LLVM  7.0.0svn
LLParser.cpp
Go to the documentation of this file.
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
44 #include "llvm/Support/Casting.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58  std::string Result;
59  raw_string_ostream Tmp(Result);
60  Tmp << *T;
61  return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66  // Prime the lexer.
67  Lex.Lex();
68 
69  if (Context.shouldDiscardValueNames())
70  return Error(
71  Lex.getLoc(),
72  "Can't read textual IR with a Context that discards named Values");
73 
74  return ParseTopLevelEntities() || ValidateEndOfModule() ||
75  ValidateEndOfIndex();
76 }
77 
79  const SlotMapping *Slots) {
80  restoreParsingState(Slots);
81  Lex.Lex();
82 
83  Type *Ty = nullptr;
84  if (ParseType(Ty) || parseConstantValue(Ty, C))
85  return true;
86  if (Lex.getKind() != lltok::Eof)
87  return Error(Lex.getLoc(), "expected end of string");
88  return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92  const SlotMapping *Slots) {
93  restoreParsingState(Slots);
94  Lex.Lex();
95 
96  Read = 0;
97  SMLoc Start = Lex.getLoc();
98  Ty = nullptr;
99  if (ParseType(Ty))
100  return true;
101  SMLoc End = Lex.getLoc();
102  Read = End.getPointer() - Start.getPointer();
103 
104  return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108  if (!Slots)
109  return;
110  NumberedVals = Slots->GlobalValues;
111  NumberedMetadata = Slots->MetadataNodes;
112  for (const auto &I : Slots->NamedTypes)
113  NamedTypes.insert(
114  std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115  for (const auto &I : Slots->Types)
116  NumberedTypes.insert(
117  std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123  if (!M)
124  return false;
125  // Handle any function attribute group forward references.
126  for (const auto &RAG : ForwardRefAttrGroups) {
127  Value *V = RAG.first;
128  const std::vector<unsigned> &Attrs = RAG.second;
129  AttrBuilder B;
130 
131  for (const auto &Attr : Attrs)
132  B.merge(NumberedAttrBuilders[Attr]);
133 
134  if (Function *Fn = dyn_cast<Function>(V)) {
135  AttributeList AS = Fn->getAttributes();
136  AttrBuilder FnAttrs(AS.getFnAttributes());
138 
139  FnAttrs.merge(B);
140 
141  // If the alignment was parsed as an attribute, move to the alignment
142  // field.
143  if (FnAttrs.hasAlignmentAttr()) {
144  Fn->setAlignment(FnAttrs.getAlignment());
145  FnAttrs.removeAttribute(Attribute::Alignment);
146  }
147 
149  AttributeSet::get(Context, FnAttrs));
150  Fn->setAttributes(AS);
151  } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
152  AttributeList AS = CI->getAttributes();
153  AttrBuilder FnAttrs(AS.getFnAttributes());
155  FnAttrs.merge(B);
157  AttributeSet::get(Context, FnAttrs));
158  CI->setAttributes(AS);
159  } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
160  AttributeList AS = II->getAttributes();
161  AttrBuilder FnAttrs(AS.getFnAttributes());
163  FnAttrs.merge(B);
165  AttributeSet::get(Context, FnAttrs));
166  II->setAttributes(AS);
167  } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
168  AttrBuilder Attrs(GV->getAttributes());
169  Attrs.merge(B);
170  GV->setAttributes(AttributeSet::get(Context,Attrs));
171  } else {
172  llvm_unreachable("invalid object with forward attribute group reference");
173  }
174  }
175 
176  // If there are entries in ForwardRefBlockAddresses at this point, the
177  // function was never defined.
178  if (!ForwardRefBlockAddresses.empty())
179  return Error(ForwardRefBlockAddresses.begin()->first.Loc,
180  "expected function name in blockaddress");
181 
182  for (const auto &NT : NumberedTypes)
183  if (NT.second.second.isValid())
184  return Error(NT.second.second,
185  "use of undefined type '%" + Twine(NT.first) + "'");
186 
187  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
188  NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
189  if (I->second.second.isValid())
190  return Error(I->second.second,
191  "use of undefined type named '" + I->getKey() + "'");
192 
193  if (!ForwardRefComdats.empty())
194  return Error(ForwardRefComdats.begin()->second,
195  "use of undefined comdat '$" +
196  ForwardRefComdats.begin()->first + "'");
197 
198  if (!ForwardRefVals.empty())
199  return Error(ForwardRefVals.begin()->second.second,
200  "use of undefined value '@" + ForwardRefVals.begin()->first +
201  "'");
202 
203  if (!ForwardRefValIDs.empty())
204  return Error(ForwardRefValIDs.begin()->second.second,
205  "use of undefined value '@" +
206  Twine(ForwardRefValIDs.begin()->first) + "'");
207 
208  if (!ForwardRefMDNodes.empty())
209  return Error(ForwardRefMDNodes.begin()->second.second,
210  "use of undefined metadata '!" +
211  Twine(ForwardRefMDNodes.begin()->first) + "'");
212 
213  // Resolve metadata cycles.
214  for (auto &N : NumberedMetadata) {
215  if (N.second && !N.second->isResolved())
216  N.second->resolveCycles();
217  }
218 
219  for (auto *Inst : InstsWithTBAATag) {
220  MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
221  assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
222  auto *UpgradedMD = UpgradeTBAANode(*MD);
223  if (MD != UpgradedMD)
224  Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
225  }
226 
227  // Look for intrinsic functions and CallInst that need to be upgraded
228  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
229  UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
230 
231  // Some types could be renamed during loading if several modules are
232  // loaded in the same LLVMContext (LTO scenario). In this case we should
233  // remangle intrinsics names as well.
234  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
235  Function *F = &*FI++;
236  if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
237  F->replaceAllUsesWith(Remangled.getValue());
238  F->eraseFromParent();
239  }
240  }
241 
242  if (UpgradeDebugInfo)
244 
245  UpgradeModuleFlags(*M);
247 
248  if (!Slots)
249  return false;
250  // Initialize the slot mapping.
251  // Because by this point we've parsed and validated everything, we can "steal"
252  // the mapping from LLParser as it doesn't need it anymore.
253  Slots->GlobalValues = std::move(NumberedVals);
254  Slots->MetadataNodes = std::move(NumberedMetadata);
255  for (const auto &I : NamedTypes)
256  Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
257  for (const auto &I : NumberedTypes)
258  Slots->Types.insert(std::make_pair(I.first, I.second.first));
259 
260  return false;
261 }
262 
263 /// Do final validity and sanity checks at the end of the index.
264 bool LLParser::ValidateEndOfIndex() {
265  if (!Index)
266  return false;
267 
268  if (!ForwardRefValueInfos.empty())
269  return Error(ForwardRefValueInfos.begin()->second.front().second,
270  "use of undefined summary '^" +
271  Twine(ForwardRefValueInfos.begin()->first) + "'");
272 
273  if (!ForwardRefAliasees.empty())
274  return Error(ForwardRefAliasees.begin()->second.front().second,
275  "use of undefined summary '^" +
276  Twine(ForwardRefAliasees.begin()->first) + "'");
277 
278  if (!ForwardRefTypeIds.empty())
279  return Error(ForwardRefTypeIds.begin()->second.front().second,
280  "use of undefined type id summary '^" +
281  Twine(ForwardRefTypeIds.begin()->first) + "'");
282 
283  return false;
284 }
285 
286 //===----------------------------------------------------------------------===//
287 // Top-Level Entities
288 //===----------------------------------------------------------------------===//
289 
290 bool LLParser::ParseTopLevelEntities() {
291  // If there is no Module, then parse just the summary index entries.
292  if (!M) {
293  while (true) {
294  switch (Lex.getKind()) {
295  case lltok::Eof:
296  return false;
297  case lltok::SummaryID:
298  if (ParseSummaryEntry())
299  return true;
300  break;
302  if (ParseSourceFileName())
303  return true;
304  break;
305  default:
306  // Skip everything else
307  Lex.Lex();
308  }
309  }
310  }
311  while (true) {
312  switch (Lex.getKind()) {
313  default: return TokError("expected top-level entity");
314  case lltok::Eof: return false;
315  case lltok::kw_declare: if (ParseDeclare()) return true; break;
316  case lltok::kw_define: if (ParseDefine()) return true; break;
317  case lltok::kw_module: if (ParseModuleAsm()) return true; break;
318  case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
320  if (ParseSourceFileName())
321  return true;
322  break;
323  case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
324  case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
325  case lltok::LocalVar: if (ParseNamedType()) return true; break;
326  case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
327  case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
328  case lltok::ComdatVar: if (parseComdat()) return true; break;
329  case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
330  case lltok::SummaryID:
331  if (ParseSummaryEntry())
332  return true;
333  break;
334  case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
335  case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
336  case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
338  if (ParseUseListOrderBB())
339  return true;
340  break;
341  }
342  }
343 }
344 
345 /// toplevelentity
346 /// ::= 'module' 'asm' STRINGCONSTANT
347 bool LLParser::ParseModuleAsm() {
348  assert(Lex.getKind() == lltok::kw_module);
349  Lex.Lex();
350 
351  std::string AsmStr;
352  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
353  ParseStringConstant(AsmStr)) return true;
354 
355  M->appendModuleInlineAsm(AsmStr);
356  return false;
357 }
358 
359 /// toplevelentity
360 /// ::= 'target' 'triple' '=' STRINGCONSTANT
361 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
362 bool LLParser::ParseTargetDefinition() {
363  assert(Lex.getKind() == lltok::kw_target);
364  std::string Str;
365  switch (Lex.Lex()) {
366  default: return TokError("unknown target property");
367  case lltok::kw_triple:
368  Lex.Lex();
369  if (ParseToken(lltok::equal, "expected '=' after target triple") ||
370  ParseStringConstant(Str))
371  return true;
372  M->setTargetTriple(Str);
373  return false;
375  Lex.Lex();
376  if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
377  ParseStringConstant(Str))
378  return true;
379  if (DataLayoutStr.empty())
380  M->setDataLayout(Str);
381  return false;
382  }
383 }
384 
385 /// toplevelentity
386 /// ::= 'source_filename' '=' STRINGCONSTANT
387 bool LLParser::ParseSourceFileName() {
389  Lex.Lex();
390  if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
391  ParseStringConstant(SourceFileName))
392  return true;
393  if (M)
394  M->setSourceFileName(SourceFileName);
395  return false;
396 }
397 
398 /// toplevelentity
399 /// ::= 'deplibs' '=' '[' ']'
400 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
401 /// FIXME: Remove in 4.0. Currently parse, but ignore.
402 bool LLParser::ParseDepLibs() {
403  assert(Lex.getKind() == lltok::kw_deplibs);
404  Lex.Lex();
405  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
406  ParseToken(lltok::lsquare, "expected '=' after deplibs"))
407  return true;
408 
409  if (EatIfPresent(lltok::rsquare))
410  return false;
411 
412  do {
413  std::string Str;
414  if (ParseStringConstant(Str)) return true;
415  } while (EatIfPresent(lltok::comma));
416 
417  return ParseToken(lltok::rsquare, "expected ']' at end of list");
418 }
419 
420 /// ParseUnnamedType:
421 /// ::= LocalVarID '=' 'type' type
422 bool LLParser::ParseUnnamedType() {
423  LocTy TypeLoc = Lex.getLoc();
424  unsigned TypeID = Lex.getUIntVal();
425  Lex.Lex(); // eat LocalVarID;
426 
427  if (ParseToken(lltok::equal, "expected '=' after name") ||
428  ParseToken(lltok::kw_type, "expected 'type' after '='"))
429  return true;
430 
431  Type *Result = nullptr;
432  if (ParseStructDefinition(TypeLoc, "",
433  NumberedTypes[TypeID], Result)) return true;
434 
435  if (!isa<StructType>(Result)) {
436  std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
437  if (Entry.first)
438  return Error(TypeLoc, "non-struct types may not be recursive");
439  Entry.first = Result;
440  Entry.second = SMLoc();
441  }
442 
443  return false;
444 }
445 
446 /// toplevelentity
447 /// ::= LocalVar '=' 'type' type
448 bool LLParser::ParseNamedType() {
449  std::string Name = Lex.getStrVal();
450  LocTy NameLoc = Lex.getLoc();
451  Lex.Lex(); // eat LocalVar.
452 
453  if (ParseToken(lltok::equal, "expected '=' after name") ||
454  ParseToken(lltok::kw_type, "expected 'type' after name"))
455  return true;
456 
457  Type *Result = nullptr;
458  if (ParseStructDefinition(NameLoc, Name,
459  NamedTypes[Name], Result)) return true;
460 
461  if (!isa<StructType>(Result)) {
462  std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
463  if (Entry.first)
464  return Error(NameLoc, "non-struct types may not be recursive");
465  Entry.first = Result;
466  Entry.second = SMLoc();
467  }
468 
469  return false;
470 }
471 
472 /// toplevelentity
473 /// ::= 'declare' FunctionHeader
474 bool LLParser::ParseDeclare() {
475  assert(Lex.getKind() == lltok::kw_declare);
476  Lex.Lex();
477 
478  std::vector<std::pair<unsigned, MDNode *>> MDs;
479  while (Lex.getKind() == lltok::MetadataVar) {
480  unsigned MDK;
481  MDNode *N;
482  if (ParseMetadataAttachment(MDK, N))
483  return true;
484  MDs.push_back({MDK, N});
485  }
486 
487  Function *F;
488  if (ParseFunctionHeader(F, false))
489  return true;
490  for (auto &MD : MDs)
491  F->addMetadata(MD.first, *MD.second);
492  return false;
493 }
494 
495 /// toplevelentity
496 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
497 bool LLParser::ParseDefine() {
498  assert(Lex.getKind() == lltok::kw_define);
499  Lex.Lex();
500 
501  Function *F;
502  return ParseFunctionHeader(F, true) ||
503  ParseOptionalFunctionMetadata(*F) ||
504  ParseFunctionBody(*F);
505 }
506 
507 /// ParseGlobalType
508 /// ::= 'constant'
509 /// ::= 'global'
510 bool LLParser::ParseGlobalType(bool &IsConstant) {
511  if (Lex.getKind() == lltok::kw_constant)
512  IsConstant = true;
513  else if (Lex.getKind() == lltok::kw_global)
514  IsConstant = false;
515  else {
516  IsConstant = false;
517  return TokError("expected 'global' or 'constant'");
518  }
519  Lex.Lex();
520  return false;
521 }
522 
523 bool LLParser::ParseOptionalUnnamedAddr(
524  GlobalVariable::UnnamedAddr &UnnamedAddr) {
525  if (EatIfPresent(lltok::kw_unnamed_addr))
526  UnnamedAddr = GlobalValue::UnnamedAddr::Global;
527  else if (EatIfPresent(lltok::kw_local_unnamed_addr))
528  UnnamedAddr = GlobalValue::UnnamedAddr::Local;
529  else
530  UnnamedAddr = GlobalValue::UnnamedAddr::None;
531  return false;
532 }
533 
534 /// ParseUnnamedGlobal:
535 /// OptionalVisibility (ALIAS | IFUNC) ...
536 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
537 /// OptionalDLLStorageClass
538 /// ... -> global variable
539 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
540 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
541 /// OptionalDLLStorageClass
542 /// ... -> global variable
543 bool LLParser::ParseUnnamedGlobal() {
544  unsigned VarID = NumberedVals.size();
545  std::string Name;
546  LocTy NameLoc = Lex.getLoc();
547 
548  // Handle the GlobalID form.
549  if (Lex.getKind() == lltok::GlobalID) {
550  if (Lex.getUIntVal() != VarID)
551  return Error(Lex.getLoc(), "variable expected to be numbered '%" +
552  Twine(VarID) + "'");
553  Lex.Lex(); // eat GlobalID;
554 
555  if (ParseToken(lltok::equal, "expected '=' after name"))
556  return true;
557  }
558 
559  bool HasLinkage;
560  unsigned Linkage, Visibility, DLLStorageClass;
561  bool DSOLocal;
563  GlobalVariable::UnnamedAddr UnnamedAddr;
564  if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
565  DSOLocal) ||
566  ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
567  return true;
568 
569  if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
570  return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
571  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
572 
573  return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
574  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
575 }
576 
577 /// ParseNamedGlobal:
578 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
579 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
580 /// OptionalVisibility OptionalDLLStorageClass
581 /// ... -> global variable
582 bool LLParser::ParseNamedGlobal() {
583  assert(Lex.getKind() == lltok::GlobalVar);
584  LocTy NameLoc = Lex.getLoc();
585  std::string Name = Lex.getStrVal();
586  Lex.Lex();
587 
588  bool HasLinkage;
589  unsigned Linkage, Visibility, DLLStorageClass;
590  bool DSOLocal;
592  GlobalVariable::UnnamedAddr UnnamedAddr;
593  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
594  ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
595  DSOLocal) ||
596  ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
597  return true;
598 
599  if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
600  return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
601  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
602 
603  return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
604  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
605 }
606 
607 bool LLParser::parseComdat() {
608  assert(Lex.getKind() == lltok::ComdatVar);
609  std::string Name = Lex.getStrVal();
610  LocTy NameLoc = Lex.getLoc();
611  Lex.Lex();
612 
613  if (ParseToken(lltok::equal, "expected '=' here"))
614  return true;
615 
616  if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
617  return TokError("expected comdat type");
618 
620  switch (Lex.getKind()) {
621  default:
622  return TokError("unknown selection kind");
623  case lltok::kw_any:
624  SK = Comdat::Any;
625  break;
627  SK = Comdat::ExactMatch;
628  break;
629  case lltok::kw_largest:
630  SK = Comdat::Largest;
631  break;
634  break;
635  case lltok::kw_samesize:
636  SK = Comdat::SameSize;
637  break;
638  }
639  Lex.Lex();
640 
641  // See if the comdat was forward referenced, if so, use the comdat.
642  Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
643  Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
644  if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
645  return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
646 
647  Comdat *C;
648  if (I != ComdatSymTab.end())
649  C = &I->second;
650  else
651  C = M->getOrInsertComdat(Name);
652  C->setSelectionKind(SK);
653 
654  return false;
655 }
656 
657 // MDString:
658 // ::= '!' STRINGCONSTANT
659 bool LLParser::ParseMDString(MDString *&Result) {
660  std::string Str;
661  if (ParseStringConstant(Str)) return true;
662  Result = MDString::get(Context, Str);
663  return false;
664 }
665 
666 // MDNode:
667 // ::= '!' MDNodeNumber
668 bool LLParser::ParseMDNodeID(MDNode *&Result) {
669  // !{ ..., !42, ... }
670  LocTy IDLoc = Lex.getLoc();
671  unsigned MID = 0;
672  if (ParseUInt32(MID))
673  return true;
674 
675  // If not a forward reference, just return it now.
676  if (NumberedMetadata.count(MID)) {
677  Result = NumberedMetadata[MID];
678  return false;
679  }
680 
681  // Otherwise, create MDNode forward reference.
682  auto &FwdRef = ForwardRefMDNodes[MID];
683  FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
684 
685  Result = FwdRef.first.get();
686  NumberedMetadata[MID].reset(Result);
687  return false;
688 }
689 
690 /// ParseNamedMetadata:
691 /// !foo = !{ !1, !2 }
692 bool LLParser::ParseNamedMetadata() {
694  std::string Name = Lex.getStrVal();
695  Lex.Lex();
696 
697  if (ParseToken(lltok::equal, "expected '=' here") ||
698  ParseToken(lltok::exclaim, "Expected '!' here") ||
699  ParseToken(lltok::lbrace, "Expected '{' here"))
700  return true;
701 
702  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
703  if (Lex.getKind() != lltok::rbrace)
704  do {
705  MDNode *N = nullptr;
706  // Parse DIExpressions inline as a special case. They are still MDNodes,
707  // so they can still appear in named metadata. Remove this logic if they
708  // become plain Metadata.
709  if (Lex.getKind() == lltok::MetadataVar &&
710  Lex.getStrVal() == "DIExpression") {
711  if (ParseDIExpression(N, /*IsDistinct=*/false))
712  return true;
713  } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
714  ParseMDNodeID(N)) {
715  return true;
716  }
717  NMD->addOperand(N);
718  } while (EatIfPresent(lltok::comma));
719 
720  return ParseToken(lltok::rbrace, "expected end of metadata node");
721 }
722 
723 /// ParseStandaloneMetadata:
724 /// !42 = !{...}
725 bool LLParser::ParseStandaloneMetadata() {
726  assert(Lex.getKind() == lltok::exclaim);
727  Lex.Lex();
728  unsigned MetadataID = 0;
729 
730  MDNode *Init;
731  if (ParseUInt32(MetadataID) ||
732  ParseToken(lltok::equal, "expected '=' here"))
733  return true;
734 
735  // Detect common error, from old metadata syntax.
736  if (Lex.getKind() == lltok::Type)
737  return TokError("unexpected type in metadata definition");
738 
739  bool IsDistinct = EatIfPresent(lltok::kw_distinct);
740  if (Lex.getKind() == lltok::MetadataVar) {
741  if (ParseSpecializedMDNode(Init, IsDistinct))
742  return true;
743  } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
744  ParseMDTuple(Init, IsDistinct))
745  return true;
746 
747  // See if this was forward referenced, if so, handle it.
748  auto FI = ForwardRefMDNodes.find(MetadataID);
749  if (FI != ForwardRefMDNodes.end()) {
750  FI->second.first->replaceAllUsesWith(Init);
751  ForwardRefMDNodes.erase(FI);
752 
753  assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
754  } else {
755  if (NumberedMetadata.count(MetadataID))
756  return TokError("Metadata id is already used");
757  NumberedMetadata[MetadataID].reset(Init);
758  }
759 
760  return false;
761 }
762 
763 // Skips a single module summary entry.
764 bool LLParser::SkipModuleSummaryEntry() {
765  // Each module summary entry consists of a tag for the entry
766  // type, followed by a colon, then the fields surrounded by nested sets of
767  // parentheses. The "tag:" looks like a Label. Once parsing support is
768  // in place we will look for the tokens corresponding to the expected tags.
769  if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
770  Lex.getKind() != lltok::kw_typeid)
771  return TokError(
772  "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
773  Lex.Lex();
774  if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
775  ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
776  return true;
777  // Now walk through the parenthesized entry, until the number of open
778  // parentheses goes back down to 0 (the first '(' was parsed above).
779  unsigned NumOpenParen = 1;
780  do {
781  switch (Lex.getKind()) {
782  case lltok::lparen:
783  NumOpenParen++;
784  break;
785  case lltok::rparen:
786  NumOpenParen--;
787  break;
788  case lltok::Eof:
789  return TokError("found end of file while parsing summary entry");
790  default:
791  // Skip everything in between parentheses.
792  break;
793  }
794  Lex.Lex();
795  } while (NumOpenParen > 0);
796  return false;
797 }
798 
799 /// SummaryEntry
800 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
801 bool LLParser::ParseSummaryEntry() {
802  assert(Lex.getKind() == lltok::SummaryID);
803  unsigned SummaryID = Lex.getUIntVal();
804 
805  // For summary entries, colons should be treated as distinct tokens,
806  // not an indication of the end of a label token.
807  Lex.setIgnoreColonInIdentifiers(true);
808 
809  Lex.Lex();
810  if (ParseToken(lltok::equal, "expected '=' here"))
811  return true;
812 
813  // If we don't have an index object, skip the summary entry.
814  if (!Index)
815  return SkipModuleSummaryEntry();
816 
817  switch (Lex.getKind()) {
818  case lltok::kw_gv:
819  return ParseGVEntry(SummaryID);
820  case lltok::kw_module:
821  return ParseModuleEntry(SummaryID);
822  case lltok::kw_typeid:
823  return ParseTypeIdEntry(SummaryID);
824  break;
825  default:
826  return Error(Lex.getLoc(), "unexpected summary kind");
827  }
828  Lex.setIgnoreColonInIdentifiers(false);
829  return false;
830 }
831 
832 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
835 }
836 
837 // If there was an explicit dso_local, update GV. In the absence of an explicit
838 // dso_local we keep the default value.
839 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
840  if (DSOLocal)
841  GV.setDSOLocal(true);
842 }
843 
844 /// parseIndirectSymbol:
845 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
846 /// OptionalVisibility OptionalDLLStorageClass
847 /// OptionalThreadLocal OptionalUnnamedAddr
848 // 'alias|ifunc' IndirectSymbol
849 ///
850 /// IndirectSymbol
851 /// ::= TypeAndValue
852 ///
853 /// Everything through OptionalUnnamedAddr has already been parsed.
854 ///
855 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
856  unsigned L, unsigned Visibility,
857  unsigned DLLStorageClass, bool DSOLocal,
859  GlobalVariable::UnnamedAddr UnnamedAddr) {
860  bool IsAlias;
861  if (Lex.getKind() == lltok::kw_alias)
862  IsAlias = true;
863  else if (Lex.getKind() == lltok::kw_ifunc)
864  IsAlias = false;
865  else
866  llvm_unreachable("Not an alias or ifunc!");
867  Lex.Lex();
868 
870 
871  if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
872  return Error(NameLoc, "invalid linkage type for alias");
873 
874  if (!isValidVisibilityForLinkage(Visibility, L))
875  return Error(NameLoc,
876  "symbol with local linkage must have default visibility");
877 
878  Type *Ty;
879  LocTy ExplicitTypeLoc = Lex.getLoc();
880  if (ParseType(Ty) ||
881  ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
882  return true;
883 
884  Constant *Aliasee;
885  LocTy AliaseeLoc = Lex.getLoc();
886  if (Lex.getKind() != lltok::kw_bitcast &&
887  Lex.getKind() != lltok::kw_getelementptr &&
888  Lex.getKind() != lltok::kw_addrspacecast &&
889  Lex.getKind() != lltok::kw_inttoptr) {
890  if (ParseGlobalTypeAndValue(Aliasee))
891  return true;
892  } else {
893  // The bitcast dest type is not present, it is implied by the dest type.
894  ValID ID;
895  if (ParseValID(ID))
896  return true;
897  if (ID.Kind != ValID::t_Constant)
898  return Error(AliaseeLoc, "invalid aliasee");
899  Aliasee = ID.ConstantVal;
900  }
901 
902  Type *AliaseeType = Aliasee->getType();
903  auto *PTy = dyn_cast<PointerType>(AliaseeType);
904  if (!PTy)
905  return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
906  unsigned AddrSpace = PTy->getAddressSpace();
907 
908  if (IsAlias && Ty != PTy->getElementType())
909  return Error(
910  ExplicitTypeLoc,
911  "explicit pointee type doesn't match operand's pointee type");
912 
913  if (!IsAlias && !PTy->getElementType()->isFunctionTy())
914  return Error(
915  ExplicitTypeLoc,
916  "explicit pointee type should be a function type");
917 
918  GlobalValue *GVal = nullptr;
919 
920  // See if the alias was forward referenced, if so, prepare to replace the
921  // forward reference.
922  if (!Name.empty()) {
923  GVal = M->getNamedValue(Name);
924  if (GVal) {
925  if (!ForwardRefVals.erase(Name))
926  return Error(NameLoc, "redefinition of global '@" + Name + "'");
927  }
928  } else {
929  auto I = ForwardRefValIDs.find(NumberedVals.size());
930  if (I != ForwardRefValIDs.end()) {
931  GVal = I->second.first;
932  ForwardRefValIDs.erase(I);
933  }
934  }
935 
936  // Okay, create the alias but do not insert it into the module yet.
937  std::unique_ptr<GlobalIndirectSymbol> GA;
938  if (IsAlias)
939  GA.reset(GlobalAlias::create(Ty, AddrSpace,
941  Aliasee, /*Parent*/ nullptr));
942  else
943  GA.reset(GlobalIFunc::create(Ty, AddrSpace,
945  Aliasee, /*Parent*/ nullptr));
946  GA->setThreadLocalMode(TLM);
947  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
948  GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
949  GA->setUnnamedAddr(UnnamedAddr);
950  maybeSetDSOLocal(DSOLocal, *GA);
951 
952  if (Name.empty())
953  NumberedVals.push_back(GA.get());
954 
955  if (GVal) {
956  // Verify that types agree.
957  if (GVal->getType() != GA->getType())
958  return Error(
959  ExplicitTypeLoc,
960  "forward reference and definition of alias have different types");
961 
962  // If they agree, just RAUW the old value with the alias and remove the
963  // forward ref info.
964  GVal->replaceAllUsesWith(GA.get());
965  GVal->eraseFromParent();
966  }
967 
968  // Insert into the module, we know its name won't collide now.
969  if (IsAlias)
970  M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
971  else
972  M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
973  assert(GA->getName() == Name && "Should not be a name conflict!");
974 
975  // The module owns this now
976  GA.release();
977 
978  return false;
979 }
980 
981 /// ParseGlobal
982 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
983 /// OptionalVisibility OptionalDLLStorageClass
984 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
985 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
986 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
987 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
988 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
989 /// Const OptionalAttrs
990 ///
991 /// Everything up to and including OptionalUnnamedAddr has been parsed
992 /// already.
993 ///
994 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
995  unsigned Linkage, bool HasLinkage,
996  unsigned Visibility, unsigned DLLStorageClass,
997  bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
998  GlobalVariable::UnnamedAddr UnnamedAddr) {
999  if (!isValidVisibilityForLinkage(Visibility, Linkage))
1000  return Error(NameLoc,
1001  "symbol with local linkage must have default visibility");
1002 
1003  unsigned AddrSpace;
1004  bool IsConstant, IsExternallyInitialized;
1005  LocTy IsExternallyInitializedLoc;
1006  LocTy TyLoc;
1007 
1008  Type *Ty = nullptr;
1009  if (ParseOptionalAddrSpace(AddrSpace) ||
1010  ParseOptionalToken(lltok::kw_externally_initialized,
1011  IsExternallyInitialized,
1012  &IsExternallyInitializedLoc) ||
1013  ParseGlobalType(IsConstant) ||
1014  ParseType(Ty, TyLoc))
1015  return true;
1016 
1017  // If the linkage is specified and is external, then no initializer is
1018  // present.
1019  Constant *Init = nullptr;
1020  if (!HasLinkage ||
1022  (GlobalValue::LinkageTypes)Linkage)) {
1023  if (ParseGlobalValue(Ty, Init))
1024  return true;
1025  }
1026 
1028  return Error(TyLoc, "invalid type for global variable");
1029 
1030  GlobalValue *GVal = nullptr;
1031 
1032  // See if the global was forward referenced, if so, use the global.
1033  if (!Name.empty()) {
1034  GVal = M->getNamedValue(Name);
1035  if (GVal) {
1036  if (!ForwardRefVals.erase(Name))
1037  return Error(NameLoc, "redefinition of global '@" + Name + "'");
1038  }
1039  } else {
1040  auto I = ForwardRefValIDs.find(NumberedVals.size());
1041  if (I != ForwardRefValIDs.end()) {
1042  GVal = I->second.first;
1043  ForwardRefValIDs.erase(I);
1044  }
1045  }
1046 
1047  GlobalVariable *GV;
1048  if (!GVal) {
1049  GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1051  AddrSpace);
1052  } else {
1053  if (GVal->getValueType() != Ty)
1054  return Error(TyLoc,
1055  "forward reference and definition of global have different types");
1056 
1057  GV = cast<GlobalVariable>(GVal);
1058 
1059  // Move the forward-reference to the correct spot in the module.
1060  M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1061  }
1062 
1063  if (Name.empty())
1064  NumberedVals.push_back(GV);
1065 
1066  // Set the parsed properties on the global.
1067  if (Init)
1068  GV->setInitializer(Init);
1069  GV->setConstant(IsConstant);
1070  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1071  maybeSetDSOLocal(DSOLocal, *GV);
1074  GV->setExternallyInitialized(IsExternallyInitialized);
1075  GV->setThreadLocalMode(TLM);
1076  GV->setUnnamedAddr(UnnamedAddr);
1077 
1078  // Parse attributes on the global.
1079  while (Lex.getKind() == lltok::comma) {
1080  Lex.Lex();
1081 
1082  if (Lex.getKind() == lltok::kw_section) {
1083  Lex.Lex();
1084  GV->setSection(Lex.getStrVal());
1085  if (ParseToken(lltok::StringConstant, "expected global section string"))
1086  return true;
1087  } else if (Lex.getKind() == lltok::kw_align) {
1088  unsigned Alignment;
1089  if (ParseOptionalAlignment(Alignment)) return true;
1090  GV->setAlignment(Alignment);
1091  } else if (Lex.getKind() == lltok::MetadataVar) {
1092  if (ParseGlobalObjectMetadataAttachment(*GV))
1093  return true;
1094  } else {
1095  Comdat *C;
1096  if (parseOptionalComdat(Name, C))
1097  return true;
1098  if (C)
1099  GV->setComdat(C);
1100  else
1101  return TokError("unknown global variable property!");
1102  }
1103  }
1104 
1106  LocTy BuiltinLoc;
1107  std::vector<unsigned> FwdRefAttrGrps;
1108  if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1109  return true;
1110  if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1111  GV->setAttributes(AttributeSet::get(Context, Attrs));
1112  ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1113  }
1114 
1115  return false;
1116 }
1117 
1118 /// ParseUnnamedAttrGrp
1119 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1120 bool LLParser::ParseUnnamedAttrGrp() {
1122  LocTy AttrGrpLoc = Lex.getLoc();
1123  Lex.Lex();
1124 
1125  if (Lex.getKind() != lltok::AttrGrpID)
1126  return TokError("expected attribute group id");
1127 
1128  unsigned VarID = Lex.getUIntVal();
1129  std::vector<unsigned> unused;
1130  LocTy BuiltinLoc;
1131  Lex.Lex();
1132 
1133  if (ParseToken(lltok::equal, "expected '=' here") ||
1134  ParseToken(lltok::lbrace, "expected '{' here") ||
1135  ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1136  BuiltinLoc) ||
1137  ParseToken(lltok::rbrace, "expected end of attribute group"))
1138  return true;
1139 
1140  if (!NumberedAttrBuilders[VarID].hasAttributes())
1141  return Error(AttrGrpLoc, "attribute group has no attributes");
1142 
1143  return false;
1144 }
1145 
1146 /// ParseFnAttributeValuePairs
1147 /// ::= <attr> | <attr> '=' <value>
1148 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1149  std::vector<unsigned> &FwdRefAttrGrps,
1150  bool inAttrGrp, LocTy &BuiltinLoc) {
1151  bool HaveError = false;
1152 
1153  B.clear();
1154 
1155  while (true) {
1156  lltok::Kind Token = Lex.getKind();
1157  if (Token == lltok::kw_builtin)
1158  BuiltinLoc = Lex.getLoc();
1159  switch (Token) {
1160  default:
1161  if (!inAttrGrp) return HaveError;
1162  return Error(Lex.getLoc(), "unterminated attribute group");
1163  case lltok::rbrace:
1164  // Finished.
1165  return false;
1166 
1167  case lltok::AttrGrpID: {
1168  // Allow a function to reference an attribute group:
1169  //
1170  // define void @foo() #1 { ... }
1171  if (inAttrGrp)
1172  HaveError |=
1173  Error(Lex.getLoc(),
1174  "cannot have an attribute group reference in an attribute group");
1175 
1176  unsigned AttrGrpNum = Lex.getUIntVal();
1177  if (inAttrGrp) break;
1178 
1179  // Save the reference to the attribute group. We'll fill it in later.
1180  FwdRefAttrGrps.push_back(AttrGrpNum);
1181  break;
1182  }
1183  // Target-dependent attributes:
1184  case lltok::StringConstant: {
1185  if (ParseStringAttribute(B))
1186  return true;
1187  continue;
1188  }
1189 
1190  // Target-independent attributes:
1191  case lltok::kw_align: {
1192  // As a hack, we allow function alignment to be initially parsed as an
1193  // attribute on a function declaration/definition or added to an attribute
1194  // group and later moved to the alignment field.
1195  unsigned Alignment;
1196  if (inAttrGrp) {
1197  Lex.Lex();
1198  if (ParseToken(lltok::equal, "expected '=' here") ||
1199  ParseUInt32(Alignment))
1200  return true;
1201  } else {
1202  if (ParseOptionalAlignment(Alignment))
1203  return true;
1204  }
1205  B.addAlignmentAttr(Alignment);
1206  continue;
1207  }
1208  case lltok::kw_alignstack: {
1209  unsigned Alignment;
1210  if (inAttrGrp) {
1211  Lex.Lex();
1212  if (ParseToken(lltok::equal, "expected '=' here") ||
1213  ParseUInt32(Alignment))
1214  return true;
1215  } else {
1216  if (ParseOptionalStackAlignment(Alignment))
1217  return true;
1218  }
1219  B.addStackAlignmentAttr(Alignment);
1220  continue;
1221  }
1222  case lltok::kw_allocsize: {
1223  unsigned ElemSizeArg;
1224  Optional<unsigned> NumElemsArg;
1225  // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1226  if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1227  return true;
1228  B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1229  continue;
1230  }
1231  case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1232  case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1233  case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1237  B.addAttribute(Attribute::InaccessibleMemOnly); break;
1239  B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1240  case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1242  case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1243  case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1244  case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1245  case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1247  B.addAttribute(Attribute::NoImplicitFloat); break;
1248  case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1249  case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1250  case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1251  case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1252  case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1253  case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1254  case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1256  B.addAttribute(Attribute::OptForFuzzing); break;
1257  case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1258  case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1259  case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1260  case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1262  B.addAttribute(Attribute::ReturnsTwice); break;
1263  case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1264  case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1265  case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1266  case lltok::kw_sspstrong:
1267  B.addAttribute(Attribute::StackProtectStrong); break;
1268  case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1270  B.addAttribute(Attribute::ShadowCallStack); break;
1272  B.addAttribute(Attribute::SanitizeAddress); break;
1274  B.addAttribute(Attribute::SanitizeHWAddress); break;
1276  B.addAttribute(Attribute::SanitizeThread); break;
1278  B.addAttribute(Attribute::SanitizeMemory); break;
1279  case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1280  case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1281  case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1282 
1283  // Error handling.
1284  case lltok::kw_inreg:
1285  case lltok::kw_signext:
1286  case lltok::kw_zeroext:
1287  HaveError |=
1288  Error(Lex.getLoc(),
1289  "invalid use of attribute on a function");
1290  break;
1291  case lltok::kw_byval:
1294  case lltok::kw_inalloca:
1295  case lltok::kw_nest:
1296  case lltok::kw_noalias:
1297  case lltok::kw_nocapture:
1298  case lltok::kw_nonnull:
1299  case lltok::kw_returned:
1300  case lltok::kw_sret:
1301  case lltok::kw_swifterror:
1302  case lltok::kw_swiftself:
1303  HaveError |=
1304  Error(Lex.getLoc(),
1305  "invalid use of parameter-only attribute on a function");
1306  break;
1307  }
1308 
1309  Lex.Lex();
1310  }
1311 }
1312 
1313 //===----------------------------------------------------------------------===//
1314 // GlobalValue Reference/Resolution Routines.
1315 //===----------------------------------------------------------------------===//
1316 
1318  const std::string &Name) {
1319  if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1321  else
1322  return new GlobalVariable(*M, PTy->getElementType(), false,
1325  PTy->getAddressSpace());
1326 }
1327 
1328 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1329 /// forward reference record if needed. This can return null if the value
1330 /// exists but does not have the right type.
1331 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1332  LocTy Loc) {
1333  PointerType *PTy = dyn_cast<PointerType>(Ty);
1334  if (!PTy) {
1335  Error(Loc, "global variable reference must have pointer type");
1336  return nullptr;
1337  }
1338 
1339  // Look this name up in the normal function symbol table.
1340  GlobalValue *Val =
1341  cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1342 
1343  // If this is a forward reference for the value, see if we already created a
1344  // forward ref record.
1345  if (!Val) {
1346  auto I = ForwardRefVals.find(Name);
1347  if (I != ForwardRefVals.end())
1348  Val = I->second.first;
1349  }
1350 
1351  // If we have the value in the symbol table or fwd-ref table, return it.
1352  if (Val) {
1353  if (Val->getType() == Ty) return Val;
1354  Error(Loc, "'@" + Name + "' defined with type '" +
1355  getTypeString(Val->getType()) + "'");
1356  return nullptr;
1357  }
1358 
1359  // Otherwise, create a new forward reference for this value and remember it.
1360  GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1361  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1362  return FwdVal;
1363 }
1364 
1365 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1366  PointerType *PTy = dyn_cast<PointerType>(Ty);
1367  if (!PTy) {
1368  Error(Loc, "global variable reference must have pointer type");
1369  return nullptr;
1370  }
1371 
1372  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1373 
1374  // If this is a forward reference for the value, see if we already created a
1375  // forward ref record.
1376  if (!Val) {
1377  auto I = ForwardRefValIDs.find(ID);
1378  if (I != ForwardRefValIDs.end())
1379  Val = I->second.first;
1380  }
1381 
1382  // If we have the value in the symbol table or fwd-ref table, return it.
1383  if (Val) {
1384  if (Val->getType() == Ty) return Val;
1385  Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1386  getTypeString(Val->getType()) + "'");
1387  return nullptr;
1388  }
1389 
1390  // Otherwise, create a new forward reference for this value and remember it.
1391  GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1392  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1393  return FwdVal;
1394 }
1395 
1396 //===----------------------------------------------------------------------===//
1397 // Comdat Reference/Resolution Routines.
1398 //===----------------------------------------------------------------------===//
1399 
1400 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1401  // Look this name up in the comdat symbol table.
1402  Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1404  if (I != ComdatSymTab.end())
1405  return &I->second;
1406 
1407  // Otherwise, create a new forward reference for this value and remember it.
1408  Comdat *C = M->getOrInsertComdat(Name);
1409  ForwardRefComdats[Name] = Loc;
1410  return C;
1411 }
1412 
1413 //===----------------------------------------------------------------------===//
1414 // Helper Routines.
1415 //===----------------------------------------------------------------------===//
1416 
1417 /// ParseToken - If the current token has the specified kind, eat it and return
1418 /// success. Otherwise, emit the specified error and return failure.
1419 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1420  if (Lex.getKind() != T)
1421  return TokError(ErrMsg);
1422  Lex.Lex();
1423  return false;
1424 }
1425 
1426 /// ParseStringConstant
1427 /// ::= StringConstant
1428 bool LLParser::ParseStringConstant(std::string &Result) {
1429  if (Lex.getKind() != lltok::StringConstant)
1430  return TokError("expected string constant");
1431  Result = Lex.getStrVal();
1432  Lex.Lex();
1433  return false;
1434 }
1435 
1436 /// ParseUInt32
1437 /// ::= uint32
1438 bool LLParser::ParseUInt32(uint32_t &Val) {
1439  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1440  return TokError("expected integer");
1441  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1442  if (Val64 != unsigned(Val64))
1443  return TokError("expected 32-bit integer (too large)");
1444  Val = Val64;
1445  Lex.Lex();
1446  return false;
1447 }
1448 
1449 /// ParseUInt64
1450 /// ::= uint64
1451 bool LLParser::ParseUInt64(uint64_t &Val) {
1452  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1453  return TokError("expected integer");
1454  Val = Lex.getAPSIntVal().getLimitedValue();
1455  Lex.Lex();
1456  return false;
1457 }
1458 
1459 /// ParseTLSModel
1460 /// := 'localdynamic'
1461 /// := 'initialexec'
1462 /// := 'localexec'
1463 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1464  switch (Lex.getKind()) {
1465  default:
1466  return TokError("expected localdynamic, initialexec or localexec");
1469  break;
1470  case lltok::kw_initialexec:
1472  break;
1473  case lltok::kw_localexec:
1475  break;
1476  }
1477 
1478  Lex.Lex();
1479  return false;
1480 }
1481 
1482 /// ParseOptionalThreadLocal
1483 /// := /*empty*/
1484 /// := 'thread_local'
1485 /// := 'thread_local' '(' tlsmodel ')'
1486 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1488  if (!EatIfPresent(lltok::kw_thread_local))
1489  return false;
1490 
1492  if (Lex.getKind() == lltok::lparen) {
1493  Lex.Lex();
1494  return ParseTLSModel(TLM) ||
1495  ParseToken(lltok::rparen, "expected ')' after thread local model");
1496  }
1497  return false;
1498 }
1499 
1500 /// ParseOptionalAddrSpace
1501 /// := /*empty*/
1502 /// := 'addrspace' '(' uint32 ')'
1503 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1504  AddrSpace = 0;
1505  if (!EatIfPresent(lltok::kw_addrspace))
1506  return false;
1507  return ParseToken(lltok::lparen, "expected '(' in address space") ||
1508  ParseUInt32(AddrSpace) ||
1509  ParseToken(lltok::rparen, "expected ')' in address space");
1510 }
1511 
1512 /// ParseStringAttribute
1513 /// := StringConstant
1514 /// := StringConstant '=' StringConstant
1515 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1516  std::string Attr = Lex.getStrVal();
1517  Lex.Lex();
1518  std::string Val;
1519  if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1520  return true;
1521  B.addAttribute(Attr, Val);
1522  return false;
1523 }
1524 
1525 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1526 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1527  bool HaveError = false;
1528 
1529  B.clear();
1530 
1531  while (true) {
1532  lltok::Kind Token = Lex.getKind();
1533  switch (Token) {
1534  default: // End of attributes.
1535  return HaveError;
1536  case lltok::StringConstant: {
1537  if (ParseStringAttribute(B))
1538  return true;
1539  continue;
1540  }
1541  case lltok::kw_align: {
1542  unsigned Alignment;
1543  if (ParseOptionalAlignment(Alignment))
1544  return true;
1545  B.addAlignmentAttr(Alignment);
1546  continue;
1547  }
1548  case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break;
1550  uint64_t Bytes;
1551  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1552  return true;
1553  B.addDereferenceableAttr(Bytes);
1554  continue;
1555  }
1557  uint64_t Bytes;
1558  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1559  return true;
1561  continue;
1562  }
1563  case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1564  case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1565  case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1567  case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1568  case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1569  case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1570  case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1571  case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1572  case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1573  case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1574  case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break;
1575  case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break;
1576  case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1577  case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1578 
1579  case lltok::kw_alignstack:
1581  case lltok::kw_argmemonly:
1582  case lltok::kw_builtin:
1583  case lltok::kw_inlinehint:
1584  case lltok::kw_jumptable:
1585  case lltok::kw_minsize:
1586  case lltok::kw_naked:
1587  case lltok::kw_nobuiltin:
1588  case lltok::kw_noduplicate:
1590  case lltok::kw_noinline:
1591  case lltok::kw_nonlazybind:
1592  case lltok::kw_noredzone:
1593  case lltok::kw_noreturn:
1594  case lltok::kw_nocf_check:
1595  case lltok::kw_nounwind:
1597  case lltok::kw_optnone:
1598  case lltok::kw_optsize:
1604  case lltok::kw_ssp:
1605  case lltok::kw_sspreq:
1606  case lltok::kw_sspstrong:
1607  case lltok::kw_safestack:
1609  case lltok::kw_strictfp:
1610  case lltok::kw_uwtable:
1611  HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1612  break;
1613  }
1614 
1615  Lex.Lex();
1616  }
1617 }
1618 
1619 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1620 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1621  bool HaveError = false;
1622 
1623  B.clear();
1624 
1625  while (true) {
1626  lltok::Kind Token = Lex.getKind();
1627  switch (Token) {
1628  default: // End of attributes.
1629  return HaveError;
1630  case lltok::StringConstant: {
1631  if (ParseStringAttribute(B))
1632  return true;
1633  continue;
1634  }
1636  uint64_t Bytes;
1637  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1638  return true;
1639  B.addDereferenceableAttr(Bytes);
1640  continue;
1641  }
1643  uint64_t Bytes;
1644  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1645  return true;
1647  continue;
1648  }
1649  case lltok::kw_align: {
1650  unsigned Alignment;
1651  if (ParseOptionalAlignment(Alignment))
1652  return true;
1653  B.addAlignmentAttr(Alignment);
1654  continue;
1655  }
1656  case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1658  case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1659  case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1660  case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1661 
1662  // Error handling.
1663  case lltok::kw_byval:
1664  case lltok::kw_inalloca:
1665  case lltok::kw_nest:
1666  case lltok::kw_nocapture:
1667  case lltok::kw_returned:
1668  case lltok::kw_sret:
1669  case lltok::kw_swifterror:
1670  case lltok::kw_swiftself:
1671  HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1672  break;
1673 
1674  case lltok::kw_alignstack:
1676  case lltok::kw_argmemonly:
1677  case lltok::kw_builtin:
1678  case lltok::kw_cold:
1679  case lltok::kw_inlinehint:
1680  case lltok::kw_jumptable:
1681  case lltok::kw_minsize:
1682  case lltok::kw_naked:
1683  case lltok::kw_nobuiltin:
1684  case lltok::kw_noduplicate:
1686  case lltok::kw_noinline:
1687  case lltok::kw_nonlazybind:
1688  case lltok::kw_noredzone:
1689  case lltok::kw_noreturn:
1690  case lltok::kw_nocf_check:
1691  case lltok::kw_nounwind:
1693  case lltok::kw_optnone:
1694  case lltok::kw_optsize:
1700  case lltok::kw_ssp:
1701  case lltok::kw_sspreq:
1702  case lltok::kw_sspstrong:
1703  case lltok::kw_safestack:
1705  case lltok::kw_strictfp:
1706  case lltok::kw_uwtable:
1707  HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1708  break;
1709 
1710  case lltok::kw_readnone:
1711  case lltok::kw_readonly:
1712  HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1713  }
1714 
1715  Lex.Lex();
1716  }
1717 }
1718 
1719 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1720  HasLinkage = true;
1721  switch (Kind) {
1722  default:
1723  HasLinkage = false;
1725  case lltok::kw_private:
1727  case lltok::kw_internal:
1729  case lltok::kw_weak:
1731  case lltok::kw_weak_odr:
1733  case lltok::kw_linkonce:
1739  case lltok::kw_appending:
1741  case lltok::kw_common:
1743  case lltok::kw_extern_weak:
1745  case lltok::kw_external:
1747  }
1748 }
1749 
1750 /// ParseOptionalLinkage
1751 /// ::= /*empty*/
1752 /// ::= 'private'
1753 /// ::= 'internal'
1754 /// ::= 'weak'
1755 /// ::= 'weak_odr'
1756 /// ::= 'linkonce'
1757 /// ::= 'linkonce_odr'
1758 /// ::= 'available_externally'
1759 /// ::= 'appending'
1760 /// ::= 'common'
1761 /// ::= 'extern_weak'
1762 /// ::= 'external'
1763 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1764  unsigned &Visibility,
1765  unsigned &DLLStorageClass,
1766  bool &DSOLocal) {
1767  Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1768  if (HasLinkage)
1769  Lex.Lex();
1770  ParseOptionalDSOLocal(DSOLocal);
1771  ParseOptionalVisibility(Visibility);
1772  ParseOptionalDLLStorageClass(DLLStorageClass);
1773 
1774  if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1775  return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1776  }
1777 
1778  return false;
1779 }
1780 
1781 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1782  switch (Lex.getKind()) {
1783  default:
1784  DSOLocal = false;
1785  break;
1786  case lltok::kw_dso_local:
1787  DSOLocal = true;
1788  Lex.Lex();
1789  break;
1791  DSOLocal = false;
1792  Lex.Lex();
1793  break;
1794  }
1795 }
1796 
1797 /// ParseOptionalVisibility
1798 /// ::= /*empty*/
1799 /// ::= 'default'
1800 /// ::= 'hidden'
1801 /// ::= 'protected'
1802 ///
1803 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1804  switch (Lex.getKind()) {
1805  default:
1807  return;
1808  case lltok::kw_default:
1810  break;
1811  case lltok::kw_hidden:
1813  break;
1814  case lltok::kw_protected:
1816  break;
1817  }
1818  Lex.Lex();
1819 }
1820 
1821 /// ParseOptionalDLLStorageClass
1822 /// ::= /*empty*/
1823 /// ::= 'dllimport'
1824 /// ::= 'dllexport'
1825 ///
1826 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1827  switch (Lex.getKind()) {
1828  default:
1830  return;
1831  case lltok::kw_dllimport:
1833  break;
1834  case lltok::kw_dllexport:
1836  break;
1837  }
1838  Lex.Lex();
1839 }
1840 
1841 /// ParseOptionalCallingConv
1842 /// ::= /*empty*/
1843 /// ::= 'ccc'
1844 /// ::= 'fastcc'
1845 /// ::= 'intel_ocl_bicc'
1846 /// ::= 'coldcc'
1847 /// ::= 'x86_stdcallcc'
1848 /// ::= 'x86_fastcallcc'
1849 /// ::= 'x86_thiscallcc'
1850 /// ::= 'x86_vectorcallcc'
1851 /// ::= 'arm_apcscc'
1852 /// ::= 'arm_aapcscc'
1853 /// ::= 'arm_aapcs_vfpcc'
1854 /// ::= 'msp430_intrcc'
1855 /// ::= 'avr_intrcc'
1856 /// ::= 'avr_signalcc'
1857 /// ::= 'ptx_kernel'
1858 /// ::= 'ptx_device'
1859 /// ::= 'spir_func'
1860 /// ::= 'spir_kernel'
1861 /// ::= 'x86_64_sysvcc'
1862 /// ::= 'win64cc'
1863 /// ::= 'webkit_jscc'
1864 /// ::= 'anyregcc'
1865 /// ::= 'preserve_mostcc'
1866 /// ::= 'preserve_allcc'
1867 /// ::= 'ghccc'
1868 /// ::= 'swiftcc'
1869 /// ::= 'x86_intrcc'
1870 /// ::= 'hhvmcc'
1871 /// ::= 'hhvm_ccc'
1872 /// ::= 'cxx_fast_tlscc'
1873 /// ::= 'amdgpu_vs'
1874 /// ::= 'amdgpu_ls'
1875 /// ::= 'amdgpu_hs'
1876 /// ::= 'amdgpu_es'
1877 /// ::= 'amdgpu_gs'
1878 /// ::= 'amdgpu_ps'
1879 /// ::= 'amdgpu_cs'
1880 /// ::= 'amdgpu_kernel'
1881 /// ::= 'cc' UINT
1882 ///
1883 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1884  switch (Lex.getKind()) {
1885  default: CC = CallingConv::C; return false;
1886  case lltok::kw_ccc: CC = CallingConv::C; break;
1887  case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1888  case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1894  case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1898  case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
1903  case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1906  case lltok::kw_win64cc: CC = CallingConv::Win64; break;
1908  case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1911  case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1912  case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
1913  case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
1914  case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
1915  case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
1917  case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
1918  case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
1919  case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
1920  case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
1921  case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
1922  case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
1923  case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
1925  case lltok::kw_cc: {
1926  Lex.Lex();
1927  return ParseUInt32(CC);
1928  }
1929  }
1930 
1931  Lex.Lex();
1932  return false;
1933 }
1934 
1935 /// ParseMetadataAttachment
1936 /// ::= !dbg !42
1937 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1938  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1939 
1940  std::string Name = Lex.getStrVal();
1941  Kind = M->getMDKindID(Name);
1942  Lex.Lex();
1943 
1944  return ParseMDNode(MD);
1945 }
1946 
1947 /// ParseInstructionMetadata
1948 /// ::= !dbg !42 (',' !dbg !57)*
1949 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1950  do {
1951  if (Lex.getKind() != lltok::MetadataVar)
1952  return TokError("expected metadata after comma");
1953 
1954  unsigned MDK;
1955  MDNode *N;
1956  if (ParseMetadataAttachment(MDK, N))
1957  return true;
1958 
1959  Inst.setMetadata(MDK, N);
1960  if (MDK == LLVMContext::MD_tbaa)
1961  InstsWithTBAATag.push_back(&Inst);
1962 
1963  // If this is the end of the list, we're done.
1964  } while (EatIfPresent(lltok::comma));
1965  return false;
1966 }
1967 
1968 /// ParseGlobalObjectMetadataAttachment
1969 /// ::= !dbg !57
1970 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1971  unsigned MDK;
1972  MDNode *N;
1973  if (ParseMetadataAttachment(MDK, N))
1974  return true;
1975 
1976  GO.addMetadata(MDK, *N);
1977  return false;
1978 }
1979 
1980 /// ParseOptionalFunctionMetadata
1981 /// ::= (!dbg !57)*
1982 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1983  while (Lex.getKind() == lltok::MetadataVar)
1984  if (ParseGlobalObjectMetadataAttachment(F))
1985  return true;
1986  return false;
1987 }
1988 
1989 /// ParseOptionalAlignment
1990 /// ::= /* empty */
1991 /// ::= 'align' 4
1992 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1993  Alignment = 0;
1994  if (!EatIfPresent(lltok::kw_align))
1995  return false;
1996  LocTy AlignLoc = Lex.getLoc();
1997  if (ParseUInt32(Alignment)) return true;
1998  if (!isPowerOf2_32(Alignment))
1999  return Error(AlignLoc, "alignment is not a power of two");
2000  if (Alignment > Value::MaximumAlignment)
2001  return Error(AlignLoc, "huge alignments are not supported yet");
2002  return false;
2003 }
2004 
2005 /// ParseOptionalDerefAttrBytes
2006 /// ::= /* empty */
2007 /// ::= AttrKind '(' 4 ')'
2008 ///
2009 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2010 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2011  uint64_t &Bytes) {
2012  assert((AttrKind == lltok::kw_dereferenceable ||
2013  AttrKind == lltok::kw_dereferenceable_or_null) &&
2014  "contract!");
2015 
2016  Bytes = 0;
2017  if (!EatIfPresent(AttrKind))
2018  return false;
2019  LocTy ParenLoc = Lex.getLoc();
2020  if (!EatIfPresent(lltok::lparen))
2021  return Error(ParenLoc, "expected '('");
2022  LocTy DerefLoc = Lex.getLoc();
2023  if (ParseUInt64(Bytes)) return true;
2024  ParenLoc = Lex.getLoc();
2025  if (!EatIfPresent(lltok::rparen))
2026  return Error(ParenLoc, "expected ')'");
2027  if (!Bytes)
2028  return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2029  return false;
2030 }
2031 
2032 /// ParseOptionalCommaAlign
2033 /// ::=
2034 /// ::= ',' align 4
2035 ///
2036 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2037 /// end.
2038 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2039  bool &AteExtraComma) {
2040  AteExtraComma = false;
2041  while (EatIfPresent(lltok::comma)) {
2042  // Metadata at the end is an early exit.
2043  if (Lex.getKind() == lltok::MetadataVar) {
2044  AteExtraComma = true;
2045  return false;
2046  }
2047 
2048  if (Lex.getKind() != lltok::kw_align)
2049  return Error(Lex.getLoc(), "expected metadata or 'align'");
2050 
2051  if (ParseOptionalAlignment(Alignment)) return true;
2052  }
2053 
2054  return false;
2055 }
2056 
2057 /// ParseOptionalCommaAddrSpace
2058 /// ::=
2059 /// ::= ',' addrspace(1)
2060 ///
2061 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2062 /// end.
2063 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2064  LocTy &Loc,
2065  bool &AteExtraComma) {
2066  AteExtraComma = false;
2067  while (EatIfPresent(lltok::comma)) {
2068  // Metadata at the end is an early exit.
2069  if (Lex.getKind() == lltok::MetadataVar) {
2070  AteExtraComma = true;
2071  return false;
2072  }
2073 
2074  Loc = Lex.getLoc();
2075  if (Lex.getKind() != lltok::kw_addrspace)
2076  return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2077 
2078  if (ParseOptionalAddrSpace(AddrSpace))
2079  return true;
2080  }
2081 
2082  return false;
2083 }
2084 
2085 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2086  Optional<unsigned> &HowManyArg) {
2087  Lex.Lex();
2088 
2089  auto StartParen = Lex.getLoc();
2090  if (!EatIfPresent(lltok::lparen))
2091  return Error(StartParen, "expected '('");
2092 
2093  if (ParseUInt32(BaseSizeArg))
2094  return true;
2095 
2096  if (EatIfPresent(lltok::comma)) {
2097  auto HowManyAt = Lex.getLoc();
2098  unsigned HowMany;
2099  if (ParseUInt32(HowMany))
2100  return true;
2101  if (HowMany == BaseSizeArg)
2102  return Error(HowManyAt,
2103  "'allocsize' indices can't refer to the same parameter");
2104  HowManyArg = HowMany;
2105  } else
2106  HowManyArg = None;
2107 
2108  auto EndParen = Lex.getLoc();
2109  if (!EatIfPresent(lltok::rparen))
2110  return Error(EndParen, "expected ')'");
2111  return false;
2112 }
2113 
2114 /// ParseScopeAndOrdering
2115 /// if isAtomic: ::= SyncScope? AtomicOrdering
2116 /// else: ::=
2117 ///
2118 /// This sets Scope and Ordering to the parsed values.
2119 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2120  AtomicOrdering &Ordering) {
2121  if (!isAtomic)
2122  return false;
2123 
2124  return ParseScope(SSID) || ParseOrdering(Ordering);
2125 }
2126 
2127 /// ParseScope
2128 /// ::= syncscope("singlethread" | "<target scope>")?
2129 ///
2130 /// This sets synchronization scope ID to the ID of the parsed value.
2131 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2132  SSID = SyncScope::System;
2133  if (EatIfPresent(lltok::kw_syncscope)) {
2134  auto StartParenAt = Lex.getLoc();
2135  if (!EatIfPresent(lltok::lparen))
2136  return Error(StartParenAt, "Expected '(' in syncscope");
2137 
2138  std::string SSN;
2139  auto SSNAt = Lex.getLoc();
2140  if (ParseStringConstant(SSN))
2141  return Error(SSNAt, "Expected synchronization scope name");
2142 
2143  auto EndParenAt = Lex.getLoc();
2144  if (!EatIfPresent(lltok::rparen))
2145  return Error(EndParenAt, "Expected ')' in syncscope");
2146 
2147  SSID = Context.getOrInsertSyncScopeID(SSN);
2148  }
2149 
2150  return false;
2151 }
2152 
2153 /// ParseOrdering
2154 /// ::= AtomicOrdering
2155 ///
2156 /// This sets Ordering to the parsed value.
2157 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2158  switch (Lex.getKind()) {
2159  default: return TokError("Expected ordering on atomic instruction");
2160  case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2161  case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2162  // Not specified yet:
2163  // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2164  case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2165  case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2166  case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2167  case lltok::kw_seq_cst:
2169  break;
2170  }
2171  Lex.Lex();
2172  return false;
2173 }
2174 
2175 /// ParseOptionalStackAlignment
2176 /// ::= /* empty */
2177 /// ::= 'alignstack' '(' 4 ')'
2178 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2179  Alignment = 0;
2180  if (!EatIfPresent(lltok::kw_alignstack))
2181  return false;
2182  LocTy ParenLoc = Lex.getLoc();
2183  if (!EatIfPresent(lltok::lparen))
2184  return Error(ParenLoc, "expected '('");
2185  LocTy AlignLoc = Lex.getLoc();
2186  if (ParseUInt32(Alignment)) return true;
2187  ParenLoc = Lex.getLoc();
2188  if (!EatIfPresent(lltok::rparen))
2189  return Error(ParenLoc, "expected ')'");
2190  if (!isPowerOf2_32(Alignment))
2191  return Error(AlignLoc, "stack alignment is not a power of two");
2192  return false;
2193 }
2194 
2195 /// ParseIndexList - This parses the index list for an insert/extractvalue
2196 /// instruction. This sets AteExtraComma in the case where we eat an extra
2197 /// comma at the end of the line and find that it is followed by metadata.
2198 /// Clients that don't allow metadata can call the version of this function that
2199 /// only takes one argument.
2200 ///
2201 /// ParseIndexList
2202 /// ::= (',' uint32)+
2203 ///
2204 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2205  bool &AteExtraComma) {
2206  AteExtraComma = false;
2207 
2208  if (Lex.getKind() != lltok::comma)
2209  return TokError("expected ',' as start of index list");
2210 
2211  while (EatIfPresent(lltok::comma)) {
2212  if (Lex.getKind() == lltok::MetadataVar) {
2213  if (Indices.empty()) return TokError("expected index");
2214  AteExtraComma = true;
2215  return false;
2216  }
2217  unsigned Idx = 0;
2218  if (ParseUInt32(Idx)) return true;
2219  Indices.push_back(Idx);
2220  }
2221 
2222  return false;
2223 }
2224 
2225 //===----------------------------------------------------------------------===//
2226 // Type Parsing.
2227 //===----------------------------------------------------------------------===//
2228 
2229 /// ParseType - Parse a type.
2230 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2231  SMLoc TypeLoc = Lex.getLoc();
2232  switch (Lex.getKind()) {
2233  default:
2234  return TokError(Msg);
2235  case lltok::Type:
2236  // Type ::= 'float' | 'void' (etc)
2237  Result = Lex.getTyVal();
2238  Lex.Lex();
2239  break;
2240  case lltok::lbrace:
2241  // Type ::= StructType
2242  if (ParseAnonStructType(Result, false))
2243  return true;
2244  break;
2245  case lltok::lsquare:
2246  // Type ::= '[' ... ']'
2247  Lex.Lex(); // eat the lsquare.
2248  if (ParseArrayVectorType(Result, false))
2249  return true;
2250  break;
2251  case lltok::less: // Either vector or packed struct.
2252  // Type ::= '<' ... '>'
2253  Lex.Lex();
2254  if (Lex.getKind() == lltok::lbrace) {
2255  if (ParseAnonStructType(Result, true) ||
2256  ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2257  return true;
2258  } else if (ParseArrayVectorType(Result, true))
2259  return true;
2260  break;
2261  case lltok::LocalVar: {
2262  // Type ::= %foo
2263  std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2264 
2265  // If the type hasn't been defined yet, create a forward definition and
2266  // remember where that forward def'n was seen (in case it never is defined).
2267  if (!Entry.first) {
2268  Entry.first = StructType::create(Context, Lex.getStrVal());
2269  Entry.second = Lex.getLoc();
2270  }
2271  Result = Entry.first;
2272  Lex.Lex();
2273  break;
2274  }
2275 
2276  case lltok::LocalVarID: {
2277  // Type ::= %4
2278  std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2279 
2280  // If the type hasn't been defined yet, create a forward definition and
2281  // remember where that forward def'n was seen (in case it never is defined).
2282  if (!Entry.first) {
2283  Entry.first = StructType::create(Context);
2284  Entry.second = Lex.getLoc();
2285  }
2286  Result = Entry.first;
2287  Lex.Lex();
2288  break;
2289  }
2290  }
2291 
2292  // Parse the type suffixes.
2293  while (true) {
2294  switch (Lex.getKind()) {
2295  // End of type.
2296  default:
2297  if (!AllowVoid && Result->isVoidTy())
2298  return Error(TypeLoc, "void type only allowed for function results");
2299  return false;
2300 
2301  // Type ::= Type '*'
2302  case lltok::star:
2303  if (Result->isLabelTy())
2304  return TokError("basic block pointers are invalid");
2305  if (Result->isVoidTy())
2306  return TokError("pointers to void are invalid - use i8* instead");
2307  if (!PointerType::isValidElementType(Result))
2308  return TokError("pointer to this type is invalid");
2309  Result = PointerType::getUnqual(Result);
2310  Lex.Lex();
2311  break;
2312 
2313  // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2314  case lltok::kw_addrspace: {
2315  if (Result->isLabelTy())
2316  return TokError("basic block pointers are invalid");
2317  if (Result->isVoidTy())
2318  return TokError("pointers to void are invalid; use i8* instead");
2319  if (!PointerType::isValidElementType(Result))
2320  return TokError("pointer to this type is invalid");
2321  unsigned AddrSpace;
2322  if (ParseOptionalAddrSpace(AddrSpace) ||
2323  ParseToken(lltok::star, "expected '*' in address space"))
2324  return true;
2325 
2326  Result = PointerType::get(Result, AddrSpace);
2327  break;
2328  }
2329 
2330  /// Types '(' ArgTypeListI ')' OptFuncAttrs
2331  case lltok::lparen:
2332  if (ParseFunctionType(Result))
2333  return true;
2334  break;
2335  }
2336  }
2337 }
2338 
2339 /// ParseParameterList
2340 /// ::= '(' ')'
2341 /// ::= '(' Arg (',' Arg)* ')'
2342 /// Arg
2343 /// ::= Type OptionalAttributes Value OptionalAttributes
2344 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2345  PerFunctionState &PFS, bool IsMustTailCall,
2346  bool InVarArgsFunc) {
2347  if (ParseToken(lltok::lparen, "expected '(' in call"))
2348  return true;
2349 
2350  while (Lex.getKind() != lltok::rparen) {
2351  // If this isn't the first argument, we need a comma.
2352  if (!ArgList.empty() &&
2353  ParseToken(lltok::comma, "expected ',' in argument list"))
2354  return true;
2355 
2356  // Parse an ellipsis if this is a musttail call in a variadic function.
2357  if (Lex.getKind() == lltok::dotdotdot) {
2358  const char *Msg = "unexpected ellipsis in argument list for ";
2359  if (!IsMustTailCall)
2360  return TokError(Twine(Msg) + "non-musttail call");
2361  if (!InVarArgsFunc)
2362  return TokError(Twine(Msg) + "musttail call in non-varargs function");
2363  Lex.Lex(); // Lex the '...', it is purely for readability.
2364  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2365  }
2366 
2367  // Parse the argument.
2368  LocTy ArgLoc;
2369  Type *ArgTy = nullptr;
2370  AttrBuilder ArgAttrs;
2371  Value *V;
2372  if (ParseType(ArgTy, ArgLoc))
2373  return true;
2374 
2375  if (ArgTy->isMetadataTy()) {
2376  if (ParseMetadataAsValue(V, PFS))
2377  return true;
2378  } else {
2379  // Otherwise, handle normal operands.
2380  if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2381  return true;
2382  }
2383  ArgList.push_back(ParamInfo(
2384  ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2385  }
2386 
2387  if (IsMustTailCall && InVarArgsFunc)
2388  return TokError("expected '...' at end of argument list for musttail call "
2389  "in varargs function");
2390 
2391  Lex.Lex(); // Lex the ')'.
2392  return false;
2393 }
2394 
2395 /// ParseOptionalOperandBundles
2396 /// ::= /*empty*/
2397 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2398 ///
2399 /// OperandBundle
2400 /// ::= bundle-tag '(' ')'
2401 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2402 ///
2403 /// bundle-tag ::= String Constant
2404 bool LLParser::ParseOptionalOperandBundles(
2405  SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2406  LocTy BeginLoc = Lex.getLoc();
2407  if (!EatIfPresent(lltok::lsquare))
2408  return false;
2409 
2410  while (Lex.getKind() != lltok::rsquare) {
2411  // If this isn't the first operand bundle, we need a comma.
2412  if (!BundleList.empty() &&
2413  ParseToken(lltok::comma, "expected ',' in input list"))
2414  return true;
2415 
2416  std::string Tag;
2417  if (ParseStringConstant(Tag))
2418  return true;
2419 
2420  if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2421  return true;
2422 
2423  std::vector<Value *> Inputs;
2424  while (Lex.getKind() != lltok::rparen) {
2425  // If this isn't the first input, we need a comma.
2426  if (!Inputs.empty() &&
2427  ParseToken(lltok::comma, "expected ',' in input list"))
2428  return true;
2429 
2430  Type *Ty = nullptr;
2431  Value *Input = nullptr;
2432  if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2433  return true;
2434  Inputs.push_back(Input);
2435  }
2436 
2437  BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2438 
2439  Lex.Lex(); // Lex the ')'.
2440  }
2441 
2442  if (BundleList.empty())
2443  return Error(BeginLoc, "operand bundle set must not be empty");
2444 
2445  Lex.Lex(); // Lex the ']'.
2446  return false;
2447 }
2448 
2449 /// ParseArgumentList - Parse the argument list for a function type or function
2450 /// prototype.
2451 /// ::= '(' ArgTypeListI ')'
2452 /// ArgTypeListI
2453 /// ::= /*empty*/
2454 /// ::= '...'
2455 /// ::= ArgTypeList ',' '...'
2456 /// ::= ArgType (',' ArgType)*
2457 ///
2458 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2459  bool &isVarArg){
2460  isVarArg = false;
2461  assert(Lex.getKind() == lltok::lparen);
2462  Lex.Lex(); // eat the (.
2463 
2464  if (Lex.getKind() == lltok::rparen) {
2465  // empty
2466  } else if (Lex.getKind() == lltok::dotdotdot) {
2467  isVarArg = true;
2468  Lex.Lex();
2469  } else {
2470  LocTy TypeLoc = Lex.getLoc();
2471  Type *ArgTy = nullptr;
2473  std::string Name;
2474 
2475  if (ParseType(ArgTy) ||
2476  ParseOptionalParamAttrs(Attrs)) return true;
2477 
2478  if (ArgTy->isVoidTy())
2479  return Error(TypeLoc, "argument can not have void type");
2480 
2481  if (Lex.getKind() == lltok::LocalVar) {
2482  Name = Lex.getStrVal();
2483  Lex.Lex();
2484  }
2485 
2487  return Error(TypeLoc, "invalid type for function argument");
2488 
2489  ArgList.emplace_back(TypeLoc, ArgTy,
2490  AttributeSet::get(ArgTy->getContext(), Attrs),
2491  std::move(Name));
2492 
2493  while (EatIfPresent(lltok::comma)) {
2494  // Handle ... at end of arg list.
2495  if (EatIfPresent(lltok::dotdotdot)) {
2496  isVarArg = true;
2497  break;
2498  }
2499 
2500  // Otherwise must be an argument type.
2501  TypeLoc = Lex.getLoc();
2502  if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2503 
2504  if (ArgTy->isVoidTy())
2505  return Error(TypeLoc, "argument can not have void type");
2506 
2507  if (Lex.getKind() == lltok::LocalVar) {
2508  Name = Lex.getStrVal();
2509  Lex.Lex();
2510  } else {
2511  Name = "";
2512  }
2513 
2514  if (!ArgTy->isFirstClassType())
2515  return Error(TypeLoc, "invalid type for function argument");
2516 
2517  ArgList.emplace_back(TypeLoc, ArgTy,
2518  AttributeSet::get(ArgTy->getContext(), Attrs),
2519  std::move(Name));
2520  }
2521  }
2522 
2523  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2524 }
2525 
2526 /// ParseFunctionType
2527 /// ::= Type ArgumentList OptionalAttrs
2528 bool LLParser::ParseFunctionType(Type *&Result) {
2529  assert(Lex.getKind() == lltok::lparen);
2530 
2531  if (!FunctionType::isValidReturnType(Result))
2532  return TokError("invalid function return type");
2533 
2534  SmallVector<ArgInfo, 8> ArgList;
2535  bool isVarArg;
2536  if (ParseArgumentList(ArgList, isVarArg))
2537  return true;
2538 
2539  // Reject names on the arguments lists.
2540  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2541  if (!ArgList[i].Name.empty())
2542  return Error(ArgList[i].Loc, "argument name invalid in function type");
2543  if (ArgList[i].Attrs.hasAttributes())
2544  return Error(ArgList[i].Loc,
2545  "argument attributes invalid in function type");
2546  }
2547 
2548  SmallVector<Type*, 16> ArgListTy;
2549  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2550  ArgListTy.push_back(ArgList[i].Ty);
2551 
2552  Result = FunctionType::get(Result, ArgListTy, isVarArg);
2553  return false;
2554 }
2555 
2556 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2557 /// other structs.
2558 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2559  SmallVector<Type*, 8> Elts;
2560  if (ParseStructBody(Elts)) return true;
2561 
2562  Result = StructType::get(Context, Elts, Packed);
2563  return false;
2564 }
2565 
2566 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2567 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2568  std::pair<Type*, LocTy> &Entry,
2569  Type *&ResultTy) {
2570  // If the type was already defined, diagnose the redefinition.
2571  if (Entry.first && !Entry.second.isValid())
2572  return Error(TypeLoc, "redefinition of type");
2573 
2574  // If we have opaque, just return without filling in the definition for the
2575  // struct. This counts as a definition as far as the .ll file goes.
2576  if (EatIfPresent(lltok::kw_opaque)) {
2577  // This type is being defined, so clear the location to indicate this.
2578  Entry.second = SMLoc();
2579 
2580  // If this type number has never been uttered, create it.
2581  if (!Entry.first)
2582  Entry.first = StructType::create(Context, Name);
2583  ResultTy = Entry.first;
2584  return false;
2585  }
2586 
2587  // If the type starts with '<', then it is either a packed struct or a vector.
2588  bool isPacked = EatIfPresent(lltok::less);
2589 
2590  // If we don't have a struct, then we have a random type alias, which we
2591  // accept for compatibility with old files. These types are not allowed to be
2592  // forward referenced and not allowed to be recursive.
2593  if (Lex.getKind() != lltok::lbrace) {
2594  if (Entry.first)
2595  return Error(TypeLoc, "forward references to non-struct type");
2596 
2597  ResultTy = nullptr;
2598  if (isPacked)
2599  return ParseArrayVectorType(ResultTy, true);
2600  return ParseType(ResultTy);
2601  }
2602 
2603  // This type is being defined, so clear the location to indicate this.
2604  Entry.second = SMLoc();
2605 
2606  // If this type number has never been uttered, create it.
2607  if (!Entry.first)
2608  Entry.first = StructType::create(Context, Name);
2609 
2610  StructType *STy = cast<StructType>(Entry.first);
2611 
2612  SmallVector<Type*, 8> Body;
2613  if (ParseStructBody(Body) ||
2614  (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2615  return true;
2616 
2617  STy->setBody(Body, isPacked);
2618  ResultTy = STy;
2619  return false;
2620 }
2621 
2622 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2623 /// StructType
2624 /// ::= '{' '}'
2625 /// ::= '{' Type (',' Type)* '}'
2626 /// ::= '<' '{' '}' '>'
2627 /// ::= '<' '{' Type (',' Type)* '}' '>'
2628 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2629  assert(Lex.getKind() == lltok::lbrace);
2630  Lex.Lex(); // Consume the '{'
2631 
2632  // Handle the empty struct.
2633  if (EatIfPresent(lltok::rbrace))
2634  return false;
2635 
2636  LocTy EltTyLoc = Lex.getLoc();
2637  Type *Ty = nullptr;
2638  if (ParseType(Ty)) return true;
2639  Body.push_back(Ty);
2640 
2642  return Error(EltTyLoc, "invalid element type for struct");
2643 
2644  while (EatIfPresent(lltok::comma)) {
2645  EltTyLoc = Lex.getLoc();
2646  if (ParseType(Ty)) return true;
2647 
2649  return Error(EltTyLoc, "invalid element type for struct");
2650 
2651  Body.push_back(Ty);
2652  }
2653 
2654  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2655 }
2656 
2657 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2658 /// token has already been consumed.
2659 /// Type
2660 /// ::= '[' APSINTVAL 'x' Types ']'
2661 /// ::= '<' APSINTVAL 'x' Types '>'
2662 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2663  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2664  Lex.getAPSIntVal().getBitWidth() > 64)
2665  return TokError("expected number in address space");
2666 
2667  LocTy SizeLoc = Lex.getLoc();
2668  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2669  Lex.Lex();
2670 
2671  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2672  return true;
2673 
2674  LocTy TypeLoc = Lex.getLoc();
2675  Type *EltTy = nullptr;
2676  if (ParseType(EltTy)) return true;
2677 
2678  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2679  "expected end of sequential type"))
2680  return true;
2681 
2682  if (isVector) {
2683  if (Size == 0)
2684  return Error(SizeLoc, "zero element vector is illegal");
2685  if ((unsigned)Size != Size)
2686  return Error(SizeLoc, "size too large for vector");
2687  if (!VectorType::isValidElementType(EltTy))
2688  return Error(TypeLoc, "invalid vector element type");
2689  Result = VectorType::get(EltTy, unsigned(Size));
2690  } else {
2691  if (!ArrayType::isValidElementType(EltTy))
2692  return Error(TypeLoc, "invalid array element type");
2693  Result = ArrayType::get(EltTy, Size);
2694  }
2695  return false;
2696 }
2697 
2698 //===----------------------------------------------------------------------===//
2699 // Function Semantic Analysis.
2700 //===----------------------------------------------------------------------===//
2701 
2702 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2703  int functionNumber)
2704  : P(p), F(f), FunctionNumber(functionNumber) {
2705 
2706  // Insert unnamed arguments into the NumberedVals list.
2707  for (Argument &A : F.args())
2708  if (!A.hasName())
2709  NumberedVals.push_back(&A);
2710 }
2711 
2712 LLParser::PerFunctionState::~PerFunctionState() {
2713  // If there were any forward referenced non-basicblock values, delete them.
2714 
2715  for (const auto &P : ForwardRefVals) {
2716  if (isa<BasicBlock>(P.second.first))
2717  continue;
2718  P.second.first->replaceAllUsesWith(
2719  UndefValue::get(P.second.first->getType()));
2720  P.second.first->deleteValue();
2721  }
2722 
2723  for (const auto &P : ForwardRefValIDs) {
2724  if (isa<BasicBlock>(P.second.first))
2725  continue;
2726  P.second.first->replaceAllUsesWith(
2727  UndefValue::get(P.second.first->getType()));
2728  P.second.first->deleteValue();
2729  }
2730 }
2731 
2732 bool LLParser::PerFunctionState::FinishFunction() {
2733  if (!ForwardRefVals.empty())
2734  return P.Error(ForwardRefVals.begin()->second.second,
2735  "use of undefined value '%" + ForwardRefVals.begin()->first +
2736  "'");
2737  if (!ForwardRefValIDs.empty())
2738  return P.Error(ForwardRefValIDs.begin()->second.second,
2739  "use of undefined value '%" +
2740  Twine(ForwardRefValIDs.begin()->first) + "'");
2741  return false;
2742 }
2743 
2744 static bool isValidVariableType(Module *M, Type *Ty, Value *Val, bool IsCall) {
2745  if (Val->getType() == Ty)
2746  return true;
2747  // For calls we also accept variables in the program address space
2748  if (IsCall && isa<PointerType>(Ty)) {
2749  Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
2751  if (Val->getType() == TyInProgAS)
2752  return true;
2753  }
2754  return false;
2755 }
2756 
2757 /// GetVal - Get a value with the specified name or ID, creating a
2758 /// forward reference record if needed. This can return null if the value
2759 /// exists but does not have the right type.
2760 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2761  LocTy Loc, bool IsCall) {
2762  // Look this name up in the normal function symbol table.
2763  Value *Val = F.getValueSymbolTable()->lookup(Name);
2764 
2765  // If this is a forward reference for the value, see if we already created a
2766  // forward ref record.
2767  if (!Val) {
2768  auto I = ForwardRefVals.find(Name);
2769  if (I != ForwardRefVals.end())
2770  Val = I->second.first;
2771  }
2772 
2773  // If we have the value in the symbol table or fwd-ref table, return it.
2774  if (Val) {
2775  if (isValidVariableType(P.M, Ty, Val, IsCall))
2776  return Val;
2777  if (Ty->isLabelTy())
2778  P.Error(Loc, "'%" + Name + "' is not a basic block");
2779  else
2780  P.Error(Loc, "'%" + Name + "' defined with type '" +
2781  getTypeString(Val->getType()) + "'");
2782  return nullptr;
2783  }
2784 
2785  // Don't make placeholders with invalid type.
2786  if (!Ty->isFirstClassType()) {
2787  P.Error(Loc, "invalid use of a non-first-class type");
2788  return nullptr;
2789  }
2790 
2791  // Otherwise, create a new forward reference for this value and remember it.
2792  Value *FwdVal;
2793  if (Ty->isLabelTy()) {
2794  FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2795  } else {
2796  FwdVal = new Argument(Ty, Name);
2797  }
2798 
2799  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2800  return FwdVal;
2801 }
2802 
2803 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2804  bool IsCall) {
2805  // Look this name up in the normal function symbol table.
2806  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2807 
2808  // If this is a forward reference for the value, see if we already created a
2809  // forward ref record.
2810  if (!Val) {
2811  auto I = ForwardRefValIDs.find(ID);
2812  if (I != ForwardRefValIDs.end())
2813  Val = I->second.first;
2814  }
2815 
2816  // If we have the value in the symbol table or fwd-ref table, return it.
2817  if (Val) {
2818  if (isValidVariableType(P.M, Ty, Val, IsCall))
2819  return Val;
2820  if (Ty->isLabelTy())
2821  P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2822  else
2823  P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2824  getTypeString(Val->getType()) + "'");
2825  return nullptr;
2826  }
2827 
2828  if (!Ty->isFirstClassType()) {
2829  P.Error(Loc, "invalid use of a non-first-class type");
2830  return nullptr;
2831  }
2832 
2833  // Otherwise, create a new forward reference for this value and remember it.
2834  Value *FwdVal;
2835  if (Ty->isLabelTy()) {
2836  FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2837  } else {
2838  FwdVal = new Argument(Ty);
2839  }
2840 
2841  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2842  return FwdVal;
2843 }
2844 
2845 /// SetInstName - After an instruction is parsed and inserted into its
2846 /// basic block, this installs its name.
2847 bool LLParser::PerFunctionState::SetInstName(int NameID,
2848  const std::string &NameStr,
2849  LocTy NameLoc, Instruction *Inst) {
2850  // If this instruction has void type, it cannot have a name or ID specified.
2851  if (Inst->getType()->isVoidTy()) {
2852  if (NameID != -1 || !NameStr.empty())
2853  return P.Error(NameLoc, "instructions returning void cannot have a name");
2854  return false;
2855  }
2856 
2857  // If this was a numbered instruction, verify that the instruction is the
2858  // expected value and resolve any forward references.
2859  if (NameStr.empty()) {
2860  // If neither a name nor an ID was specified, just use the next ID.
2861  if (NameID == -1)
2862  NameID = NumberedVals.size();
2863 
2864  if (unsigned(NameID) != NumberedVals.size())
2865  return P.Error(NameLoc, "instruction expected to be numbered '%" +
2866  Twine(NumberedVals.size()) + "'");
2867 
2868  auto FI = ForwardRefValIDs.find(NameID);
2869  if (FI != ForwardRefValIDs.end()) {
2870  Value *Sentinel = FI->second.first;
2871  if (Sentinel->getType() != Inst->getType())
2872  return P.Error(NameLoc, "instruction forward referenced with type '" +
2873  getTypeString(FI->second.first->getType()) + "'");
2874 
2875  Sentinel->replaceAllUsesWith(Inst);
2876  Sentinel->deleteValue();
2877  ForwardRefValIDs.erase(FI);
2878  }
2879 
2880  NumberedVals.push_back(Inst);
2881  return false;
2882  }
2883 
2884  // Otherwise, the instruction had a name. Resolve forward refs and set it.
2885  auto FI = ForwardRefVals.find(NameStr);
2886  if (FI != ForwardRefVals.end()) {
2887  Value *Sentinel = FI->second.first;
2888  if (Sentinel->getType() != Inst->getType())
2889  return P.Error(NameLoc, "instruction forward referenced with type '" +
2890  getTypeString(FI->second.first->getType()) + "'");
2891 
2892  Sentinel->replaceAllUsesWith(Inst);
2893  Sentinel->deleteValue();
2894  ForwardRefVals.erase(FI);
2895  }
2896 
2897  // Set the name on the instruction.
2898  Inst->setName(NameStr);
2899 
2900  if (Inst->getName() != NameStr)
2901  return P.Error(NameLoc, "multiple definition of local value named '" +
2902  NameStr + "'");
2903  return false;
2904 }
2905 
2906 /// GetBB - Get a basic block with the specified name or ID, creating a
2907 /// forward reference record if needed.
2908 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2909  LocTy Loc) {
2910  return dyn_cast_or_null<BasicBlock>(
2911  GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2912 }
2913 
2914 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2915  return dyn_cast_or_null<BasicBlock>(
2916  GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2917 }
2918 
2919 /// DefineBB - Define the specified basic block, which is either named or
2920 /// unnamed. If there is an error, this returns null otherwise it returns
2921 /// the block being defined.
2922 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2923  LocTy Loc) {
2924  BasicBlock *BB;
2925  if (Name.empty())
2926  BB = GetBB(NumberedVals.size(), Loc);
2927  else
2928  BB = GetBB(Name, Loc);
2929  if (!BB) return nullptr; // Already diagnosed error.
2930 
2931  // Move the block to the end of the function. Forward ref'd blocks are
2932  // inserted wherever they happen to be referenced.
2933  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2934 
2935  // Remove the block from forward ref sets.
2936  if (Name.empty()) {
2937  ForwardRefValIDs.erase(NumberedVals.size());
2938  NumberedVals.push_back(BB);
2939  } else {
2940  // BB forward references are already in the function symbol table.
2941  ForwardRefVals.erase(Name);
2942  }
2943 
2944  return BB;
2945 }
2946 
2947 //===----------------------------------------------------------------------===//
2948 // Constants.
2949 //===----------------------------------------------------------------------===//
2950 
2951 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2952 /// type implied. For example, if we parse "4" we don't know what integer type
2953 /// it has. The value will later be combined with its type and checked for
2954 /// sanity. PFS is used to convert function-local operands of metadata (since
2955 /// metadata operands are not just parsed here but also converted to values).
2956 /// PFS can be null when we are not parsing metadata values inside a function.
2957 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2958  ID.Loc = Lex.getLoc();
2959  switch (Lex.getKind()) {
2960  default: return TokError("expected value token");
2961  case lltok::GlobalID: // @42
2962  ID.UIntVal = Lex.getUIntVal();
2963  ID.Kind = ValID::t_GlobalID;
2964  break;
2965  case lltok::GlobalVar: // @foo
2966  ID.StrVal = Lex.getStrVal();
2968  break;
2969  case lltok::LocalVarID: // %42
2970  ID.UIntVal = Lex.getUIntVal();
2971  ID.Kind = ValID::t_LocalID;
2972  break;
2973  case lltok::LocalVar: // %foo
2974  ID.StrVal = Lex.getStrVal();
2975  ID.Kind = ValID::t_LocalName;
2976  break;
2977  case lltok::APSInt:
2978  ID.APSIntVal = Lex.getAPSIntVal();
2979  ID.Kind = ValID::t_APSInt;
2980  break;
2981  case lltok::APFloat:
2982  ID.APFloatVal = Lex.getAPFloatVal();
2983  ID.Kind = ValID::t_APFloat;
2984  break;
2985  case lltok::kw_true:
2986  ID.ConstantVal = ConstantInt::getTrue(Context);
2987  ID.Kind = ValID::t_Constant;
2988  break;
2989  case lltok::kw_false:
2990  ID.ConstantVal = ConstantInt::getFalse(Context);
2991  ID.Kind = ValID::t_Constant;
2992  break;
2993  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2994  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2995  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2996  case lltok::kw_none: ID.Kind = ValID::t_None; break;
2997 
2998  case lltok::lbrace: {
2999  // ValID ::= '{' ConstVector '}'
3000  Lex.Lex();
3002  if (ParseGlobalValueVector(Elts) ||
3003  ParseToken(lltok::rbrace, "expected end of struct constant"))
3004  return true;
3005 
3006  ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3007  ID.UIntVal = Elts.size();
3008  memcpy(ID.ConstantStructElts.get(), Elts.data(),
3009  Elts.size() * sizeof(Elts[0]));
3011  return false;
3012  }
3013  case lltok::less: {
3014  // ValID ::= '<' ConstVector '>' --> Vector.
3015  // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3016  Lex.Lex();
3017  bool isPackedStruct = EatIfPresent(lltok::lbrace);
3018 
3020  LocTy FirstEltLoc = Lex.getLoc();
3021  if (ParseGlobalValueVector(Elts) ||
3022  (isPackedStruct &&
3023  ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3024  ParseToken(lltok::greater, "expected end of constant"))
3025  return true;
3026 
3027  if (isPackedStruct) {
3028  ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3029  memcpy(ID.ConstantStructElts.get(), Elts.data(),
3030  Elts.size() * sizeof(Elts[0]));
3031  ID.UIntVal = Elts.size();
3033  return false;
3034  }
3035 
3036  if (Elts.empty())
3037  return Error(ID.Loc, "constant vector must not be empty");
3038 
3039  if (!Elts[0]->getType()->isIntegerTy() &&
3040  !Elts[0]->getType()->isFloatingPointTy() &&
3041  !Elts[0]->getType()->isPointerTy())
3042  return Error(FirstEltLoc,
3043  "vector elements must have integer, pointer or floating point type");
3044 
3045  // Verify that all the vector elements have the same type.
3046  for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3047  if (Elts[i]->getType() != Elts[0]->getType())
3048  return Error(FirstEltLoc,
3049  "vector element #" + Twine(i) +
3050  " is not of type '" + getTypeString(Elts[0]->getType()));
3051 
3052  ID.ConstantVal = ConstantVector::get(Elts);
3053  ID.Kind = ValID::t_Constant;
3054  return false;
3055  }
3056  case lltok::lsquare: { // Array Constant
3057  Lex.Lex();
3059  LocTy FirstEltLoc = Lex.getLoc();
3060  if (ParseGlobalValueVector(Elts) ||
3061  ParseToken(lltok::rsquare, "expected end of array constant"))
3062  return true;
3063 
3064  // Handle empty element.
3065  if (Elts.empty()) {
3066  // Use undef instead of an array because it's inconvenient to determine
3067  // the element type at this point, there being no elements to examine.
3069  return false;
3070  }
3071 
3072  if (!Elts[0]->getType()->isFirstClassType())
3073  return Error(FirstEltLoc, "invalid array element type: " +
3074  getTypeString(Elts[0]->getType()));
3075 
3076  ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3077 
3078  // Verify all elements are correct type!
3079  for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3080  if (Elts[i]->getType() != Elts[0]->getType())
3081  return Error(FirstEltLoc,
3082  "array element #" + Twine(i) +
3083  " is not of type '" + getTypeString(Elts[0]->getType()));
3084  }
3085 
3086  ID.ConstantVal = ConstantArray::get(ATy, Elts);
3087  ID.Kind = ValID::t_Constant;
3088  return false;
3089  }
3090  case lltok::kw_c: // c "foo"
3091  Lex.Lex();
3093  false);
3094  if (ParseToken(lltok::StringConstant, "expected string")) return true;
3095  ID.Kind = ValID::t_Constant;
3096  return false;
3097 
3098  case lltok::kw_asm: {
3099  // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3100  // STRINGCONSTANT
3101  bool HasSideEffect, AlignStack, AsmDialect;
3102  Lex.Lex();
3103  if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3104  ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3105  ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3106  ParseStringConstant(ID.StrVal) ||
3107  ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3108  ParseToken(lltok::StringConstant, "expected constraint string"))
3109  return true;
3110  ID.StrVal2 = Lex.getStrVal();
3111  ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3112  (unsigned(AsmDialect)<<2);
3113  ID.Kind = ValID::t_InlineAsm;
3114  return false;
3115  }
3116 
3117  case lltok::kw_blockaddress: {
3118  // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3119  Lex.Lex();
3120 
3121  ValID Fn, Label;
3122 
3123  if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3124  ParseValID(Fn) ||
3125  ParseToken(lltok::comma, "expected comma in block address expression")||
3126  ParseValID(Label) ||
3127  ParseToken(lltok::rparen, "expected ')' in block address expression"))
3128  return true;
3129 
3130  if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3131  return Error(Fn.Loc, "expected function name in blockaddress");
3132  if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3133  return Error(Label.Loc, "expected basic block name in blockaddress");
3134 
3135  // Try to find the function (but skip it if it's forward-referenced).
3136  GlobalValue *GV = nullptr;
3137  if (Fn.Kind == ValID::t_GlobalID) {
3138  if (Fn.UIntVal < NumberedVals.size())
3139  GV = NumberedVals[Fn.UIntVal];
3140  } else if (!ForwardRefVals.count(Fn.StrVal)) {
3141  GV = M->getNamedValue(Fn.StrVal);
3142  }
3143  Function *F = nullptr;
3144  if (GV) {
3145  // Confirm that it's actually a function with a definition.
3146  if (!isa<Function>(GV))
3147  return Error(Fn.Loc, "expected function name in blockaddress");
3148  F = cast<Function>(GV);
3149  if (F->isDeclaration())
3150  return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3151  }
3152 
3153  if (!F) {
3154  // Make a global variable as a placeholder for this reference.
3155  GlobalValue *&FwdRef =
3156  ForwardRefBlockAddresses.insert(std::make_pair(
3157  std::move(Fn),
3158  std::map<ValID, GlobalValue *>()))
3159  .first->second.insert(std::make_pair(std::move(Label), nullptr))
3160  .first->second;
3161  if (!FwdRef)
3162  FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3163  GlobalValue::InternalLinkage, nullptr, "");
3164  ID.ConstantVal = FwdRef;
3165  ID.Kind = ValID::t_Constant;
3166  return false;
3167  }
3168 
3169  // We found the function; now find the basic block. Don't use PFS, since we
3170  // might be inside a constant expression.
3171  BasicBlock *BB;
3172  if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3173  if (Label.Kind == ValID::t_LocalID)
3174  BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3175  else
3176  BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3177  if (!BB)
3178  return Error(Label.Loc, "referenced value is not a basic block");
3179  } else {
3180  if (Label.Kind == ValID::t_LocalID)
3181  return Error(Label.Loc, "cannot take address of numeric label after "
3182  "the function is defined");
3183  BB = dyn_cast_or_null<BasicBlock>(
3184  F->getValueSymbolTable()->lookup(Label.StrVal));
3185  if (!BB)
3186  return Error(Label.Loc, "referenced value is not a basic block");
3187  }
3188 
3189  ID.ConstantVal = BlockAddress::get(F, BB);
3190  ID.Kind = ValID::t_Constant;
3191  return false;
3192  }
3193 
3194  case lltok::kw_trunc:
3195  case lltok::kw_zext:
3196  case lltok::kw_sext:
3197  case lltok::kw_fptrunc:
3198  case lltok::kw_fpext:
3199  case lltok::kw_bitcast:
3201  case lltok::kw_uitofp:
3202  case lltok::kw_sitofp:
3203  case lltok::kw_fptoui:
3204  case lltok::kw_fptosi:
3205  case lltok::kw_inttoptr:
3206  case lltok::kw_ptrtoint: {
3207  unsigned Opc = Lex.getUIntVal();
3208  Type *DestTy = nullptr;
3209  Constant *SrcVal;
3210  Lex.Lex();
3211  if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3212  ParseGlobalTypeAndValue(SrcVal) ||
3213  ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3214  ParseType(DestTy) ||
3215  ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3216  return true;
3217  if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3218  return Error(ID.Loc, "invalid cast opcode for cast from '" +
3219  getTypeString(SrcVal->getType()) + "' to '" +
3220  getTypeString(DestTy) + "'");
3222  SrcVal, DestTy);
3223  ID.Kind = ValID::t_Constant;
3224  return false;
3225  }
3226  case lltok::kw_extractvalue: {
3227  Lex.Lex();
3228  Constant *Val;
3229  SmallVector<unsigned, 4> Indices;
3230  if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3231  ParseGlobalTypeAndValue(Val) ||
3232  ParseIndexList(Indices) ||
3233  ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3234  return true;
3235 
3236  if (!Val->getType()->isAggregateType())
3237  return Error(ID.Loc, "extractvalue operand must be aggregate type");
3238  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3239  return Error(ID.Loc, "invalid indices for extractvalue");
3240  ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3241  ID.Kind = ValID::t_Constant;
3242  return false;
3243  }
3244  case lltok::kw_insertvalue: {
3245  Lex.Lex();
3246  Constant *Val0, *Val1;
3247  SmallVector<unsigned, 4> Indices;
3248  if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3249  ParseGlobalTypeAndValue(Val0) ||
3250  ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3251  ParseGlobalTypeAndValue(Val1) ||
3252  ParseIndexList(Indices) ||
3253  ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3254  return true;
3255  if (!Val0->getType()->isAggregateType())
3256  return Error(ID.Loc, "insertvalue operand must be aggregate type");
3257  Type *IndexedType =
3258  ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3259  if (!IndexedType)
3260  return Error(ID.Loc, "invalid indices for insertvalue");
3261  if (IndexedType != Val1->getType())
3262  return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3263  getTypeString(Val1->getType()) +
3264  "' instead of '" + getTypeString(IndexedType) +
3265  "'");
3266  ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3267  ID.Kind = ValID::t_Constant;
3268  return false;
3269  }
3270  case lltok::kw_icmp:
3271  case lltok::kw_fcmp: {
3272  unsigned PredVal, Opc = Lex.getUIntVal();
3273  Constant *Val0, *Val1;
3274  Lex.Lex();
3275  if (ParseCmpPredicate(PredVal, Opc) ||
3276  ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3277  ParseGlobalTypeAndValue(Val0) ||
3278  ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3279  ParseGlobalTypeAndValue(Val1) ||
3280  ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3281  return true;
3282 
3283  if (Val0->getType() != Val1->getType())
3284  return Error(ID.Loc, "compare operands must have the same type");
3285 
3286  CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3287 
3288  if (Opc == Instruction::FCmp) {
3289  if (!Val0->getType()->isFPOrFPVectorTy())
3290  return Error(ID.Loc, "fcmp requires floating point operands");
3291  ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3292  } else {
3293  assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3294  if (!Val0->getType()->isIntOrIntVectorTy() &&
3295  !Val0->getType()->isPtrOrPtrVectorTy())
3296  return Error(ID.Loc, "icmp requires pointer or integer operands");
3297  ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3298  }
3299  ID.Kind = ValID::t_Constant;
3300  return false;
3301  }
3302 
3303  // Binary Operators.
3304  case lltok::kw_add:
3305  case lltok::kw_fadd:
3306  case lltok::kw_sub:
3307  case lltok::kw_fsub:
3308  case lltok::kw_mul:
3309  case lltok::kw_fmul:
3310  case lltok::kw_udiv:
3311  case lltok::kw_sdiv:
3312  case lltok::kw_fdiv:
3313  case lltok::kw_urem:
3314  case lltok::kw_srem:
3315  case lltok::kw_frem:
3316  case lltok::kw_shl:
3317  case lltok::kw_lshr:
3318  case lltok::kw_ashr: {
3319  bool NUW = false;
3320  bool NSW = false;
3321  bool Exact = false;
3322  unsigned Opc = Lex.getUIntVal();
3323  Constant *Val0, *Val1;
3324  Lex.Lex();
3325  LocTy ModifierLoc = Lex.getLoc();
3326  if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3327  Opc == Instruction::Mul || Opc == Instruction::Shl) {
3328  if (EatIfPresent(lltok::kw_nuw))
3329  NUW = true;
3330  if (EatIfPresent(lltok::kw_nsw)) {
3331  NSW = true;
3332  if (EatIfPresent(lltok::kw_nuw))
3333  NUW = true;
3334  }
3335  } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3336  Opc == Instruction::LShr || Opc == Instruction::AShr) {
3337  if (EatIfPresent(lltok::kw_exact))
3338  Exact = true;
3339  }
3340  if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3341  ParseGlobalTypeAndValue(Val0) ||
3342  ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3343  ParseGlobalTypeAndValue(Val1) ||
3344  ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3345  return true;
3346  if (Val0->getType() != Val1->getType())
3347  return Error(ID.Loc, "operands of constexpr must have same type");
3348  if (!Val0->getType()->isIntOrIntVectorTy()) {
3349  if (NUW)
3350  return Error(ModifierLoc, "nuw only applies to integer operations");
3351  if (NSW)
3352  return Error(ModifierLoc, "nsw only applies to integer operations");
3353  }
3354  // Check that the type is valid for the operator.
3355  switch (Opc) {
3356  case Instruction::Add:
3357  case Instruction::Sub:
3358  case Instruction::Mul:
3359  case Instruction::UDiv:
3360  case Instruction::SDiv:
3361  case Instruction::URem:
3362  case Instruction::SRem:
3363  case Instruction::Shl:
3364  case Instruction::AShr:
3365  case Instruction::LShr:
3366  if (!Val0->getType()->isIntOrIntVectorTy())
3367  return Error(ID.Loc, "constexpr requires integer operands");
3368  break;
3369  case Instruction::FAdd:
3370  case Instruction::FSub:
3371  case Instruction::FMul:
3372  case Instruction::FDiv:
3373  case Instruction::FRem:
3374  if (!Val0->getType()->isFPOrFPVectorTy())
3375  return Error(ID.Loc, "constexpr requires fp operands");
3376  break;
3377  default: llvm_unreachable("Unknown binary operator!");
3378  }
3379  unsigned Flags = 0;
3381  if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
3382  if (Exact) Flags |= PossiblyExactOperator::IsExact;
3383  Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3384  ID.ConstantVal = C;
3385  ID.Kind = ValID::t_Constant;
3386  return false;
3387  }
3388 
3389  // Logical Operations
3390  case lltok::kw_and:
3391  case lltok::kw_or:
3392  case lltok::kw_xor: {
3393  unsigned Opc = Lex.getUIntVal();
3394  Constant *Val0, *Val1;
3395  Lex.Lex();
3396  if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3397  ParseGlobalTypeAndValue(Val0) ||
3398  ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3399  ParseGlobalTypeAndValue(Val1) ||
3400  ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3401  return true;
3402  if (Val0->getType() != Val1->getType())
3403  return Error(ID.Loc, "operands of constexpr must have same type");
3404  if (!Val0->getType()->isIntOrIntVectorTy())
3405  return Error(ID.Loc,
3406  "constexpr requires integer or integer vector operands");
3407  ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3408  ID.Kind = ValID::t_Constant;
3409  return false;
3410  }
3411 
3416  case lltok::kw_select: {
3417  unsigned Opc = Lex.getUIntVal();
3419  bool InBounds = false;
3420  Type *Ty;
3421  Lex.Lex();
3422 
3423  if (Opc == Instruction::GetElementPtr)
3424  InBounds = EatIfPresent(lltok::kw_inbounds);
3425 
3426  if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3427  return true;
3428 
3429  LocTy ExplicitTypeLoc = Lex.getLoc();
3430  if (Opc == Instruction::GetElementPtr) {
3431  if (ParseType(Ty) ||
3432  ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3433  return true;
3434  }
3435 
3436  Optional<unsigned> InRangeOp;
3437  if (ParseGlobalValueVector(
3438  Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3439  ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3440  return true;
3441 
3442  if (Opc == Instruction::GetElementPtr) {
3443  if (Elts.size() == 0 ||
3444  !Elts[0]->getType()->isPtrOrPtrVectorTy())
3445  return Error(ID.Loc, "base of getelementptr must be a pointer");
3446 
3447  Type *BaseType = Elts[0]->getType();
3448  auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3449  if (Ty != BasePointerType->getElementType())
3450  return Error(
3451  ExplicitTypeLoc,
3452  "explicit pointee type doesn't match operand's pointee type");
3453 
3454  unsigned GEPWidth =
3455  BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3456 
3457  ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3458  for (Constant *Val : Indices) {
3459  Type *ValTy = Val->getType();
3460  if (!ValTy->isIntOrIntVectorTy())
3461  return Error(ID.Loc, "getelementptr index must be an integer");
3462  if (ValTy->isVectorTy()) {
3463  unsigned ValNumEl = ValTy->getVectorNumElements();
3464  if (GEPWidth && (ValNumEl != GEPWidth))
3465  return Error(
3466  ID.Loc,
3467  "getelementptr vector index has a wrong number of elements");
3468  // GEPWidth may have been unknown because the base is a scalar,
3469  // but it is known now.
3470  GEPWidth = ValNumEl;
3471  }
3472  }
3473 
3474  SmallPtrSet<Type*, 4> Visited;
3475  if (!Indices.empty() && !Ty->isSized(&Visited))
3476  return Error(ID.Loc, "base element of getelementptr must be sized");
3477 
3478  if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3479  return Error(ID.Loc, "invalid getelementptr indices");
3480 
3481  if (InRangeOp) {
3482  if (*InRangeOp == 0)
3483  return Error(ID.Loc,
3484  "inrange keyword may not appear on pointer operand");
3485  --*InRangeOp;
3486  }
3487 
3488  ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3489  InBounds, InRangeOp);
3490  } else if (Opc == Instruction::Select) {
3491  if (Elts.size() != 3)
3492  return Error(ID.Loc, "expected three operands to select");
3493  if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3494  Elts[2]))
3495  return Error(ID.Loc, Reason);
3496  ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3497  } else if (Opc == Instruction::ShuffleVector) {
3498  if (Elts.size() != 3)
3499  return Error(ID.Loc, "expected three operands to shufflevector");
3500  if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3501  return Error(ID.Loc, "invalid operands to shufflevector");
3502  ID.ConstantVal =
3503  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3504  } else if (Opc == Instruction::ExtractElement) {
3505  if (Elts.size() != 2)
3506  return Error(ID.Loc, "expected two operands to extractelement");
3507  if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3508  return Error(ID.Loc, "invalid extractelement operands");
3509  ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3510  } else {
3511  assert(Opc == Instruction::InsertElement && "Unknown opcode");
3512  if (Elts.size() != 3)
3513  return Error(ID.Loc, "expected three operands to insertelement");
3514  if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3515  return Error(ID.Loc, "invalid insertelement operands");
3516  ID.ConstantVal =
3517  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3518  }
3519 
3520  ID.Kind = ValID::t_Constant;
3521  return false;
3522  }
3523  }
3524 
3525  Lex.Lex();
3526  return false;
3527 }
3528 
3529 /// ParseGlobalValue - Parse a global value with the specified type.
3530 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3531  C = nullptr;
3532  ValID ID;
3533  Value *V = nullptr;
3534  bool Parsed = ParseValID(ID) ||
3535  ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3536  if (V && !(C = dyn_cast<Constant>(V)))
3537  return Error(ID.Loc, "global values must be constants");
3538  return Parsed;
3539 }
3540 
3541 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3542  Type *Ty = nullptr;
3543  return ParseType(Ty) ||
3544  ParseGlobalValue(Ty, V);
3545 }
3546 
3547 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3548  C = nullptr;
3549 
3550  LocTy KwLoc = Lex.getLoc();
3551  if (!EatIfPresent(lltok::kw_comdat))
3552  return false;
3553 
3554  if (EatIfPresent(lltok::lparen)) {
3555  if (Lex.getKind() != lltok::ComdatVar)
3556  return TokError("expected comdat variable");
3557  C = getComdat(Lex.getStrVal(), Lex.getLoc());
3558  Lex.Lex();
3559  if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3560  return true;
3561  } else {
3562  if (GlobalName.empty())
3563  return TokError("comdat cannot be unnamed");
3564  C = getComdat(GlobalName, KwLoc);
3565  }
3566 
3567  return false;
3568 }
3569 
3570 /// ParseGlobalValueVector
3571 /// ::= /*empty*/
3572 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3573 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3574  Optional<unsigned> *InRangeOp) {
3575  // Empty list.
3576  if (Lex.getKind() == lltok::rbrace ||
3577  Lex.getKind() == lltok::rsquare ||
3578  Lex.getKind() == lltok::greater ||
3579  Lex.getKind() == lltok::rparen)
3580  return false;
3581 
3582  do {
3583  if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3584  *InRangeOp = Elts.size();
3585 
3586  Constant *C;
3587  if (ParseGlobalTypeAndValue(C)) return true;
3588  Elts.push_back(C);
3589  } while (EatIfPresent(lltok::comma));
3590 
3591  return false;
3592 }
3593 
3594 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3596  if (ParseMDNodeVector(Elts))
3597  return true;
3598 
3599  MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3600  return false;
3601 }
3602 
3603 /// MDNode:
3604 /// ::= !{ ... }
3605 /// ::= !7
3606 /// ::= !DILocation(...)
3607 bool LLParser::ParseMDNode(MDNode *&N) {
3608  if (Lex.getKind() == lltok::MetadataVar)
3609  return ParseSpecializedMDNode(N);
3610 
3611  return ParseToken(lltok::exclaim, "expected '!' here") ||
3612  ParseMDNodeTail(N);
3613 }
3614 
3615 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3616  // !{ ... }
3617  if (Lex.getKind() == lltok::lbrace)
3618  return ParseMDTuple(N);
3619 
3620  // !42
3621  return ParseMDNodeID(N);
3622 }
3623 
3624 namespace {
3625 
3626 /// Structure to represent an optional metadata field.
3627 template <class FieldTy> struct MDFieldImpl {
3628  typedef MDFieldImpl ImplTy;
3629  FieldTy Val;
3630  bool Seen;
3631 
3632  void assign(FieldTy Val) {
3633  Seen = true;
3634  this->Val = std::move(Val);
3635  }
3636 
3637  explicit MDFieldImpl(FieldTy Default)
3638  : Val(std::move(Default)), Seen(false) {}
3639 };
3640 
3641 /// Structure to represent an optional metadata field that
3642 /// can be of either type (A or B) and encapsulates the
3643 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3644 /// to reimplement the specifics for representing each Field.
3645 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3646  typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3647  FieldTypeA A;
3648  FieldTypeB B;
3649  bool Seen;
3650 
3651  enum {
3652  IsInvalid = 0,
3653  IsTypeA = 1,
3654  IsTypeB = 2
3655  } WhatIs;
3656 
3657  void assign(FieldTypeA A) {
3658  Seen = true;
3659  this->A = std::move(A);
3660  WhatIs = IsTypeA;
3661  }
3662 
3663  void assign(FieldTypeB B) {
3664  Seen = true;
3665  this->B = std::move(B);
3666  WhatIs = IsTypeB;
3667  }
3668 
3669  explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3670  : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3671  WhatIs(IsInvalid) {}
3672 };
3673 
3674 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3675  uint64_t Max;
3676 
3677  MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3678  : ImplTy(Default), Max(Max) {}
3679 };
3680 
3681 struct LineField : public MDUnsignedField {
3682  LineField() : MDUnsignedField(0, UINT32_MAX) {}
3683 };
3684 
3685 struct ColumnField : public MDUnsignedField {
3686  ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3687 };
3688 
3689 struct DwarfTagField : public MDUnsignedField {
3690  DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3691  DwarfTagField(dwarf::Tag DefaultTag)
3692  : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3693 };
3694 
3695 struct DwarfMacinfoTypeField : public MDUnsignedField {
3696  DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3697  DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3698  : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3699 };
3700 
3701 struct DwarfAttEncodingField : public MDUnsignedField {
3702  DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3703 };
3704 
3705 struct DwarfVirtualityField : public MDUnsignedField {
3706  DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3707 };
3708 
3709 struct DwarfLangField : public MDUnsignedField {
3710  DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3711 };
3712 
3713 struct DwarfCCField : public MDUnsignedField {
3714  DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3715 };
3716 
3717 struct EmissionKindField : public MDUnsignedField {
3718  EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3719 };
3720 
3721 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3722  DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3723 };
3724 
3725 struct MDSignedField : public MDFieldImpl<int64_t> {
3726  int64_t Min;
3727  int64_t Max;
3728 
3729  MDSignedField(int64_t Default = 0)
3730  : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3731  MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3732  : ImplTy(Default), Min(Min), Max(Max) {}
3733 };
3734 
3735 struct MDBoolField : public MDFieldImpl<bool> {
3736  MDBoolField(bool Default = false) : ImplTy(Default) {}
3737 };
3738 
3739 struct MDField : public MDFieldImpl<Metadata *> {
3740  bool AllowNull;
3741 
3742  MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3743 };
3744 
3745 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3746  MDConstant() : ImplTy(nullptr) {}
3747 };
3748 
3749 struct MDStringField : public MDFieldImpl<MDString *> {
3750  bool AllowEmpty;
3751  MDStringField(bool AllowEmpty = true)
3752  : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3753 };
3754 
3755 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3756  MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3757 };
3758 
3759 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3760  ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3761 };
3762 
3763 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3764  MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3765  : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3766 
3767  MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3768  bool AllowNull = true)
3769  : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3770 
3771  bool isMDSignedField() const { return WhatIs == IsTypeA; }
3772  bool isMDField() const { return WhatIs == IsTypeB; }
3773  int64_t getMDSignedValue() const {
3774  assert(isMDSignedField() && "Wrong field type");
3775  return A.Val;
3776  }
3777  Metadata *getMDFieldValue() const {
3778  assert(isMDField() && "Wrong field type");
3779  return B.Val;
3780  }
3781 };
3782 
3783 struct MDSignedOrUnsignedField
3784  : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3785  MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3786 
3787  bool isMDSignedField() const { return WhatIs == IsTypeA; }
3788  bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3789  int64_t getMDSignedValue() const {
3790  assert(isMDSignedField() && "Wrong field type");
3791  return A.Val;
3792  }
3793  uint64_t getMDUnsignedValue() const {
3794  assert(isMDUnsignedField() && "Wrong field type");
3795  return B.Val;
3796  }
3797 };
3798 
3799 } // end anonymous namespace
3800 
3801 namespace llvm {
3802 
3803 template <>
3804 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3805  MDUnsignedField &Result) {
3806  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3807  return TokError("expected unsigned integer");
3808 
3809  auto &U = Lex.getAPSIntVal();
3810  if (U.ugt(Result.Max))
3811  return TokError("value for '" + Name + "' too large, limit is " +
3812  Twine(Result.Max));
3813  Result.assign(U.getZExtValue());
3814  assert(Result.Val <= Result.Max && "Expected value in range");
3815  Lex.Lex();
3816  return false;
3817 }
3818 
3819 template <>
3820 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3821  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3822 }
3823 template <>
3824 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3825  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3826 }
3827 
3828 template <>
3829 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3830  if (Lex.getKind() == lltok::APSInt)
3831  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3832 
3833  if (Lex.getKind() != lltok::DwarfTag)
3834  return TokError("expected DWARF tag");
3835 
3836  unsigned Tag = dwarf::getTag(Lex.getStrVal());
3837  if (Tag == dwarf::DW_TAG_invalid)
3838  return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3839  assert(Tag <= Result.Max && "Expected valid DWARF tag");
3840 
3841  Result.assign(Tag);
3842  Lex.Lex();
3843  return false;
3844 }
3845 
3846 template <>
3847 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3848  DwarfMacinfoTypeField &Result) {
3849  if (Lex.getKind() == lltok::APSInt)
3850  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3851 
3852  if (Lex.getKind() != lltok::DwarfMacinfo)
3853  return TokError("expected DWARF macinfo type");
3854 
3855  unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3856  if (Macinfo == dwarf::DW_MACINFO_invalid)
3857  return TokError(
3858  "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3859  assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3860 
3861  Result.assign(Macinfo);
3862  Lex.Lex();
3863  return false;
3864 }
3865 
3866 template <>
3867 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3868  DwarfVirtualityField &Result) {
3869  if (Lex.getKind() == lltok::APSInt)
3870  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3871 
3872  if (Lex.getKind() != lltok::DwarfVirtuality)
3873  return TokError("expected DWARF virtuality code");
3874 
3875  unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3876  if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3877  return TokError("invalid DWARF virtuality code" + Twine(" '") +
3878  Lex.getStrVal() + "'");
3879  assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3880  Result.assign(Virtuality);
3881  Lex.Lex();
3882  return false;
3883 }
3884 
3885 template <>
3886 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3887  if (Lex.getKind() == lltok::APSInt)
3888  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3889 
3890  if (Lex.getKind() != lltok::DwarfLang)
3891  return TokError("expected DWARF language");
3892 
3893  unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3894  if (!Lang)
3895  return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3896  "'");
3897  assert(Lang <= Result.Max && "Expected valid DWARF language");
3898  Result.assign(Lang);
3899  Lex.Lex();
3900  return false;
3901 }
3902 
3903 template <>
3904 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3905  if (Lex.getKind() == lltok::APSInt)
3906  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3907 
3908  if (Lex.getKind() != lltok::DwarfCC)
3909  return TokError("expected DWARF calling convention");
3910 
3911  unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3912  if (!CC)
3913  return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3914  "'");
3915  assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3916  Result.assign(CC);
3917  Lex.Lex();
3918  return false;
3919 }
3920 
3921 template <>
3922 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3923  if (Lex.getKind() == lltok::APSInt)
3924  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3925 
3926  if (Lex.getKind() != lltok::EmissionKind)
3927  return TokError("expected emission kind");
3928 
3929  auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3930  if (!Kind)
3931  return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3932  "'");
3933  assert(*Kind <= Result.Max && "Expected valid emission kind");
3934  Result.assign(*Kind);
3935  Lex.Lex();
3936  return false;
3937 }
3938 
3939 template <>
3940 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3941  DwarfAttEncodingField &Result) {
3942  if (Lex.getKind() == lltok::APSInt)
3943  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3944 
3945  if (Lex.getKind() != lltok::DwarfAttEncoding)
3946  return TokError("expected DWARF type attribute encoding");
3947 
3948  unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3949  if (!Encoding)
3950  return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3951  Lex.getStrVal() + "'");
3952  assert(Encoding <= Result.Max && "Expected valid DWARF language");
3953  Result.assign(Encoding);
3954  Lex.Lex();
3955  return false;
3956 }
3957 
3958 /// DIFlagField
3959 /// ::= uint32
3960 /// ::= DIFlagVector
3961 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3962 template <>
3963 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3964 
3965  // Parser for a single flag.
3966  auto parseFlag = [&](DINode::DIFlags &Val) {
3967  if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3968  uint32_t TempVal = static_cast<uint32_t>(Val);
3969  bool Res = ParseUInt32(TempVal);
3970  Val = static_cast<DINode::DIFlags>(TempVal);
3971  return Res;
3972  }
3973 
3974  if (Lex.getKind() != lltok::DIFlag)
3975  return TokError("expected debug info flag");
3976 
3977  Val = DINode::getFlag(Lex.getStrVal());
3978  if (!Val)
3979  return TokError(Twine("invalid debug info flag flag '") +
3980  Lex.getStrVal() + "'");
3981  Lex.Lex();
3982  return false;
3983  };
3984 
3985  // Parse the flags and combine them together.
3986  DINode::DIFlags Combined = DINode::FlagZero;
3987  do {
3988  DINode::DIFlags Val;
3989  if (parseFlag(Val))
3990  return true;
3991  Combined |= Val;
3992  } while (EatIfPresent(lltok::bar));
3993 
3994  Result.assign(Combined);
3995  return false;
3996 }
3997 
3998 template <>
3999 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4000  MDSignedField &Result) {
4001  if (Lex.getKind() != lltok::APSInt)
4002  return TokError("expected signed integer");
4003 
4004  auto &S = Lex.getAPSIntVal();
4005  if (S < Result.Min)
4006  return TokError("value for '" + Name + "' too small, limit is " +
4007  Twine(Result.Min));
4008  if (S > Result.Max)
4009  return TokError("value for '" + Name + "' too large, limit is " +
4010  Twine(Result.Max));
4011  Result.assign(S.getExtValue());
4012  assert(Result.Val >= Result.Min && "Expected value in range");
4013  assert(Result.Val <= Result.Max && "Expected value in range");
4014  Lex.Lex();
4015  return false;
4016 }
4017 
4018 template <>
4019 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4020  switch (Lex.getKind()) {
4021  default:
4022  return TokError("expected 'true' or 'false'");
4023  case lltok::kw_true:
4024  Result.assign(true);
4025  break;
4026  case lltok::kw_false:
4027  Result.assign(false);
4028  break;
4029  }
4030  Lex.Lex();
4031  return false;
4032 }
4033 
4034 template <>
4035 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4036  if (Lex.getKind() == lltok::kw_null) {
4037  if (!Result.AllowNull)
4038  return TokError("'" + Name + "' cannot be null");
4039  Lex.Lex();
4040  Result.assign(nullptr);
4041  return false;
4042  }
4043 
4044  Metadata *MD;
4045  if (ParseMetadata(MD, nullptr))
4046  return true;
4047 
4048  Result.assign(MD);
4049  return false;
4050 }
4051 
4052 template <>
4053 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4054  MDSignedOrMDField &Result) {
4055  // Try to parse a signed int.
4056  if (Lex.getKind() == lltok::APSInt) {
4057  MDSignedField Res = Result.A;
4058  if (!ParseMDField(Loc, Name, Res)) {
4059  Result.assign(Res);
4060  return false;
4061  }
4062  return true;
4063  }
4064 
4065  // Otherwise, try to parse as an MDField.
4066  MDField Res = Result.B;
4067  if (!ParseMDField(Loc, Name, Res)) {
4068  Result.assign(Res);
4069  return false;
4070  }
4071 
4072  return true;
4073 }
4074 
4075 template <>
4076 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4077  MDSignedOrUnsignedField &Result) {
4078  if (Lex.getKind() != lltok::APSInt)
4079  return false;
4080 
4081  if (Lex.getAPSIntVal().isSigned()) {
4082  MDSignedField Res = Result.A;
4083  if (ParseMDField(Loc, Name, Res))
4084  return true;
4085  Result.assign(Res);
4086  return false;
4087  }
4088 
4089  MDUnsignedField Res = Result.B;
4090  if (ParseMDField(Loc, Name, Res))
4091  return true;
4092  Result.assign(Res);
4093  return false;
4094 }
4095 
4096 template <>
4097 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4098  LocTy ValueLoc = Lex.getLoc();
4099  std::string S;
4100  if (ParseStringConstant(S))
4101  return true;
4102 
4103  if (!Result.AllowEmpty && S.empty())
4104  return Error(ValueLoc, "'" + Name + "' cannot be empty");
4105 
4106  Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4107  return false;
4108 }
4109 
4110 template <>
4111 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4113  if (ParseMDNodeVector(MDs))
4114  return true;
4115 
4116  Result.assign(std::move(MDs));
4117  return false;
4118 }
4119 
4120 template <>
4121 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4122  ChecksumKindField &Result) {
4124  DIFile::getChecksumKind(Lex.getStrVal());
4125 
4126  if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4127  return TokError(
4128  "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4129 
4130  Result.assign(*CSKind);
4131  Lex.Lex();
4132  return false;
4133 }
4134 
4135 } // end namespace llvm
4136 
4137 template <class ParserTy>
4138 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4139  do {
4140  if (Lex.getKind() != lltok::LabelStr)
4141  return TokError("expected field label here");
4142 
4143  if (parseField())
4144  return true;
4145  } while (EatIfPresent(lltok::comma));
4146 
4147  return false;
4148 }
4149 
4150 template <class ParserTy>
4151 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4152  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4153  Lex.Lex();
4154 
4155  if (ParseToken(lltok::lparen, "expected '(' here"))
4156  return true;
4157  if (Lex.getKind() != lltok::rparen)
4158  if (ParseMDFieldsImplBody(parseField))
4159  return true;
4160 
4161  ClosingLoc = Lex.getLoc();
4162  return ParseToken(lltok::rparen, "expected ')' here");
4163 }
4164 
4165 template <class FieldTy>
4166 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4167  if (Result.Seen)
4168  return TokError("field '" + Name + "' cannot be specified more than once");
4169 
4170  LocTy Loc = Lex.getLoc();
4171  Lex.Lex();
4172  return ParseMDField(Loc, Name, Result);
4173 }
4174 
4175 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4176  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4177 
4178 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
4179  if (Lex.getStrVal() == #CLASS) \
4180  return Parse##CLASS(N, IsDistinct);
4181 #include "llvm/IR/Metadata.def"
4182 
4183  return TokError("expected metadata type");
4184 }
4185 
4186 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4187 #define NOP_FIELD(NAME, TYPE, INIT)
4188 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
4189  if (!NAME.Seen) \
4190  return Error(ClosingLoc, "missing required field '" #NAME "'");
4191 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
4192  if (Lex.getStrVal() == #NAME) \
4193  return ParseMDField(#NAME, NAME);
4194 #define PARSE_MD_FIELDS() \
4195  VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
4196  do { \
4197  LocTy ClosingLoc; \
4198  if (ParseMDFieldsImpl([&]() -> bool { \
4199  VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
4200  return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
4201  }, ClosingLoc)) \
4202  return true; \
4203  VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
4204  } while (false)
4205 #define GET_OR_DISTINCT(CLASS, ARGS) \
4206  (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4207 
4208 /// ParseDILocationFields:
4209 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
4210 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4211 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4212  OPTIONAL(line, LineField, ); \
4213  OPTIONAL(column, ColumnField, ); \
4214  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4215  OPTIONAL(inlinedAt, MDField, );
4216  PARSE_MD_FIELDS();
4217 #undef VISIT_MD_FIELDS
4218 
4219  Result = GET_OR_DISTINCT(
4220  DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
4221  return false;
4222 }
4223 
4224 /// ParseGenericDINode:
4225 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4226 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4227 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4228  REQUIRED(tag, DwarfTagField, ); \
4229  OPTIONAL(header, MDStringField, ); \
4230  OPTIONAL(operands, MDFieldList, );
4231  PARSE_MD_FIELDS();
4232 #undef VISIT_MD_FIELDS
4233 
4234  Result = GET_OR_DISTINCT(GenericDINode,
4235  (Context, tag.Val, header.Val, operands.Val));
4236  return false;
4237 }
4238 
4239 /// ParseDISubrange:
4240 /// ::= !DISubrange(count: 30, lowerBound: 2)
4241 /// ::= !DISubrange(count: !node, lowerBound: 2)
4242 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4243 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4244  REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
4245  OPTIONAL(lowerBound, MDSignedField, );
4246  PARSE_MD_FIELDS();
4247 #undef VISIT_MD_FIELDS
4248 
4249  if (count.isMDSignedField())
4250  Result = GET_OR_DISTINCT(
4251  DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4252  else if (count.isMDField())
4253  Result = GET_OR_DISTINCT(
4254  DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4255  else
4256  return true;
4257 
4258  return false;
4259 }
4260 
4261 /// ParseDIEnumerator:
4262 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4263 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4264 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4265  REQUIRED(name, MDStringField, ); \
4266  REQUIRED(value, MDSignedOrUnsignedField, ); \
4267  OPTIONAL(isUnsigned, MDBoolField, (false));
4268  PARSE_MD_FIELDS();
4269 #undef VISIT_MD_FIELDS
4270 
4271  if (isUnsigned.Val && value.isMDSignedField())
4272  return TokError("unsigned enumerator with negative value");
4273 
4274  int64_t Value = value.isMDSignedField()
4275  ? value.getMDSignedValue()
4276  : static_cast<int64_t>(value.getMDUnsignedValue());
4277  Result =
4278  GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4279 
4280  return false;
4281 }
4282 
4283 /// ParseDIBasicType:
4284 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
4285 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4286 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4287  OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
4288  OPTIONAL(name, MDStringField, ); \
4289  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4290  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4291  OPTIONAL(encoding, DwarfAttEncodingField, );
4292  PARSE_MD_FIELDS();
4293 #undef VISIT_MD_FIELDS
4294 
4295  Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4296  align.Val, encoding.Val));
4297  return false;
4298 }
4299 
4300 /// ParseDIDerivedType:
4301 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4302 /// line: 7, scope: !1, baseType: !2, size: 32,
4303 /// align: 32, offset: 0, flags: 0, extraData: !3,
4304 /// dwarfAddressSpace: 3)
4305 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4306 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4307  REQUIRED(tag, DwarfTagField, ); \
4308  OPTIONAL(name, MDStringField, ); \
4309  OPTIONAL(file, MDField, ); \
4310  OPTIONAL(line, LineField, ); \
4311  OPTIONAL(scope, MDField, ); \
4312  REQUIRED(baseType, MDField, ); \
4313  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4314  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4315  OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4316  OPTIONAL(flags, DIFlagField, ); \
4317  OPTIONAL(extraData, MDField, ); \
4318  OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4319  PARSE_MD_FIELDS();
4320 #undef VISIT_MD_FIELDS
4321 
4322  Optional<unsigned> DWARFAddressSpace;
4323  if (dwarfAddressSpace.Val != UINT32_MAX)
4324  DWARFAddressSpace = dwarfAddressSpace.Val;
4325 
4326  Result = GET_OR_DISTINCT(DIDerivedType,
4327  (Context, tag.Val, name.Val, file.Val, line.Val,
4328  scope.Val, baseType.Val, size.Val, align.Val,
4329  offset.Val, DWARFAddressSpace, flags.Val,
4330  extraData.Val));
4331  return false;
4332 }
4333 
4334 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4335 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4336  REQUIRED(tag, DwarfTagField, ); \
4337  OPTIONAL(name, MDStringField, ); \
4338  OPTIONAL(file, MDField, ); \
4339  OPTIONAL(line, LineField, ); \
4340  OPTIONAL(scope, MDField, ); \
4341  OPTIONAL(baseType, MDField, ); \
4342  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4343  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4344  OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4345  OPTIONAL(flags, DIFlagField, ); \
4346  OPTIONAL(elements, MDField, ); \
4347  OPTIONAL(runtimeLang, DwarfLangField, ); \
4348  OPTIONAL(vtableHolder, MDField, ); \
4349  OPTIONAL(templateParams, MDField, ); \
4350  OPTIONAL(identifier, MDStringField, ); \
4351  OPTIONAL(discriminator, MDField, );
4352  PARSE_MD_FIELDS();
4353 #undef VISIT_MD_FIELDS
4354 
4355  // If this has an identifier try to build an ODR type.
4356  if (identifier.Val)
4357  if (auto *CT = DICompositeType::buildODRType(
4358  Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4359  scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4360  elements.Val, runtimeLang.Val, vtableHolder.Val,
4361  templateParams.Val, discriminator.Val)) {
4362  Result = CT;
4363  return false;
4364  }
4365 
4366  // Create a new node, and save it in the context if it belongs in the type
4367  // map.
4368  Result = GET_OR_DISTINCT(
4370  (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4371  size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4372  runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4373  discriminator.Val));
4374  return false;
4375 }
4376 
4377 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4378 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4379  OPTIONAL(flags, DIFlagField, ); \
4380  OPTIONAL(cc, DwarfCCField, ); \
4381  REQUIRED(types, MDField, );
4382  PARSE_MD_FIELDS();
4383 #undef VISIT_MD_FIELDS
4384 
4386  (Context, flags.Val, cc.Val, types.Val));
4387  return false;
4388 }
4389 
4390 /// ParseDIFileType:
4391 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4392 /// checksumkind: CSK_MD5,
4393 /// checksum: "000102030405060708090a0b0c0d0e0f",
4394 /// source: "source file contents")
4395 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4396  // The default constructed value for checksumkind is required, but will never
4397  // be used, as the parser checks if the field was actually Seen before using
4398  // the Val.
4399 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4400  REQUIRED(filename, MDStringField, ); \
4401  REQUIRED(directory, MDStringField, ); \
4402  OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
4403  OPTIONAL(checksum, MDStringField, ); \
4404  OPTIONAL(source, MDStringField, );
4405  PARSE_MD_FIELDS();
4406 #undef VISIT_MD_FIELDS
4407 
4409  if (checksumkind.Seen && checksum.Seen)
4410  OptChecksum.emplace(checksumkind.Val, checksum.Val);
4411  else if (checksumkind.Seen || checksum.Seen)
4412  return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4413 
4414  Optional<MDString *> OptSource;
4415  if (source.Seen)
4416  OptSource = source.Val;
4417  Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4418  OptChecksum, OptSource));
4419  return false;
4420 }
4421 
4422 /// ParseDICompileUnit:
4423 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4424 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
4425 /// splitDebugFilename: "abc.debug",
4426 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4427 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4428 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4429  if (!IsDistinct)
4430  return Lex.Error("missing 'distinct', required for !DICompileUnit");
4431 
4432 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4433  REQUIRED(language, DwarfLangField, ); \
4434  REQUIRED(file, MDField, (/* AllowNull */ false)); \
4435  OPTIONAL(producer, MDStringField, ); \
4436  OPTIONAL(isOptimized, MDBoolField, ); \
4437  OPTIONAL(flags, MDStringField, ); \
4438  OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
4439  OPTIONAL(splitDebugFilename, MDStringField, ); \
4440  OPTIONAL(emissionKind, EmissionKindField, ); \
4441  OPTIONAL(enums, MDField, ); \
4442  OPTIONAL(retainedTypes, MDField, ); \
4443  OPTIONAL(globals, MDField, ); \
4444  OPTIONAL(imports, MDField, ); \
4445  OPTIONAL(macros, MDField, ); \
4446  OPTIONAL(dwoId, MDUnsignedField, ); \
4447  OPTIONAL(splitDebugInlining, MDBoolField, = true); \
4448  OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
4449  OPTIONAL(gnuPubnames, MDBoolField, = false);
4450  PARSE_MD_FIELDS();
4451 #undef VISIT_MD_FIELDS
4452 
4453  Result = DICompileUnit::getDistinct(
4454  Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4455  runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4456  retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4457  splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val);
4458  return false;
4459 }
4460 
4461 /// ParseDISubprogram:
4462 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4463 /// file: !1, line: 7, type: !2, isLocal: false,
4464 /// isDefinition: true, scopeLine: 8, containingType: !3,
4465 /// virtuality: DW_VIRTUALTIY_pure_virtual,
4466 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
4467 /// isOptimized: false, templateParams: !4, declaration: !5,
4468 /// retainedNodes: !6, thrownTypes: !7)
4469 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4470  auto Loc = Lex.getLoc();
4471 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4472  OPTIONAL(scope, MDField, ); \
4473  OPTIONAL(name, MDStringField, ); \
4474  OPTIONAL(linkageName, MDStringField, ); \
4475  OPTIONAL(file, MDField, ); \
4476  OPTIONAL(line, LineField, ); \
4477  OPTIONAL(type, MDField, ); \
4478  OPTIONAL(isLocal, MDBoolField, ); \
4479  OPTIONAL(isDefinition, MDBoolField, (true)); \
4480  OPTIONAL(scopeLine, LineField, ); \
4481  OPTIONAL(containingType, MDField, ); \
4482  OPTIONAL(virtuality, DwarfVirtualityField, ); \
4483  OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
4484  OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
4485  OPTIONAL(flags, DIFlagField, ); \
4486  OPTIONAL(isOptimized, MDBoolField, ); \
4487  OPTIONAL(unit, MDField, ); \
4488  OPTIONAL(templateParams, MDField, ); \
4489  OPTIONAL(declaration, MDField, ); \
4490  OPTIONAL(retainedNodes, MDField, ); \
4491  OPTIONAL(thrownTypes, MDField, );
4492  PARSE_MD_FIELDS();
4493 #undef VISIT_MD_FIELDS
4494 
4495  if (isDefinition.Val && !IsDistinct)
4496  return Lex.Error(
4497  Loc,
4498  "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4499 
4500  Result = GET_OR_DISTINCT(
4501  DISubprogram,
4502  (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4503  type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4504  containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4505  flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4506  declaration.Val, retainedNodes.Val, thrownTypes.Val));
4507  return false;
4508 }
4509 
4510 /// ParseDILexicalBlock:
4511 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4512 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4513 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4514  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4515  OPTIONAL(file, MDField, ); \
4516  OPTIONAL(line, LineField, ); \
4517  OPTIONAL(column, ColumnField, );
4518  PARSE_MD_FIELDS();
4519 #undef VISIT_MD_FIELDS
4520 
4521  Result = GET_OR_DISTINCT(
4522  DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4523  return false;
4524 }
4525 
4526 /// ParseDILexicalBlockFile:
4527 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4528 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4529 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4530  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4531  OPTIONAL(file, MDField, ); \
4532  REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4533  PARSE_MD_FIELDS();
4534 #undef VISIT_MD_FIELDS
4535 
4537  (Context, scope.Val, file.Val, discriminator.Val));
4538  return false;
4539 }
4540 
4541 /// ParseDINamespace:
4542 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4543 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4544 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4545  REQUIRED(scope, MDField, ); \
4546  OPTIONAL(name, MDStringField, ); \
4547  OPTIONAL(exportSymbols, MDBoolField, );
4548  PARSE_MD_FIELDS();
4549 #undef VISIT_MD_FIELDS
4550 
4551  Result = GET_OR_DISTINCT(DINamespace,
4552  (Context, scope.Val, name.Val, exportSymbols.Val));
4553  return false;
4554 }
4555 
4556 /// ParseDIMacro:
4557 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4558 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4559 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4560  REQUIRED(type, DwarfMacinfoTypeField, ); \
4561  OPTIONAL(line, LineField, ); \
4562  REQUIRED(name, MDStringField, ); \
4563  OPTIONAL(value, MDStringField, );
4564  PARSE_MD_FIELDS();
4565 #undef VISIT_MD_FIELDS
4566 
4567  Result = GET_OR_DISTINCT(DIMacro,
4568  (Context, type.Val, line.Val, name.Val, value.Val));
4569  return false;
4570 }
4571 
4572 /// ParseDIMacroFile:
4573 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4574 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4575 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4576  OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
4577  OPTIONAL(line, LineField, ); \
4578  REQUIRED(file, MDField, ); \
4579  OPTIONAL(nodes, MDField, );
4580  PARSE_MD_FIELDS();
4581 #undef VISIT_MD_FIELDS
4582 
4583  Result = GET_OR_DISTINCT(DIMacroFile,
4584  (Context, type.Val, line.Val, file.Val, nodes.Val));
4585  return false;
4586 }
4587 
4588 /// ParseDIModule:
4589 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4590 /// includePath: "/usr/include", isysroot: "/")
4591 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4592 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4593  REQUIRED(scope, MDField, ); \
4594  REQUIRED(name, MDStringField, ); \
4595  OPTIONAL(configMacros, MDStringField, ); \
4596  OPTIONAL(includePath, MDStringField, ); \
4597  OPTIONAL(isysroot, MDStringField, );
4598  PARSE_MD_FIELDS();
4599 #undef VISIT_MD_FIELDS
4600 
4601  Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4602  configMacros.Val, includePath.Val, isysroot.Val));
4603  return false;
4604 }
4605 
4606 /// ParseDITemplateTypeParameter:
4607 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4608 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4609 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4610  OPTIONAL(name, MDStringField, ); \
4611  REQUIRED(type, MDField, );
4612  PARSE_MD_FIELDS();
4613 #undef VISIT_MD_FIELDS
4614 
4615  Result =
4617  return false;
4618 }
4619 
4620 /// ParseDITemplateValueParameter:
4621 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4622 /// name: "V", type: !1, value: i32 7)
4623 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4624 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4625  OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
4626  OPTIONAL(name, MDStringField, ); \
4627  OPTIONAL(type, MDField, ); \
4628  REQUIRED(value, MDField, );
4629  PARSE_MD_FIELDS();
4630 #undef VISIT_MD_FIELDS
4631 
4633  (Context, tag.Val, name.Val, type.Val, value.Val));
4634  return false;
4635 }
4636 
4637 /// ParseDIGlobalVariable:
4638 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4639 /// file: !1, line: 7, type: !2, isLocal: false,
4640 /// isDefinition: true, declaration: !3, align: 8)
4641 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4642 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4643  REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
4644  OPTIONAL(scope, MDField, ); \
4645  OPTIONAL(linkageName, MDStringField, ); \
4646  OPTIONAL(file, MDField, ); \
4647  OPTIONAL(line, LineField, ); \
4648  OPTIONAL(type, MDField, ); \
4649  OPTIONAL(isLocal, MDBoolField, ); \
4650  OPTIONAL(isDefinition, MDBoolField, (true)); \
4651  OPTIONAL(declaration, MDField, ); \
4652  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4653  PARSE_MD_FIELDS();
4654 #undef VISIT_MD_FIELDS
4655 
4657  (Context, scope.Val, name.Val, linkageName.Val,
4658  file.Val, line.Val, type.Val, isLocal.Val,
4659  isDefinition.Val, declaration.Val, align.Val));
4660  return false;
4661 }
4662 
4663 /// ParseDILocalVariable:
4664 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4665 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4666 /// align: 8)
4667 /// ::= !DILocalVariable(scope: !0, name: "foo",
4668 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4669 /// align: 8)
4670 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4672  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4673  OPTIONAL(name, MDStringField, ); \
4674  OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
4675  OPTIONAL(file, MDField, ); \
4676  OPTIONAL(line, LineField, ); \
4677  OPTIONAL(type, MDField, ); \
4678  OPTIONAL(flags, DIFlagField, ); \
4679  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4680  PARSE_MD_FIELDS();
4681 #undef VISIT_MD_FIELDS
4682 
4684  (Context, scope.Val, name.Val, file.Val, line.Val,
4685  type.Val, arg.Val, flags.Val, align.Val));
4686  return false;
4687 }
4688 
4689 /// ParseDILabel:
4690 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4691 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4692 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4693  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4694  REQUIRED(name, MDStringField, ); \
4695  REQUIRED(file, MDField, ); \
4696  REQUIRED(line, LineField, );
4697  PARSE_MD_FIELDS();
4698 #undef VISIT_MD_FIELDS
4699 
4700  Result = GET_OR_DISTINCT(DILabel,
4701  (Context, scope.Val, name.Val, file.Val, line.Val));
4702  return false;
4703 }
4704 
4705 /// ParseDIExpression:
4706 /// ::= !DIExpression(0, 7, -1)
4707 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4708  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4709  Lex.Lex();
4710 
4711  if (ParseToken(lltok::lparen, "expected '(' here"))
4712  return true;
4713 
4714  SmallVector<uint64_t, 8> Elements;
4715  if (Lex.getKind() != lltok::rparen)
4716  do {
4717  if (Lex.getKind() == lltok::DwarfOp) {
4718  if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4719  Lex.Lex();
4720  Elements.push_back(Op);
4721  continue;
4722  }
4723  return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4724  }
4725 
4726  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4727  return TokError("expected unsigned integer");
4728 
4729  auto &U = Lex.getAPSIntVal();
4730  if (U.ugt(UINT64_MAX))
4731  return TokError("element too large, limit is " + Twine(UINT64_MAX));
4732  Elements.push_back(U.getZExtValue());
4733  Lex.Lex();
4734  } while (EatIfPresent(lltok::comma));
4735 
4736  if (ParseToken(lltok::rparen, "expected ')' here"))
4737  return true;
4738 
4739  Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4740  return false;
4741 }
4742 
4743 /// ParseDIGlobalVariableExpression:
4744 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4745 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4746  bool IsDistinct) {
4747 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4748  REQUIRED(var, MDField, ); \
4749  REQUIRED(expr, MDField, );
4750  PARSE_MD_FIELDS();
4751 #undef VISIT_MD_FIELDS
4752 
4753  Result =
4754  GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4755  return false;
4756 }
4757 
4758 /// ParseDIObjCProperty:
4759 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4760 /// getter: "getFoo", attributes: 7, type: !2)
4761 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4762 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4763  OPTIONAL(name, MDStringField, ); \
4764  OPTIONAL(file, MDField, ); \
4765  OPTIONAL(line, LineField, ); \
4766  OPTIONAL(setter, MDStringField, ); \
4767  OPTIONAL(getter, MDStringField, ); \
4768  OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
4769  OPTIONAL(type, MDField, );
4770  PARSE_MD_FIELDS();
4771 #undef VISIT_MD_FIELDS
4772 
4774  (Context, name.Val, file.Val, line.Val, setter.Val,
4775  getter.Val, attributes.Val, type.Val));
4776  return false;
4777 }
4778 
4779 /// ParseDIImportedEntity:
4780 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4781 /// line: 7, name: "foo")
4782 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4784  REQUIRED(tag, DwarfTagField, ); \
4785  REQUIRED(scope, MDField, ); \
4786  OPTIONAL(entity, MDField, ); \
4787  OPTIONAL(file, MDField, ); \
4788  OPTIONAL(line, LineField, ); \
4789  OPTIONAL(name, MDStringField, );
4790  PARSE_MD_FIELDS();
4791 #undef VISIT_MD_FIELDS
4792 
4793  Result = GET_OR_DISTINCT(
4795  (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4796  return false;
4797 }
4798 
4799 #undef PARSE_MD_FIELD
4800 #undef NOP_FIELD
4801 #undef REQUIRE_FIELD
4802 #undef DECLARE_FIELD
4803 
4804 /// ParseMetadataAsValue
4805 /// ::= metadata i32 %local
4806 /// ::= metadata i32 @global
4807 /// ::= metadata i32 7
4808 /// ::= metadata !0
4809 /// ::= metadata !{...}
4810 /// ::= metadata !"string"
4811 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4812  // Note: the type 'metadata' has already been parsed.
4813  Metadata *MD;
4814  if (ParseMetadata(MD, &PFS))
4815  return true;
4816 
4817  V = MetadataAsValue::get(Context, MD);
4818  return false;
4819 }
4820 
4821 /// ParseValueAsMetadata
4822 /// ::= i32 %local
4823 /// ::= i32 @global
4824 /// ::= i32 7
4825 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4826  PerFunctionState *PFS) {
4827  Type *Ty;
4828  LocTy Loc;
4829  if (ParseType(Ty, TypeMsg, Loc))
4830  return true;
4831  if (Ty->isMetadataTy())
4832  return Error(Loc, "invalid metadata-value-metadata roundtrip");
4833 
4834  Value *V;
4835  if (ParseValue(Ty, V, PFS))
4836  return true;
4837 
4838  MD = ValueAsMetadata::get(V);
4839  return false;
4840 }
4841 
4842 /// ParseMetadata
4843 /// ::= i32 %local
4844 /// ::= i32 @global
4845 /// ::= i32 7
4846 /// ::= !42
4847 /// ::= !{...}
4848 /// ::= !"string"
4849 /// ::= !DILocation(...)
4850 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4851  if (Lex.getKind() == lltok::MetadataVar) {
4852  MDNode *N;
4853  if (ParseSpecializedMDNode(N))
4854  return true;
4855  MD = N;
4856  return false;
4857  }
4858 
4859  // ValueAsMetadata:
4860  // <type> <value>
4861  if (Lex.getKind() != lltok::exclaim)
4862  return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4863 
4864  // '!'.
4865  assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4866  Lex.Lex();
4867 
4868  // MDString:
4869  // ::= '!' STRINGCONSTANT
4870  if (Lex.getKind() == lltok::StringConstant) {
4871  MDString *S;
4872  if (ParseMDString(S))
4873  return true;
4874  MD = S;
4875  return false;
4876  }
4877 
4878  // MDNode:
4879  // !{ ... }
4880  // !7
4881  MDNode *N;
4882  if (ParseMDNodeTail(N))
4883  return true;
4884  MD = N;
4885  return false;
4886 }
4887 
4888 //===----------------------------------------------------------------------===//
4889 // Function Parsing.
4890 //===----------------------------------------------------------------------===//
4891 
4892 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4893  PerFunctionState *PFS, bool IsCall) {
4894  if (Ty->isFunctionTy())
4895  return Error(ID.Loc, "functions are not values, refer to them as pointers");
4896 
4897  switch (ID.Kind) {
4898  case ValID::t_LocalID:
4899  if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4900  V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
4901  return V == nullptr;
4902  case ValID::t_LocalName:
4903  if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4904  V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
4905  return V == nullptr;
4906  case ValID::t_InlineAsm: {
4907  if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4908  return Error(ID.Loc, "invalid type for inline asm constraint string");
4909  V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4910  (ID.UIntVal >> 1) & 1,
4911  (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4912  return false;
4913  }
4914  case ValID::t_GlobalName:
4915  V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4916  return V == nullptr;
4917  case ValID::t_GlobalID:
4918  V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4919  return V == nullptr;
4920  case ValID::t_APSInt:
4921  if (!Ty->isIntegerTy())
4922  return Error(ID.Loc, "integer constant must have integer type");
4925  return false;
4926  case ValID::t_APFloat:
4927  if (!Ty->isFloatingPointTy() ||
4929  return Error(ID.Loc, "floating point constant invalid for type");
4930 
4931  // The lexer has no type info, so builds all half, float, and double FP
4932  // constants as double. Fix this here. Long double does not need this.
4933  if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4934  bool Ignored;
4935  if (Ty->isHalfTy())
4937  &Ignored);
4938  else if (Ty->isFloatTy())
4940  &Ignored);
4941  }
4943 
4944  if (V->getType() != Ty)
4945  return Error(ID.Loc, "floating point constant does not have type '" +
4946  getTypeString(Ty) + "'");
4947 
4948  return false;
4949  case ValID::t_Null:
4950  if (!Ty->isPointerTy())
4951  return Error(ID.Loc, "null must be a pointer type");
4952  V = ConstantPointerNull::get(cast<PointerType>(Ty));
4953  return false;
4954  case ValID::t_Undef:
4955  // FIXME: LabelTy should not be a first-class type.
4956  if (!Ty->isFirstClassType() || Ty->isLabelTy())
4957  return Error(ID.Loc, "invalid type for undef constant");
4958  V = UndefValue::get(Ty);
4959  return false;
4960  case ValID::t_EmptyArray:
4961  if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4962  return Error(ID.Loc, "invalid empty array initializer");
4963  V = UndefValue::get(Ty);
4964  return false;
4965  case ValID::t_Zero:
4966  // FIXME: LabelTy should not be a first-class type.
4967  if (!Ty->isFirstClassType() || Ty->isLabelTy())
4968  return Error(ID.Loc, "invalid type for null constant");
4969  V = Constant::getNullValue(Ty);
4970  return false;
4971  case ValID::t_None:
4972  if (!Ty->isTokenTy())
4973  return Error(ID.Loc, "invalid type for none constant");
4974  V = Constant::getNullValue(Ty);
4975  return false;
4976  case ValID::t_Constant:
4977  if (ID.ConstantVal->getType() != Ty)
4978  return Error(ID.Loc, "constant expression type mismatch");
4979 
4980  V = ID.ConstantVal;
4981  return false;
4984  if (StructType *ST = dyn_cast<StructType>(Ty)) {
4985  if (ST->getNumElements() != ID.UIntVal)
4986  return Error(ID.Loc,
4987  "initializer with struct type has wrong # elements");
4988  if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4989  return Error(ID.Loc, "packed'ness of initializer and type don't match");
4990 
4991  // Verify that the elements are compatible with the structtype.
4992  for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4993  if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4994  return Error(ID.Loc, "element " + Twine(i) +
4995  " of struct initializer doesn't match struct element type");
4996 
4997  V = ConstantStruct::get(
4998  ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4999  } else
5000  return Error(ID.Loc, "constant expression type mismatch");
5001  return false;
5002  }
5003  llvm_unreachable("Invalid ValID");
5004 }
5005 
5006 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5007  C = nullptr;
5008  ValID ID;
5009  auto Loc = Lex.getLoc();
5010  if (ParseValID(ID, /*PFS=*/nullptr))
5011  return true;
5012  switch (ID.Kind) {
5013  case ValID::t_APSInt:
5014  case ValID::t_APFloat:
5015  case ValID::t_Undef:
5016  case ValID::t_Constant:
5019  Value *V;
5020  if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5021  return true;
5022  assert(isa<Constant>(V) && "Expected a constant value");
5023  C = cast<Constant>(V);
5024  return false;
5025  }
5026  case ValID::t_Null:
5027  C = Constant::getNullValue(Ty);
5028  return false;
5029  default:
5030  return Error(Loc, "expected a constant value");
5031  }
5032 }
5033 
5034 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5035  V = nullptr;
5036  ValID ID;
5037  return ParseValID(ID, PFS) ||
5038  ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5039 }
5040 
5041 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5042  Type *Ty = nullptr;
5043  return ParseType(Ty) ||
5044  ParseValue(Ty, V, PFS);
5045 }
5046 
5047 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5048  PerFunctionState &PFS) {
5049  Value *V;
5050  Loc = Lex.getLoc();
5051  if (ParseTypeAndValue(V, PFS)) return true;
5052  if (!isa<BasicBlock>(V))
5053  return Error(Loc, "expected a basic block");
5054  BB = cast<BasicBlock>(V);
5055  return false;
5056 }
5057 
5058 /// FunctionHeader
5059 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5060 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5061 /// '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC
5062 /// OptionalPrefix OptionalPrologue OptPersonalityFn
5063 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5064  // Parse the linkage.
5065  LocTy LinkageLoc = Lex.getLoc();
5066  unsigned Linkage;
5067  unsigned Visibility;
5068  unsigned DLLStorageClass;
5069  bool DSOLocal;
5070  AttrBuilder RetAttrs;
5071  unsigned CC;
5072  bool HasLinkage;
5073  Type *RetType = nullptr;
5074  LocTy RetTypeLoc = Lex.getLoc();
5075  if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5076  DSOLocal) ||
5077  ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5078  ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5079  return true;
5080 
5081  // Verify that the linkage is ok.
5082  switch ((GlobalValue::LinkageTypes)Linkage) {
5084  break; // always ok.
5086  if (isDefine)
5087  return Error(LinkageLoc, "invalid linkage for function definition");
5088  break;
5096  if (!isDefine)
5097  return Error(LinkageLoc, "invalid linkage for function declaration");
5098  break;
5101  return Error(LinkageLoc, "invalid function linkage type");
5102  }
5103 
5104  if (!isValidVisibilityForLinkage(Visibility, Linkage))
5105  return Error(LinkageLoc,
5106  "symbol with local linkage must have default visibility");
5107 
5108  if (!FunctionType::isValidReturnType(RetType))
5109  return Error(RetTypeLoc, "invalid function return type");
5110 
5111  LocTy NameLoc = Lex.getLoc();
5112 
5113  std::string FunctionName;
5114  if (Lex.getKind() == lltok::GlobalVar) {
5115  FunctionName = Lex.getStrVal();
5116  } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
5117  unsigned NameID = Lex.getUIntVal();
5118 
5119  if (NameID != NumberedVals.size())
5120  return TokError("function expected to be numbered '%" +
5121  Twine(NumberedVals.size()) + "'");
5122  } else {
5123  return TokError("expected function name");
5124  }
5125 
5126  Lex.Lex();
5127 
5128  if (Lex.getKind() != lltok::lparen)
5129  return TokError("expected '(' in function argument list");
5130 
5131  SmallVector<ArgInfo, 8> ArgList;
5132  bool isVarArg;
5133  AttrBuilder FuncAttrs;
5134  std::vector<unsigned> FwdRefAttrGrps;
5135  LocTy BuiltinLoc;
5136  std::string Section;
5137  unsigned Alignment;
5138  std::string GC;
5140  Constant *Prefix = nullptr;
5141  Constant *Prologue = nullptr;
5142  Constant *PersonalityFn = nullptr;
5143  Comdat *C;
5144 
5145  if (ParseArgumentList(ArgList, isVarArg) ||
5146  ParseOptionalUnnamedAddr(UnnamedAddr) ||
5147  ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5148  BuiltinLoc) ||
5149  (EatIfPresent(lltok::kw_section) &&
5150  ParseStringConstant(Section)) ||
5151  parseOptionalComdat(FunctionName, C) ||
5152  ParseOptionalAlignment(Alignment) ||
5153  (EatIfPresent(lltok::kw_gc) &&
5154  ParseStringConstant(GC)) ||
5155  (EatIfPresent(lltok::kw_prefix) &&
5156  ParseGlobalTypeAndValue(Prefix)) ||
5157  (EatIfPresent(lltok::kw_prologue) &&
5158  ParseGlobalTypeAndValue(Prologue)) ||
5159  (EatIfPresent(lltok::kw_personality) &&
5160  ParseGlobalTypeAndValue(PersonalityFn)))
5161  return true;
5162 
5163  if (FuncAttrs.contains(Attribute::Builtin))
5164  return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5165 
5166  // If the alignment was parsed as an attribute, move to the alignment field.
5167  if (FuncAttrs.hasAlignmentAttr()) {
5168  Alignment = FuncAttrs.getAlignment();
5169  FuncAttrs.removeAttribute(Attribute::Alignment);
5170  }
5171 
5172  // Okay, if we got here, the function is syntactically valid. Convert types
5173  // and do semantic checks.
5174  std::vector<Type*> ParamTypeList;
5176 
5177  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5178  ParamTypeList.push_back(ArgList[i].Ty);
5179  Attrs.push_back(ArgList[i].Attrs);
5180  }
5181 
5182  AttributeList PAL =
5184  AttributeSet::get(Context, RetAttrs), Attrs);
5185 
5186  if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5187  return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5188 
5189  FunctionType *FT =
5190  FunctionType::get(RetType, ParamTypeList, isVarArg);
5192 
5193  Fn = nullptr;
5194  if (!FunctionName.empty()) {
5195  // If this was a definition of a forward reference, remove the definition
5196  // from the forward reference table and fill in the forward ref.
5197  auto FRVI = ForwardRefVals.find(FunctionName);
5198  if (FRVI != ForwardRefVals.end()) {
5199  Fn = M->getFunction(FunctionName);
5200  if (!Fn)
5201  return Error(FRVI->second.second, "invalid forward reference to "
5202  "function as global value!");
5203  if (Fn->getType() != PFT)
5204  return Error(FRVI->second.second, "invalid forward reference to "
5205  "function '" + FunctionName + "' with wrong type!");
5206 
5207  ForwardRefVals.erase(FRVI);
5208  } else if ((Fn = M->getFunction(FunctionName))) {
5209  // Reject redefinitions.
5210  return Error(NameLoc, "invalid redefinition of function '" +
5211  FunctionName + "'");
5212  } else if (M->getNamedValue(FunctionName)) {
5213  return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5214  }
5215 
5216  } else {
5217  // If this is a definition of a forward referenced function, make sure the
5218  // types agree.
5219  auto I = ForwardRefValIDs.find(NumberedVals.size());
5220  if (I != ForwardRefValIDs.end()) {
5221  Fn = cast<Function>(I->second.first);
5222  if (Fn->getType() != PFT)
5223  return Error(NameLoc, "type of definition and forward reference of '@" +
5224  Twine(NumberedVals.size()) + "' disagree");
5225  ForwardRefValIDs.erase(I);
5226  }
5227  }
5228 
5229  if (!Fn)
5230  Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
5231  else // Move the forward-reference to the correct spot in the module.
5232  M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5233 
5234  if (FunctionName.empty())
5235  NumberedVals.push_back(Fn);
5236 
5237  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5238  maybeSetDSOLocal(DSOLocal, *Fn);
5241  Fn->setCallingConv(CC);
5242  Fn->setAttributes(PAL);
5243  Fn->setUnnamedAddr(UnnamedAddr);
5244  Fn->setAlignment(Alignment);
5245  Fn->setSection(Section);
5246  Fn->setComdat(C);
5247  Fn->setPersonalityFn(PersonalityFn);
5248  if (!GC.empty()) Fn->setGC(GC);
5249  Fn->setPrefixData(Prefix);
5250  Fn->setPrologueData(Prologue);
5251  ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5252 
5253  // Add all of the arguments we parsed to the function.
5254  Function::arg_iterator ArgIt = Fn->arg_begin();
5255  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5256  // If the argument has a name, insert it into the argument symbol table.
5257  if (ArgList[i].Name.empty()) continue;
5258 
5259  // Set the name, if it conflicted, it will be auto-renamed.
5260  ArgIt->setName(ArgList[i].Name);
5261 
5262  if (ArgIt->getName() != ArgList[i].Name)
5263  return Error(ArgList[i].Loc, "redefinition of argument '%" +
5264  ArgList[i].Name + "'");
5265  }
5266 
5267  if (isDefine)
5268  return false;
5269 
5270  // Check the declaration has no block address forward references.
5271  ValID ID;
5272  if (FunctionName.empty()) {
5273  ID.Kind = ValID::t_GlobalID;
5274  ID.UIntVal = NumberedVals.size() - 1;
5275  } else {
5277  ID.StrVal = FunctionName;
5278  }
5279  auto Blocks = ForwardRefBlockAddresses.find(ID);
5280  if (Blocks != ForwardRefBlockAddresses.end())
5281  return Error(Blocks->first.Loc,
5282  "cannot take blockaddress inside a declaration");
5283  return false;
5284 }
5285 
5286 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5287  ValID ID;
5288  if (FunctionNumber == -1) {
5290  ID.StrVal = F.getName();
5291  } else {
5292  ID.Kind = ValID::t_GlobalID;
5293  ID.UIntVal = FunctionNumber;
5294  }
5295 
5296  auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5297  if (Blocks == P.ForwardRefBlockAddresses.end())
5298  return false;
5299 
5300  for (const auto &I : Blocks->second) {
5301  const ValID &BBID = I.first;
5302  GlobalValue *GV = I.second;
5303 
5304  assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5305  "Expected local id or name");
5306  BasicBlock *BB;
5307  if (BBID.Kind == ValID::t_LocalName)
5308  BB = GetBB(BBID.StrVal, BBID.Loc);
5309  else
5310  BB = GetBB(BBID.UIntVal, BBID.Loc);
5311  if (!BB)
5312  return P.Error(BBID.Loc, "referenced value is not a basic block");
5313 
5315  GV->eraseFromParent();
5316  }
5317 
5318  P.ForwardRefBlockAddresses.erase(Blocks);
5319  return false;
5320 }
5321 
5322 /// ParseFunctionBody
5323 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
5324 bool LLParser::ParseFunctionBody(Function &Fn) {
5325  if (Lex.getKind() != lltok::lbrace)
5326  return TokError("expected '{' in function body");
5327  Lex.Lex(); // eat the {.
5328 
5329  int FunctionNumber = -1;
5330  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5331 
5332  PerFunctionState PFS(*this, Fn, FunctionNumber);
5333 
5334  // Resolve block addresses and allow basic blocks to be forward-declared
5335  // within this function.
5336  if (PFS.resolveForwardRefBlockAddresses())
5337  return true;
5338  SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5339 
5340  // We need at least one basic block.
5341  if (Lex.getKind() ==