamedAddr UnnamedAddr) {
725  bool IsAlias;
726  if (Lex.getKind() == lltok::kw_alias)
727  IsAlias = true;
728  else if (Lex.getKind() == lltok::kw_ifunc)
729  IsAlias = false;
730  else
731  llvm_unreachable("Not an alias or ifunc!");
732  Lex.Lex();
733 
735 
736  if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
737  return Error(NameLoc, "invalid linkage type for alias");
738 
739  if (!isValidVisibilityForLinkage(Visibility, L))
740  return Error(NameLoc,
741  "symbol with local linkage must have default visibility");
742 
743  Type *Ty;
744  LocTy ExplicitTypeLoc = Lex.getLoc();
745  if (ParseType(Ty) ||
746  ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
747  return true;
748 
749  Constant *Aliasee;
750  LocTy AliaseeLoc = Lex.getLoc();
751  if (Lex.getKind() != lltok::kw_bitcast &&
752  Lex.getKind() != lltok::kw_getelementptr &&
753  Lex.getKind() != lltok::kw_addrspacecast &&
754  Lex.getKind() != lltok::kw_inttoptr) {
755  if (ParseGlobalTypeAndValue(Aliasee))
756  return true;
757  } else {
758  // The bitcast dest type is not present, it is implied by the dest type.
759  ValID ID;
760  if (ParseValID(ID))
761  return true;
762  if (ID.Kind != ValID::t_Constant)
763  return Error(AliaseeLoc, "invalid aliasee");
764  Aliasee = ID.ConstantVal;
765  }
766 
767  Type *AliaseeType = Aliasee->getType();
768  auto *PTy = dyn_cast<PointerType>(AliaseeType);
769  if (!PTy)
770  return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
771  unsigned AddrSpace = PTy->getAddressSpace();
772 
773  if (IsAlias && Ty != PTy->getElementType())
774  return Error(
775  ExplicitTypeLoc,
776  "explicit pointee type doesn't match operand's pointee type");
777 
778  if (!IsAlias && !PTy->getElementType()->isFunctionTy())
779  return Error(
780  ExplicitTypeLoc,
781  "explicit pointee type should be a function type");
782 
783  GlobalValue *GVal = nullptr;
784 
785  // See if the alias was forward referenced, if so, prepare to replace the
786  // forward reference.
787  if (!Name.empty()) {
788  GVal = M->getNamedValue(Name);
789  if (GVal) {
790  if (!ForwardRefVals.erase(Name))
791  return Error(NameLoc, "redefinition of global '@" + Name + "'");
792  }
793  } else {
794  auto I = ForwardRefValIDs.find(NumberedVals.size());
795  if (I != ForwardRefValIDs.end()) {
796  GVal = I->second.first;
797  ForwardRefValIDs.erase(I);
798  }
799  }
800 
801  // Okay, create the alias but do not insert it into the module yet.
802  std::unique_ptr<GlobalIndirectSymbol> GA;
803  if (IsAlias)
804  GA.reset(GlobalAlias::create(Ty, AddrSpace,
806  Aliasee, /*Parent*/ nullptr));
807  else
808  GA.reset(GlobalIFunc::create(Ty, AddrSpace,
810  Aliasee, /*Parent*/ nullptr));
811  GA->setThreadLocalMode(TLM);
812  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
813  GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
814  GA->setUnnamedAddr(UnnamedAddr);
815 
816  if (Name.empty())
817  NumberedVals.push_back(GA.get());
818 
819  if (GVal) {
820  // Verify that types agree.
821  if (GVal->getType() != GA->getType())
822  return Error(
823  ExplicitTypeLoc,
824  "forward reference and definition of alias have different types");
825 
826  // If they agree, just RAUW the old value with the alias and remove the
827  // forward ref info.
828  GVal->replaceAllUsesWith(GA.get());
829  GVal->eraseFromParent();
830  }
831 
832  // Insert into the module, we know its name won't collide now.
833  if (IsAlias)
834  M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
835  else
836  M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
837  assert(GA->getName() == Name && "Should not be a name conflict!");
838 
839  // The module owns this now
840  GA.release();
841 
842  return false;
843 }
844 
845 /// ParseGlobal
846 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
847 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
848 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
849 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
850 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
851 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
852 ///
853 /// Everything up to and including OptionalUnnamedAddr has been parsed
854 /// already.
855 ///
856 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
857  unsigned Linkage, bool HasLinkage,
858  unsigned Visibility, unsigned DLLStorageClass,
860  GlobalVariable::UnnamedAddr UnnamedAddr) {
861  if (!isValidVisibilityForLinkage(Visibility, Linkage))
862  return Error(NameLoc,
863  "symbol with local linkage must have default visibility");
864 
865  unsigned AddrSpace;
866  bool IsConstant, IsExternallyInitialized;
867  LocTy IsExternallyInitializedLoc;
868  LocTy TyLoc;
869 
870  Type *Ty = nullptr;
871  if (ParseOptionalAddrSpace(AddrSpace) ||
872  ParseOptionalToken(lltok::kw_externally_initialized,
873  IsExternallyInitialized,
874  &IsExternallyInitializedLoc) ||
875  ParseGlobalType(IsConstant) ||
876  ParseType(Ty, TyLoc))
877  return true;
878 
879  // If the linkage is specified and is external, then no initializer is
880  // present.
881  Constant *Init = nullptr;
882  if (!HasLinkage ||
884  (GlobalValue::LinkageTypes)Linkage)) {
885  if (ParseGlobalValue(Ty, Init))
886  return true;
887  }
888 
890  return Error(TyLoc, "invalid type for global variable");
891 
892  GlobalValue *GVal = nullptr;
893 
894  // See if the global was forward referenced, if so, use the global.
895  if (!Name.empty()) {
896  GVal = M->getNamedValue(Name);
897  if (GVal) {
898  if (!ForwardRefVals.erase(Name))
899  return Error(NameLoc, "redefinition of global '@" + Name + "'");
900  }
901  } else {
902  auto I = ForwardRefValIDs.find(NumberedVals.size());
903  if (I != ForwardRefValIDs.end()) {
904  GVal = I->second.first;
905  ForwardRefValIDs.erase(I);
906  }
907  }
908 
909  GlobalVariable *GV;
910  if (!GVal) {
911  GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
913  AddrSpace);
914  } else {
915  if (GVal->getValueType() != Ty)
916  return Error(TyLoc,
917  "forward reference and definition of global have different types");
918 
919  GV = cast<GlobalVariable>(GVal);
920 
921  // Move the forward-reference to the correct spot in the module.
922  M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
923  }
924 
925  if (Name.empty())
926  NumberedVals.push_back(GV);
927 
928  // Set the parsed properties on the global.
929  if (Init)
930  GV->setInitializer(Init);
931  GV->setConstant(IsConstant);
935  GV->setExternallyInitialized(IsExternallyInitialized);
936  GV->setThreadLocalMode(TLM);
937  GV->setUnnamedAddr(UnnamedAddr);
938 
939  // Parse attributes on the global.
940  while (Lex.getKind() == lltok::comma) {
941  Lex.Lex();
942 
943  if (Lex.getKind() == lltok::kw_section) {
944  Lex.Lex();
945  GV->setSection(Lex.getStrVal());
946  if (ParseToken(lltok::StringConstant, "expected global section string"))
947  return true;
948  } else if (Lex.getKind() == lltok::kw_align) {
949  unsigned Alignment;
950  if (ParseOptionalAlignment(Alignment)) return true;
951  GV->setAlignment(Alignment);
952  } else if (Lex.getKind() == lltok::MetadataVar) {
953  if (ParseGlobalObjectMetadataAttachment(*GV))
954  return true;
955  } else {
956  Comdat *C;
957  if (parseOptionalComdat(Name, C))
958  return true;
959  if (C)
960  GV->setComdat(C);
961  else
962  return TokError("unknown global variable property!");
963  }
964  }
965 
967  LocTy BuiltinLoc;
968  std::vector<unsigned> FwdRefAttrGrps;
969  if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
970  return true;
971  if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
972  GV->setAttributes(AttributeSet::get(Context, Attrs));
973  ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
974  }
975 
976  return false;
977 }
978 
979 /// ParseUnnamedAttrGrp
980 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
981 bool LLParser::ParseUnnamedAttrGrp() {
983  LocTy AttrGrpLoc = Lex.getLoc();
984  Lex.Lex();
985 
986  if (Lex.getKind() != lltok::AttrGrpID)
987  return TokError("expected attribute group id");
988 
989  unsigned VarID = Lex.getUIntVal();
990  std::vector<unsigned> unused;
991  LocTy BuiltinLoc;
992  Lex.Lex();
993 
994  if (ParseToken(lltok::equal, "expected '=' here") ||
995  ParseToken(lltok::lbrace, "expected '{' here") ||
996  ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
997  BuiltinLoc) ||
998  ParseToken(lltok::rbrace, "expected end of attribute group"))
999  return true;
1000 
1001  if (!NumberedAttrBuilders[VarID].hasAttributes())
1002  return Error(AttrGrpLoc, "attribute group has no attributes");
1003 
1004  return false;
1005 }
1006 
1007 /// ParseFnAttributeValuePairs
1008 /// ::= <attr> | <attr> '=' <value>
1009 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1010  std::vector<unsigned> &FwdRefAttrGrps,
1011  bool inAttrGrp, LocTy &BuiltinLoc) {
1012  bool HaveError = false;
1013 
1014  B.clear();
1015 
1016  while (true) {
1017  lltok::Kind Token = Lex.getKind();
1018  if (Token == lltok::kw_builtin)
1019  BuiltinLoc = Lex.getLoc();
1020  switch (Token) {
1021  default:
1022  if (!inAttrGrp) return HaveError;
1023  return Error(Lex.getLoc(), "unterminated attribute group");
1024  case lltok::rbrace:
1025  // Finished.
1026  return false;
1027 
1028  case lltok::AttrGrpID: {
1029  // Allow a function to reference an attribute group:
1030  //
1031  // define void @foo() #1 { ... }
1032  if (inAttrGrp)
1033  HaveError |=
1034  Error(Lex.getLoc(),
1035  "cannot have an attribute group reference in an attribute group");
1036 
1037  unsigned AttrGrpNum = Lex.getUIntVal();
1038  if (inAttrGrp) break;
1039 
1040  // Save the reference to the attribute group. We'll fill it in later.
1041  FwdRefAttrGrps.push_back(AttrGrpNum);
1042  break;
1043  }
1044  // Target-dependent attributes:
1045  case lltok::StringConstant: {
1046  if (ParseStringAttribute(B))
1047  return true;
1048  continue;
1049  }
1050 
1051  // Target-independent attributes:
1052  case lltok::kw_align: {
1053  // As a hack, we allow function alignment to be initially parsed as an
1054  // attribute on a function declaration/definition or added to an attribute
1055  // group and later moved to the alignment field.
1056  unsigned Alignment;
1057  if (inAttrGrp) {
1058  Lex.Lex();
1059  if (ParseToken(lltok::equal, "expected '=' here") ||
1060  ParseUInt32(Alignment))
1061  return true;
1062  } else {
1063  if (ParseOptionalAlignment(Alignment))
1064  return true;
1065  }
1066  B.addAlignmentAttr(Alignment);
1067  continue;
1068  }
1069  case lltok::kw_alignstack: {
1070  unsigned Alignment;
1071  if (inAttrGrp) {
1072  Lex.Lex();
1073  if (ParseToken(lltok::equal, "expected '=' here") ||
1074  ParseUInt32(Alignment))
1075  return true;
1076  } else {
1077  if (ParseOptionalStackAlignment(Alignment))
1078  return true;
1079  }
1080  B.addStackAlignmentAttr(Alignment);
1081  continue;
1082  }
1083  case lltok::kw_allocsize: {
1084  unsigned ElemSizeArg;
1085  Optional<unsigned> NumElemsArg;
1086  // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1087  if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1088  return true;
1089  B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1090  continue;
1091  }
1092  case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1093  case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1094  case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1098  B.addAttribute(Attribute::InaccessibleMemOnly); break;
1100  B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1101  case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1103  case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1104  case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1105  case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1106  case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1108  B.addAttribute(Attribute::NoImplicitFloat); break;
1109  case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1110  case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1111  case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1112  case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1113  case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1114  case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1115  case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1116  case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1117  case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1118  case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1120  B.addAttribute(Attribute::ReturnsTwice); break;
1121  case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1122  case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1123  case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1124  case lltok::kw_sspstrong:
1125  B.addAttribute(Attribute::StackProtectStrong); break;
1126  case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1128  B.addAttribute(Attribute::SanitizeAddress); break;
1130  B.addAttribute(Attribute::SanitizeThread); break;
1132  B.addAttribute(Attribute::SanitizeMemory); break;
1133  case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1134  case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1135  case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1136 
1137  // Error handling.
1138  case lltok::kw_inreg:
1139  case lltok::kw_signext:
1140  case lltok::kw_zeroext:
1141  HaveError |=
1142  Error(Lex.getLoc(),
1143  "invalid use of attribute on a function");
1144  break;
1145  case lltok::kw_byval:
1148  case lltok::kw_inalloca:
1149  case lltok::kw_nest:
1150  case lltok::kw_noalias:
1151  case lltok::kw_nocapture:
1152  case lltok::kw_nonnull:
1153  case lltok::kw_returned:
1154  case lltok::kw_sret:
1155  case lltok::kw_swifterror:
1156  case lltok::kw_swiftself:
1157  HaveError |=
1158  Error(Lex.getLoc(),
1159  "invalid use of parameter-only attribute on a function");
1160  break;
1161  }
1162 
1163  Lex.Lex();
1164  }
1165 }
1166 
1167 //===----------------------------------------------------------------------===//
1168 // GlobalValue Reference/Resolution Routines.
1169 //===----------------------------------------------------------------------===//
1170 
1172  const std::string &Name) {
1173  if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1175  else
1176  return new GlobalVariable(*M, PTy->getElementType(), false,
1179  PTy->getAddressSpace());
1180 }
1181 
1182 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1183 /// forward reference record if needed. This can return null if the value
1184 /// exists but does not have the right type.
1185 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1186  LocTy Loc) {
1187  PointerType *PTy = dyn_cast<PointerType>(Ty);
1188  if (!PTy) {
1189  Error(Loc, "global variable reference must have pointer type");
1190  return nullptr;
1191  }
1192 
1193  // Look this name up in the normal function symbol table.
1194  GlobalValue *Val =
1195  cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1196 
1197  // If this is a forward reference for the value, see if we already created a
1198  // forward ref record.
1199  if (!Val) {
1200  auto I = ForwardRefVals.find(Name);
1201  if (I != ForwardRefVals.end())
1202  Val = I->second.first;
1203  }
1204 
1205  // If we have the value in the symbol table or fwd-ref table, return it.
1206  if (Val) {
1207  if (Val->getType() == Ty) return Val;
1208  Error(Loc, "'@" + Name + "' defined with type '" +
1209  getTypeString(Val->getType()) + "'");
1210  return nullptr;
1211  }
1212 
1213  // Otherwise, create a new forward reference for this value and remember it.
1214  GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1215  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1216  return FwdVal;
1217 }
1218 
1219 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1220  PointerType *PTy = dyn_cast<PointerType>(Ty);
1221  if (!PTy) {
1222  Error(Loc, "global variable reference must have pointer type");
1223  return nullptr;
1224  }
1225 
1226  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1227 
1228  // If this is a forward reference for the value, see if we already created a
1229  // forward ref record.
1230  if (!Val) {
1231  auto I = ForwardRefValIDs.find(ID);
1232  if (I != ForwardRefValIDs.end())
1233  Val = I->second.first;
1234  }
1235 
1236  // If we have the value in the symbol table or fwd-ref table, return it.
1237  if (Val) {
1238  if (Val->getType() == Ty) return Val;
1239  Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1240  getTypeString(Val->getType()) + "'");
1241  return nullptr;
1242  }
1243 
1244  // Otherwise, create a new forward reference for this value and remember it.
1245  GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1246  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1247  return FwdVal;
1248 }
1249 
1250 //===----------------------------------------------------------------------===//
1251 // Comdat Reference/Resolution Routines.
1252 //===----------------------------------------------------------------------===//
1253 
1254 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1255  // Look this name up in the comdat symbol table.
1256  Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1258  if (I != ComdatSymTab.end())
1259  return &I->second;
1260 
1261  // Otherwise, create a new forward reference for this value and remember it.
1262  Comdat *C = M->getOrInsertComdat(Name);
1263  ForwardRefComdats[Name] = Loc;
1264  return C;
1265 }
1266 
1267 //===----------------------------------------------------------------------===//
1268 // Helper Routines.
1269 //===----------------------------------------------------------------------===//
1270 
1271 /// ParseToken - If the current token has the specified kind, eat it and return
1272 /// success. Otherwise, emit the specified error and return failure.
1273 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1274  if (Lex.getKind() != T)
1275  return TokError(ErrMsg);
1276  Lex.Lex();
1277  return false;
1278 }
1279 
1280 /// ParseStringConstant
1281 /// ::= StringConstant
1282 bool LLParser::ParseStringConstant(std::string &Result) {
1283  if (Lex.getKind() != lltok::StringConstant)
1284  return TokError("expected string constant");
1285  Result = Lex.getStrVal();
1286  Lex.Lex();
1287  return false;
1288 }
1289 
1290 /// ParseUInt32
1291 /// ::= uint32
1292 bool LLParser::ParseUInt32(uint32_t &Val) {
1293  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1294  return TokError("expected integer");
1295  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1296  if (Val64 != unsigned(Val64))
1297  return TokError("expected 32-bit integer (too large)");
1298  Val = Val64;
1299  Lex.Lex();
1300  return false;
1301 }
1302 
1303 /// ParseUInt64
1304 /// ::= uint64
1305 bool LLParser::ParseUInt64(uint64_t &Val) {
1306  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1307  return TokError("expected integer");
1308  Val = Lex.getAPSIntVal().getLimitedValue();
1309  Lex.Lex();
1310  return false;
1311 }
1312 
1313 /// ParseTLSModel
1314 /// := 'localdynamic'
1315 /// := 'initialexec'
1316 /// := 'localexec'
1317 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1318  switch (Lex.getKind()) {
1319  default:
1320  return TokError("expected localdynamic, initialexec or localexec");
1323  break;
1324  case lltok::kw_initialexec:
1326  break;
1327  case lltok::kw_localexec:
1329  break;
1330  }
1331 
1332  Lex.Lex();
1333  return false;
1334 }
1335 
1336 /// ParseOptionalThreadLocal
1337 /// := /*empty*/
1338 /// := 'thread_local'
1339 /// := 'thread_local' '(' tlsmodel ')'
1340 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1342  if (!EatIfPresent(lltok::kw_thread_local))
1343  return false;
1344 
1346  if (Lex.getKind() == lltok::lparen) {
1347  Lex.Lex();
1348  return ParseTLSModel(TLM) ||
1349  ParseToken(lltok::rparen, "expected ')' after thread local model");
1350  }
1351  return false;
1352 }
1353 
1354 /// ParseOptionalAddrSpace
1355 /// := /*empty*/
1356 /// := 'addrspace' '(' uint32 ')'
1357 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1358  AddrSpace = 0;
1359  if (!EatIfPresent(lltok::kw_addrspace))
1360  return false;
1361  return ParseToken(lltok::lparen, "expected '(' in address space") ||
1362  ParseUInt32(AddrSpace) ||
1363  ParseToken(lltok::rparen, "expected ')' in address space");
1364 }
1365 
1366 /// ParseStringAttribute
1367 /// := StringConstant
1368 /// := StringConstant '=' StringConstant
1369 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1370  std::string Attr = Lex.getStrVal();
1371  Lex.Lex();
1372  std::string Val;
1373  if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1374  return true;
1375  B.addAttribute(Attr, Val);
1376  return false;
1377 }
1378 
1379 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1380 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1381  bool HaveError = false;
1382 
1383  B.clear();
1384 
1385  while (true) {
1386  lltok::Kind Token = Lex.getKind();
1387  switch (Token) {
1388  default: // End of attributes.
1389  return HaveError;
1390  case lltok::StringConstant: {
1391  if (ParseStringAttribute(B))
1392  return true;
1393  continue;
1394  }
1395  case lltok::kw_align: {
1396  unsigned Alignment;
1397  if (ParseOptionalAlignment(Alignment))
1398  return true;
1399  B.addAlignmentAttr(Alignment);
1400  continue;
1401  }
1402  case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break;
1404  uint64_t Bytes;
1405  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1406  return true;
1407  B.addDereferenceableAttr(Bytes);
1408  continue;
1409  }
1411  uint64_t Bytes;
1412  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1413  return true;
1415  continue;
1416  }
1417  case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1418  case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1419  case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1421  case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1422  case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1423  case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1424  case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1425  case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1426  case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1427  case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1428  case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break;
1429  case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break;
1430  case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1431  case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1432 
1433  case lltok::kw_alignstack:
1435  case lltok::kw_argmemonly:
1436  case lltok::kw_builtin:
1437  case lltok::kw_inlinehint:
1438  case lltok::kw_jumptable:
1439  case lltok::kw_minsize:
1440  case lltok::kw_naked:
1441  case lltok::kw_nobuiltin:
1442  case lltok::kw_noduplicate:
1444  case lltok::kw_noinline:
1445  case lltok::kw_nonlazybind:
1446  case lltok::kw_noredzone:
1447  case lltok::kw_noreturn:
1448  case lltok::kw_nounwind:
1449  case lltok::kw_optnone:
1450  case lltok::kw_optsize:
1455  case lltok::kw_ssp:
1456  case lltok::kw_sspreq:
1457  case lltok::kw_sspstrong:
1458  case lltok::kw_safestack:
1459  case lltok::kw_strictfp:
1460  case lltok::kw_uwtable:
1461  HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1462  break;
1463  }
1464 
1465  Lex.Lex();
1466  }
1467 }
1468 
1469 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1470 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1471  bool HaveError = false;
1472 
1473  B.clear();
1474 
1475  while (true) {
1476  lltok::Kind Token = Lex.getKind();
1477  switch (Token) {
1478  default: // End of attributes.
1479  return HaveError;
1480  case lltok::StringConstant: {
1481  if (ParseStringAttribute(B))
1482  return true;
1483  continue;
1484  }
1486  uint64_t Bytes;
1487  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1488  return true;
1489  B.addDereferenceableAttr(Bytes);
1490  continue;
1491  }
1493  uint64_t Bytes;
1494  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1495  return true;
1497  continue;
1498  }
1499  case lltok::kw_align: {
1500  unsigned Alignment;
1501  if (ParseOptionalAlignment(Alignment))
1502  return true;
1503  B.addAlignmentAttr(Alignment);
1504  continue;
1505  }
1506  case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1508  case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1509  case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1510  case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1511 
1512  // Error handling.
1513  case lltok::kw_byval:
1514  case lltok::kw_inalloca:
1515  case lltok::kw_nest:
1516  case lltok::kw_nocapture:
1517  case lltok::kw_returned:
1518  case lltok::kw_sret:
1519  case lltok::kw_swifterror:
1520  case lltok::kw_swiftself:
1521  HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1522  break;
1523 
1524  case lltok::kw_alignstack:
1526  case lltok::kw_argmemonly:
1527  case lltok::kw_builtin:
1528  case lltok::kw_cold:
1529  case lltok::kw_inlinehint:
1530  case lltok::kw_jumptable:
1531  case lltok::kw_minsize:
1532  case lltok::kw_naked:
1533  case lltok::kw_nobuiltin:
1534  case lltok::kw_noduplicate:
1536  case lltok::kw_noinline:
1537  case lltok::kw_nonlazybind:
1538  case lltok::kw_noredzone:
1539  case lltok::kw_noreturn:
1540  case lltok::kw_nounwind:
1541  case lltok::kw_optnone:
1542  case lltok::kw_optsize:
1547  case lltok::kw_ssp:
1548  case lltok::kw_sspreq:
1549  case lltok::kw_sspstrong:
1550  case lltok::kw_safestack:
1551  case lltok::kw_strictfp:
1552  case lltok::kw_uwtable:
1553  HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1554  break;
1555 
1556  case lltok::kw_readnone:
1557  case lltok::kw_readonly:
1558  HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1559  }
1560 
1561  Lex.Lex();
1562  }
1563 }
1564 
1565 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1566  HasLinkage = true;
1567  switch (Kind) {
1568  default:
1569  HasLinkage = false;
1571  case lltok::kw_private:
1573  case lltok::kw_internal:
1575  case lltok::kw_weak:
1577  case lltok::kw_weak_odr:
1579  case lltok::kw_linkonce:
1585  case lltok::kw_appending:
1587  case lltok::kw_common:
1589  case lltok::kw_extern_weak:
1591  case lltok::kw_external:
1593  }
1594 }
1595 
1596 /// ParseOptionalLinkage
1597 /// ::= /*empty*/
1598 /// ::= 'private'
1599 /// ::= 'internal'
1600 /// ::= 'weak'
1601 /// ::= 'weak_odr'
1602 /// ::= 'linkonce'
1603 /// ::= 'linkonce_odr'
1604 /// ::= 'available_externally'
1605 /// ::= 'appending'
1606 /// ::= 'common'
1607 /// ::= 'extern_weak'
1608 /// ::= 'external'
1609 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1610  unsigned &Visibility,
1611  unsigned &DLLStorageClass) {
1612  Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1613  if (HasLinkage)
1614  Lex.Lex();
1615  ParseOptionalVisibility(Visibility);
1616  ParseOptionalDLLStorageClass(DLLStorageClass);
1617  return false;
1618 }
1619 
1620 /// ParseOptionalVisibility
1621 /// ::= /*empty*/
1622 /// ::= 'default'
1623 /// ::= 'hidden'
1624 /// ::= 'protected'
1625 ///
1626 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1627  switch (Lex.getKind()) {
1628  default:
1630  return;
1631  case lltok::kw_default:
1633  break;
1634  case lltok::kw_hidden:
1636  break;
1637  case lltok::kw_protected:
1639  break;
1640  }
1641  Lex.Lex();
1642 }
1643 
1644 /// ParseOptionalDLLStorageClass
1645 /// ::= /*empty*/
1646 /// ::= 'dllimport'
1647 /// ::= 'dllexport'
1648 ///
1649 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1650  switch (Lex.getKind()) {
1651  default:
1653  return;
1654  case lltok::kw_dllimport:
1656  break;
1657  case lltok::kw_dllexport:
1659  break;
1660  }
1661  Lex.Lex();
1662 }
1663 
1664 /// ParseOptionalCallingConv
1665 /// ::= /*empty*/
1666 /// ::= 'ccc'
1667 /// ::= 'fastcc'
1668 /// ::= 'intel_ocl_bicc'
1669 /// ::= 'coldcc'
1670 /// ::= 'x86_stdcallcc'
1671 /// ::= 'x86_fastcallcc'
1672 /// ::= 'x86_thiscallcc'
1673 /// ::= 'x86_vectorcallcc'
1674 /// ::= 'arm_apcscc'
1675 /// ::= 'arm_aapcscc'
1676 /// ::= 'arm_aapcs_vfpcc'
1677 /// ::= 'msp430_intrcc'
1678 /// ::= 'avr_intrcc'
1679 /// ::= 'avr_signalcc'
1680 /// ::= 'ptx_kernel'
1681 /// ::= 'ptx_device'
1682 /// ::= 'spir_func'
1683 /// ::= 'spir_kernel'
1684 /// ::= 'x86_64_sysvcc'
1685 /// ::= 'win64cc'
1686 /// ::= 'webkit_jscc'
1687 /// ::= 'anyregcc'
1688 /// ::= 'preserve_mostcc'
1689 /// ::= 'preserve_allcc'
1690 /// ::= 'ghccc'
1691 /// ::= 'swiftcc'
1692 /// ::= 'x86_intrcc'
1693 /// ::= 'hhvmcc'
1694 /// ::= 'hhvm_ccc'
1695 /// ::= 'cxx_fast_tlscc'
1696 /// ::= 'amdgpu_vs'
1697 /// ::= 'amdgpu_ls'
1698 /// ::= 'amdgpu_hs'
1699 /// ::= 'amdgpu_es'
1700 /// ::= 'amdgpu_gs'
1701 /// ::= 'amdgpu_ps'
1702 /// ::= 'amdgpu_cs'
1703 /// ::= 'amdgpu_kernel'
1704 /// ::= 'cc' UINT
1705 ///
1706 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1707  switch (Lex.getKind()) {
1708  default: CC = CallingConv::C; return false;
1709  case lltok::kw_ccc: CC = CallingConv::C; break;
1710  case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1711  case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1717  case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1721  case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
1726  case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1729  case lltok::kw_win64cc: CC = CallingConv::Win64; break;
1731  case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1734  case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1735  case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
1736  case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
1737  case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
1738  case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
1740  case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
1741  case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
1742  case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
1743  case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
1744  case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
1745  case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
1746  case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
1748  case lltok::kw_cc: {
1749  Lex.Lex();
1750  return ParseUInt32(CC);
1751  }
1752  }
1753 
1754  Lex.Lex();
1755  return false;
1756 }
1757 
1758 /// ParseMetadataAttachment
1759 /// ::= !dbg !42
1760 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1761  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1762 
1763  std::string Name = Lex.getStrVal();
1764  Kind = M->getMDKindID(Name);
1765  Lex.Lex();
1766 
1767  return ParseMDNode(MD);
1768 }
1769 
1770 /// ParseInstructionMetadata
1771 /// ::= !dbg !42 (',' !dbg !57)*
1772 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1773  do {
1774  if (Lex.getKind() != lltok::MetadataVar)
1775  return TokError("expected metadata after comma");
1776 
1777  unsigned MDK;
1778  MDNode *N;
1779  if (ParseMetadataAttachment(MDK, N))
1780  return true;
1781 
1782  Inst.setMetadata(MDK, N);
1783  if (MDK == LLVMContext::MD_tbaa)
1784  InstsWithTBAATag.push_back(&Inst);
1785 
1786  // If this is the end of the list, we're done.
1787  } while (EatIfPresent(lltok::comma));
1788  return false;
1789 }
1790 
1791 /// ParseGlobalObjectMetadataAttachment
1792 /// ::= !dbg !57
1793 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1794  unsigned MDK;
1795  MDNode *N;
1796  if (ParseMetadataAttachment(MDK, N))
1797  return true;
1798 
1799  GO.addMetadata(MDK, *N);
1800  return false;
1801 }
1802 
1803 /// ParseOptionalFunctionMetadata
1804 /// ::= (!dbg !57)*
1805 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1806  while (Lex.getKind() == lltok::MetadataVar)
1807  if (ParseGlobalObjectMetadataAttachment(F))
1808  return true;
1809  return false;
1810 }
1811 
1812 /// ParseOptionalAlignment
1813 /// ::= /* empty */
1814 /// ::= 'align' 4
1815 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1816  Alignment = 0;
1817  if (!EatIfPresent(lltok::kw_align))
1818  return false;
1819  LocTy AlignLoc = Lex.getLoc();
1820  if (ParseUInt32(Alignment)) return true;
1821  if (!isPowerOf2_32(Alignment))
1822  return Error(AlignLoc, "alignment is not a power of two");
1823  if (Alignment > Value::MaximumAlignment)
1824  return Error(AlignLoc, "huge alignments are not supported yet");
1825  return false;
1826 }
1827 
1828 /// ParseOptionalDerefAttrBytes
1829 /// ::= /* empty */
1830 /// ::= AttrKind '(' 4 ')'
1831 ///
1832 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1833 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1834  uint64_t &Bytes) {
1835  assert((AttrKind == lltok::kw_dereferenceable ||
1836  AttrKind == lltok::kw_dereferenceable_or_null) &&
1837  "contract!");
1838 
1839  Bytes = 0;
1840  if (!EatIfPresent(AttrKind))
1841  return false;
1842  LocTy ParenLoc = Lex.getLoc();
1843  if (!EatIfPresent(lltok::lparen))
1844  return Error(ParenLoc, "expected '('");
1845  LocTy DerefLoc = Lex.getLoc();
1846  if (ParseUInt64(Bytes)) return true;
1847  ParenLoc = Lex.getLoc();
1848  if (!EatIfPresent(lltok::rparen))
1849  return Error(ParenLoc, "expected ')'");
1850  if (!Bytes)
1851  return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1852  return false;
1853 }
1854 
1855 /// ParseOptionalCommaAlign
1856 /// ::=
1857 /// ::= ',' align 4
1858 ///
1859 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1860 /// end.
1861 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1862  bool &AteExtraComma) {
1863  AteExtraComma = false;
1864  while (EatIfPresent(lltok::comma)) {
1865  // Metadata at the end is an early exit.
1866  if (Lex.getKind() == lltok::MetadataVar) {
1867  AteExtraComma = true;
1868  return false;
1869  }
1870 
1871  if (Lex.getKind() != lltok::kw_align)
1872  return Error(Lex.getLoc(), "expected metadata or 'align'");
1873 
1874  if (ParseOptionalAlignment(Alignment)) return true;
1875  }
1876 
1877  return false;
1878 }
1879 
1880 /// ParseOptionalCommaAddrSpace
1881 /// ::=
1882 /// ::= ',' addrspace(1)
1883 ///
1884 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1885 /// end.
1886 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
1887  LocTy &Loc,
1888  bool &AteExtraComma) {
1889  AteExtraComma = false;
1890  while (EatIfPresent(lltok::comma)) {
1891  // Metadata at the end is an early exit.
1892  if (Lex.getKind() == lltok::MetadataVar) {
1893  AteExtraComma = true;
1894  return false;
1895  }
1896 
1897  Loc = Lex.getLoc();
1898  if (Lex.getKind() != lltok::kw_addrspace)
1899  return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
1900 
1901  if (ParseOptionalAddrSpace(AddrSpace))
1902  return true;
1903  }
1904 
1905  return false;
1906 }
1907 
1908 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1909  Optional<unsigned> &HowManyArg) {
1910  Lex.Lex();
1911 
1912  auto StartParen = Lex.getLoc();
1913  if (!EatIfPresent(lltok::lparen))
1914  return Error(StartParen, "expected '('");
1915 
1916  if (ParseUInt32(BaseSizeArg))
1917  return true;
1918 
1919  if (EatIfPresent(lltok::comma)) {
1920  auto HowManyAt = Lex.getLoc();
1921  unsigned HowMany;
1922  if (ParseUInt32(HowMany))
1923  return true;
1924  if (HowMany == BaseSizeArg)
1925  return Error(HowManyAt,
1926  "'allocsize' indices can't refer to the same parameter");
1927  HowManyArg = HowMany;
1928  } else
1929  HowManyArg = None;
1930 
1931  auto EndParen = Lex.getLoc();
1932  if (!EatIfPresent(lltok::rparen))
1933  return Error(EndParen, "expected ')'");
1934  return false;
1935 }
1936 
1937 /// ParseScopeAndOrdering
1938 /// if isAtomic: ::= SyncScope? AtomicOrdering
1939 /// else: ::=
1940 ///
1941 /// This sets Scope and Ordering to the parsed values.
1942 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
1943  AtomicOrdering &Ordering) {
1944  if (!isAtomic)
1945  return false;
1946 
1947  return ParseScope(SSID) || ParseOrdering(Ordering);
1948 }
1949 
1950 /// ParseScope
1951 /// ::= syncscope("singlethread" | "<target scope>")?
1952 ///
1953 /// This sets synchronization scope ID to the ID of the parsed value.
1954 bool LLParser::ParseScope(SyncScope::ID &SSID) {
1955  SSID = SyncScope::System;
1956  if (EatIfPresent(lltok::kw_syncscope)) {
1957  auto StartParenAt = Lex.getLoc();
1958  if (!EatIfPresent(lltok::lparen))
1959  return Error(StartParenAt, "Expected '(' in syncscope");
1960 
1961  std::string SSN;
1962  auto SSNAt = Lex.getLoc();
1963  if (ParseStringConstant(SSN))
1964  return Error(SSNAt, "Expected synchronization scope name");
1965 
1966  auto EndParenAt = Lex.getLoc();
1967  if (!EatIfPresent(lltok::rparen))
1968  return Error(EndParenAt, "Expected ')' in syncscope");
1969 
1970  SSID = Context.getOrInsertSyncScopeID(SSN);
1971  }
1972 
1973  return false;
1974 }
1975 
1976 /// ParseOrdering
1977 /// ::= AtomicOrdering
1978 ///
1979 /// This sets Ordering to the parsed value.
1980 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1981  switch (Lex.getKind()) {
1982  default: return TokError("Expected ordering on atomic instruction");
1983  case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
1984  case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
1985  // Not specified yet:
1986  // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
1987  case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
1988  case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
1989  case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
1990  case lltok::kw_seq_cst:
1992  break;
1993  }
1994  Lex.Lex();
1995  return false;
1996 }
1997 
1998 /// ParseOptionalStackAlignment
1999 /// ::= /* empty */
2000 /// ::= 'alignstack' '(' 4 ')'
2001 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2002  Alignment = 0;
2003  if (!EatIfPresent(lltok::kw_alignstack))
2004  return false;
2005  LocTy ParenLoc = Lex.getLoc();
2006  if (!EatIfPresent(lltok::lparen))
2007  return Error(ParenLoc, "expected '('");
2008  LocTy AlignLoc = Lex.getLoc();
2009  if (ParseUInt32(Alignment)) return true;
2010  ParenLoc = Lex.getLoc();
2011  if (!EatIfPresent(lltok::rparen))
2012  return Error(ParenLoc, "expected ')'");
2013  if (!isPowerOf2_32(Alignment))
2014  return Error(AlignLoc, "stack alignment is not a power of two");
2015  return false;
2016 }
2017 
2018 /// ParseIndexList - This parses the index list for an insert/extractvalue
2019 /// instruction. This sets AteExtraComma in the case where we eat an extra
2020 /// comma at the end of the line and find that it is followed by metadata.
2021 /// Clients that don't allow metadata can call the version of this function that
2022 /// only takes one argument.
2023 ///
2024 /// ParseIndexList
2025 /// ::= (',' uint32)+
2026 ///
2027 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2028  bool &AteExtraComma) {
2029  AteExtraComma = false;
2030 
2031  if (Lex.getKind() != lltok::comma)
2032  return TokError("expected ',' as start of index list");
2033 
2034  while (EatIfPresent(lltok::comma)) {
2035  if (Lex.getKind() == lltok::MetadataVar) {
2036  if (Indices.empty()) return TokError("expected index");
2037  AteExtraComma = true;
2038  return false;
2039  }
2040  unsigned Idx = 0;
2041  if (ParseUInt32(Idx)) return true;
2042  Indices.push_back(Idx);
2043  }
2044 
2045  return false;
2046 }
2047 
2048 //===----------------------------------------------------------------------===//
2049 // Type Parsing.
2050 //===----------------------------------------------------------------------===//
2051 
2052 /// ParseType - Parse a type.
2053 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2054  SMLoc TypeLoc = Lex.getLoc();
2055  switch (Lex.getKind()) {
2056  default:
2057  return TokError(Msg);
2058  case lltok::Type:
2059  // Type ::= 'float' | 'void' (etc)
2060  Result = Lex.getTyVal();
2061  Lex.Lex();
2062  break;
2063  case lltok::lbrace:
2064  // Type ::= StructType
2065  if (ParseAnonStructType(Result, false))
2066  return true;
2067  break;
2068  case lltok::lsquare:
2069  // Type ::= '[' ... ']'
2070  Lex.Lex(); // eat the lsquare.
2071  if (ParseArrayVectorType(Result, false))
2072  return true;
2073  break;
2074  case lltok::less: // Either vector or packed struct.
2075  // Type ::= '<' ... '>'
2076  Lex.Lex();
2077  if (Lex.getKind() == lltok::lbrace) {
2078  if (ParseAnonStructType(Result, true) ||
2079  ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2080  return true;
2081  } else if (ParseArrayVectorType(Result, true))
2082  return true;
2083  break;
2084  case lltok::LocalVar: {
2085  // Type ::= %foo
2086  std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2087 
2088  // If the type hasn't been defined yet, create a forward definition and
2089  // remember where that forward def'n was seen (in case it never is defined).
2090  if (!Entry.first) {
2091  Entry.first = StructType::create(Context, Lex.getStrVal());
2092  Entry.second = Lex.getLoc();
2093  }
2094  Result = Entry.first;
2095  Lex.Lex();
2096  break;
2097  }
2098 
2099  case lltok::LocalVarID: {
2100  // Type ::= %4
2101  std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2102 
2103  // If the type hasn't been defined yet, create a forward definition and
2104  // remember where that forward def'n was seen (in case it never is defined).
2105  if (!Entry.first) {
2106  Entry.first = StructType::create(Context);
2107  Entry.second = Lex.getLoc();
2108  }
2109  Result = Entry.first;
2110  Lex.Lex();
2111  break;
2112  }
2113  }
2114 
2115  // Parse the type suffixes.
2116  while (true) {
2117  switch (Lex.getKind()) {
2118  // End of type.
2119  default:
2120  if (!AllowVoid && Result->isVoidTy())
2121  return Error(TypeLoc, "void type only allowed for function results");
2122  return false;
2123 
2124  // Type ::= Type '*'
2125  case lltok::star:
2126  if (Result->isLabelTy())
2127  return TokError("basic block pointers are invalid");
2128  if (Result->isVoidTy())
2129  return TokError("pointers to void are invalid - use i8* instead");
2130  if (!PointerType::isValidElementType(Result))
2131  return TokError("pointer to this type is invalid");
2132  Result = PointerType::getUnqual(Result);
2133  Lex.Lex();
2134  break;
2135 
2136  // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2137  case lltok::kw_addrspace: {
2138  if (Result->isLabelTy())
2139  return TokError("basic block pointers are invalid");
2140  if (Result->isVoidTy())
2141  return TokError("pointers to void are invalid; use i8* instead");
2142  if (!PointerType::isValidElementType(Result))
2143  return TokError("pointer to this type is invalid");
2144  unsigned AddrSpace;
2145  if (ParseOptionalAddrSpace(AddrSpace) ||
2146  ParseToken(lltok::star, "expected '*' in address space"))
2147  return true;
2148 
2149  Result = PointerType::get(Result, AddrSpace);
2150  break;
2151  }
2152 
2153  /// Types '(' ArgTypeListI ')' OptFuncAttrs
2154  case lltok::lparen:
2155  if (ParseFunctionType(Result))
2156  return true;
2157  break;
2158  }
2159  }
2160 }
2161 
2162 /// ParseParameterList
2163 /// ::= '(' ')'
2164 /// ::= '(' Arg (',' Arg)* ')'
2165 /// Arg
2166 /// ::= Type OptionalAttributes Value OptionalAttributes
2167 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2168  PerFunctionState &PFS, bool IsMustTailCall,
2169  bool InVarArgsFunc) {
2170  if (ParseToken(lltok::lparen, "expected '(' in call"))
2171  return true;
2172 
2173  while (Lex.getKind() != lltok::rparen) {
2174  // If this isn't the first argument, we need a comma.
2175  if (!ArgList.empty() &&
2176  ParseToken(lltok::comma, "expected ',' in argument list"))
2177  return true;
2178 
2179  // Parse an ellipsis if this is a musttail call in a variadic function.
2180  if (Lex.getKind() == lltok::dotdotdot) {
2181  const char *Msg = "unexpected ellipsis in argument list for ";
2182  if (!IsMustTailCall)
2183  return TokError(Twine(Msg) + "non-musttail call");
2184  if (!InVarArgsFunc)
2185  return TokError(Twine(Msg) + "musttail call in non-varargs function");
2186  Lex.Lex(); // Lex the '...', it is purely for readability.
2187  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2188  }
2189 
2190  // Parse the argument.
2191  LocTy ArgLoc;
2192  Type *ArgTy = nullptr;
2193  AttrBuilder ArgAttrs;
2194  Value *V;
2195  if (ParseType(ArgTy, ArgLoc))
2196  return true;
2197 
2198  if (ArgTy->isMetadataTy()) {
2199  if (ParseMetadataAsValue(V, PFS))
2200  return true;
2201  } else {
2202  // Otherwise, handle normal operands.
2203  if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2204  return true;
2205  }
2206  ArgList.push_back(ParamInfo(
2207  ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2208  }
2209 
2210  if (IsMustTailCall && InVarArgsFunc)
2211  return TokError("expected '...' at end of argument list for musttail call "
2212  "in varargs function");
2213 
2214  Lex.Lex(); // Lex the ')'.
2215  return false;
2216 }
2217 
2218 /// ParseOptionalOperandBundles
2219 /// ::= /*empty*/
2220 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2221 ///
2222 /// OperandBundle
2223 /// ::= bundle-tag '(' ')'
2224 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2225 ///
2226 /// bundle-tag ::= String Constant
2227 bool LLParser::ParseOptionalOperandBundles(
2228  SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2229  LocTy BeginLoc = Lex.getLoc();
2230  if (!EatIfPresent(lltok::lsquare))
2231  return false;
2232 
2233  while (Lex.getKind() != lltok::rsquare) {
2234  // If this isn't the first operand bundle, we need a comma.
2235  if (!BundleList.empty() &&
2236  ParseToken(lltok::comma, "expected ',' in input list"))
2237  return true;
2238 
2239  std::string Tag;
2240  if (ParseStringConstant(Tag))
2241  return true;
2242 
2243  if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2244  return true;
2245 
2246  std::vector<Value *> Inputs;
2247  while (Lex.getKind() != lltok::rparen) {
2248  // If this isn't the first input, we need a comma.
2249  if (!Inputs.empty() &&
2250  ParseToken(lltok::comma, "expected ',' in input list"))
2251  return true;
2252 
2253  Type *Ty = nullptr;
2254  Value *Input = nullptr;
2255  if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2256  return true;
2257  Inputs.push_back(Input);
2258  }
2259 
2260  BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2261 
2262  Lex.Lex(); // Lex the ')'.
2263  }
2264 
2265  if (BundleList.empty())
2266  return Error(BeginLoc, "operand bundle set must not be empty");
2267 
2268  Lex.Lex(); // Lex the ']'.
2269  return false;
2270 }
2271 
2272 /// ParseArgumentList - Parse the argument list for a function type or function
2273 /// prototype.
2274 /// ::= '(' ArgTypeListI ')'
2275 /// ArgTypeListI
2276 /// ::= /*empty*/
2277 /// ::= '...'
2278 /// ::= ArgTypeList ',' '...'
2279 /// ::= ArgType (',' ArgType)*
2280 ///
2281 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2282  bool &isVarArg){
2283  isVarArg = false;
2284  assert(Lex.getKind() == lltok::lparen);
2285  Lex.Lex(); // eat the (.
2286 
2287  if (Lex.getKind() == lltok::rparen) {
2288  // empty
2289  } else if (Lex.getKind() == lltok::dotdotdot) {
2290  isVarArg = true;
2291  Lex.Lex();
2292  } else {
2293  LocTy TypeLoc = Lex.getLoc();
2294  Type *ArgTy = nullptr;
2296  std::string Name;
2297 
2298  if (ParseType(ArgTy) ||
2299  ParseOptionalParamAttrs(Attrs)) return true;
2300 
2301  if (ArgTy->isVoidTy())
2302  return Error(TypeLoc, "argument can not have void type");
2303 
2304  if (Lex.getKind() == lltok::LocalVar) {
2305  Name = Lex.getStrVal();
2306  Lex.Lex();
2307  }
2308 
2310  return Error(TypeLoc, "invalid type for function argument");
2311 
2312  ArgList.emplace_back(TypeLoc, ArgTy,
2313  AttributeSet::get(ArgTy->getContext(), Attrs),
2314  std::move(Name));
2315 
2316  while (EatIfPresent(lltok::comma)) {
2317  // Handle ... at end of arg list.
2318  if (EatIfPresent(lltok::dotdotdot)) {
2319  isVarArg = true;
2320  break;
2321  }
2322 
2323  // Otherwise must be an argument type.
2324  TypeLoc = Lex.getLoc();
2325  if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2326 
2327  if (ArgTy->isVoidTy())
2328  return Error(TypeLoc, "argument can not have void type");
2329 
2330  if (Lex.getKind() == lltok::LocalVar) {
2331  Name = Lex.getStrVal();
2332  Lex.Lex();
2333  } else {
2334  Name = "";
2335  }
2336 
2337  if (!ArgTy->isFirstClassType())
2338  return Error(TypeLoc, "invalid type for function argument");
2339 
2340  ArgList.emplace_back(TypeLoc, ArgTy,
2341  AttributeSet::get(ArgTy->getContext(), Attrs),
2342  std::move(Name));
2343  }
2344  }
2345 
2346  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2347 }
2348 
2349 /// ParseFunctionType
2350 /// ::= Type ArgumentList OptionalAttrs
2351 bool LLParser::ParseFunctionType(Type *&Result) {
2352  assert(Lex.getKind() == lltok::lparen);
2353 
2354  if (!FunctionType::isValidReturnType(Result))
2355  return TokError("invalid function return type");
2356 
2357  SmallVector<ArgInfo, 8> ArgList;
2358  bool isVarArg;
2359  if (ParseArgumentList(ArgList, isVarArg))
2360  return true;
2361 
2362  // Reject names on the arguments lists.
2363  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2364  if (!ArgList[i].Name.empty())
2365  return Error(ArgList[i].Loc, "argument name invalid in function type");
2366  if (ArgList[i].Attrs.hasAttributes())
2367  return Error(ArgList[i].Loc,
2368  "argument attributes invalid in function type");
2369  }
2370 
2371  SmallVector<Type*, 16> ArgListTy;
2372  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2373  ArgListTy.push_back(ArgList[i].Ty);
2374 
2375  Result = FunctionType::get(Result, ArgListTy, isVarArg);
2376  return false;
2377 }
2378 
2379 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2380 /// other structs.
2381 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2382  SmallVector<Type*, 8> Elts;
2383  if (ParseStructBody(Elts)) return true;
2384 
2385  Result = StructType::get(Context, Elts, Packed);
2386  return false;
2387 }
2388 
2389 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2390 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2391  std::pair<Type*, LocTy> &Entry,
2392  Type *&ResultTy) {
2393  // If the type was already defined, diagnose the redefinition.
2394  if (Entry.first && !Entry.second.isValid())
2395  return Error(TypeLoc, "redefinition of type");
2396 
2397  // If we have opaque, just return without filling in the definition for the
2398  // struct. This counts as a definition as far as the .ll file goes.
2399  if (EatIfPresent(lltok::kw_opaque)) {
2400  // This type is being defined, so clear the location to indicate this.
2401  Entry.second = SMLoc();
2402 
2403  // If this type number has never been uttered, create it.
2404  if (!Entry.first)
2405  Entry.first = StructType::create(Context, Name);
2406  ResultTy = Entry.first;
2407  return false;
2408  }
2409 
2410  // If the type starts with '<', then it is either a packed struct or a vector.
2411  bool isPacked = EatIfPresent(lltok::less);
2412 
2413  // If we don't have a struct, then we have a random type alias, which we
2414  // accept for compatibility with old files. These types are not allowed to be
2415  // forward referenced and not allowed to be recursive.
2416  if (Lex.getKind() != lltok::lbrace) {
2417  if (Entry.first)
2418  return Error(TypeLoc, "forward references to non-struct type");
2419 
2420  ResultTy = nullptr;
2421  if (isPacked)
2422  return ParseArrayVectorType(ResultTy, true);
2423  return ParseType(ResultTy);
2424  }
2425 
2426  // This type is being defined, so clear the location to indicate this.
2427  Entry.second = SMLoc();
2428 
2429  // If this type number has never been uttered, create it.
2430  if (!Entry.first)
2431  Entry.first = StructType::create(Context, Name);
2432 
2433  StructType *STy = cast<StructType>(Entry.first);
2434 
2435  SmallVector<Type*, 8> Body;
2436  if (ParseStructBody(Body) ||
2437  (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2438  return true;
2439 
2440  STy->setBody(Body, isPacked);
2441  ResultTy = STy;
2442  return false;
2443 }
2444 
2445 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2446 /// StructType
2447 /// ::= '{' '}'
2448 /// ::= '{' Type (',' Type)* '}'
2449 /// ::= '<' '{' '}' '>'
2450 /// ::= '<' '{' Type (',' Type)* '}' '>'
2451 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2452  assert(Lex.getKind() == lltok::lbrace);
2453  Lex.Lex(); // Consume the '{'
2454 
2455  // Handle the empty struct.
2456  if (EatIfPresent(lltok::rbrace))
2457  return false;
2458 
2459  LocTy EltTyLoc = Lex.getLoc();
2460  Type *Ty = nullptr;
2461  if (ParseType(Ty)) return true;
2462  Body.push_back(Ty);
2463 
2465  return Error(EltTyLoc, "invalid element type for struct");
2466 
2467  while (EatIfPresent(lltok::comma)) {
2468  EltTyLoc = Lex.getLoc();
2469  if (ParseType(Ty)) return true;
2470 
2472  return Error(EltTyLoc, "invalid element type for struct");
2473 
2474  Body.push_back(Ty);
2475  }
2476 
2477  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2478 }
2479 
2480 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2481 /// token has already been consumed.
2482 /// Type
2483 /// ::= '[' APSINTVAL 'x' Types ']'
2484 /// ::= '<' APSINTVAL 'x' Types '>'
2485 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2486  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2487  Lex.getAPSIntVal().getBitWidth() > 64)
2488  return TokError("expected number in address space");
2489 
2490  LocTy SizeLoc = Lex.getLoc();
2491  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2492  Lex.Lex();
2493 
2494  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2495  return true;
2496 
2497  LocTy TypeLoc = Lex.getLoc();
2498  Type *EltTy = nullptr;
2499  if (ParseType(EltTy)) return true;
2500 
2501  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2502  "expected end of sequential type"))
2503  return true;
2504 
2505  if (isVector) {
2506  if (Size == 0)
2507  return Error(SizeLoc, "zero element vector is illegal");
2508  if ((unsigned)Size != Size)
2509  return Error(SizeLoc, "size too large for vector");
2510  if (!VectorType::isValidElementType(EltTy))
2511  return Error(TypeLoc, "invalid vector element type");
2512  Result = VectorType::get(EltTy, unsigned(Size));
2513  } else {
2514  if (!ArrayType::isValidElementType(EltTy))
2515  return Error(TypeLoc, "invalid array element type");
2516  Result = ArrayType::get(EltTy, Size);
2517  }
2518  return false;
2519 }
2520 
2521 //===----------------------------------------------------------------------===//
2522 // Function Semantic Analysis.
2523 //===----------------------------------------------------------------------===//
2524 
2525 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2526  int functionNumber)
2527  : P(p), F(f), FunctionNumber(functionNumber) {
2528 
2529  // Insert unnamed arguments into the NumberedVals list.
2530  for (Argument &A : F.args())
2531  if (!A.hasName())
2532  NumberedVals.push_back(&A);
2533 }
2534 
2535 LLParser::PerFunctionState::~PerFunctionState() {
2536  // If there were any forward referenced non-basicblock values, delete them.
2537 
2538  for (const auto &P : ForwardRefVals) {
2539  if (isa<BasicBlock>(P.second.first))
2540  continue;
2541  P.second.first->replaceAllUsesWith(
2542  UndefValue::get(P.second.first->getType()));
2543  P.second.first->deleteValue();
2544  }
2545 
2546  for (const auto &P : ForwardRefValIDs) {
2547  if (isa<BasicBlock>(P.second.first))
2548  continue;
2549  P.second.first->replaceAllUsesWith(
2550  UndefValue::get(P.second.first->getType()));
2551  P.second.first->deleteValue();
2552  }
2553 }
2554 
2555 bool LLParser::PerFunctionState::FinishFunction() {
2556  if (!ForwardRefVals.empty())
2557  return P.Error(ForwardRefVals.begin()->second.second,
2558  "use of undefined value '%" + ForwardRefVals.begin()->first +
2559  "'");
2560  if (!ForwardRefValIDs.empty())
2561  return P.Error(ForwardRefValIDs.begin()->second.second,
2562  "use of undefined value '%" +
2563  Twine(ForwardRefValIDs.begin()->first) + "'");
2564  return false;
2565 }
2566 
2567 /// GetVal - Get a value with the specified name or ID, creating a
2568 /// forward reference record if needed. This can return null if the value
2569 /// exists but does not have the right type.
2570 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2571  LocTy Loc) {
2572  // Look this name up in the normal function symbol table.
2573  Value *Val = F.getValueSymbolTable()->lookup(Name);
2574 
2575  // If this is a forward reference for the value, see if we already created a
2576  // forward ref record.
2577  if (!Val) {
2578  auto I = ForwardRefVals.find(Name);
2579  if (I != ForwardRefVals.end())
2580  Val = I->second.first;
2581  }
2582 
2583  // If we have the value in the symbol table or fwd-ref table, return it.
2584  if (Val) {
2585  if (Val->getType() == Ty) return Val;
2586  if (Ty->isLabelTy())
2587  P.Error(Loc, "'%" + Name + "' is not a basic block");
2588  else
2589  P.Error(Loc, "'%" + Name + "' defined with type '" +
2590  getTypeString(Val->getType()) + "'");
2591  return nullptr;
2592  }
2593 
2594  // Don't make placeholders with invalid type.
2595  if (!Ty->isFirstClassType()) {
2596  P.Error(Loc, "invalid use of a non-first-class type");
2597  return nullptr;
2598  }
2599 
2600  // Otherwise, create a new forward reference for this value and remember it.
2601  Value *FwdVal;
2602  if (Ty->isLabelTy()) {
2603  FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2604  } else {
2605  FwdVal = new Argument(Ty, Name);
2606  }
2607 
2608  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2609  return FwdVal;
2610 }
2611 
2612 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2613  // Look this name up in the normal function symbol table.
2614  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2615 
2616  // If this is a forward reference for the value, see if we already created a
2617  // forward ref record.
2618  if (!Val) {
2619  auto I = ForwardRefValIDs.find(ID);
2620  if (I != ForwardRefValIDs.end())
2621  Val = I->second.first;
2622  }
2623 
2624  // If we have the value in the symbol table or fwd-ref table, return it.
2625  if (Val) {
2626  if (Val->getType() == Ty) return Val;
2627  if (Ty->isLabelTy())
2628  P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2629  else
2630  P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2631  getTypeString(Val->getType()) + "'");
2632  return nullptr;
2633  }
2634 
2635  if (!Ty->isFirstClassType()) {
2636  P.Error(Loc, "invalid use of a non-first-class type");
2637  return nullptr;
2638  }
2639 
2640  // Otherwise, create a new forward reference for this value and remember it.
2641  Value *FwdVal;
2642  if (Ty->isLabelTy()) {
2643  FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2644  } else {
2645  FwdVal = new Argument(Ty);
2646  }
2647 
2648  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2649  return FwdVal;
2650 }
2651 
2652 /// SetInstName - After an instruction is parsed and inserted into its
2653 /// basic block, this installs its name.
2654 bool LLParser::PerFunctionState::SetInstName(int NameID,
2655  const std::string &NameStr,
2656  LocTy NameLoc, Instruction *Inst) {
2657  // If this instruction has void type, it cannot have a name or ID specified.
2658  if (Inst->getType()->isVoidTy()) {
2659  if (NameID != -1 || !NameStr.empty())
2660  return P.Error(NameLoc, "instructions returning void cannot have a name");
2661  return false;
2662  }
2663 
2664  // If this was a numbered instruction, verify that the instruction is the
2665  // expected value and resolve any forward references.
2666  if (NameStr.empty()) {
2667  // If neither a name nor an ID was specified, just use the next ID.
2668  if (NameID == -1)
2669  NameID = NumberedVals.size();
2670 
2671  if (unsigned(NameID) != NumberedVals.size())
2672  return P.Error(NameLoc, "instruction expected to be numbered '%" +
2673  Twine(NumberedVals.size()) + "'");
2674 
2675  auto FI = ForwardRefValIDs.find(NameID);
2676  if (FI != ForwardRefValIDs.end()) {
2677  Value *Sentinel = FI->second.first;
2678  if (Sentinel->getType() != Inst->getType())
2679  return P.Error(NameLoc, "instruction forward referenced with type '" +
2680  getTypeString(FI->second.first->getType()) + "'");
2681 
2682  Sentinel->replaceAllUsesWith(Inst);
2683  Sentinel->deleteValue();
2684  ForwardRefValIDs.erase(FI);
2685  }
2686 
2687  NumberedVals.push_back(Inst);
2688  return false;
2689  }
2690 
2691  // Otherwise, the instruction had a name. Resolve forward refs and set it.
2692  auto FI = ForwardRefVals.find(NameStr);
2693  if (FI != ForwardRefVals.end()) {
2694  Value *Sentinel = FI->second.first;
2695  if (Sentinel->getType() != Inst->getType())
2696  return P.Error(NameLoc, "instruction forward referenced with type '" +
2697  getTypeString(FI->second.first->getType()) + "'");
2698 
2699  Sentinel->replaceAllUsesWith(Inst);
2700  Sentinel->deleteValue();
2701  ForwardRefVals.erase(FI);
2702  }
2703 
2704  // Set the name on the instruction.
2705  Inst->setName(NameStr);
2706 
2707  if (Inst->getName() != NameStr)
2708  return P.Error(NameLoc, "multiple definition of local value named '" +
2709  NameStr + "'");
2710  return false;
2711 }
2712 
2713 /// GetBB - Get a basic block with the specified name or ID, creating a
2714 /// forward reference record if needed.
2715 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2716  LocTy Loc) {
2717  return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2718  Type::getLabelTy(F.getContext()), Loc));
2719 }
2720 
2721 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2722  return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2723  Type::getLabelTy(F.getContext()), Loc));
2724 }
2725 
2726 /// DefineBB - Define the specified basic block, which is either named or
2727 /// unnamed. If there is an error, this returns null otherwise it returns
2728 /// the block being defined.
2729 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2730  LocTy Loc) {
2731  BasicBlock *BB;
2732  if (Name.empty())
2733  BB = GetBB(NumberedVals.size(), Loc);
2734  else
2735  BB = GetBB(Name, Loc);
2736  if (!BB) return nullptr; // Already diagnosed error.
2737 
2738  // Move the block to the end of the function. Forward ref'd blocks are
2739  // inserted wherever they happen to be referenced.
2740  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2741 
2742  // Remove the block from forward ref sets.
2743  if (Name.empty()) {
2744  ForwardRefValIDs.erase(NumberedVals.size());
2745  NumberedVals.push_back(BB);
2746  } else {
2747  // BB forward references are already in the function symbol table.
2748  ForwardRefVals.erase(Name);
2749  }
2750 
2751  return BB;
2752 }
2753 
2754 //===----------------------------------------------------------------------===//
2755 // Constants.
2756 //===----------------------------------------------------------------------===//
2757 
2758 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2759 /// type implied. For example, if we parse "4" we don't know what integer type
2760 /// it has. The value will later be combined with its type and checked for
2761 /// sanity. PFS is used to convert function-local operands of metadata (since
2762 /// metadata operands are not just parsed here but also converted to values).
2763 /// PFS can be null when we are not parsing metadata values inside a function.
2764 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2765  ID.Loc = Lex.getLoc();
2766  switch (Lex.getKind()) {
2767  default: return TokError("expected value token");
2768  case lltok::GlobalID: // @42
2769  ID.UIntVal = Lex.getUIntVal();
2770  ID.Kind = ValID::t_GlobalID;
2771  break;
2772  case lltok::GlobalVar: // @foo
2773  ID.StrVal = Lex.getStrVal();
2775  break;
2776  case lltok::LocalVarID: // %42
2777  ID.UIntVal = Lex.getUIntVal();
2778  ID.Kind = ValID::t_LocalID;
2779  break;
2780  case lltok::LocalVar: // %foo
2781  ID.StrVal = Lex.getStrVal();
2782  ID.Kind = ValID::t_LocalName;
2783  break;
2784  case lltok::APSInt:
2785  ID.APSIntVal = Lex.getAPSIntVal();
2786  ID.Kind = ValID::t_APSInt;
2787  break;
2788  case lltok::APFloat:
2789  ID.APFloatVal = Lex.getAPFloatVal();
2790  ID.Kind = ValID::t_APFloat;
2791  break;
2792  case lltok::kw_true:
2793  ID.ConstantVal = ConstantInt::getTrue(Context);
2794  ID.Kind = ValID::t_Constant;
2795  break;
2796  case lltok::kw_false:
2797  ID.ConstantVal = ConstantInt::getFalse(Context);
2798  ID.Kind = ValID::t_Constant;
2799  break;
2800  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2801  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2802  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2803  case lltok::kw_none: ID.Kind = ValID::t_None; break;
2804 
2805  case lltok::lbrace: {
2806  // ValID ::= '{' ConstVector '}'
2807  Lex.Lex();
2809  if (ParseGlobalValueVector(Elts) ||
2810  ParseToken(lltok::rbrace, "expected end of struct constant"))
2811  return true;
2812 
2813  ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2814  ID.UIntVal = Elts.size();
2815  memcpy(ID.ConstantStructElts.get(), Elts.data(),
2816  Elts.size() * sizeof(Elts[0]));
2818  return false;
2819  }
2820  case lltok::less: {
2821  // ValID ::= '<' ConstVector '>' --> Vector.
2822  // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2823  Lex.Lex();
2824  bool isPackedStruct = EatIfPresent(lltok::lbrace);
2825 
2827  LocTy FirstEltLoc = Lex.getLoc();
2828  if (ParseGlobalValueVector(Elts) ||
2829  (isPackedStruct &&
2830  ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2831  ParseToken(lltok::greater, "expected end of constant"))
2832  return true;
2833 
2834  if (isPackedStruct) {
2835  ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2836  memcpy(ID.ConstantStructElts.get(), Elts.data(),
2837  Elts.size() * sizeof(Elts[0]));
2838  ID.UIntVal = Elts.size();
2840  return false;
2841  }
2842 
2843  if (Elts.empty())
2844  return Error(ID.Loc, "constant vector must not be empty");
2845 
2846  if (!Elts[0]->getType()->isIntegerTy() &&
2847  !Elts[0]->getType()->isFloatingPointTy() &&
2848  !Elts[0]->getType()->isPointerTy())
2849  return Error(FirstEltLoc,
2850  "vector elements must have integer, pointer or floating point type");
2851 
2852  // Verify that all the vector elements have the same type.
2853  for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2854  if (Elts[i]->getType() != Elts[0]->getType())
2855  return Error(FirstEltLoc,
2856  "vector element #" + Twine(i) +
2857  " is not of type '" + getTypeString(Elts[0]->getType()));
2858 
2859  ID.ConstantVal = ConstantVector::get(Elts);
2860  ID.Kind = ValID::t_Constant;
2861  return false;
2862  }
2863  case lltok::lsquare: { // Array Constant
2864  Lex.Lex();
2866  LocTy FirstEltLoc = Lex.getLoc();
2867  if (ParseGlobalValueVector(Elts) ||
2868  ParseToken(lltok::rsquare, "expected end of array constant"))
2869  return true;
2870 
2871  // Handle empty element.
2872  if (Elts.empty()) {
2873  // Use undef instead of an array because it's inconvenient to determine
2874  // the element type at this point, there being no elements to examine.
2876  return false;
2877  }
2878 
2879  if (!Elts[0]->getType()->isFirstClassType())
2880  return Error(FirstEltLoc, "invalid array element type: " +
2881  getTypeString(Elts[0]->getType()));
2882 
2883  ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2884 
2885  // Verify all elements are correct type!
2886  for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2887  if (Elts[i]->getType() != Elts[0]->getType())
2888  return Error(FirstEltLoc,
2889  "array element #" + Twine(i) +
2890  " is not of type '" + getTypeString(Elts[0]->getType()));
2891  }
2892 
2893  ID.ConstantVal = ConstantArray::get(ATy, Elts);
2894  ID.Kind = ValID::t_Constant;
2895  return false;
2896  }
2897  case lltok::kw_c: // c "foo"
2898  Lex.Lex();
2900  false);
2901  if (ParseToken(lltok::StringConstant, "expected string")) return true;
2902  ID.Kind = ValID::t_Constant;
2903  return false;
2904 
2905  case lltok::kw_asm: {
2906  // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2907  // STRINGCONSTANT
2908  bool HasSideEffect, AlignStack, AsmDialect;
2909  Lex.Lex();
2910  if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2911  ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2912  ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2913  ParseStringConstant(ID.StrVal) ||
2914  ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2915  ParseToken(lltok::StringConstant, "expected constraint string"))
2916  return true;
2917  ID.StrVal2 = Lex.getStrVal();
2918  ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2919  (unsigned(AsmDialect)<<2);
2920  ID.Kind = ValID::t_InlineAsm;
2921  return false;
2922  }
2923 
2924  case lltok::kw_blockaddress: {
2925  // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2926  Lex.Lex();
2927 
2928  ValID Fn, Label;
2929 
2930  if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2931  ParseValID(Fn) ||
2932  ParseToken(lltok::comma, "expected comma in block address expression")||
2933  ParseValID(Label) ||
2934  ParseToken(lltok::rparen, "expected ')' in block address expression"))
2935  return true;
2936 
2937  if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2938  return Error(Fn.Loc, "expected function name in blockaddress");
2939  if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2940  return Error(Label.Loc, "expected basic block name in blockaddress");
2941 
2942  // Try to find the function (but skip it if it's forward-referenced).
2943  GlobalValue *GV = nullptr;
2944  if (Fn.Kind == ValID::t_GlobalID) {
2945  if (Fn.UIntVal < NumberedVals.size())
2946  GV = NumberedVals[Fn.UIntVal];
2947  } else if (!ForwardRefVals.count(Fn.StrVal)) {
2948  GV = M->getNamedValue(Fn.StrVal);
2949  }
2950  Function *F = nullptr;
2951  if (GV) {
2952  // Confirm that it's actually a function with a definition.
2953  if (!isa<Function>(GV))
2954  return Error(Fn.Loc, "expected function name in blockaddress");
2955  F = cast<Function>(GV);
2956  if (F->isDeclaration())
2957  return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2958  }
2959 
2960  if (!F) {
2961  // Make a global variable as a placeholder for this reference.
2962  GlobalValue *&FwdRef =
2963  ForwardRefBlockAddresses.insert(std::make_pair(
2964  std::move(Fn),
2965  std::map<ValID, GlobalValue *>()))
2966  .first->second.insert(std::make_pair(std::move(Label), nullptr))
2967  .first->second;
2968  if (!FwdRef)
2969  FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2970  GlobalValue::InternalLinkage, nullptr, "");
2971  ID.ConstantVal = FwdRef;
2972  ID.Kind = ValID::t_Constant;
2973  return false;
2974  }
2975 
2976  // We found the function; now find the basic block. Don't use PFS, since we
2977  // might be inside a constant expression.
2978  BasicBlock *BB;
2979  if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2980  if (Label.Kind == ValID::t_LocalID)
2981  BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2982  else
2983  BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2984  if (!BB)
2985  return Error(Label.Loc, "referenced value is not a basic block");
2986  } else {
2987  if (Label.Kind == ValID::t_LocalID)
2988  return Error(Label.Loc, "cannot take address of numeric label after "
2989  "the function is defined");
2990  BB = dyn_cast_or_null<BasicBlock>(
2991  F->getValueSymbolTable()->lookup(Label.StrVal));
2992  if (!BB)
2993  return Error(Label.Loc, "referenced value is not a basic block");
2994  }
2995 
2996  ID.ConstantVal = BlockAddress::get(F, BB);
2997  ID.Kind = ValID::t_Constant;
2998  return false;
2999  }
3000 
3001  case lltok::kw_trunc:
3002  case lltok::kw_zext:
3003  case lltok::kw_sext:
3004  case lltok::kw_fptrunc:
3005  case lltok::kw_fpext:
3006  case lltok::kw_bitcast:
3008  case lltok::kw_uitofp:
3009  case lltok::kw_sitofp:
3010  case lltok::kw_fptoui:
3011  case lltok::kw_fptosi:
3012  case lltok::kw_inttoptr:
3013  case lltok::kw_ptrtoint: {
3014  unsigned Opc = Lex.getUIntVal();
3015  Type *DestTy = nullptr;
3016  Constant *SrcVal;
3017  Lex.Lex();
3018  if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3019  ParseGlobalTypeAndValue(SrcVal) ||
3020  ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3021  ParseType(DestTy) ||
3022  ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3023  return true;
3024  if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3025  return Error(ID.Loc, "invalid cast opcode for cast from '" +
3026  getTypeString(SrcVal->getType()) + "' to '" +
3027  getTypeString(DestTy) + "'");
3029  SrcVal, DestTy);
3030  ID.Kind = ValID::t_Constant;
3031  return false;
3032  }
3033  case lltok::kw_extractvalue: {
3034  Lex.Lex();
3035  Constant *Val;
3036  SmallVector<unsigned, 4> Indices;
3037  if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3038  ParseGlobalTypeAndValue(Val) ||
3039  ParseIndexList(Indices) ||
3040  ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3041  return true;
3042 
3043  if (!Val->getType()->isAggregateType())
3044  return Error(ID.Loc, "extractvalue operand must be aggregate type");
3045  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3046  return Error(ID.Loc, "invalid indices for extractvalue");
3047  ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3048  ID.Kind = ValID::t_Constant;
3049  return false;
3050  }
3051  case lltok::kw_insertvalue: {
3052  Lex.Lex();
3053  Constant *Val0, *Val1;
3054  SmallVector<unsigned, 4> Indices;
3055  if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3056  ParseGlobalTypeAndValue(Val0) ||
3057  ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3058  ParseGlobalTypeAndValue(Val1) ||
3059  ParseIndexList(Indices) ||
3060  ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3061  return true;
3062  if (!Val0->getType()->isAggregateType())
3063  return Error(ID.Loc, "insertvalue operand must be aggregate type");
3064  Type *IndexedType =
3065  ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3066  if (!IndexedType)
3067  return Error(ID.Loc, "invalid indices for insertvalue");
3068  if (IndexedType != Val1->getType())
3069  return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3070  getTypeString(Val1->getType()) +
3071  "' instead of '" + getTypeString(IndexedType) +
3072  "'");
3073  ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3074  ID.Kind = ValID::t_Constant;
3075  return false;
3076  }
3077  case lltok::kw_icmp:
3078  case lltok::kw_fcmp: {
3079  unsigned PredVal, Opc = Lex.getUIntVal();
3080  Constant *Val0, *Val1;
3081  Lex.Lex();
3082  if (ParseCmpPredicate(PredVal, Opc) ||
3083  ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3084  ParseGlobalTypeAndValue(Val0) ||
3085  ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3086  ParseGlobalTypeAndValue(Val1) ||
3087  ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3088  return true;
3089 
3090  if (Val0->getType() != Val1->getType())
3091  return Error(ID.Loc, "compare operands must have the same type");
3092 
3093  CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3094 
3095  if (Opc == Instruction::FCmp) {
3096  if (!Val0->getType()->isFPOrFPVectorTy())
3097  return Error(ID.Loc, "fcmp requires floating point operands");
3098  ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3099  } else {
3100  assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3101  if (!Val0->getType()->isIntOrIntVectorTy() &&
3102  !Val0->getType()->isPtrOrPtrVectorTy())
3103  return Error(ID.Loc, "icmp requires pointer or integer operands");
3104  ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3105  }
3106  ID.Kind = ValID::t_Constant;
3107  return false;
3108  }
3109 
3110  // Binary Operators.
3111  case lltok::kw_add:
3112  case lltok::kw_fadd:
3113  case lltok::kw_sub:
3114  case lltok::kw_fsub:
3115  case lltok::kw_mul:
3116  case lltok::kw_fmul:
3117  case lltok::kw_udiv:
3118  case lltok::kw_sdiv:
3119  case lltok::kw_fdiv:
3120  case lltok::kw_urem:
3121  case lltok::kw_srem:
3122  case lltok::kw_frem:
3123  case lltok::kw_shl:
3124  case lltok::kw_lshr:
3125  case lltok::kw_ashr: {
3126  bool NUW = false;
3127  bool NSW = false;
3128  bool Exact = false;
3129  unsigned Opc = Lex.getUIntVal();
3130  Constant *Val0, *Val1;
3131  Lex.Lex();
3132  LocTy ModifierLoc = Lex.getLoc();
3133  if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3134  Opc == Instruction::Mul || Opc == Instruction::Shl) {
3135  if (EatIfPresent(lltok::kw_nuw))
3136  NUW = true;
3137  if (EatIfPresent(lltok::kw_nsw)) {
3138  NSW = true;
3139  if (EatIfPresent(lltok::kw_nuw))
3140  NUW = true;
3141  }
3142  } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3143  Opc == Instruction::LShr || Opc == Instruction::AShr) {
3144  if (EatIfPresent(lltok::kw_exact))
3145  Exact = true;
3146  }
3147  if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3148  ParseGlobalTypeAndValue(Val0) ||
3149  ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3150  ParseGlobalTypeAndValue(Val1) ||
3151  ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3152  return true;
3153  if (Val0->getType() != Val1->getType())
3154  return Error(ID.Loc, "operands of constexpr must have same type");
3155  if (!Val0->getType()->isIntOrIntVectorTy()) {
3156  if (NUW)
3157  return Error(ModifierLoc, "nuw only applies to integer operations");
3158  if (NSW)
3159  return Error(ModifierLoc, "nsw only applies to integer operations");
3160  }
3161  // Check that the type is valid for the operator.
3162  switch (Opc) {
3163  case Instruction::Add:
3164  case Instruction::Sub:
3165  case Instruction::Mul:
3166  case Instruction::UDiv:
3167  case Instruction::SDiv:
3168  case Instruction::URem:
3169  case Instruction::SRem:
3170  case Instruction::Shl:
3171  case Instruction::AShr:
3172  case Instruction::LShr:
3173  if (!Val0->getType()->isIntOrIntVectorTy())
3174  return Error(ID.Loc, "constexpr requires integer operands");
3175  break;
3176  case Instruction::FAdd:
3177  case Instruction::FSub:
3178  case Instruction::FMul:
3179  case Instruction::FDiv:
3180  case Instruction::FRem:
3181  if (!Val0->getType()->isFPOrFPVectorTy())
3182  return Error(ID.Loc, "constexpr requires fp operands");
3183  break;
3184  default: llvm_unreachable("Unknown binary operator!");
3185  }
3186  unsigned Flags = 0;
3188  if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
3189  if (Exact) Flags |= PossiblyExactOperator::IsExact;
3190  Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3191  ID.ConstantVal = C;
3192  ID.Kind = ValID::t_Constant;
3193  return false;
3194  }
3195 
3196  // Logical Operations
3197  case lltok::kw_and:
3198  case lltok::kw_or:
3199  case lltok::kw_xor: {
3200  unsigned Opc = Lex.getUIntVal();
3201  Constant *Val0, *Val1;
3202  Lex.Lex();
3203  if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3204  ParseGlobalTypeAndValue(Val0) ||
3205  ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3206  ParseGlobalTypeAndValue(Val1) ||
3207  ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3208  return true;
3209  if (Val0->getType() != Val1->getType())
3210  return Error(ID.Loc, "operands of constexpr must have same type");
3211  if (!Val0->getType()->isIntOrIntVectorTy())
3212  return Error(ID.Loc,
3213  "constexpr requires integer or integer vector operands");
3214  ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3215  ID.Kind = ValID::t_Constant;
3216  return false;
3217  }
3218 
3223  case lltok::kw_select: {
3224  unsigned Opc = Lex.getUIntVal();
3226  bool InBounds = false;
3227  Type *Ty;
3228  Lex.Lex();
3229 
3230  if (Opc == Instruction::GetElementPtr)
3231  InBounds = EatIfPresent(lltok::kw_inbounds);
3232 
3233  if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3234  return true;
3235 
3236  LocTy ExplicitTypeLoc = Lex.getLoc();
3237  if (Opc == Instruction::GetElementPtr) {
3238  if (ParseType(Ty) ||
3239  ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3240  return true;
3241  }
3242 
3243  Optional<unsigned> InRangeOp;
3244  if (ParseGlobalValueVector(
3245  Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3246  ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3247  return true;
3248 
3249  if (Opc == Instruction::GetElementPtr) {
3250  if (Elts.size() == 0 ||
3251  !Elts[0]->getType()->isPtrOrPtrVectorTy())
3252  return Error(ID.Loc, "base of getelementptr must be a pointer");
3253 
3254  Type *BaseType = Elts[0]->getType();
3255  auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3256  if (Ty != BasePointerType->getElementType())
3257  return Error(
3258  ExplicitTypeLoc,
3259  "explicit pointee type doesn't match operand's pointee type");
3260 
3261  unsigned GEPWidth =
3262  BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3263 
3264  ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3265  for (Constant *Val : Indices) {
3266  Type *ValTy = Val->getType();
3267  if (!ValTy->isIntOrIntVectorTy())
3268  return Error(ID.Loc, "getelementptr index must be an integer");
3269  if (ValTy->isVectorTy()) {
3270  unsigned ValNumEl = ValTy->getVectorNumElements();
3271  if (GEPWidth && (ValNumEl != GEPWidth))
3272  return Error(
3273  ID.Loc,
3274  "getelementptr vector index has a wrong number of elements");
3275  // GEPWidth may have been unknown because the base is a scalar,
3276  // but it is known now.
3277  GEPWidth = ValNumEl;
3278  }
3279  }
3280 
3281  SmallPtrSet<Type*, 4> Visited;
3282  if (!Indices.empty() && !Ty->isSized(&Visited))
3283  return Error(ID.Loc, "base element of getelementptr must be sized");
3284 
3285  if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3286  return Error(ID.Loc, "invalid getelementptr indices");
3287 
3288  if (InRangeOp) {
3289  if (*InRangeOp == 0)
3290  return Error(ID.Loc,
3291  "inrange keyword may not appear on pointer operand");
3292  --*InRangeOp;
3293  }
3294 
3295  ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3296  InBounds, InRangeOp);
3297  } else if (Opc == Instruction::Select) {
3298  if (Elts.size() != 3)
3299  return Error(ID.Loc, "expected three operands to select");
3300  if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3301  Elts[2]))
3302  return Error(ID.Loc, Reason);
3303  ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3304  } else if (Opc == Instruction::ShuffleVector) {
3305  if (Elts.size() != 3)
3306  return Error(ID.Loc, "expected three operands to shufflevector");
3307  if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3308  return Error(ID.Loc, "invalid operands to shufflevector");
3309  ID.ConstantVal =
3310  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3311  } else if (Opc == Instruction::ExtractElement) {
3312  if (Elts.size() != 2)
3313  return Error(ID.Loc, "expected two operands to extractelement");
3314  if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3315  return Error(ID.Loc, "invalid extractelement operands");
3316  ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3317  } else {
3318  assert(Opc == Instruction::InsertElement && "Unknown opcode");
3319  if (Elts.size() != 3)
3320  return Error(ID.Loc, "expected three operands to insertelement");
3321  if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3322  return Error(ID.Loc, "invalid insertelement operands");
3323  ID.ConstantVal =
3324  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3325  }
3326 
3327  ID.Kind = ValID::t_Constant;
3328  return false;
3329  }
3330  }
3331 
3332  Lex.Lex();
3333  return false;
3334 }
3335 
3336 /// ParseGlobalValue - Parse a global value with the specified type.
3337 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3338  C = nullptr;
3339  ValID ID;
3340  Value *V = nullptr;
3341  bool Parsed = ParseValID(ID) ||
3342  ConvertValIDToValue(Ty, ID, V, nullptr);
3343  if (V && !(C = dyn_cast<Constant>(V)))
3344  return Error(ID.Loc, "global values must be constants");
3345  return Parsed;
3346 }
3347 
3348 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3349  Type *Ty = nullptr;
3350  return ParseType(Ty) ||
3351  ParseGlobalValue(Ty, V);
3352 }
3353 
3354 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3355  C = nullptr;
3356 
3357  LocTy KwLoc = Lex.getLoc();
3358  if (!EatIfPresent(lltok::kw_comdat))
3359  return false;
3360 
3361  if (EatIfPresent(lltok::lparen)) {
3362  if (Lex.getKind() != lltok::ComdatVar)
3363  return TokError("expected comdat variable");
3364  C = getComdat(Lex.getStrVal(), Lex.getLoc());
3365  Lex.Lex();
3366  if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3367  return true;
3368  } else {
3369  if (GlobalName.empty())
3370  return TokError("comdat cannot be unnamed");
3371  C = getComdat(GlobalName, KwLoc);
3372  }
3373 
3374  return false;
3375 }
3376 
3377 /// ParseGlobalValueVector
3378 /// ::= /*empty*/
3379 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3380 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3381  Optional<unsigned> *InRangeOp) {
3382  // Empty list.
3383  if (Lex.getKind() == lltok::rbrace ||
3384  Lex.getKind() == lltok::rsquare ||
3385  Lex.getKind() == lltok::greater ||
3386  Lex.getKind() == lltok::rparen)
3387  return false;
3388 
3389  do {
3390  if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3391  *InRangeOp = Elts.size();
3392 
3393  Constant *C;
3394  if (ParseGlobalTypeAndValue(C)) return true;
3395  Elts.push_back(C);
3396  } while (EatIfPresent(lltok::comma));
3397 
3398  return false;
3399 }
3400 
3401 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3403  if (ParseMDNodeVector(Elts))
3404  return true;
3405 
3406  MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3407  return false;
3408 }
3409 
3410 /// MDNode:
3411 /// ::= !{ ... }
3412 /// ::= !7
3413 /// ::= !DILocation(...)
3414 bool LLParser::ParseMDNode(MDNode *&N) {
3415  if (Lex.getKind() == lltok::MetadataVar)
3416  return ParseSpecializedMDNode(N);
3417 
3418  return ParseToken(lltok::exclaim, "expected '!' here") ||
3419  ParseMDNodeTail(N);
3420 }
3421 
3422 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3423  // !{ ... }
3424  if (Lex.getKind() == lltok::lbrace)
3425  return ParseMDTuple(N);
3426 
3427  // !42
3428  return ParseMDNodeID(N);
3429 }
3430 
3431 namespace {
3432 
3433 /// Structure to represent an optional metadata field.
3434 template <class FieldTy> struct MDFieldImpl {
3435  typedef MDFieldImpl ImplTy;
3436  FieldTy Val;
3437  bool Seen;
3438 
3439  void assign(FieldTy Val) {
3440  Seen = true;
3441  this->Val = std::move(Val);
3442  }
3443 
3444  explicit MDFieldImpl(FieldTy Default)
3445  : Val(std::move(Default)), Seen(false) {}
3446 };
3447 
3448 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3449  uint64_t Max;
3450 
3451  MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3452  : ImplTy(Default), Max(Max) {}
3453 };
3454 
3455 struct LineField : public MDUnsignedField {
3456  LineField() : MDUnsignedField(0, UINT32_MAX) {}
3457 };
3458 
3459 struct ColumnField : public MDUnsignedField {
3460  ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3461 };
3462 
3463 struct DwarfTagField : public MDUnsignedField {
3464  DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3465  DwarfTagField(dwarf::Tag DefaultTag)
3466  : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3467 };
3468 
3469 struct DwarfMacinfoTypeField : public MDUnsignedField {
3470  DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3471  DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3472  : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3473 };
3474 
3475 struct DwarfAttEncodingField : public MDUnsignedField {
3476  DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3477 };
3478 
3479 struct DwarfVirtualityField : public MDUnsignedField {
3480  DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3481 };
3482 
3483 struct DwarfLangField : public MDUnsignedField {
3484  DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3485 };
3486 
3487 struct DwarfCCField : public MDUnsignedField {
3488  DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3489 };
3490 
3491 struct EmissionKindField : public MDUnsignedField {
3492  EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3493 };
3494 
3495 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3496  DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3497 };
3498 
3499 struct MDSignedField : public MDFieldImpl<int64_t> {
3500  int64_t Min;
3501  int64_t Max;
3502 
3503  MDSignedField(int64_t Default = 0)
3504  : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3505  MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3506  : ImplTy(Default), Min(Min), Max(Max) {}
3507 };
3508 
3509 struct MDBoolField : public MDFieldImpl<bool> {
3510  MDBoolField(bool Default = false) : ImplTy(Default) {}
3511 };
3512 
3513 struct MDField : public MDFieldImpl<Metadata *> {
3514  bool AllowNull;
3515 
3516  MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3517 };
3518 
3519 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3520  MDConstant() : ImplTy(nullptr) {}
3521 };
3522 
3523 struct MDStringField : public MDFieldImpl<MDString *> {
3524  bool AllowEmpty;
3525  MDStringField(bool AllowEmpty = true)
3526  : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3527 };
3528 
3529 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3530  MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3531 };
3532 
3533 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3534  ChecksumKindField() : ImplTy(DIFile::CSK_None) {}
3535  ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3536 };
3537 
3538 } // end anonymous namespace
3539 
3540 namespace llvm {
3541 
3542 template <>
3543 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3544  MDUnsignedField &Result) {
3545  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3546  return TokError("expected unsigned integer");
3547 
3548  auto &U = Lex.getAPSIntVal();
3549  if (U.ugt(Result.Max))
3550  return TokError("value for '" + Name + "' too large, limit is " +
3551  Twine(Result.Max));
3552  Result.assign(U.getZExtValue());
3553  assert(Result.Val <= Result.Max && "Expected value in range");
3554  Lex.Lex();
3555  return false;
3556 }
3557 
3558 template <>
3559 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3560  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3561 }
3562 template <>
3563 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3564  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3565 }
3566 
3567 template <>
3568 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3569  if (Lex.getKind() == lltok::APSInt)
3570  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3571 
3572  if (Lex.getKind() != lltok::DwarfTag)
3573  return TokError("expected DWARF tag");
3574 
3575  unsigned Tag = dwarf::getTag(Lex.getStrVal());
3576  if (Tag == dwarf::DW_TAG_invalid)
3577  return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3578  assert(Tag <= Result.Max && "Expected valid DWARF tag");
3579 
3580  Result.assign(Tag);
3581  Lex.Lex();
3582  return false;
3583 }
3584 
3585 template <>
3586 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3587  DwarfMacinfoTypeField &Result) {
3588  if (Lex.getKind() == lltok::APSInt)
3589  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3590 
3591  if (Lex.getKind() != lltok::DwarfMacinfo)
3592  return TokError("expected DWARF macinfo type");
3593 
3594  unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3595  if (Macinfo == dwarf::DW_MACINFO_invalid)
3596  return TokError(
3597  "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3598  assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3599 
3600  Result.assign(Macinfo);
3601  Lex.Lex();
3602  return false;
3603 }
3604 
3605 template <>
3606 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3607  DwarfVirtualityField &Result) {
3608  if (Lex.getKind() == lltok::APSInt)
3609  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3610 
3611  if (Lex.getKind() != lltok::DwarfVirtuality)
3612  return TokError("expected DWARF virtuality code");
3613 
3614  unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3615  if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3616  return TokError("invalid DWARF virtuality code" + Twine(" '") +
3617  Lex.getStrVal() + "'");
3618  assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3619  Result.assign(Virtuality);
3620  Lex.Lex();
3621  return false;
3622 }
3623 
3624 template <>
3625 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3626  if (Lex.getKind() == lltok::APSInt)
3627  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3628 
3629  if (Lex.getKind() != lltok::DwarfLang)
3630  return TokError("expected DWARF language");
3631 
3632  unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3633  if (!Lang)
3634  return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3635  "'");
3636  assert(Lang <= Result.Max && "Expected valid DWARF language");
3637  Result.assign(Lang);
3638  Lex.Lex();
3639  return false;
3640 }
3641 
3642 template <>
3643 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3644  if (Lex.getKind() == lltok::APSInt)
3645  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3646 
3647  if (Lex.getKind() != lltok::DwarfCC)
3648  return TokError("expected DWARF calling convention");
3649 
3650  unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3651  if (!CC)
3652  return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3653  "'");
3654  assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3655  Result.assign(CC);
3656  Lex.Lex();
3657  return false;
3658 }
3659 
3660 template <>
3661 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3662  if (Lex.getKind() == lltok::APSInt)
3663  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3664 
3665  if (Lex.getKind() != lltok::EmissionKind)
3666  return TokError("expected emission kind");
3667 
3668  auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3669  if (!Kind)
3670  return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3671  "'");
3672  assert(*Kind <= Result.Max && "Expected valid emission kind");
3673  Result.assign(*Kind);
3674  Lex.Lex();
3675  return false;
3676 }
3677 
3678 template <>
3679 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3680  DwarfAttEncodingField &Result) {
3681  if (Lex.getKind() == lltok::APSInt)
3682  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3683 
3684  if (Lex.getKind() != lltok::DwarfAttEncoding)
3685  return TokError("expected DWARF type attribute encoding");
3686 
3687  unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3688  if (!Encoding)
3689  return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3690  Lex.getStrVal() + "'");
3691  assert(Encoding <= Result.Max && "Expected valid DWARF language");
3692  Result.assign(Encoding);
3693  Lex.Lex();
3694  return false;
3695 }
3696 
3697 /// DIFlagField
3698 /// ::= uint32
3699 /// ::= DIFlagVector
3700 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3701 template <>
3702 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3703 
3704  // Parser for a single flag.
3705  auto parseFlag = [&](DINode::DIFlags &Val) {
3706  if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3707  uint32_t TempVal = static_cast<uint32_t>(Val);
3708  bool Res = ParseUInt32(TempVal);
3709  Val = static_cast<DINode::DIFlags>(TempVal);
3710  return Res;
3711  }
3712 
3713  if (Lex.getKind() != lltok::DIFlag)
3714  return TokError("expected debug info flag");
3715 
3716  Val = DINode::getFlag(Lex.getStrVal());
3717  if (!Val)
3718  return TokError(Twine("invalid debug info flag flag '") +
3719  Lex.getStrVal() + "'");
3720  Lex.Lex();
3721  return false;
3722  };
3723 
3724  // Parse the flags and combine them together.
3725  DINode::DIFlags Combined = DINode::FlagZero;
3726  do {
3727  DINode::DIFlags Val;
3728  if (parseFlag(Val))
3729  return true;
3730  Combined |= Val;
3731  } while (EatIfPresent(lltok::bar));
3732 
3733  Result.assign(Combined);
3734  return false;
3735 }
3736 
3737 template <>
3738 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3739  MDSignedField &Result) {
3740  if (Lex.getKind() != lltok::APSInt)
3741  return TokError("expected signed integer");
3742 
3743  auto &S = Lex.getAPSIntVal();
3744  if (S < Result.Min)
3745  return TokError("value for '" + Name + "' too small, limit is " +
3746  Twine(Result.Min));
3747  if (S > Result.Max)
3748  return TokError("value for '" + Name + "' too large, limit is " +
3749  Twine(Result.Max));
3750  Result.assign(S.getExtValue());
3751  assert(Result.Val >= Result.Min && "Expected value in range");
3752  assert(Result.Val <= Result.Max && "Expected value in range");
3753  Lex.Lex();
3754  return false;
3755 }
3756 
3757 template <>
3758 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3759  switch (Lex.getKind()) {
3760  default:
3761  return TokError("expected 'true' or 'false'");
3762  case lltok::kw_true:
3763  Result.assign(true);
3764  break;
3765  case lltok::kw_false:
3766  Result.assign(false);
3767  break;
3768  }
3769  Lex.Lex();
3770  return false;
3771 }
3772 
3773 template <>
3774 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3775  if (Lex.getKind() == lltok::kw_null) {
3776  if (!Result.AllowNull)
3777  return TokError("'" + Name + "' cannot be null");
3778  Lex.Lex();
3779  Result.assign(nullptr);
3780  return false;
3781  }
3782 
3783  Metadata *MD;
3784  if (ParseMetadata(MD, nullptr))
3785  return true;
3786 
3787  Result.assign(MD);
3788  return false;
3789 }
3790 
3791 template <>
3792 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3793  LocTy ValueLoc = Lex.getLoc();
3794  std::string S;
3795  if (ParseStringConstant(S))
3796  return true;
3797 
3798  if (!Result.AllowEmpty && S.empty())
3799  return Error(ValueLoc, "'" + Name + "' cannot be empty");
3800 
3801  Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3802  return false;
3803 }
3804 
3805 template <>
3806 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3808  if (ParseMDNodeVector(MDs))
3809  return true;
3810 
3811  Result.assign(std::move(MDs));
3812  return false;
3813 }
3814 
3815 template <>
3816 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3817  ChecksumKindField &Result) {
3818  if (Lex.getKind() != lltok::ChecksumKind)
3819  return TokError(
3820  "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
3821 
3822  DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal());
3823 
3824  Result.assign(CSKind);
3825  Lex.Lex();
3826  return false;
3827 }
3828 
3829 } // end namespace llvm
3830 
3831 template <class ParserTy>
3832 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3833  do {
3834  if (Lex.getKind() != lltok::LabelStr)
3835  return TokError("expected field label here");
3836 
3837  if (parseField())
3838  return true;
3839  } while (EatIfPresent(lltok::comma));
3840 
3841  return false;
3842 }
3843 
3844 template <class ParserTy>
3845 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3846  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3847  Lex.Lex();
3848 
3849  if (ParseToken(lltok::lparen, "expected '(' here"))
3850  return true;
3851  if (Lex.getKind() != lltok::rparen)
3852  if (ParseMDFieldsImplBody(parseField))
3853  return true;
3854 
3855  ClosingLoc = Lex.getLoc();
3856  return ParseToken(lltok::rparen, "expected ')' here");
3857 }
3858 
3859 template <class FieldTy>
3860 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3861  if (Result.Seen)
3862  return TokError("field '" + Name + "' cannot be specified more than once");
3863 
3864  LocTy Loc = Lex.getLoc();
3865  Lex.Lex();
3866  return ParseMDField(Loc, Name, Result);
3867 }
3868 
3869 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3870  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3871 
3872 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
3873  if (Lex.getStrVal() == #CLASS) \
3874  return Parse##CLASS(N, IsDistinct);
3875 #include "llvm/IR/Metadata.def"
3876 
3877  return TokError("expected metadata type");
3878 }
3879 
3880 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3881 #define NOP_FIELD(NAME, TYPE, INIT)
3882 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
3883  if (!NAME.Seen) \
3884  return Error(ClosingLoc, "missing required field '" #NAME "'");
3885 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
3886  if (Lex.getStrVal() == #NAME) \
3887  return ParseMDField(#NAME, NAME);
3888 #define PARSE_MD_FIELDS() \
3889  VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
3890  do { \
3891  LocTy ClosingLoc; \
3892  if (ParseMDFieldsImpl([&]() -> bool { \
3893  VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
3894  return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
3895  }, ClosingLoc)) \
3896  return true; \
3897  VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
3898  } while (false)
3899 #define GET_OR_DISTINCT(CLASS, ARGS) \
3900  (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3901 
3902 /// ParseDILocationFields:
3903 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3904 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3905 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3906  OPTIONAL(line, LineField, ); \
3907  OPTIONAL(column, ColumnField, ); \
3908  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
3909  OPTIONAL(inlinedAt, MDField, );
3910  PARSE_MD_FIELDS();
3911 #undef VISIT_MD_FIELDS
3912 
3913  Result = GET_OR_DISTINCT(
3914  DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3915  return false;
3916 }
3917 
3918 /// ParseGenericDINode:
3919 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3920 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3921 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3922  REQUIRED(tag, DwarfTagField, ); \
3923  OPTIONAL(header, MDStringField, ); \
3924  OPTIONAL(operands, MDFieldList, );
3925  PARSE_MD_FIELDS();
3926 #undef VISIT_MD_FIELDS
3927 
3928  Result = GET_OR_DISTINCT(GenericDINode,
3929  (Context, tag.Val, header.Val, operands.Val));
3930  return false;
3931 }
3932 
3933 /// ParseDISubrange:
3934 /// ::= !DISubrange(count: 30, lowerBound: 2)
3935 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3936 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3937  REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \
3938  OPTIONAL(lowerBound, MDSignedField, );
3939  PARSE_MD_FIELDS();
3940 #undef VISIT_MD_FIELDS
3941 
3942  Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3943  return false;
3944 }
3945 
3946 /// ParseDIEnumerator:
3947 /// ::= !DIEnumerator(value: 30, name: "SomeKind")
3948 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3949 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3950  REQUIRED(name, MDStringField, ); \
3951  REQUIRED(value, MDSignedField, );
3952  PARSE_MD_FIELDS();
3953 #undef VISIT_MD_FIELDS
3954 
3955  Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3956  return false;
3957 }
3958 
3959 /// ParseDIBasicType:
3960 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3961 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3962 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3963  OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
3964  OPTIONAL(name, MDStringField, ); \
3965  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
3966  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
3967  OPTIONAL(encoding, DwarfAttEncodingField, );
3968  PARSE_MD_FIELDS();
3969 #undef VISIT_MD_FIELDS
3970 
3971  Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3972  align.Val, encoding.Val));
3973  return false;
3974 }
3975 
3976 /// ParseDIDerivedType:
3977 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3978 /// line: 7, scope: !1, baseType: !2, size: 32,
3979 /// align: 32, offset: 0, flags: 0, extraData: !3,
3980 /// dwarfAddressSpace: 3)
3981 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3982 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3983  REQUIRED(tag, DwarfTagField, ); \
3984  OPTIONAL(name, MDStringField, ); \
3985  OPTIONAL(file, MDField, ); \
3986  OPTIONAL(line, LineField, ); \
3987  OPTIONAL(scope, MDField, ); \
3988  REQUIRED(baseType, MDField, ); \
3989  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
3990  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
3991  OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
3992  OPTIONAL(flags, DIFlagField, ); \
3993  OPTIONAL(extraData, MDField, ); \
3994  OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
3995  PARSE_MD_FIELDS();
3996 #undef VISIT_MD_FIELDS
3997 
3998  Optional<unsigned> DWARFAddressSpace;
3999  if (dwarfAddressSpace.Val != UINT32_MAX)
4000  DWARFAddressSpace = dwarfAddressSpace.Val;
4001 
4002  Result = GET_OR_DISTINCT(DIDerivedType,
4003  (Context, tag.Val, name.Val, file.Val, line.Val,
4004  scope.Val, baseType.Val, size.Val, align.Val,
4005  offset.Val, DWARFAddressSpace, flags.Val,
4006  extraData.Val));
4007  return false;
4008 }
4009 
4010 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4011 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4012  REQUIRED(tag, DwarfTagField, ); \
4013  OPTIONAL(name, MDStringField, ); \
4014  OPTIONAL(file, MDField, ); \
4015  OPTIONAL(line, LineField, ); \
4016  OPTIONAL(scope, MDField, ); \
4017  OPTIONAL(baseType, MDField, ); \
4018  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4019  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4020  OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4021  OPTIONAL(flags, DIFlagField, ); \
4022  OPTIONAL(elements, MDField, ); \
4023  OPTIONAL(runtimeLang, DwarfLangField, ); \
4024  OPTIONAL(vtableHolder, MDField, ); \
4025  OPTIONAL(templateParams, MDField, ); \
4026  OPTIONAL(identifier, MDStringField, );
4027  PARSE_MD_FIELDS();
4028 #undef VISIT_MD_FIELDS
4029 
4030  // If this has an identifier try to build an ODR type.
4031  if (identifier.Val)
4032  if (auto *CT = DICompositeType::buildODRType(
4033  Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4034  scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4035  elements.Val, runtimeLang.Val, vtableHolder.Val,
4036  templateParams.Val)) {
4037  Result = CT;
4038  return false;
4039  }
4040 
4041  // Create a new node, and save it in the context if it belongs in the type
4042  // map.
4043  Result = GET_OR_DISTINCT(
4045  (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4046  size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4047  runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
4048  return false;
4049 }
4050 
4051 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4052 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4053  OPTIONAL(flags, DIFlagField, ); \
4054  OPTIONAL(cc, DwarfCCField, ); \
4055  REQUIRED(types, MDField, );
4056  PARSE_MD_FIELDS();
4057 #undef VISIT_MD_FIELDS
4058 
4060  (Context, flags.Val, cc.Val, types.Val));
4061  return false;
4062 }
4063 
4064 /// ParseDIFileType:
4065 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir"
4066 /// checksumkind: CSK_MD5,
4067 /// checksum: "000102030405060708090a0b0c0d0e0f")
4068 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4069 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4070  REQUIRED(filename, MDStringField, ); \
4071  REQUIRED(directory, MDStringField, ); \
4072  OPTIONAL(checksumkind, ChecksumKindField, ); \
4073  OPTIONAL(checksum, MDStringField, );
4074  PARSE_MD_FIELDS();
4075 #undef VISIT_MD_FIELDS
4076 
4077  Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4078  checksumkind.Val, checksum.Val));
4079  return false;
4080 }
4081 
4082 /// ParseDICompileUnit:
4083 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4084 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
4085 /// splitDebugFilename: "abc.debug",
4086 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4087 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4088 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4089  if (!IsDistinct)
4090  return Lex.Error("missing 'distinct', required for !DICompileUnit");
4091 
4092 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4093  REQUIRED(language, DwarfLangField, ); \
4094  REQUIRED(file, MDField, (/* AllowNull */ false)); \
4095  OPTIONAL(producer, MDStringField, ); \
4096  OPTIONAL(isOptimized, MDBoolField, ); \
4097  OPTIONAL(flags, MDStringField, ); \
4098  OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
4099  OPTIONAL(splitDebugFilename, MDStringField, ); \
4100  OPTIONAL(emissionKind, EmissionKindField, ); \
4101  OPTIONAL(enums, MDField, ); \
4102  OPTIONAL(retainedTypes, MDField, ); \
4103  OPTIONAL(globals, MDField, ); \
4104  OPTIONAL(imports, MDField, ); \
4105  OPTIONAL(macros, MDField, ); \
4106  OPTIONAL(dwoId, MDUnsignedField, ); \
4107  OPTIONAL(splitDebugInlining, MDBoolField, = true); \
4108  OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
4109  OPTIONAL(gnuPubnames, MDBoolField, = false);
4110  PARSE_MD_FIELDS();
4111 #undef VISIT_MD_FIELDS
4112 
4113  Result = DICompileUnit::getDistinct(
4114  Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4115  runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4116  retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4117  splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val);
4118  return false;
4119 }
4120 
4121 /// ParseDISubprogram:
4122 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4123 /// file: !1, line: 7, type: !2, isLocal: false,
4124 /// isDefinition: true, scopeLine: 8, containingType: !3,
4125 /// virtuality: DW_VIRTUALTIY_pure_virtual,
4126 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
4127 /// isOptimized: false, templateParams: !4, declaration: !5,
4128 /// variables: !6, thrownTypes: !7)
4129 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4130  auto Loc = Lex.getLoc();
4131 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4132  OPTIONAL(scope, MDField, ); \
4133  OPTIONAL(name, MDStringField, ); \
4134  OPTIONAL(linkageName, MDStringField, ); \
4135  OPTIONAL(file, MDField, ); \
4136  OPTIONAL(line, LineField, ); \
4137  OPTIONAL(type, MDField, ); \
4138  OPTIONAL(isLocal, MDBoolField, ); \
4139  OPTIONAL(isDefinition, MDBoolField, (true)); \
4140  OPTIONAL(scopeLine, LineField, ); \
4141  OPTIONAL(containingType, MDField, ); \
4142  OPTIONAL(virtuality, DwarfVirtualityField, ); \
4143  OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
4144  OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
4145  OPTIONAL(flags, DIFlagField, ); \
4146  OPTIONAL(isOptimized, MDBoolField, ); \
4147  OPTIONAL(unit, MDField, ); \
4148  OPTIONAL(templateParams, MDField, ); \
4149  OPTIONAL(declaration, MDField, ); \
4150  OPTIONAL(variables, MDField, ); \
4151  OPTIONAL(thrownTypes, MDField, );
4152  PARSE_MD_FIELDS();
4153 #undef VISIT_MD_FIELDS
4154 
4155  if (isDefinition.Val && !IsDistinct)
4156  return Lex.Error(
4157  Loc,
4158  "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4159 
4160  Result = GET_OR_DISTINCT(
4161  DISubprogram,
4162  (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4163  type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4164  containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4165  flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4166  declaration.Val, variables.Val, thrownTypes.Val));
4167  return false;
4168 }
4169 
4170 /// ParseDILexicalBlock:
4171 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4172 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4173 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4174  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4175  OPTIONAL(file, MDField, ); \
4176  OPTIONAL(line, LineField, ); \
4177  OPTIONAL(column, ColumnField, );
4178  PARSE_MD_FIELDS();
4179 #undef VISIT_MD_FIELDS
4180 
4181  Result = GET_OR_DISTINCT(
4182  DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4183  return false;
4184 }
4185 
4186 /// ParseDILexicalBlockFile:
4187 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4188 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4189 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4190  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4191  OPTIONAL(file, MDField, ); \
4192  REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4193  PARSE_MD_FIELDS();
4194 #undef VISIT_MD_FIELDS
4195 
4197  (Context, scope.Val, file.Val, discriminator.Val));
4198  return false;
4199 }
4200 
4201 /// ParseDINamespace:
4202 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4203 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4204 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4205  REQUIRED(scope, MDField, ); \
4206  OPTIONAL(name, MDStringField, ); \
4207  OPTIONAL(exportSymbols, MDBoolField, );
4208  PARSE_MD_FIELDS();
4209 #undef VISIT_MD_FIELDS
4210 
4211  Result = GET_OR_DISTINCT(DINamespace,
4212  (Context, scope.Val, name.Val, exportSymbols.Val));
4213  return false;
4214 }
4215 
4216 /// ParseDIMacro:
4217 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4218 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4219 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4220  REQUIRED(type, DwarfMacinfoTypeField, ); \
4221  OPTIONAL(line, LineField, ); \
4222  REQUIRED(name, MDStringField, ); \
4223  OPTIONAL(value, MDStringField, );
4224  PARSE_MD_FIELDS();
4225 #undef VISIT_MD_FIELDS
4226 
4227  Result = GET_OR_DISTINCT(DIMacro,
4228  (Context, type.Val, line.Val, name.Val, value.Val));
4229  return false;
4230 }
4231 
4232 /// ParseDIMacroFile:
4233 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4234 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4235 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4236  OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
4237  OPTIONAL(line, LineField, ); \
4238  REQUIRED(file, MDField, ); \
4239  OPTIONAL(nodes, MDField, );
4240  PARSE_MD_FIELDS();
4241 #undef VISIT_MD_FIELDS
4242 
4243  Result = GET_OR_DISTINCT(DIMacroFile,
4244  (Context, type.Val, line.Val, file.Val, nodes.Val));
4245  return false;
4246 }
4247 
4248 /// ParseDIModule:
4249 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4250 /// includePath: "/usr/include", isysroot: "/")
4251 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4252 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4253  REQUIRED(scope, MDField, ); \
4254  REQUIRED(name, MDStringField, ); \
4255  OPTIONAL(configMacros, MDStringField, ); \
4256  OPTIONAL(includePath, MDStringField, ); \
4257  OPTIONAL(isysroot, MDStringField, );
4258  PARSE_MD_FIELDS();
4259 #undef VISIT_MD_FIELDS
4260 
4261  Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4262  configMacros.Val, includePath.Val, isysroot.Val));
4263  return false;
4264 }
4265 
4266 /// ParseDITemplateTypeParameter:
4267 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4268 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4269 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4270  OPTIONAL(name, MDStringField, ); \
4271  REQUIRED(type, MDField, );
4272  PARSE_MD_FIELDS();
4273 #undef VISIT_MD_FIELDS
4274 
4275  Result =
4277  return false;
4278 }
4279 
4280 /// ParseDITemplateValueParameter:
4281 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4282 /// name: "V", type: !1, value: i32 7)
4283 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4284 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4285  OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
4286  OPTIONAL(name, MDStringField, ); \
4287  OPTIONAL(type, MDField, ); \
4288  REQUIRED(value, MDField, );
4289  PARSE_MD_FIELDS();
4290 #undef VISIT_MD_FIELDS
4291 
4293  (Context, tag.Val, name.Val, type.Val, value.Val));
4294  return false;
4295 }
4296 
4297 /// ParseDIGlobalVariable:
4298 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4299 /// file: !1, line: 7, type: !2, isLocal: false,
4300 /// isDefinition: true, declaration: !3, align: 8)
4301 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4302 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4303  REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
4304  OPTIONAL(scope, MDField, ); \
4305  OPTIONAL(linkageName, MDStringField, ); \
4306  OPTIONAL(file, MDField, ); \
4307  OPTIONAL(line, LineField, ); \
4308  OPTIONAL(type, MDField, ); \
4309  OPTIONAL(isLocal, MDBoolField, ); \
4310  OPTIONAL(isDefinition, MDBoolField, (true)); \
4311  OPTIONAL(declaration, MDField, ); \
4312  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4313  PARSE_MD_FIELDS();
4314 #undef VISIT_MD_FIELDS
4315 
4317  (Context, scope.Val, name.Val, linkageName.Val,
4318  file.Val, line.Val, type.Val, isLocal.Val,
4319  isDefinition.Val, declaration.Val, align.Val));
4320  return false;
4321 }
4322 
4323 /// ParseDILocalVariable:
4324 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4325 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4326 /// align: 8)
4327 /// ::= !DILocalVariable(scope: !0, name: "foo",
4328 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4329 /// align: 8)
4330 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4331 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4332  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4333  OPTIONAL(name, MDStringField, ); \
4334  OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
4335  OPTIONAL(file, MDField, ); \
4336  OPTIONAL(line, LineField, ); \
4337  OPTIONAL(type, MDField, ); \
4338  OPTIONAL(flags, DIFlagField, ); \
4339  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4340  PARSE_MD_FIELDS();
4341 #undef VISIT_MD_FIELDS
4342 
4344  (Context, scope.Val, name.Val, file.Val, line.Val,
4345  type.Val, arg.Val, flags.Val, align.Val));
4346  return false;
4347 }
4348 
4349 /// ParseDIExpression:
4350 /// ::= !DIExpression(0, 7, -1)
4351 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4352  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4353  Lex.Lex();
4354 
4355  if (ParseToken(lltok::lparen, "expected '(' here"))
4356  return true;
4357 
4358  SmallVector<uint64_t, 8> Elements;
4359  if (Lex.getKind() != lltok::rparen)
4360  do {
4361  if (Lex.getKind() == lltok::DwarfOp) {
4362  if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4363  Lex.Lex();
4364  Elements.push_back(Op);
4365  continue;
4366  }
4367  return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4368  }
4369 
4370  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4371  return TokError("expected unsigned integer");
4372 
4373  auto &U = Lex.getAPSIntVal();
4374  if (U.ugt(UINT64_MAX))
4375  return TokError("element too large, limit is " + Twine(UINT64_MAX));
4376  Elements.push_back(U.getZExtValue());
4377  Lex.Lex();
4378  } while (EatIfPresent(lltok::comma));
4379 
4380  if (ParseToken(lltok::rparen, "expected ')' here"))
4381  return true;
4382 
4383  Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4384  return false;
4385 }
4386 
4387 /// ParseDIGlobalVariableExpression:
4388 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4389 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4390  bool IsDistinct) {
4391 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4392  REQUIRED(var, MDField, ); \
4393  REQUIRED(expr, MDField, );
4394  PARSE_MD_FIELDS();
4395 #undef VISIT_MD_FIELDS
4396 
4397  Result =
4398  GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4399  return false;
4400 }
4401 
4402 /// ParseDIObjCProperty:
4403 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4404 /// getter: "getFoo", attributes: 7, type: !2)
4405 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4406 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4407  OPTIONAL(name, MDStringField, ); \
4408  OPTIONAL(file, MDField, ); \
4409  OPTIONAL(line, LineField, ); \
4410  OPTIONAL(setter, MDStringField, ); \
4411  OPTIONAL(getter, MDStringField, ); \
4412  OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
4413  OPTIONAL(type, MDField, );
4414  PARSE_MD_FIELDS();
4415 #undef VISIT_MD_FIELDS
4416 
4418  (Context, name.Val, file.Val, line.Val, setter.Val,
4419  getter.Val, attributes.Val, type.Val));
4420  return false;
4421 }
4422 
4423 /// ParseDIImportedEntity:
4424 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4425 /// line: 7, name: "foo")
4426 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4427 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4428  REQUIRED(tag, DwarfTagField, ); \
4429  REQUIRED(scope, MDField, ); \
4430  OPTIONAL(entity, MDField, ); \
4431  OPTIONAL(file, MDField, ); \
4432  OPTIONAL(line, LineField, ); \
4433  OPTIONAL(name, MDStringField, );
4434  PARSE_MD_FIELDS();
4435 #undef VISIT_MD_FIELDS
4436 
4437  Result = GET_OR_DISTINCT(
4439  (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4440  return false;
4441 }
4442 
4443 #undef PARSE_MD_FIELD
4444 #undef NOP_FIELD
4445 #undef REQUIRE_FIELD
4446 #undef DECLARE_FIELD
4447 
4448 /// ParseMetadataAsValue
4449 /// ::= metadata i32 %local
4450 /// ::= metadata i32 @global
4451 /// ::= metadata i32 7
4452 /// ::= metadata !0
4453 /// ::= metadata !{...}
4454 /// ::= metadata !"string"
4455 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4456  // Note: the type 'metadata' has already been parsed.
4457  Metadata *MD;
4458  if (ParseMetadata(MD, &PFS))
4459  return true;
4460 
4461  V = MetadataAsValue::get(Context, MD);
4462  return false;
4463 }
4464 
4465 /// ParseValueAsMetadata
4466 /// ::= i32 %local
4467 /// ::= i32 @global
4468 /// ::= i32 7
4469 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4470  PerFunctionState *PFS) {
4471  Type *Ty;
4472  LocTy Loc;
4473  if (ParseType(Ty, TypeMsg, Loc))
4474  return true;
4475  if (Ty->isMetadataTy())
4476  return Error(Loc, "invalid metadata-value-metadata roundtrip");
4477 
4478  Value *V;
4479  if (ParseValue(Ty, V, PFS))
4480  return true;
4481 
4482  MD = ValueAsMetadata::get(V);
4483  return false;
4484 }
4485 
4486 /// ParseMetadata
4487 /// ::= i32 %local
4488 /// ::= i32 @global
4489 /// ::= i32 7
4490 /// ::= !42
4491 /// ::= !{...}
4492 /// ::= !"string"
4493 /// ::= !DILocation(...)
4494 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4495  if (Lex.getKind() == lltok::MetadataVar) {
4496  MDNode *N;
4497  if (ParseSpecializedMDNode(N))
4498  return true;
4499  MD = N;
4500  return false;
4501  }
4502 
4503  // ValueAsMetadata:
4504  // <type> <value>
4505  if (Lex.getKind() != lltok::exclaim)
4506  return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4507 
4508  // '!'.
4509  assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4510  Lex.Lex();
4511 
4512  // MDString:
4513  // ::= '!' STRINGCONSTANT
4514  if (Lex.getKind() == lltok::StringConstant) {
4515  MDString *S;
4516  if (ParseMDString(S))
4517  return true;
4518  MD = S;
4519  return false;
4520  }
4521 
4522  // MDNode:
4523  // !{ ... }
4524  // !7
4525  MDNode *N;
4526  if (ParseMDNodeTail(N))
4527  return true;
4528  MD = N;
4529  return false;
4530 }
4531 
4532 //===----------------------------------------------------------------------===//
4533 // Function Parsing.
4534 //===----------------------------------------------------------------------===//
4535 
4536 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4537  PerFunctionState *PFS) {
4538  if (Ty->isFunctionTy())
4539  return Error(ID.Loc, "functions are not values, refer to them as pointers");
4540 
4541  switch (ID.Kind) {
4542  case ValID::t_LocalID:
4543  if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4544  V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4545  return V == nullptr;
4546  case ValID::t_LocalName:
4547  if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4548  V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4549  return V == nullptr;
4550  case ValID::t_InlineAsm: {
4551  if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4552  return Error(ID.Loc, "invalid type for inline asm constraint string");
4553  V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4554  (ID.UIntVal >> 1) & 1,
4555  (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4556  return false;
4557  }
4558  case ValID::t_GlobalName:
4559  V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4560  return V == nullptr;
4561  case ValID::t_GlobalID:
4562  V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4563  return V == nullptr;
4564  case ValID::t_APSInt:
4565  if (!Ty->isIntegerTy())
4566  return Error(ID.Loc, "integer constant must have integer type");
4569  return false;
4570  case ValID::t_APFloat:
4571  if (!Ty->isFloatingPointTy() ||
4573  return Error(ID.Loc, "floating point constant invalid for type");
4574 
4575  // The lexer has no type info, so builds all half, float, and double FP
4576  // constants as double. Fix this here. Long double does not need this.
4577  if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4578  bool Ignored;
4579  if (Ty->isHalfTy())
4581  &Ignored);
4582  else if (Ty->isFloatTy())
4584  &Ignored);
4585  }
4587 
4588  if (V->getType() != Ty)
4589  return Error(ID.Loc, "floating point constant does not have type '" +
4590  getTypeString(Ty) + "'");
4591 
4592  return false;
4593  case ValID::t_Null:
4594  if (!Ty->isPointerTy())
4595  return Error(ID.Loc, "null must be a pointer type");
4596  V = ConstantPointerNull::get(cast<PointerType>(Ty));
4597  return false;
4598  case ValID::t_Undef:
4599  // FIXME: LabelTy should not be a first-class type.
4600  if (!Ty->isFirstClassType() || Ty->isLabelTy())
4601  return Error(ID.Loc, "invalid type for undef constant");
4602  V = UndefValue::get(Ty);
4603  return false;
4604  case ValID::t_EmptyArray:
4605  if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4606  return Error(ID.Loc, "invalid empty array initializer");
4607  V = UndefValue::get(Ty);
4608  return false;
4609  case ValID::t_Zero:
4610  // FIXME: LabelTy should not be a first-class type.
4611  if (!Ty->isFirstClassType() || Ty->isLabelTy())
4612  return Error(ID.Loc, "invalid type for null constant");
4613  V = Constant::getNullValue(Ty);
4614  return false;
4615  case ValID::t_None:
4616  if (!Ty->isTokenTy())
4617  return Error(ID.Loc, "invalid type for none constant");
4618  V = Constant::getNullValue(Ty);
4619  return false;
4620  case ValID::t_Constant:
4621  if (ID.ConstantVal->getType() != Ty)
4622  return Error(ID.Loc, "constant expression type mismatch");
4623 
4624  V = ID.ConstantVal;
4625  return false;
4628  if (StructType *ST = dyn_cast<StructType>(Ty)) {
4629  if (ST->getNumElements() != ID.UIntVal)
4630  return Error(ID.Loc,
4631  "initializer with struct type has wrong # elements");
4632  if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4633  return Error(ID.Loc, "packed'ness of initializer and type don't match");
4634 
4635  // Verify that the elements are compatible with the structtype.
4636  for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4637  if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4638  return Error(ID.Loc, "element " + Twine(i) +
4639  " of struct initializer doesn't match struct element type");
4640 
4641  V = ConstantStruct::get(
4642  ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4643  } else
4644  return Error(ID.Loc, "constant expression type mismatch");
4645  return false;
4646  }
4647  llvm_unreachable("Invalid ValID");
4648 }
4649 
4650 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4651  C = nullptr;
4652  ValID ID;
4653  auto Loc = Lex.getLoc();
4654  if (ParseValID(ID, /*PFS=*/nullptr))
4655  return true;
4656  switch (ID.Kind) {
4657  case ValID::t_APSInt:
4658  case ValID::t_APFloat:
4659  case ValID::t_Undef:
4660  case ValID::t_Constant:
4663  Value *V;
4664  if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4665  return true;
4666  assert(isa<Constant>(V) && "Expected a constant value");
4667  C = cast<Constant>(V);
4668  return false;
4669  }
4670  case ValID::t_Null:
4671  C = Constant::getNullValue(Ty);
4672  return false;
4673  default:
4674  return Error(Loc, "expected a constant value");
4675  }
4676 }
4677 
4678 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4679  V = nullptr;
4680  ValID ID;
4681  return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4682 }
4683 
4684 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4685  Type *Ty = nullptr;
4686  return ParseType(Ty) ||
4687  ParseValue(Ty, V, PFS);
4688 }
4689 
4690 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4691  PerFunctionState &PFS) {
4692  Value *V;
4693  Loc = Lex.getLoc();
4694  if (ParseTypeAndValue(V, PFS)) return true;
4695  if (!isa<BasicBlock>(V))
4696  return Error(Loc, "expected a basic block");
4697  BB = cast<BasicBlock>(V);
4698  return false;
4699 }
4700 
4701 /// FunctionHeader
4702 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4703 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4704 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4705 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4706  // Parse the linkage.
4707  LocTy LinkageLoc = Lex.getLoc();
4708  unsigned Linkage;
4709 
4710  unsigned Visibility;
4711  unsigned DLLStorageClass;
4712  AttrBuilder RetAttrs;
4713  unsigned CC;
4714  bool HasLinkage;
4715  Type *RetType = nullptr;
4716  LocTy RetTypeLoc = Lex.getLoc();
4717  if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
4718  ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4719  ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4720  return true;
4721 
4722  // Verify that the linkage is ok.
4723  switch ((GlobalValue::LinkageTypes)Linkage) {
4725  break; // always ok.
4727  if (isDefine)
4728  return Error(LinkageLoc, "invalid linkage for function definition");
4729  break;
4737  if (!isDefine)
4738  return Error(LinkageLoc, "invalid linkage for function declaration");
4739  break;
4742  return Error(LinkageLoc, "invalid function linkage type");
4743  }
4744 
4745  if (!isValidVisibilityForLinkage(Visibility, Linkage))
4746  return Error(LinkageLoc,
4747  "symbol with local linkage must have default visibility");
4748 
4749  if (!FunctionType::isValidReturnType(RetType))
4750  return Error(RetTypeLoc, "invalid function return type");
4751 
4752  LocTy NameLoc = Lex.getLoc();
4753 
4754  std::string FunctionName;
4755  if (Lex.getKind() == lltok::GlobalVar) {
4756  FunctionName = Lex.getStrVal();
4757  } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
4758  unsigned NameID = Lex.getUIntVal();
4759 
4760  if (NameID != NumberedVals.size())
4761  return TokError("function expected to be numbered '%" +
4762  Twine(NumberedVals.size()) + "'");
4763  } else {
4764  return TokError("expected function name");
4765  }
4766 
4767  Lex.Lex();
4768 
4769  if (Lex.getKind() != lltok::lparen)
4770  return TokError("expected '(' in function argument list");
4771 
4772  SmallVector<ArgInfo, 8> ArgList;
4773  bool isVarArg;
4774  AttrBuilder FuncAttrs;
4775  std::vector<unsigned> FwdRefAttrGrps;
4776  LocTy BuiltinLoc;
4777  std::string Section;
4778  unsigned Alignment;
4779  std::string GC;
4781  Constant *Prefix = nullptr;
4782  Constant *Prologue = nullptr;
4783  Constant *PersonalityFn = nullptr;
4784  Comdat *C;
4785 
4786  if (ParseArgumentList(ArgList, isVarArg) ||
4787  ParseOptionalUnnamedAddr(UnnamedAddr) ||
4788  ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4789  BuiltinLoc) ||
4790  (EatIfPresent(lltok::kw_section) &&
4791  ParseStringConstant(Section)) ||
4792  parseOptionalComdat(FunctionName, C) ||
4793  ParseOptionalAlignment(Alignment) ||
4794  (EatIfPresent(lltok::kw_gc) &&
4795  ParseStringConstant(GC)) ||
4796  (EatIfPresent(lltok::kw_prefix) &&
4797  ParseGlobalTypeAndValue(Prefix)) ||
4798  (EatIfPresent(lltok::kw_prologue) &&
4799  ParseGlobalTypeAndValue(Prologue)) ||
4800  (EatIfPresent(lltok::kw_personality) &&
4801  ParseGlobalTypeAndValue(PersonalityFn)))
4802  return true;
4803 
4804  if (FuncAttrs.contains(Attribute::Builtin))
4805  return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4806 
4807  // If the alignment was parsed as an attribute, move to the alignment field.
4808  if (FuncAttrs.hasAlignmentAttr()) {
4809  Alignment = FuncAttrs.getAlignment();
4810  FuncAttrs.removeAttribute(Attribute::Alignment);
4811  }
4812 
4813  // Okay, if we got here, the function is syntactically valid. Convert types
4814  // and do semantic checks.
4815  std::vector<Type*> ParamTypeList;
4817 
4818  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4819  ParamTypeList.push_back(ArgList[i].Ty);
4820  Attrs.push_back(ArgList[i].Attrs);
4821  }
4822 
4823  AttributeList PAL =
4825  AttributeSet::get(Context, RetAttrs), Attrs);
4826 
4827  if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4828  return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4829 
4830  FunctionType *FT =
4831  FunctionType::get(RetType, ParamTypeList, isVarArg);
4833 
4834  Fn = nullptr;
4835  if (!FunctionName.empty()) {
4836  // If this was a definition of a forward reference, remove the definition
4837  // from the forward reference table and fill in the forward ref.
4838  auto FRVI = ForwardRefVals.find(FunctionName);
4839  if (FRVI != ForwardRefVals.end()) {
4840  Fn = M->getFunction(FunctionName);
4841  if (!Fn)
4842  return Error(FRVI->second.second, "invalid forward reference to "
4843  "function as global value!");
4844  if (Fn->getType() != PFT)
4845  return Error(FRVI->second.second, "invalid forward reference to "
4846  "function '" + FunctionName + "' with wrong type!");
4847 
4848  ForwardRefVals.erase(FRVI);
4849  } else if ((Fn = M->getFunction(FunctionName))) {
4850  // Reject redefinitions.
4851  return Error(NameLoc, "invalid redefinition of function '" +
4852  FunctionName + "'");
4853  } else if (M->getNamedValue(FunctionName)) {
4854  return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4855  }
4856 
4857  } else {
4858  // If this is a definition of a forward referenced function, make sure the
4859  // types agree.
4860  auto I = ForwardRefValIDs.find(NumberedVals.size());
4861  if (I != ForwardRefValIDs.end()) {
4862  Fn = cast<Function>(I->second.first);
4863  if (Fn->getType() != PFT)
4864  return Error(NameLoc, "type of definition and forward reference of '@" +
4865  Twine(NumberedVals.size()) + "' disagree");
4866  ForwardRefValIDs.erase(I);
4867  }
4868  }
4869 
4870  if (!Fn)
4871  Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4872  else // Move the forward-reference to the correct spot in the module.
4873  M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4874 
4875  if (FunctionName.empty())
4876  NumberedVals.push_back(Fn);
4877 
4878  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4881  Fn->setCallingConv(CC);
4882  Fn->setAttributes(PAL);
4883  Fn->setUnnamedAddr(UnnamedAddr);
4884  Fn->setAlignment(Alignment);
4885  Fn->setSection(Section);
4886  Fn->setComdat(C);
4887  Fn->setPersonalityFn(PersonalityFn);
4888  if (!GC.empty()) Fn->setGC(GC);
4889  Fn->setPrefixData(Prefix);
4890  Fn->setPrologueData(Prologue);
4891  ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4892 
4893  // Add all of the arguments we parsed to the function.
4894  Function::arg_iterator ArgIt = Fn->arg_begin();
4895  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4896  // If the argument has a name, insert it into the argument symbol table.
4897  if (ArgList[i].Name.empty()) continue;
4898 
4899  // Set the name, if it conflicted, it will be auto-renamed.
4900  ArgIt->setName(ArgList[i].Name);
4901 
4902  if (ArgIt->getName() != ArgList[i].Name)
4903  return Error(ArgList[i].Loc, "redefinition of argument '%" +
4904  ArgList[i].Name + "'");
4905  }
4906 
4907  if (isDefine)
4908  return false;
4909 
4910  // Check the declaration has no block address forward references.
4911  ValID ID;
4912  if (FunctionName.empty()) {
4913  ID.Kind = ValID::t_GlobalID;
4914  ID.UIntVal = NumberedVals.size() - 1;
4915  } else {
4917  ID.StrVal = FunctionName;
4918  }
4919  auto Blocks = ForwardRefBlockAddresses.find(ID);
4920  if (Blocks != ForwardRefBlockAddresses.end())
4921  return Error(Blocks->first.Loc,
4922  "cannot take blockaddress inside a declaration");
4923  return false;
4924 }
4925 
4926 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4927  ValID ID;
4928  if (FunctionNumber == -1) {
4930  ID.StrVal = F.getName();
4931  } else {
4932  ID.Kind = ValID::t_GlobalID;
4933  ID.UIntVal = FunctionNumber;
4934  }
4935 
4936  auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4937  if (Blocks == P.ForwardRefBlockAddresses.end())
4938  return false;
4939 
4940  for (const auto &I : Blocks->second) {
4941  const ValID &BBID = I.first;
4942  GlobalValue *GV = I.second;
4943 
4944  assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4945  "Expected local id or name");
4946  BasicBlock *BB;
4947  if (BBID.Kind == ValID::t_LocalName)
4948  BB = GetBB(BBID.StrVal, BBID.Loc);
4949  else
4950  BB = GetBB(BBID.UIntVal, BBID.Loc);
4951  if (!BB)
4952  return P.Error(BBID.Loc, "referenced value is not a basic block");
4953 
4955  GV->eraseFromParent();
4956  }
4957 
4958  P.ForwardRefBlockAddresses.erase(Blocks);
4959  return false;
4960 }
4961 
4962 /// ParseFunctionBody
4963 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
4964 bool LLParser::ParseFunctionBody(Function &Fn) {
4965  if (Lex.getKind() != lltok::lbrace)
4966  return TokError("expected '{' in function body");
4967  Lex.Lex(); // eat the {.
4968 
4969  int FunctionNumber = -1;
4970  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4971 
4972  PerFunctionState PFS(*this, Fn, FunctionNumber);
4973 
4974  // Resolve block addresses and allow basic blocks to be forward-declared
4975  // within this function.
4976  if (PFS.resolveForwardRefBlockAddresses())
4977  return true;
4978  SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4979 
4980  // We need at least one basic block.
4981  if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4982  return TokError("function body requires at least one basic block");
4983 
4984  while (Lex.getKind() != lltok::rbrace &&
4985  Lex.getKind() != lltok::kw_uselistorder)
4986  if (ParseBasicBlock(PFS)) return true;
4987 
4988  while (Lex.getKind() != lltok::rbrace)
4989  if (ParseUseListOrder(&PFS))
4990  return true;
4991 
4992  // Eat the }.
4993  Lex.Lex();
4994 
4995  // Verify function is ok.
4996  return PFS.FinishFunction();
4997 }
4998 
4999 /// ParseBasicBlock
5000 /// ::= LabelStr? Instruction*
5001 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5002  // If this basic block starts out with a name, remember it.
5003  std::string Name;
5004  LocTy NameLoc = Lex.getLoc();
5005  if (Lex.getKind() == lltok::LabelStr) {
5006  Name = Lex.getStrVal();
5007  Lex.Lex();
5008  }
5009 
5010  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5011  if (!BB)
5012  return Error(NameLoc,
5013  "unable to create block named '" + Name + "'");
5014 
5015  std::string NameStr;
5016 
5017  // Parse the instructions in this block until we get a terminator.
5018  Instruction *Inst;
5019  do {
5020  // This instruction may have three possibilities for a name: a) none
5021  // specified, b) name specified "%foo =", c) number specified: "%4 =".
5022  LocTy NameLoc = Lex.getLoc();
5023  int NameID = -1;
5024  NameStr = "";
5025 
5026  if (Lex.getKind() == lltok::LocalVarID) {
5027  NameID = Lex.getUIntVal();
5028  Lex.Lex();
5029  if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5030  return true;
5031  } else if (Lex.getKind() == lltok::LocalVar) {
5032  NameStr = Lex.getStrVal();
5033  Lex.Lex();
5034  if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5035  return true;
5036  }
5037 
5038  switch (ParseInstruction(Inst, BB, PFS)) {
5039  default: llvm_unreachable("Unknown ParseInstruction result!");
5040  case InstError: return true;
5041  case InstNormal:
5042  BB->getInstList().push_back(Inst);
5043 
5044  // With a normal result, we check to see if the instruction is followed by
5045  // a comma and metadata.
5046  if (EatIfPresent(lltok::comma))
5047  if (ParseInstructionMetadata(*Inst))
5048  return true;
5049  break;
5050  case InstExtraComma:
5051  BB->getInstList().push_back(Inst);
5052 
5053  // If the instruction parser ate an extra comma at the end of it, it
5054  // *must* be followed by metadata.
5055  if (ParseInstructionMetadata(*Inst))
5056  return true;
5057  break;
5058  }
5059 
5060  // Set the name on the instruction.
5061  if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5062  } while (!isa<TerminatorInst>(Inst));
5063 
5064  return false;
5065 }
5066 
5067 //===----------------------------------------------------------------------===//
5068 // Instruction Parsing.
5069 //===----------------------------------------------------------------------===//
5070 
5071 /// ParseInstruction - Parse one of the many different instructions.
5072 ///
5073 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5074  PerFunctionState &PFS) {
5075  lltok::Kind Token = Lex.getKind();
5076  if (Token == lltok::Eof)
5077  return TokError("found end of file when expecting more instructions");
5078  LocTy Loc = Lex.getLoc();
5079  unsigned KeywordVal = Lex.getUIntVal();
5080  Lex.Lex(); // Eat the keyword.
5081 
5082  switch (Token) {
5083  default: return Error(Loc, "expected instruction opcode");
5084  // Terminator Instructions.
5085  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5086  case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
5087  case lltok::kw_br: return ParseBr(Inst, PFS);
5088  case lltok::kw_switch: return ParseSwitch(Inst, PFS);
5089  case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
5090  case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
5091  case lltok::kw_resume: return ParseResume(Inst, PFS);
5092  case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS);
5093  case lltok::kw_catchret: return ParseCatchRet(Inst, PFS);
5094  case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5095  case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS);
5096  case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS);
5097  // Binary Operators.
5098  case lltok::kw_add:
5099  case lltok::kw_sub:
5100  case lltok::kw_mul:
5101  case lltok::kw_shl: {
5102  bool NUW = EatIfPresent(lltok::kw_nuw);
5103  bool NSW = EatIfPresent(lltok::kw_nsw);
5104  if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5105 
5106  if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5107 
5108  if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5109  if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5110  return false;
5111  }
5112  case lltok::kw_fadd:
5113  case lltok::kw_fsub:
5114  case lltok::kw_fmul:
5115  case lltok::kw_fdiv:
5116  case lltok::kw_frem: {
5117  FastMathFlags FMF = EatFastMathFlagsIfPresent();
5118  int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5119  if (Res != 0)
5120  return Res;
5121  if (FMF.any())
5122  Inst->setFastMathFlags(FMF);
5123  return 0;
5124  }
5125 
5126  case lltok::kw_sdiv:
5127  case lltok::kw_udiv:
5128  case lltok::kw_lshr:
5129  case lltok::kw_ashr: {
5130  bool Exact = EatIfPresent(lltok::kw_exact);
5131 
5132  if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5133  if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5134  return false;
5135  }
5136 
5137  case lltok::kw_urem:
5138  case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5139  case lltok::kw_and:
5140  case lltok::kw_or:
5141  case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
5142  case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal);
5143  case lltok::kw_fcmp: {
5144  FastMathFlags FMF = EatFastMathFlagsIfPresent();
5145  int Res = ParseCompare(Inst, PFS, KeywordVal);
5146  if (Res != 0)
5147  return Res;
5148  if (FMF.any())
5149  Inst->setFastMathFlags(FMF);
5150  return 0;
5151  }
5152 
5153  // Casts.
5154  case lltok::kw_trunc:
5155  case lltok::kw_zext:
5156  case lltok::kw_sext:
5157  case lltok::kw_fptrunc:
5158  case lltok::kw_fpext:
5159  case lltok::kw_bitcast:
5161  case lltok::kw_uitofp:
5162  case lltok::kw_sitofp:
5163  case lltok::kw_fptoui:
5164  case lltok::kw_fptosi:
5165  case lltok::kw_inttoptr:
5166  case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
5167  // Other.
5168  case lltok::kw_select: return ParseSelect(Inst, PFS);
5169  case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
5170  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5171  case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
5172  case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
5173  case lltok::kw_phi: return ParsePHI(Inst, PFS);
5174  case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
5175  // Call.
5176  case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None);
5177  case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5178  case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5179  case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5180  // Memory.
5181  case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
5182  case lltok::kw_load: return ParseLoad(Inst, PFS);
5183  case lltok::kw_store: return ParseStore(Inst, PFS);
5184  case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
5185  case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
5186  case lltok::kw_fence: return ParseFence(Inst, PFS);
5187  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5188  case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
5189  case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
5190  }
5191 }
5192 
5193 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5194 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5195  if (Opc == Instruction::FCmp) {
5196  switch (Lex.getKind()) {
5197  default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5198  case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5199  case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5200  case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5201  case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5202  case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5203  case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5204  case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5205  case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5206  case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5207  case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5208  case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5209  case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5210  case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5211  case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5212  case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5213  case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5214  }
5215  } else {
5216  switch (Lex.getKind()) {
5217  default: return TokError("expected icmp predicate (e.g. 'eq')");
5218  case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
5219  case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
5220  case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5221  case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5222  case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5223  case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5224  case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5225  case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5226  case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5227  case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5228  }
5229  }
5230  Lex.Lex();
5231  return false;
5232 }
5233 
5234 //===----------------------------------------------------------------------===//
5235 // Terminator Instructions.
5236 //===----------------------------------------------------------------------===//
5237 
5238 /// ParseRet - Parse a return instruction.
5239 /// ::= 'ret' void (',' !dbg, !1)*
5240 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
5241 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5242  PerFunctionState &PFS) {
5243  SMLoc TypeLoc = Lex.getLoc();
5244  Type *Ty = nullptr;
5245  if (ParseType(Ty, true /*void allowed*/)) return true;
5246 
5247  Type *ResType = PFS.getFunction().getReturnType();
5248 
5249  if (Ty->isVoidTy()) {
5250  if (!ResType->isVoidTy())
5251  return Error(TypeLoc, "value doesn't match function result type '" +
5252  getTypeString(ResType) + "'");
5253 
5254  Inst = ReturnInst::Create(Context);
5255  return false;
5256  }
5257 
5258  Value *RV;
5259  if (ParseValue(Ty, RV, PFS)) return true;
5260 
5261  if (ResType != RV->