LLVM 22.0.0git
SystemZInstrInfo.cpp
Go to the documentation of this file.
1//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the SystemZ implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "SystemZInstrInfo.h"
15#include "SystemZ.h"
16#include "SystemZInstrBuilder.h"
17#include "SystemZSubtarget.h"
18#include "llvm/ADT/Statistic.h"
36#include "llvm/MC/MCInstrDesc.h"
42#include <cassert>
43#include <cstdint>
44#include <iterator>
45
46using namespace llvm;
47
48#define GET_INSTRINFO_CTOR_DTOR
49#define GET_INSTRMAP_INFO
50#include "SystemZGenInstrInfo.inc"
51
52#define DEBUG_TYPE "systemz-II"
53
54// Return a mask with Count low bits set.
55static uint64_t allOnes(unsigned int Count) {
56 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
57}
58
59// Pin the vtable to this file.
60void SystemZInstrInfo::anchor() {}
61
63 : SystemZGenInstrInfo(sti, RI, -1, -1),
64 RI(sti.getSpecialRegisters()->getReturnFunctionAddressRegister(),
65 sti.getHwMode()),
66 STI(sti) {}
67
68// MI is a 128-bit load or store. Split it into two 64-bit loads or stores,
69// each having the opcode given by NewOpcode.
70void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
71 unsigned NewOpcode) const {
72 MachineBasicBlock *MBB = MI->getParent();
73 MachineFunction &MF = *MBB->getParent();
74
75 // Get two load or store instructions. Use the original instruction for
76 // one of them and create a clone for the other.
77 MachineInstr *HighPartMI = MF.CloneMachineInstr(&*MI);
78 MachineInstr *LowPartMI = &*MI;
79 MBB->insert(LowPartMI, HighPartMI);
80
81 // Set up the two 64-bit registers and remember super reg and its flags.
82 MachineOperand &HighRegOp = HighPartMI->getOperand(0);
83 MachineOperand &LowRegOp = LowPartMI->getOperand(0);
84 Register Reg128 = LowRegOp.getReg();
85 unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
86 unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef());
87 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
88 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
89
90 // The address in the first (high) instruction is already correct.
91 // Adjust the offset in the second (low) instruction.
92 MachineOperand &HighOffsetOp = HighPartMI->getOperand(2);
93 MachineOperand &LowOffsetOp = LowPartMI->getOperand(2);
94 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
95
96 // Set the opcodes.
97 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
98 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
99 assert(HighOpcode && LowOpcode && "Both offsets should be in range");
100 HighPartMI->setDesc(get(HighOpcode));
101 LowPartMI->setDesc(get(LowOpcode));
102
103 MachineInstr *FirstMI = HighPartMI;
104 if (MI->mayStore()) {
105 FirstMI->getOperand(0).setIsKill(false);
106 // Add implicit uses of the super register in case one of the subregs is
107 // undefined. We could track liveness and skip storing an undefined
108 // subreg, but this is hopefully rare (discovered with llvm-stress).
109 // If Reg128 was killed, set kill flag on MI.
110 unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
111 MachineInstrBuilder(MF, HighPartMI).addReg(Reg128, Reg128UndefImpl);
112 MachineInstrBuilder(MF, LowPartMI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
113 } else {
114 // If HighPartMI clobbers any of the address registers, it needs to come
115 // after LowPartMI.
116 auto overlapsAddressReg = [&](Register Reg) -> bool {
117 return RI.regsOverlap(Reg, MI->getOperand(1).getReg()) ||
118 RI.regsOverlap(Reg, MI->getOperand(3).getReg());
119 };
120 if (overlapsAddressReg(HighRegOp.getReg())) {
121 assert(!overlapsAddressReg(LowRegOp.getReg()) &&
122 "Both loads clobber address!");
123 MBB->splice(HighPartMI, MBB, LowPartMI);
124 FirstMI = LowPartMI;
125 }
126 }
127
128 // Clear the kill flags on the address registers in the first instruction.
129 FirstMI->getOperand(1).setIsKill(false);
130 FirstMI->getOperand(3).setIsKill(false);
131}
132
133// Split ADJDYNALLOC instruction MI.
134void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
135 MachineBasicBlock *MBB = MI->getParent();
136 MachineFunction &MF = *MBB->getParent();
137 MachineFrameInfo &MFFrame = MF.getFrameInfo();
138 MachineOperand &OffsetMO = MI->getOperand(2);
139 SystemZCallingConventionRegisters *Regs = STI.getSpecialRegisters();
140
141 uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
142 Regs->getCallFrameSize() +
143 Regs->getStackPointerBias() +
144 OffsetMO.getImm());
145 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
146 assert(NewOpcode && "No support for huge argument lists yet");
147 MI->setDesc(get(NewOpcode));
148 OffsetMO.setImm(Offset);
149}
150
151// MI is an RI-style pseudo instruction. Replace it with LowOpcode
152// if the first operand is a low GR32 and HighOpcode if the first operand
153// is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand
154// and HighOpcode takes an unsigned 32-bit operand. In those cases,
155// MI has the same kind of operand as LowOpcode, so needs to be converted
156// if HighOpcode is used.
157void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
158 unsigned HighOpcode,
159 bool ConvertHigh) const {
160 Register Reg = MI.getOperand(0).getReg();
161 bool IsHigh = SystemZ::isHighReg(Reg);
162 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
163 if (IsHigh && ConvertHigh)
164 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
165}
166
167// MI is a three-operand RIE-style pseudo instruction. Replace it with
168// LowOpcodeK if the registers are both low GR32s, otherwise use a move
169// followed by HighOpcode or LowOpcode, depending on whether the target
170// is a high or low GR32.
171void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
172 unsigned LowOpcodeK,
173 unsigned HighOpcode) const {
174 Register DestReg = MI.getOperand(0).getReg();
175 Register SrcReg = MI.getOperand(1).getReg();
176 bool DestIsHigh = SystemZ::isHighReg(DestReg);
177 bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
178 if (!DestIsHigh && !SrcIsHigh)
179 MI.setDesc(get(LowOpcodeK));
180 else {
181 if (DestReg != SrcReg) {
182 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
183 SystemZ::LR, 32, MI.getOperand(1).isKill(),
184 MI.getOperand(1).isUndef());
185 MI.getOperand(1).setReg(DestReg);
186 }
187 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
188 MI.tieOperands(0, 1);
189 }
190}
191
192// MI is an RXY-style pseudo instruction. Replace it with LowOpcode
193// if the first operand is a low GR32 and HighOpcode if the first operand
194// is a high GR32.
195void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
196 unsigned HighOpcode) const {
197 Register Reg = MI.getOperand(0).getReg();
198 unsigned Opcode = getOpcodeForOffset(
199 SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
200 MI.getOperand(2).getImm());
201 MI.setDesc(get(Opcode));
202}
203
204// MI is a load-on-condition pseudo instruction with a single register
205// (source or destination) operand. Replace it with LowOpcode if the
206// register is a low GR32 and HighOpcode if the register is a high GR32.
207void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
208 unsigned HighOpcode) const {
209 Register Reg = MI.getOperand(0).getReg();
210 unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
211 MI.setDesc(get(Opcode));
212}
213
214// MI is an RR-style pseudo instruction that zero-extends the low Size bits
215// of one GRX32 into another. Replace it with LowOpcode if both operands
216// are low registers, otherwise use RISB[LH]G.
217void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
218 unsigned Size) const {
219 MachineInstrBuilder MIB =
220 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
221 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
222 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
223
224 // Keep the remaining operands as-is.
225 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2))
226 MIB.add(MO);
227
228 MI.eraseFromParent();
229}
230
231void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
232 MachineBasicBlock *MBB = MI->getParent();
233 MachineFunction &MF = *MBB->getParent();
234 const Register Reg64 = MI->getOperand(0).getReg();
235 const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
236
237 // EAR can only load the low subregister so us a shift for %a0 to produce
238 // the GR containing %a0 and %a1.
239
240 // ear <reg>, %a0
241 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
242 .addReg(SystemZ::A0)
244
245 // sllg <reg>, <reg>, 32
246 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
247 .addReg(Reg64)
248 .addReg(0)
249 .addImm(32);
250
251 // ear <reg>, %a1
252 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
253 .addReg(SystemZ::A1);
254
255 // lg <reg>, 40(<reg>)
256 MI->setDesc(get(SystemZ::LG));
257 MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
258}
259
260// Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
261// DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg
262// are low registers, otherwise use RISB[LH]G. Size is the number of bits
263// taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
264// KillSrc is true if this move is the last use of SrcReg.
266SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
268 const DebugLoc &DL, unsigned DestReg,
269 unsigned SrcReg, unsigned LowLowOpcode,
270 unsigned Size, bool KillSrc,
271 bool UndefSrc) const {
272 unsigned Opcode;
273 bool DestIsHigh = SystemZ::isHighReg(DestReg);
274 bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
275 if (DestIsHigh && SrcIsHigh)
276 Opcode = SystemZ::RISBHH;
277 else if (DestIsHigh && !SrcIsHigh)
278 Opcode = SystemZ::RISBHL;
279 else if (!DestIsHigh && SrcIsHigh)
280 Opcode = SystemZ::RISBLH;
281 else {
282 return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
283 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
284 }
285 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
286 return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
287 .addReg(DestReg, RegState::Undef)
288 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
289 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
290}
291
293 bool NewMI,
294 unsigned OpIdx1,
295 unsigned OpIdx2) const {
296 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
297 if (NewMI)
298 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
299 return MI;
300 };
301
302 switch (MI.getOpcode()) {
303 case SystemZ::SELRMux:
304 case SystemZ::SELFHR:
305 case SystemZ::SELR:
306 case SystemZ::SELGR:
307 case SystemZ::LOCRMux:
308 case SystemZ::LOCFHR:
309 case SystemZ::LOCR:
310 case SystemZ::LOCGR: {
311 auto &WorkingMI = cloneIfNew(MI);
312 // Invert condition.
313 unsigned CCValid = WorkingMI.getOperand(3).getImm();
314 unsigned CCMask = WorkingMI.getOperand(4).getImm();
315 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
316 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
317 OpIdx1, OpIdx2);
318 }
319 default:
320 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
321 }
322}
323
324// If MI is a simple load or store for a frame object, return the register
325// it loads or stores and set FrameIndex to the index of the frame object.
326// Return 0 otherwise.
327//
328// Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
329static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
330 unsigned Flag) {
331 const MCInstrDesc &MCID = MI.getDesc();
332 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
333 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
334 FrameIndex = MI.getOperand(1).getIndex();
335 return MI.getOperand(0).getReg();
336 }
337 return 0;
338}
339
341 int &FrameIndex) const {
342 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
343}
344
346 int &FrameIndex) const {
347 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
348}
349
351 int &FrameIndex) const {
352 // if this is not a simple load from memory, it's not a load from stack slot
353 // either.
354 const MCInstrDesc &MCID = MI.getDesc();
355 if (!(MCID.TSFlags & SystemZII::SimpleBDXLoad))
356 return 0;
357
358 // This version of isLoadFromStackSlot should only be used post frame-index
359 // elimination.
360 assert(!MI.getOperand(1).isFI());
361
362 // Now attempt to derive frame index from MachineMemOperands.
364 if (hasLoadFromStackSlot(MI, Accesses)) {
365 FrameIndex =
366 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
367 ->getFrameIndex();
368 return MI.getOperand(0).getReg();
369 }
370 return 0;
371}
372
374 int &FrameIndex) const {
375 // if this is not a simple store to memory, it's not a store to stack slot
376 // either.
377 const MCInstrDesc &MCID = MI.getDesc();
378 if (!(MCID.TSFlags & SystemZII::SimpleBDXStore))
379 return 0;
380
381 // This version of isStoreToStackSlot should only be used post frame-index
382 // elimination.
383 assert(!MI.getOperand(1).isFI());
384
385 // Now attempt to derive frame index from MachineMemOperands.
387 if (hasStoreToStackSlot(MI, Accesses)) {
388 FrameIndex =
389 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
390 ->getFrameIndex();
391 return MI.getOperand(0).getReg();
392 }
393 return 0;
394}
395
397 int &DestFrameIndex,
398 int &SrcFrameIndex) const {
399 // Check for MVC 0(Length,FI1),0(FI2)
400 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
401 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
402 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
403 MI.getOperand(4).getImm() != 0)
404 return false;
405
406 // Check that Length covers the full slots.
407 int64_t Length = MI.getOperand(2).getImm();
408 unsigned FI1 = MI.getOperand(0).getIndex();
409 unsigned FI2 = MI.getOperand(3).getIndex();
410 if (MFI.getObjectSize(FI1) != Length ||
411 MFI.getObjectSize(FI2) != Length)
412 return false;
413
414 DestFrameIndex = FI1;
415 SrcFrameIndex = FI2;
416 return true;
417}
418
421 MachineBasicBlock *&FBB,
423 bool AllowModify) const {
424 // Most of the code and comments here are boilerplate.
425
426 // Start from the bottom of the block and work up, examining the
427 // terminator instructions.
429 while (I != MBB.begin()) {
430 --I;
431 if (I->isDebugInstr())
432 continue;
433
434 // Working from the bottom, when we see a non-terminator instruction, we're
435 // done.
436 if (!isUnpredicatedTerminator(*I))
437 break;
438
439 // A terminator that isn't a branch can't easily be handled by this
440 // analysis.
441 if (!I->isBranch())
442 return true;
443
444 // Can't handle indirect branches.
446 if (!Branch.hasMBBTarget())
447 return true;
448
449 // Punt on compound branches.
450 if (Branch.Type != SystemZII::BranchNormal)
451 return true;
452
453 if (Branch.CCMask == SystemZ::CCMASK_ANY) {
454 // Handle unconditional branches.
455 if (!AllowModify) {
456 TBB = Branch.getMBBTarget();
457 continue;
458 }
459
460 // If the block has any instructions after a JMP, delete them.
461 MBB.erase(std::next(I), MBB.end());
462
463 Cond.clear();
464 FBB = nullptr;
465
466 // Delete the JMP if it's equivalent to a fall-through.
467 if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
468 TBB = nullptr;
469 I->eraseFromParent();
470 I = MBB.end();
471 continue;
472 }
473
474 // TBB is used to indicate the unconditinal destination.
475 TBB = Branch.getMBBTarget();
476 continue;
477 }
478
479 // Working from the bottom, handle the first conditional branch.
480 if (Cond.empty()) {
481 // FIXME: add X86-style branch swap
482 FBB = TBB;
483 TBB = Branch.getMBBTarget();
484 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
485 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
486 continue;
487 }
488
489 // Handle subsequent conditional branches.
490 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
491
492 // Only handle the case where all conditional branches branch to the same
493 // destination.
494 if (TBB != Branch.getMBBTarget())
495 return true;
496
497 // If the conditions are the same, we can leave them alone.
498 unsigned OldCCValid = Cond[0].getImm();
499 unsigned OldCCMask = Cond[1].getImm();
500 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
501 continue;
502
503 // FIXME: Try combining conditions like X86 does. Should be easy on Z!
504 return false;
505 }
506
507 return false;
508}
509
511 int *BytesRemoved) const {
512 assert(!BytesRemoved && "code size not handled");
513
514 // Most of the code and comments here are boilerplate.
516 unsigned Count = 0;
517
518 while (I != MBB.begin()) {
519 --I;
520 if (I->isDebugInstr())
521 continue;
522 if (!I->isBranch())
523 break;
524 if (!getBranchInfo(*I).hasMBBTarget())
525 break;
526 // Remove the branch.
527 I->eraseFromParent();
528 I = MBB.end();
529 ++Count;
530 }
531
532 return Count;
533}
534
537 assert(Cond.size() == 2 && "Invalid condition");
538 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
539 return false;
540}
541
546 const DebugLoc &DL,
547 int *BytesAdded) const {
548 // In this function we output 32-bit branches, which should always
549 // have enough range. They can be shortened and relaxed by later code
550 // in the pipeline, if desired.
551
552 // Shouldn't be a fall through.
553 assert(TBB && "insertBranch must not be told to insert a fallthrough");
554 assert((Cond.size() == 2 || Cond.size() == 0) &&
555 "SystemZ branch conditions have one component!");
556 assert(!BytesAdded && "code size not handled");
557
558 if (Cond.empty()) {
559 // Unconditional branch?
560 assert(!FBB && "Unconditional branch with multiple successors!");
561 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
562 return 1;
563 }
564
565 // Conditional branch.
566 unsigned Count = 0;
567 unsigned CCValid = Cond[0].getImm();
568 unsigned CCMask = Cond[1].getImm();
569 BuildMI(&MBB, DL, get(SystemZ::BRC))
570 .addImm(CCValid).addImm(CCMask).addMBB(TBB);
571 ++Count;
572
573 if (FBB) {
574 // Two-way Conditional branch. Insert the second branch.
575 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
576 ++Count;
577 }
578 return Count;
579}
580
582 Register &SrcReg2, int64_t &Mask,
583 int64_t &Value) const {
584 assert(MI.isCompare() && "Caller should have checked for a comparison");
585
586 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
587 MI.getOperand(1).isImm()) {
588 SrcReg = MI.getOperand(0).getReg();
589 SrcReg2 = 0;
590 Value = MI.getOperand(1).getImm();
591 Mask = ~0;
592 return true;
593 }
594
595 return false;
596}
597
600 Register DstReg, Register TrueReg,
601 Register FalseReg, int &CondCycles,
602 int &TrueCycles,
603 int &FalseCycles) const {
604 // Not all subtargets have LOCR instructions.
605 if (!STI.hasLoadStoreOnCond())
606 return false;
607 if (Pred.size() != 2)
608 return false;
609
610 // Check register classes.
611 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
612 const TargetRegisterClass *RC =
613 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
614 if (!RC)
615 return false;
616
617 // We have LOCR instructions for 32 and 64 bit general purpose registers.
618 if ((STI.hasLoadStoreOnCond2() &&
619 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
620 SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
621 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
622 CondCycles = 2;
623 TrueCycles = 2;
624 FalseCycles = 2;
625 return true;
626 }
627
628 // Can't do anything else.
629 return false;
630}
631
634 const DebugLoc &DL, Register DstReg,
636 Register TrueReg,
637 Register FalseReg) const {
638 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
639 const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
640
641 assert(Pred.size() == 2 && "Invalid condition");
642 unsigned CCValid = Pred[0].getImm();
643 unsigned CCMask = Pred[1].getImm();
644
645 unsigned Opc;
646 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
647 if (STI.hasMiscellaneousExtensions3())
648 Opc = SystemZ::SELRMux;
649 else if (STI.hasLoadStoreOnCond2())
650 Opc = SystemZ::LOCRMux;
651 else {
652 Opc = SystemZ::LOCR;
653 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
654 Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
655 Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
656 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
657 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
658 TrueReg = TReg;
659 FalseReg = FReg;
660 }
661 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
662 if (STI.hasMiscellaneousExtensions3())
663 Opc = SystemZ::SELGR;
664 else
665 Opc = SystemZ::LOCGR;
666 } else
667 llvm_unreachable("Invalid register class");
668
669 BuildMI(MBB, I, DL, get(Opc), DstReg)
670 .addReg(FalseReg).addReg(TrueReg)
671 .addImm(CCValid).addImm(CCMask);
672}
673
675 Register Reg,
676 MachineRegisterInfo *MRI) const {
677 unsigned DefOpc = DefMI.getOpcode();
678
679 if (DefOpc == SystemZ::VGBM) {
680 int64_t ImmVal = DefMI.getOperand(1).getImm();
681 if (ImmVal != 0) // TODO: Handle other values
682 return false;
683
684 // Fold gr128 = COPY (vr128 VGBM imm)
685 //
686 // %tmp:gr64 = LGHI 0
687 // to gr128 = REG_SEQUENCE %tmp, %tmp
688 assert(DefMI.getOperand(0).getReg() == Reg);
689
690 if (!UseMI.isCopy())
691 return false;
692
693 Register CopyDstReg = UseMI.getOperand(0).getReg();
694 if (CopyDstReg.isVirtual() &&
695 MRI->getRegClass(CopyDstReg) == &SystemZ::GR128BitRegClass &&
696 MRI->hasOneNonDBGUse(Reg)) {
697 // TODO: Handle physical registers
698 // TODO: Handle gr64 uses with subregister indexes
699 // TODO: Should this multi-use cases?
700 Register TmpReg = MRI->createVirtualRegister(&SystemZ::GR64BitRegClass);
701 MachineBasicBlock &MBB = *UseMI.getParent();
702
703 loadImmediate(MBB, UseMI.getIterator(), TmpReg, ImmVal);
704
705 UseMI.setDesc(get(SystemZ::REG_SEQUENCE));
706 UseMI.getOperand(1).setReg(TmpReg);
707 MachineInstrBuilder(*MBB.getParent(), &UseMI)
708 .addImm(SystemZ::subreg_h64)
709 .addReg(TmpReg)
710 .addImm(SystemZ::subreg_l64);
711
712 if (MRI->use_nodbg_empty(Reg))
713 DefMI.eraseFromParent();
714 return true;
715 }
716
717 return false;
718 }
719
720 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
721 DefOpc != SystemZ::LGHI)
722 return false;
723 if (DefMI.getOperand(0).getReg() != Reg)
724 return false;
725 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
726
727 unsigned UseOpc = UseMI.getOpcode();
728 unsigned NewUseOpc;
729 unsigned UseIdx;
730 int CommuteIdx = -1;
731 bool TieOps = false;
732 switch (UseOpc) {
733 case SystemZ::SELRMux:
734 TieOps = true;
735 [[fallthrough]];
736 case SystemZ::LOCRMux:
737 if (!STI.hasLoadStoreOnCond2())
738 return false;
739 NewUseOpc = SystemZ::LOCHIMux;
740 if (UseMI.getOperand(2).getReg() == Reg)
741 UseIdx = 2;
742 else if (UseMI.getOperand(1).getReg() == Reg)
743 UseIdx = 2, CommuteIdx = 1;
744 else
745 return false;
746 break;
747 case SystemZ::SELGR:
748 TieOps = true;
749 [[fallthrough]];
750 case SystemZ::LOCGR:
751 if (!STI.hasLoadStoreOnCond2())
752 return false;
753 NewUseOpc = SystemZ::LOCGHI;
754 if (UseMI.getOperand(2).getReg() == Reg)
755 UseIdx = 2;
756 else if (UseMI.getOperand(1).getReg() == Reg)
757 UseIdx = 2, CommuteIdx = 1;
758 else
759 return false;
760 break;
761 default:
762 return false;
763 }
764
765 if (CommuteIdx != -1)
766 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
767 return false;
768
769 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
770 UseMI.setDesc(get(NewUseOpc));
771 if (TieOps)
772 UseMI.tieOperands(0, 1);
773 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
774 if (DeleteDef)
775 DefMI.eraseFromParent();
776
777 return true;
778}
779
781 unsigned Opcode = MI.getOpcode();
782 if (Opcode == SystemZ::Return ||
783 Opcode == SystemZ::Return_XPLINK ||
784 Opcode == SystemZ::Trap ||
785 Opcode == SystemZ::CallJG ||
786 Opcode == SystemZ::CallBR)
787 return true;
788 return false;
789}
790
793 unsigned NumCycles, unsigned ExtraPredCycles,
794 BranchProbability Probability) const {
795 // Avoid using conditional returns at the end of a loop (since then
796 // we'd need to emit an unconditional branch to the beginning anyway,
797 // making the loop body longer). This doesn't apply for low-probability
798 // loops (eg. compare-and-swap retry), so just decide based on branch
799 // probability instead of looping structure.
800 // However, since Compare and Trap instructions cost the same as a regular
801 // Compare instruction, we should allow the if conversion to convert this
802 // into a Conditional Compare regardless of the branch probability.
803 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
804 MBB.succ_empty() && Probability < BranchProbability(1, 8))
805 return false;
806 // For now only convert single instructions.
807 return NumCycles == 1;
808}
809
812 unsigned NumCyclesT, unsigned ExtraPredCyclesT,
813 MachineBasicBlock &FMBB,
814 unsigned NumCyclesF, unsigned ExtraPredCyclesF,
815 BranchProbability Probability) const {
816 // For now avoid converting mutually-exclusive cases.
817 return false;
818}
819
822 BranchProbability Probability) const {
823 // For now only duplicate single instructions.
824 return NumCycles == 1;
825}
826
829 assert(Pred.size() == 2 && "Invalid condition");
830 unsigned CCValid = Pred[0].getImm();
831 unsigned CCMask = Pred[1].getImm();
832 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
833 unsigned Opcode = MI.getOpcode();
834 if (Opcode == SystemZ::Trap) {
835 MI.setDesc(get(SystemZ::CondTrap));
836 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
837 .addImm(CCValid).addImm(CCMask)
838 .addReg(SystemZ::CC, RegState::Implicit);
839 return true;
840 }
841 if (Opcode == SystemZ::Return || Opcode == SystemZ::Return_XPLINK) {
842 MI.setDesc(get(Opcode == SystemZ::Return ? SystemZ::CondReturn
843 : SystemZ::CondReturn_XPLINK));
844 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
845 .addImm(CCValid)
846 .addImm(CCMask)
847 .addReg(SystemZ::CC, RegState::Implicit);
848 return true;
849 }
850 if (Opcode == SystemZ::CallJG) {
851 MachineOperand FirstOp = MI.getOperand(0);
852 const uint32_t *RegMask = MI.getOperand(1).getRegMask();
853 MI.removeOperand(1);
854 MI.removeOperand(0);
855 MI.setDesc(get(SystemZ::CallBRCL));
856 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
857 .addImm(CCValid)
858 .addImm(CCMask)
859 .add(FirstOp)
860 .addRegMask(RegMask)
861 .addReg(SystemZ::CC, RegState::Implicit);
862 return true;
863 }
864 if (Opcode == SystemZ::CallBR) {
865 MachineOperand Target = MI.getOperand(0);
866 const uint32_t *RegMask = MI.getOperand(1).getRegMask();
867 MI.removeOperand(1);
868 MI.removeOperand(0);
869 MI.setDesc(get(SystemZ::CallBCR));
870 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
871 .addImm(CCValid).addImm(CCMask)
872 .add(Target)
873 .addRegMask(RegMask)
874 .addReg(SystemZ::CC, RegState::Implicit);
875 return true;
876 }
877 return false;
878}
879
882 const DebugLoc &DL, Register DestReg,
883 Register SrcReg, bool KillSrc,
884 bool RenamableDest,
885 bool RenamableSrc) const {
886 // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
887 // super register in case one of the subregs is undefined.
888 // This handles ADDR128 too.
889 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
890 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
891 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
892 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
893 .addReg(SrcReg, RegState::Implicit);
894 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
895 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
896 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
897 .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
898 return;
899 }
900
901 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
902 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
903 false);
904 return;
905 }
906
907 // Move 128-bit floating-point values between VR128 and FP128.
908 if (SystemZ::VR128BitRegClass.contains(DestReg) &&
909 SystemZ::FP128BitRegClass.contains(SrcReg)) {
910 MCRegister SrcRegHi =
911 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
912 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
913 MCRegister SrcRegLo =
914 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
915 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
916
917 BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
918 .addReg(SrcRegHi, getKillRegState(KillSrc))
919 .addReg(SrcRegLo, getKillRegState(KillSrc));
920 return;
921 }
922 if (SystemZ::FP128BitRegClass.contains(DestReg) &&
923 SystemZ::VR128BitRegClass.contains(SrcReg)) {
924 MCRegister DestRegHi =
925 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
926 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
927 MCRegister DestRegLo =
928 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
929 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
930
931 if (DestRegHi != SrcReg.asMCReg())
932 copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
933 BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
934 .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
935 return;
936 }
937
938 if (SystemZ::FP128BitRegClass.contains(DestReg) &&
939 SystemZ::GR128BitRegClass.contains(SrcReg)) {
940 MCRegister DestRegHi = RI.getSubReg(DestReg, SystemZ::subreg_h64);
941 MCRegister DestRegLo = RI.getSubReg(DestReg, SystemZ::subreg_l64);
942 MCRegister SrcRegHi = RI.getSubReg(SrcReg, SystemZ::subreg_h64);
943 MCRegister SrcRegLo = RI.getSubReg(SrcReg, SystemZ::subreg_l64);
944
945 BuildMI(MBB, MBBI, DL, get(SystemZ::LDGR), DestRegHi)
946 .addReg(SrcRegHi)
948
949 BuildMI(MBB, MBBI, DL, get(SystemZ::LDGR), DestRegLo)
950 .addReg(SrcRegLo, getKillRegState(KillSrc));
951 return;
952 }
953
954 // Move CC value from a GR32.
955 if (DestReg == SystemZ::CC) {
956 unsigned Opcode =
957 SystemZ::GR32BitRegClass.contains(SrcReg) ? SystemZ::TMLH : SystemZ::TMHH;
958 BuildMI(MBB, MBBI, DL, get(Opcode))
959 .addReg(SrcReg, getKillRegState(KillSrc))
960 .addImm(3 << (SystemZ::IPM_CC - 16));
961 return;
962 }
963
964 if (SystemZ::GR128BitRegClass.contains(DestReg) &&
965 SystemZ::VR128BitRegClass.contains(SrcReg)) {
966 MCRegister DestH64 = RI.getSubReg(DestReg, SystemZ::subreg_h64);
967 MCRegister DestL64 = RI.getSubReg(DestReg, SystemZ::subreg_l64);
968
969 BuildMI(MBB, MBBI, DL, get(SystemZ::VLGVG), DestH64)
970 .addReg(SrcReg)
971 .addReg(SystemZ::NoRegister)
972 .addImm(0)
973 .addDef(DestReg, RegState::Implicit);
974 BuildMI(MBB, MBBI, DL, get(SystemZ::VLGVG), DestL64)
975 .addReg(SrcReg, getKillRegState(KillSrc))
976 .addReg(SystemZ::NoRegister)
977 .addImm(1);
978 return;
979 }
980
981 if (SystemZ::VR128BitRegClass.contains(DestReg) &&
982 SystemZ::GR128BitRegClass.contains(SrcReg)) {
983 BuildMI(MBB, MBBI, DL, get(SystemZ::VLVGP), DestReg)
984 .addReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64))
985 .addReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64));
986 return;
987 }
988
989 // Everything else needs only one instruction.
990 unsigned Opcode;
991 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
992 Opcode = SystemZ::LGR;
993 else if (SystemZ::FP16BitRegClass.contains(DestReg, SrcReg))
994 Opcode = STI.hasVector() ? SystemZ::LDR16 : SystemZ::LER16;
995 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
996 // For z13 we prefer LDR over LER to avoid partial register dependencies.
997 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
998 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
999 Opcode = SystemZ::LDR;
1000 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
1001 Opcode = SystemZ::LXR;
1002 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
1003 Opcode = SystemZ::VLR32;
1004 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
1005 Opcode = SystemZ::VLR64;
1006 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
1007 Opcode = SystemZ::VLR;
1008 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
1009 Opcode = SystemZ::CPYA;
1010 else if (SystemZ::GR64BitRegClass.contains(DestReg) &&
1011 SystemZ::FP64BitRegClass.contains(SrcReg))
1012 Opcode = SystemZ::LGDR;
1013 else if (SystemZ::FP64BitRegClass.contains(DestReg) &&
1014 SystemZ::GR64BitRegClass.contains(SrcReg))
1015 Opcode = SystemZ::LDGR;
1016 else
1017 llvm_unreachable("Impossible reg-to-reg copy");
1018
1019 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
1020 .addReg(SrcReg, getKillRegState(KillSrc));
1021}
1022
1025 bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1026
1027 Register VReg, MachineInstr::MIFlag Flags) const {
1028 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1029
1030 // Callers may expect a single instruction, so keep 128-bit moves
1031 // together for now and lower them after register allocation.
1032 unsigned LoadOpcode, StoreOpcode;
1033 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
1034 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
1035 .addReg(SrcReg, getKillRegState(isKill)),
1036 FrameIdx);
1037}
1038
1041 Register DestReg, int FrameIdx,
1042 const TargetRegisterClass *RC,
1043 Register VReg,
1044 MachineInstr::MIFlag Flags) const {
1045 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1046
1047 // Callers may expect a single instruction, so keep 128-bit moves
1048 // together for now and lower them after register allocation.
1049 unsigned LoadOpcode, StoreOpcode;
1050 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
1051 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
1052 FrameIdx);
1053}
1054
1055// Return true if MI is a simple load or store with a 12-bit displacement
1056// and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
1057static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
1058 const MCInstrDesc &MCID = MI->getDesc();
1059 return ((MCID.TSFlags & Flag) &&
1060 isUInt<12>(MI->getOperand(2).getImm()) &&
1061 MI->getOperand(3).getReg() == 0);
1062}
1063
1064namespace {
1065
1066struct LogicOp {
1067 LogicOp() = default;
1068 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
1069 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
1070
1071 explicit operator bool() const { return RegSize; }
1072
1073 unsigned RegSize = 0;
1074 unsigned ImmLSB = 0;
1075 unsigned ImmSize = 0;
1076};
1077
1078} // end anonymous namespace
1079
1080static LogicOp interpretAndImmediate(unsigned Opcode) {
1081 switch (Opcode) {
1082 case SystemZ::NILMux: return LogicOp(32, 0, 16);
1083 case SystemZ::NIHMux: return LogicOp(32, 16, 16);
1084 case SystemZ::NILL64: return LogicOp(64, 0, 16);
1085 case SystemZ::NILH64: return LogicOp(64, 16, 16);
1086 case SystemZ::NIHL64: return LogicOp(64, 32, 16);
1087 case SystemZ::NIHH64: return LogicOp(64, 48, 16);
1088 case SystemZ::NIFMux: return LogicOp(32, 0, 32);
1089 case SystemZ::NILF64: return LogicOp(64, 0, 32);
1090 case SystemZ::NIHF64: return LogicOp(64, 32, 32);
1091 default: return LogicOp();
1092 }
1093}
1094
1095static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
1096 if (OldMI->registerDefIsDead(SystemZ::CC, /*TRI=*/nullptr)) {
1097 MachineOperand *CCDef =
1098 NewMI->findRegisterDefOperand(SystemZ::CC, /*TRI=*/nullptr);
1099 if (CCDef != nullptr)
1100 CCDef->setIsDead(true);
1101 }
1102}
1103
1104static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI,
1105 MachineInstr::MIFlag Flag) {
1106 if (OldMI->getFlag(Flag))
1107 NewMI->setFlag(Flag);
1108}
1109
1112 LiveIntervals *LIS) const {
1113 MachineBasicBlock *MBB = MI.getParent();
1114
1115 // Try to convert an AND into an RISBG-type instruction.
1116 // TODO: It might be beneficial to select RISBG and shorten to AND instead.
1117 if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
1118 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
1119 // AND IMMEDIATE leaves the other bits of the register unchanged.
1120 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
1121 unsigned Start, End;
1122 if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
1123 unsigned NewOpcode;
1124 if (And.RegSize == 64) {
1125 NewOpcode = SystemZ::RISBG;
1126 // Prefer RISBGN if available, since it does not clobber CC.
1127 if (STI.hasMiscellaneousExtensions())
1128 NewOpcode = SystemZ::RISBGN;
1129 } else {
1130 NewOpcode = SystemZ::RISBMux;
1131 Start &= 31;
1132 End &= 31;
1133 }
1134 MachineOperand &Dest = MI.getOperand(0);
1135 MachineOperand &Src = MI.getOperand(1);
1137 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
1138 .add(Dest)
1139 .addReg(0)
1140 .addReg(Src.getReg(), getKillRegState(Src.isKill()),
1141 Src.getSubReg())
1142 .addImm(Start)
1143 .addImm(End + 128)
1144 .addImm(0);
1145 if (LV) {
1146 unsigned NumOps = MI.getNumOperands();
1147 for (unsigned I = 1; I < NumOps; ++I) {
1148 MachineOperand &Op = MI.getOperand(I);
1149 if (Op.isReg() && Op.isKill())
1150 LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
1151 }
1152 }
1153 if (LIS)
1154 LIS->ReplaceMachineInstrInMaps(MI, *MIB);
1155 transferDeadCC(&MI, MIB);
1156 return MIB;
1157 }
1158 }
1159 return nullptr;
1160}
1161
1163 bool Invert) const {
1164 unsigned Opc = Inst.getOpcode();
1165 if (Invert) {
1166 auto InverseOpcode = getInverseOpcode(Opc);
1167 if (!InverseOpcode)
1168 return false;
1169 Opc = *InverseOpcode;
1170 }
1171
1172 switch (Opc) {
1173 default:
1174 break;
1175 // Adds and multiplications.
1176 case SystemZ::WFADB:
1177 case SystemZ::WFASB:
1178 case SystemZ::WFAXB:
1179 case SystemZ::VFADB:
1180 case SystemZ::VFASB:
1181 case SystemZ::WFMDB:
1182 case SystemZ::WFMSB:
1183 case SystemZ::WFMXB:
1184 case SystemZ::VFMDB:
1185 case SystemZ::VFMSB:
1188 }
1189
1190 return false;
1191}
1192
1193std::optional<unsigned>
1195 // fadd => fsub
1196 switch (Opcode) {
1197 case SystemZ::WFADB:
1198 return SystemZ::WFSDB;
1199 case SystemZ::WFASB:
1200 return SystemZ::WFSSB;
1201 case SystemZ::WFAXB:
1202 return SystemZ::WFSXB;
1203 case SystemZ::VFADB:
1204 return SystemZ::VFSDB;
1205 case SystemZ::VFASB:
1206 return SystemZ::VFSSB;
1207 // fsub => fadd
1208 case SystemZ::WFSDB:
1209 return SystemZ::WFADB;
1210 case SystemZ::WFSSB:
1211 return SystemZ::WFASB;
1212 case SystemZ::WFSXB:
1213 return SystemZ::WFAXB;
1214 case SystemZ::VFSDB:
1215 return SystemZ::VFADB;
1216 case SystemZ::VFSSB:
1217 return SystemZ::VFASB;
1218 default:
1219 return std::nullopt;
1220 }
1221}
1222
1225 MachineBasicBlock::iterator InsertPt, int FrameIndex,
1226 LiveIntervals *LIS, VirtRegMap *VRM) const {
1229 const MachineFrameInfo &MFI = MF.getFrameInfo();
1230 unsigned Size = MFI.getObjectSize(FrameIndex);
1231 unsigned Opcode = MI.getOpcode();
1232
1233 // Check CC liveness if new instruction introduces a dead def of CC.
1234 SlotIndex MISlot = SlotIndex();
1235 LiveRange *CCLiveRange = nullptr;
1236 bool CCLiveAtMI = true;
1237 if (LIS) {
1238 MISlot = LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1239 auto CCUnits = TRI->regunits(MCRegister::from(SystemZ::CC));
1240 assert(range_size(CCUnits) == 1 && "CC only has one reg unit.");
1241 CCLiveRange = &LIS->getRegUnit(*CCUnits.begin());
1242 CCLiveAtMI = CCLiveRange->liveAt(MISlot);
1243 }
1244
1245 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1246 if (!CCLiveAtMI && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1247 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1248 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1249 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1250 MI.getDebugLoc(), get(SystemZ::AGSI))
1251 .addFrameIndex(FrameIndex)
1252 .addImm(0)
1253 .addImm(MI.getOperand(2).getImm());
1254 BuiltMI->findRegisterDefOperand(SystemZ::CC, /*TRI=*/nullptr)
1255 ->setIsDead(true);
1256 CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1257 return BuiltMI;
1258 }
1259 return nullptr;
1260 }
1261
1262 // All other cases require a single operand.
1263 if (Ops.size() != 1)
1264 return nullptr;
1265
1266 unsigned OpNum = Ops[0];
1267 const TargetRegisterClass *RC =
1268 MF.getRegInfo().getRegClass(MI.getOperand(OpNum).getReg());
1269 assert((Size * 8 == TRI->getRegSizeInBits(*RC) ||
1270 (RC == &SystemZ::FP16BitRegClass && Size == 4 && !STI.hasVector())) &&
1271 "Invalid size combination");
1272 (void)RC;
1273
1274 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1275 isInt<8>(MI.getOperand(2).getImm())) {
1276 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1277 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1278 MachineInstr *BuiltMI =
1279 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1280 .addFrameIndex(FrameIndex)
1281 .addImm(0)
1282 .addImm(MI.getOperand(2).getImm());
1283 transferDeadCC(&MI, BuiltMI);
1285 return BuiltMI;
1286 }
1287
1288 if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1289 isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1290 (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1291 isInt<8>(MI.getOperand(2).getImm()))) {
1292 // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1293 Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1294 MachineInstr *BuiltMI =
1295 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1296 .addFrameIndex(FrameIndex)
1297 .addImm(0)
1298 .addImm((int8_t)MI.getOperand(2).getImm());
1299 transferDeadCC(&MI, BuiltMI);
1300 return BuiltMI;
1301 }
1302
1303 if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1304 isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1305 (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1306 isInt<8>((-MI.getOperand(2).getImm())))) {
1307 // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1308 Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1309 MachineInstr *BuiltMI =
1310 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1311 .addFrameIndex(FrameIndex)
1312 .addImm(0)
1313 .addImm((int8_t)-MI.getOperand(2).getImm());
1314 transferDeadCC(&MI, BuiltMI);
1315 return BuiltMI;
1316 }
1317
1318 unsigned MemImmOpc = 0;
1319 switch (Opcode) {
1320 case SystemZ::LHIMux:
1321 case SystemZ::LHI: MemImmOpc = SystemZ::MVHI; break;
1322 case SystemZ::LGHI: MemImmOpc = SystemZ::MVGHI; break;
1323 case SystemZ::CHIMux:
1324 case SystemZ::CHI: MemImmOpc = SystemZ::CHSI; break;
1325 case SystemZ::CGHI: MemImmOpc = SystemZ::CGHSI; break;
1326 case SystemZ::CLFIMux:
1327 case SystemZ::CLFI:
1328 if (isUInt<16>(MI.getOperand(1).getImm()))
1329 MemImmOpc = SystemZ::CLFHSI;
1330 break;
1331 case SystemZ::CLGFI:
1332 if (isUInt<16>(MI.getOperand(1).getImm()))
1333 MemImmOpc = SystemZ::CLGHSI;
1334 break;
1335 default: break;
1336 }
1337 if (MemImmOpc)
1338 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1339 get(MemImmOpc))
1340 .addFrameIndex(FrameIndex)
1341 .addImm(0)
1342 .addImm(MI.getOperand(1).getImm());
1343
1344 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1345 bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1346 bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1347 // If we're spilling the destination of an LDGR or LGDR, store the
1348 // source register instead.
1349 if (OpNum == 0) {
1350 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1351 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1352 get(StoreOpcode))
1353 .add(MI.getOperand(1))
1354 .addFrameIndex(FrameIndex)
1355 .addImm(0)
1356 .addReg(0);
1357 }
1358 // If we're spilling the source of an LDGR or LGDR, load the
1359 // destination register instead.
1360 if (OpNum == 1) {
1361 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1362 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1363 get(LoadOpcode))
1364 .add(MI.getOperand(0))
1365 .addFrameIndex(FrameIndex)
1366 .addImm(0)
1367 .addReg(0);
1368 }
1369 }
1370
1371 // Look for cases where the source of a simple store or the destination
1372 // of a simple load is being spilled. Try to use MVC instead.
1373 //
1374 // Although MVC is in practice a fast choice in these cases, it is still
1375 // logically a bytewise copy. This means that we cannot use it if the
1376 // load or store is volatile. We also wouldn't be able to use MVC if
1377 // the two memories partially overlap, but that case cannot occur here,
1378 // because we know that one of the memories is a full frame index.
1379 //
1380 // For performance reasons, we also want to avoid using MVC if the addresses
1381 // might be equal. We don't worry about that case here, because spill slot
1382 // coloring happens later, and because we have special code to remove
1383 // MVCs that turn out to be redundant.
1384 if (OpNum == 0 && MI.hasOneMemOperand()) {
1385 MachineMemOperand *MMO = *MI.memoperands_begin();
1386 if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1387 // Handle conversion of loads.
1389 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1390 get(SystemZ::MVC))
1391 .addFrameIndex(FrameIndex)
1392 .addImm(0)
1393 .addImm(Size)
1394 .add(MI.getOperand(1))
1395 .addImm(MI.getOperand(2).getImm())
1396 .addMemOperand(MMO);
1397 }
1398 // Handle conversion of stores.
1400 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1401 get(SystemZ::MVC))
1402 .add(MI.getOperand(1))
1403 .addImm(MI.getOperand(2).getImm())
1404 .addImm(Size)
1405 .addFrameIndex(FrameIndex)
1406 .addImm(0)
1407 .addMemOperand(MMO);
1408 }
1409 }
1410 }
1411
1412 // If the spilled operand is the final one or the instruction is
1413 // commutable, try to change <INSN>R into <INSN>. Don't introduce a def of
1414 // CC if it is live and MI does not define it.
1415 unsigned NumOps = MI.getNumExplicitOperands();
1416 int MemOpcode = SystemZ::getMemOpcode(Opcode);
1417 if (MemOpcode == -1 ||
1418 (CCLiveAtMI && !MI.definesRegister(SystemZ::CC, /*TRI=*/nullptr) &&
1419 get(MemOpcode).hasImplicitDefOfPhysReg(SystemZ::CC)))
1420 return nullptr;
1421
1422 // Check if all other vregs have a usable allocation in the case of vector
1423 // to FP conversion.
1424 const MCInstrDesc &MCID = MI.getDesc();
1425 for (unsigned I = 0, E = MCID.getNumOperands(); I != E; ++I) {
1426 const MCOperandInfo &MCOI = MCID.operands()[I];
1427 if (MCOI.OperandType != MCOI::OPERAND_REGISTER || I == OpNum)
1428 continue;
1429 const TargetRegisterClass *RC = TRI->getRegClass(MCOI.RegClass);
1430 if (RC == &SystemZ::VR32BitRegClass || RC == &SystemZ::VR64BitRegClass) {
1431 Register Reg = MI.getOperand(I).getReg();
1432 Register PhysReg = Reg.isVirtual()
1433 ? (VRM ? Register(VRM->getPhys(Reg)) : Register())
1434 : Reg;
1435 if (!PhysReg ||
1436 !(SystemZ::FP32BitRegClass.contains(PhysReg) ||
1437 SystemZ::FP64BitRegClass.contains(PhysReg) ||
1438 SystemZ::VF128BitRegClass.contains(PhysReg)))
1439 return nullptr;
1440 }
1441 }
1442 // Fused multiply and add/sub need to have the same dst and accumulator reg.
1443 bool FusedFPOp = (Opcode == SystemZ::WFMADB || Opcode == SystemZ::WFMASB ||
1444 Opcode == SystemZ::WFMSDB || Opcode == SystemZ::WFMSSB);
1445 if (FusedFPOp) {
1446 Register DstReg = VRM->getPhys(MI.getOperand(0).getReg());
1447 Register AccReg = VRM->getPhys(MI.getOperand(3).getReg());
1448 if (OpNum == 0 || OpNum == 3 || DstReg != AccReg)
1449 return nullptr;
1450 }
1451
1452 // Try to swap compare operands if possible.
1453 bool NeedsCommute = false;
1454 if ((MI.getOpcode() == SystemZ::CR || MI.getOpcode() == SystemZ::CGR ||
1455 MI.getOpcode() == SystemZ::CLR || MI.getOpcode() == SystemZ::CLGR ||
1456 MI.getOpcode() == SystemZ::WFCDB || MI.getOpcode() == SystemZ::WFCSB ||
1457 MI.getOpcode() == SystemZ::WFKDB || MI.getOpcode() == SystemZ::WFKSB) &&
1458 OpNum == 0 && prepareCompareSwapOperands(MI))
1459 NeedsCommute = true;
1460
1461 bool CCOperands = false;
1462 if (MI.getOpcode() == SystemZ::LOCRMux || MI.getOpcode() == SystemZ::LOCGR ||
1463 MI.getOpcode() == SystemZ::SELRMux || MI.getOpcode() == SystemZ::SELGR) {
1464 assert(MI.getNumOperands() == 6 && NumOps == 5 &&
1465 "LOCR/SELR instruction operands corrupt?");
1466 NumOps -= 2;
1467 CCOperands = true;
1468 }
1469
1470 // See if this is a 3-address instruction that is convertible to 2-address
1471 // and suitable for folding below. Only try this with virtual registers
1472 // and a provided VRM (during regalloc).
1473 if (NumOps == 3 && SystemZ::getTargetMemOpcode(MemOpcode) != -1) {
1474 if (VRM == nullptr)
1475 return nullptr;
1476 else {
1477 Register DstReg = MI.getOperand(0).getReg();
1478 Register DstPhys =
1479 (DstReg.isVirtual() ? Register(VRM->getPhys(DstReg)) : DstReg);
1480 Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1481 : ((OpNum == 1 && MI.isCommutable())
1482 ? MI.getOperand(2).getReg()
1483 : Register()));
1484 if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1485 SrcReg.isVirtual() && DstPhys == VRM->getPhys(SrcReg))
1486 NeedsCommute = (OpNum == 1);
1487 else
1488 return nullptr;
1489 }
1490 }
1491
1492 if ((OpNum == NumOps - 1) || NeedsCommute || FusedFPOp) {
1493 const MCInstrDesc &MemDesc = get(MemOpcode);
1494 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1495 assert(AccessBytes != 0 && "Size of access should be known");
1496 assert(AccessBytes <= Size && "Access outside the frame index");
1497 uint64_t Offset = Size - AccessBytes;
1498 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1499 MI.getDebugLoc(), get(MemOpcode));
1500 if (MI.isCompare()) {
1501 assert(NumOps == 2 && "Expected 2 register operands for a compare.");
1502 MIB.add(MI.getOperand(NeedsCommute ? 1 : 0));
1503 }
1504 else if (FusedFPOp) {
1505 MIB.add(MI.getOperand(0));
1506 MIB.add(MI.getOperand(3));
1507 MIB.add(MI.getOperand(OpNum == 1 ? 2 : 1));
1508 }
1509 else {
1510 MIB.add(MI.getOperand(0));
1511 if (NeedsCommute)
1512 MIB.add(MI.getOperand(2));
1513 else
1514 for (unsigned I = 1; I < OpNum; ++I)
1515 MIB.add(MI.getOperand(I));
1516 }
1517 MIB.addFrameIndex(FrameIndex).addImm(Offset);
1518 if (MemDesc.TSFlags & SystemZII::HasIndex)
1519 MIB.addReg(0);
1520 if (CCOperands) {
1521 unsigned CCValid = MI.getOperand(NumOps).getImm();
1522 unsigned CCMask = MI.getOperand(NumOps + 1).getImm();
1523 MIB.addImm(CCValid);
1524 MIB.addImm(NeedsCommute ? CCMask ^ CCValid : CCMask);
1525 }
1526 if (MIB->definesRegister(SystemZ::CC, /*TRI=*/nullptr) &&
1527 (!MI.definesRegister(SystemZ::CC, /*TRI=*/nullptr) ||
1528 MI.registerDefIsDead(SystemZ::CC, /*TRI=*/nullptr))) {
1529 MIB->addRegisterDead(SystemZ::CC, TRI);
1530 if (CCLiveRange)
1531 CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1532 }
1533 // Constrain the register classes if converted from a vector opcode. The
1534 // allocated regs are in an FP reg-class per previous check above.
1535 for (const MachineOperand &MO : MIB->operands())
1536 if (MO.isReg() && MO.getReg().isVirtual()) {
1537 Register Reg = MO.getReg();
1538 if (MRI.getRegClass(Reg) == &SystemZ::VR32BitRegClass)
1539 MRI.setRegClass(Reg, &SystemZ::FP32BitRegClass);
1540 else if (MRI.getRegClass(Reg) == &SystemZ::VR64BitRegClass)
1541 MRI.setRegClass(Reg, &SystemZ::FP64BitRegClass);
1542 else if (MRI.getRegClass(Reg) == &SystemZ::VR128BitRegClass)
1543 MRI.setRegClass(Reg, &SystemZ::VF128BitRegClass);
1544 }
1545
1546 transferDeadCC(&MI, MIB);
1549 return MIB;
1550 }
1551
1552 return nullptr;
1553}
1554
1557 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1558 LiveIntervals *LIS) const {
1560 MachineBasicBlock *MBB = MI.getParent();
1561
1562 // For reassociable FP operations, any loads have been purposefully left
1563 // unfolded so that MachineCombiner can do its work on reg/reg
1564 // opcodes. After that, as many loads as possible are now folded.
1565 // TODO: This may be beneficial with other opcodes as well as machine-sink
1566 // can move loads close to their user in a different MBB, which the isel
1567 // matcher did not see.
1568 unsigned LoadOpc = 0;
1569 unsigned RegMemOpcode = 0;
1570 const TargetRegisterClass *FPRC = nullptr;
1571 RegMemOpcode = MI.getOpcode() == SystemZ::WFADB ? SystemZ::ADB
1572 : MI.getOpcode() == SystemZ::WFSDB ? SystemZ::SDB
1573 : MI.getOpcode() == SystemZ::WFMDB ? SystemZ::MDB
1574 : 0;
1575 if (RegMemOpcode) {
1576 LoadOpc = SystemZ::VL64;
1577 FPRC = &SystemZ::FP64BitRegClass;
1578 } else {
1579 RegMemOpcode = MI.getOpcode() == SystemZ::WFASB ? SystemZ::AEB
1580 : MI.getOpcode() == SystemZ::WFSSB ? SystemZ::SEB
1581 : MI.getOpcode() == SystemZ::WFMSB ? SystemZ::MEEB
1582 : 0;
1583 if (RegMemOpcode) {
1584 LoadOpc = SystemZ::VL32;
1585 FPRC = &SystemZ::FP32BitRegClass;
1586 }
1587 }
1588 if (!RegMemOpcode || LoadMI.getOpcode() != LoadOpc)
1589 return nullptr;
1590
1591 // If RegMemOpcode clobbers CC, first make sure CC is not live at this point.
1592 if (get(RegMemOpcode).hasImplicitDefOfPhysReg(SystemZ::CC)) {
1593 assert(LoadMI.getParent() == MI.getParent() && "Assuming a local fold.");
1594 assert(LoadMI != InsertPt && "Assuming InsertPt not to be first in MBB.");
1595 for (MachineBasicBlock::iterator MII = std::prev(InsertPt);;
1596 --MII) {
1597 if (MII->definesRegister(SystemZ::CC, /*TRI=*/nullptr)) {
1598 if (!MII->registerDefIsDead(SystemZ::CC, /*TRI=*/nullptr))
1599 return nullptr;
1600 break;
1601 }
1602 if (MII == MBB->begin()) {
1603 if (MBB->isLiveIn(SystemZ::CC))
1604 return nullptr;
1605 break;
1606 }
1607 }
1608 }
1609
1610 Register FoldAsLoadDefReg = LoadMI.getOperand(0).getReg();
1611 if (Ops.size() != 1 || FoldAsLoadDefReg != MI.getOperand(Ops[0]).getReg())
1612 return nullptr;
1613 Register DstReg = MI.getOperand(0).getReg();
1614 MachineOperand LHS = MI.getOperand(1);
1615 MachineOperand RHS = MI.getOperand(2);
1616 MachineOperand &RegMO = RHS.getReg() == FoldAsLoadDefReg ? LHS : RHS;
1617 if ((RegMemOpcode == SystemZ::SDB || RegMemOpcode == SystemZ::SEB) &&
1618 FoldAsLoadDefReg != RHS.getReg())
1619 return nullptr;
1620
1621 MachineOperand &Base = LoadMI.getOperand(1);
1622 MachineOperand &Disp = LoadMI.getOperand(2);
1623 MachineOperand &Indx = LoadMI.getOperand(3);
1625 BuildMI(*MI.getParent(), InsertPt, MI.getDebugLoc(), get(RegMemOpcode), DstReg)
1626 .add(RegMO)
1627 .add(Base)
1628 .add(Disp)
1629 .add(Indx);
1630 MIB->addRegisterDead(SystemZ::CC, &RI);
1631 MRI->setRegClass(DstReg, FPRC);
1632 MRI->setRegClass(RegMO.getReg(), FPRC);
1634
1635 return MIB;
1636}
1637
1639 switch (MI.getOpcode()) {
1640 case SystemZ::L128:
1641 splitMove(MI, SystemZ::LG);
1642 return true;
1643
1644 case SystemZ::ST128:
1645 splitMove(MI, SystemZ::STG);
1646 return true;
1647
1648 case SystemZ::LX:
1649 splitMove(MI, SystemZ::LD);
1650 return true;
1651
1652 case SystemZ::STX:
1653 splitMove(MI, SystemZ::STD);
1654 return true;
1655
1656 case SystemZ::LBMux:
1657 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1658 return true;
1659
1660 case SystemZ::LHMux:
1661 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1662 return true;
1663
1664 case SystemZ::LLCRMux:
1665 expandZExtPseudo(MI, SystemZ::LLCR, 8);
1666 return true;
1667
1668 case SystemZ::LLHRMux:
1669 expandZExtPseudo(MI, SystemZ::LLHR, 16);
1670 return true;
1671
1672 case SystemZ::LLCMux:
1673 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1674 return true;
1675
1676 case SystemZ::LLHMux:
1677 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1678 return true;
1679
1680 case SystemZ::LMux:
1681 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1682 return true;
1683
1684 case SystemZ::LOCMux:
1685 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1686 return true;
1687
1688 case SystemZ::LOCHIMux:
1689 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1690 return true;
1691
1692 case SystemZ::STCMux:
1693 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1694 return true;
1695
1696 case SystemZ::STHMux:
1697 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1698 return true;
1699
1700 case SystemZ::STMux:
1701 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1702 return true;
1703
1704 case SystemZ::STOCMux:
1705 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1706 return true;
1707
1708 case SystemZ::LHIMux:
1709 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1710 return true;
1711
1712 case SystemZ::IIFMux:
1713 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1714 return true;
1715
1716 case SystemZ::IILMux:
1717 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1718 return true;
1719
1720 case SystemZ::IIHMux:
1721 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1722 return true;
1723
1724 case SystemZ::NIFMux:
1725 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1726 return true;
1727
1728 case SystemZ::NILMux:
1729 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1730 return true;
1731
1732 case SystemZ::NIHMux:
1733 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1734 return true;
1735
1736 case SystemZ::OIFMux:
1737 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1738 return true;
1739
1740 case SystemZ::OILMux:
1741 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1742 return true;
1743
1744 case SystemZ::OIHMux:
1745 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1746 return true;
1747
1748 case SystemZ::XIFMux:
1749 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1750 return true;
1751
1752 case SystemZ::TMLMux:
1753 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1754 return true;
1755
1756 case SystemZ::TMHMux:
1757 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1758 return true;
1759
1760 case SystemZ::AHIMux:
1761 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1762 return true;
1763
1764 case SystemZ::AHIMuxK:
1765 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1766 return true;
1767
1768 case SystemZ::AFIMux:
1769 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1770 return true;
1771
1772 case SystemZ::CHIMux:
1773 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1774 return true;
1775
1776 case SystemZ::CFIMux:
1777 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1778 return true;
1779
1780 case SystemZ::CLFIMux:
1781 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1782 return true;
1783
1784 case SystemZ::CMux:
1785 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1786 return true;
1787
1788 case SystemZ::CLMux:
1789 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1790 return true;
1791
1792 case SystemZ::RISBMux: {
1793 bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1794 bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1795 if (SrcIsHigh == DestIsHigh)
1796 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1797 else {
1798 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1799 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1800 }
1801 return true;
1802 }
1803
1804 case SystemZ::ADJDYNALLOC:
1805 splitAdjDynAlloc(MI);
1806 return true;
1807
1808 case TargetOpcode::LOAD_STACK_GUARD:
1809 expandLoadStackGuard(&MI);
1810 return true;
1811
1812 default:
1813 return false;
1814 }
1815}
1816
1818 if (MI.isInlineAsm()) {
1819 const MachineFunction *MF = MI.getParent()->getParent();
1820 const char *AsmStr = MI.getOperand(0).getSymbolName();
1821 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1822 }
1823 else if (MI.getOpcode() == SystemZ::PATCHPOINT)
1825 else if (MI.getOpcode() == SystemZ::STACKMAP)
1826 return MI.getOperand(1).getImm();
1827 else if (MI.getOpcode() == SystemZ::FENTRY_CALL)
1828 return 6;
1829 if (MI.getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER)
1830 return 18;
1831 if (MI.getOpcode() == TargetOpcode::PATCHABLE_RET)
1832 return 18 + (MI.getOperand(0).getImm() == SystemZ::CondReturn ? 4 : 0);
1833
1834 return MI.getDesc().getSize();
1835}
1836
1839 switch (MI.getOpcode()) {
1840 case SystemZ::BR:
1841 case SystemZ::BI:
1842 case SystemZ::J:
1843 case SystemZ::JG:
1845 SystemZ::CCMASK_ANY, &MI.getOperand(0));
1846
1847 case SystemZ::BRC:
1848 case SystemZ::BRCL:
1849 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1850 MI.getOperand(1).getImm(), &MI.getOperand(2));
1851
1852 case SystemZ::BRCT:
1853 case SystemZ::BRCTH:
1855 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1856
1857 case SystemZ::BRCTG:
1859 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1860
1861 case SystemZ::CIJ:
1862 case SystemZ::CRJ:
1864 MI.getOperand(2).getImm(), &MI.getOperand(3));
1865
1866 case SystemZ::CLIJ:
1867 case SystemZ::CLRJ:
1869 MI.getOperand(2).getImm(), &MI.getOperand(3));
1870
1871 case SystemZ::CGIJ:
1872 case SystemZ::CGRJ:
1874 MI.getOperand(2).getImm(), &MI.getOperand(3));
1875
1876 case SystemZ::CLGIJ:
1877 case SystemZ::CLGRJ:
1879 MI.getOperand(2).getImm(), &MI.getOperand(3));
1880
1881 case SystemZ::INLINEASM_BR:
1882 // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1883 return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1884
1885 default:
1886 llvm_unreachable("Unrecognized branch opcode");
1887 }
1888}
1889
1891 unsigned &LoadOpcode,
1892 unsigned &StoreOpcode) const {
1893 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1894 LoadOpcode = SystemZ::L;
1895 StoreOpcode = SystemZ::ST;
1896 } else if (RC == &SystemZ::GRH32BitRegClass) {
1897 LoadOpcode = SystemZ::LFH;
1898 StoreOpcode = SystemZ::STFH;
1899 } else if (RC == &SystemZ::GRX32BitRegClass) {
1900 LoadOpcode = SystemZ::LMux;
1901 StoreOpcode = SystemZ::STMux;
1902 } else if (RC == &SystemZ::GR64BitRegClass ||
1903 RC == &SystemZ::ADDR64BitRegClass) {
1904 LoadOpcode = SystemZ::LG;
1905 StoreOpcode = SystemZ::STG;
1906 } else if (RC == &SystemZ::GR128BitRegClass ||
1907 RC == &SystemZ::ADDR128BitRegClass) {
1908 LoadOpcode = SystemZ::L128;
1909 StoreOpcode = SystemZ::ST128;
1910 } else if (RC == &SystemZ::FP16BitRegClass && !STI.hasVector()) {
1911 LoadOpcode = SystemZ::LE16;
1912 StoreOpcode = SystemZ::STE16;
1913 } else if (RC == &SystemZ::FP32BitRegClass) {
1914 LoadOpcode = SystemZ::LE;
1915 StoreOpcode = SystemZ::STE;
1916 } else if (RC == &SystemZ::FP64BitRegClass) {
1917 LoadOpcode = SystemZ::LD;
1918 StoreOpcode = SystemZ::STD;
1919 } else if (RC == &SystemZ::FP128BitRegClass) {
1920 LoadOpcode = SystemZ::LX;
1921 StoreOpcode = SystemZ::STX;
1922 } else if (RC == &SystemZ::FP16BitRegClass ||
1923 RC == &SystemZ::VR16BitRegClass) {
1924 LoadOpcode = SystemZ::VL16;
1925 StoreOpcode = SystemZ::VST16;
1926 } else if (RC == &SystemZ::VR32BitRegClass) {
1927 LoadOpcode = SystemZ::VL32;
1928 StoreOpcode = SystemZ::VST32;
1929 } else if (RC == &SystemZ::VR64BitRegClass) {
1930 LoadOpcode = SystemZ::VL64;
1931 StoreOpcode = SystemZ::VST64;
1932 } else if (RC == &SystemZ::VF128BitRegClass ||
1933 RC == &SystemZ::VR128BitRegClass) {
1934 LoadOpcode = SystemZ::VL;
1935 StoreOpcode = SystemZ::VST;
1936 } else
1937 llvm_unreachable("Unsupported regclass to load or store");
1938}
1939
1941 int64_t Offset,
1942 const MachineInstr *MI) const {
1943 const MCInstrDesc &MCID = get(Opcode);
1944 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1945 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1946 // Get the instruction to use for unsigned 12-bit displacements.
1947 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1948 if (Disp12Opcode >= 0)
1949 return Disp12Opcode;
1950
1951 // All address-related instructions can use unsigned 12-bit
1952 // displacements.
1953 return Opcode;
1954 }
1955 if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1956 // Get the instruction to use for signed 20-bit displacements.
1957 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1958 if (Disp20Opcode >= 0)
1959 return Disp20Opcode;
1960
1961 // Check whether Opcode allows signed 20-bit displacements.
1962 if (MCID.TSFlags & SystemZII::Has20BitOffset)
1963 return Opcode;
1964
1965 // If a VR32/VR64 reg ended up in an FP register, use the FP opcode.
1966 if (MI && MI->getOperand(0).isReg()) {
1967 Register Reg = MI->getOperand(0).getReg();
1968 if (Reg.isPhysical() && SystemZMC::getFirstReg(Reg) < 16) {
1969 switch (Opcode) {
1970 case SystemZ::VL32:
1971 return SystemZ::LEY;
1972 case SystemZ::VST32:
1973 return SystemZ::STEY;
1974 case SystemZ::VL64:
1975 return SystemZ::LDY;
1976 case SystemZ::VST64:
1977 return SystemZ::STDY;
1978 default: break;
1979 }
1980 }
1981 }
1982 }
1983 return 0;
1984}
1985
1987 const MCInstrDesc &MCID = get(Opcode);
1988 if (MCID.TSFlags & SystemZII::Has20BitOffset)
1989 return SystemZ::getDisp12Opcode(Opcode) >= 0;
1990 return SystemZ::getDisp20Opcode(Opcode) >= 0;
1991}
1992
1993unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1994 switch (Opcode) {
1995 case SystemZ::L: return SystemZ::LT;
1996 case SystemZ::LY: return SystemZ::LT;
1997 case SystemZ::LG: return SystemZ::LTG;
1998 case SystemZ::LGF: return SystemZ::LTGF;
1999 case SystemZ::LR: return SystemZ::LTR;
2000 case SystemZ::LGFR: return SystemZ::LTGFR;
2001 case SystemZ::LGR: return SystemZ::LTGR;
2002 case SystemZ::LCDFR: return SystemZ::LCDBR;
2003 case SystemZ::LPDFR: return SystemZ::LPDBR;
2004 case SystemZ::LNDFR: return SystemZ::LNDBR;
2005 case SystemZ::LCDFR_32: return SystemZ::LCEBR;
2006 case SystemZ::LPDFR_32: return SystemZ::LPEBR;
2007 case SystemZ::LNDFR_32: return SystemZ::LNEBR;
2008 // On zEC12 we prefer to use RISBGN. But if there is a chance to
2009 // actually use the condition code, we may turn it back into RISGB.
2010 // Note that RISBG is not really a "load-and-test" instruction,
2011 // but sets the same condition code values, so is OK to use here.
2012 case SystemZ::RISBGN: return SystemZ::RISBG;
2013 default: return 0;
2014 }
2015}
2016
2017bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
2018 unsigned &Start, unsigned &End) const {
2019 // Reject trivial all-zero masks.
2020 Mask &= allOnes(BitSize);
2021 if (Mask == 0)
2022 return false;
2023
2024 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of
2025 // the msb and End specifies the index of the lsb.
2026 unsigned LSB, Length;
2027 if (isShiftedMask_64(Mask, LSB, Length)) {
2028 Start = 63 - (LSB + Length - 1);
2029 End = 63 - LSB;
2030 return true;
2031 }
2032
2033 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb
2034 // of the low 1s and End specifies the lsb of the high 1s.
2035 if (isShiftedMask_64(Mask ^ allOnes(BitSize), LSB, Length)) {
2036 assert(LSB > 0 && "Bottom bit must be set");
2037 assert(LSB + Length < BitSize && "Top bit must be set");
2038 Start = 63 - (LSB - 1);
2039 End = 63 - (LSB + Length);
2040 return true;
2041 }
2042
2043 return false;
2044}
2045
2046unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
2048 const MachineInstr *MI) const {
2049 switch (Opcode) {
2050 case SystemZ::CHI:
2051 case SystemZ::CGHI:
2052 if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
2053 return 0;
2054 break;
2055 case SystemZ::CLFI:
2056 case SystemZ::CLGFI:
2057 if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
2058 return 0;
2059 break;
2060 case SystemZ::CL:
2061 case SystemZ::CLG:
2062 if (!STI.hasMiscellaneousExtensions())
2063 return 0;
2064 if (!(MI && MI->getOperand(3).getReg() == 0))
2065 return 0;
2066 break;
2067 }
2068 switch (Type) {
2070 switch (Opcode) {
2071 case SystemZ::CR:
2072 return SystemZ::CRJ;
2073 case SystemZ::CGR:
2074 return SystemZ::CGRJ;
2075 case SystemZ::CHI:
2076 return SystemZ::CIJ;
2077 case SystemZ::CGHI:
2078 return SystemZ::CGIJ;
2079 case SystemZ::CLR:
2080 return SystemZ::CLRJ;
2081 case SystemZ::CLGR:
2082 return SystemZ::CLGRJ;
2083 case SystemZ::CLFI:
2084 return SystemZ::CLIJ;
2085 case SystemZ::CLGFI:
2086 return SystemZ::CLGIJ;
2087 default:
2088 return 0;
2089 }
2091 switch (Opcode) {
2092 case SystemZ::CR:
2093 return SystemZ::CRBReturn;
2094 case SystemZ::CGR:
2095 return SystemZ::CGRBReturn;
2096 case SystemZ::CHI:
2097 return SystemZ::CIBReturn;
2098 case SystemZ::CGHI:
2099 return SystemZ::CGIBReturn;
2100 case SystemZ::CLR:
2101 return SystemZ::CLRBReturn;
2102 case SystemZ::CLGR:
2103 return SystemZ::CLGRBReturn;
2104 case SystemZ::CLFI:
2105 return SystemZ::CLIBReturn;
2106 case SystemZ::CLGFI:
2107 return SystemZ::CLGIBReturn;
2108 default:
2109 return 0;
2110 }
2112 switch (Opcode) {
2113 case SystemZ::CR:
2114 return SystemZ::CRBCall;
2115 case SystemZ::CGR:
2116 return SystemZ::CGRBCall;
2117 case SystemZ::CHI:
2118 return SystemZ::CIBCall;
2119 case SystemZ::CGHI:
2120 return SystemZ::CGIBCall;
2121 case SystemZ::CLR:
2122 return SystemZ::CLRBCall;
2123 case SystemZ::CLGR:
2124 return SystemZ::CLGRBCall;
2125 case SystemZ::CLFI:
2126 return SystemZ::CLIBCall;
2127 case SystemZ::CLGFI:
2128 return SystemZ::CLGIBCall;
2129 default:
2130 return 0;
2131 }
2133 switch (Opcode) {
2134 case SystemZ::CR:
2135 return SystemZ::CRT;
2136 case SystemZ::CGR:
2137 return SystemZ::CGRT;
2138 case SystemZ::CHI:
2139 return SystemZ::CIT;
2140 case SystemZ::CGHI:
2141 return SystemZ::CGIT;
2142 case SystemZ::CLR:
2143 return SystemZ::CLRT;
2144 case SystemZ::CLGR:
2145 return SystemZ::CLGRT;
2146 case SystemZ::CLFI:
2147 return SystemZ::CLFIT;
2148 case SystemZ::CLGFI:
2149 return SystemZ::CLGIT;
2150 case SystemZ::CL:
2151 return SystemZ::CLT;
2152 case SystemZ::CLG:
2153 return SystemZ::CLGT;
2154 default:
2155 return 0;
2156 }
2157 }
2158 return 0;
2159}
2160
2163 assert(MBBI->isCompare() && MBBI->getOperand(0).isReg() &&
2164 MBBI->getOperand(1).isReg() && !MBBI->mayLoad() &&
2165 "Not a compare reg/reg.");
2166
2167 MachineBasicBlock *MBB = MBBI->getParent();
2168 bool CCLive = true;
2170 for (MachineInstr &MI : llvm::make_range(std::next(MBBI), MBB->end())) {
2171 if (MI.readsRegister(SystemZ::CC, /*TRI=*/nullptr)) {
2172 unsigned Flags = MI.getDesc().TSFlags;
2173 if ((Flags & SystemZII::CCMaskFirst) || (Flags & SystemZII::CCMaskLast))
2174 CCUsers.push_back(&MI);
2175 else
2176 return false;
2177 }
2178 if (MI.definesRegister(SystemZ::CC, /*TRI=*/nullptr)) {
2179 CCLive = false;
2180 break;
2181 }
2182 }
2183 if (CCLive) {
2184 LiveRegUnits LiveRegs(*MBB->getParent()->getSubtarget().getRegisterInfo());
2185 LiveRegs.addLiveOuts(*MBB);
2186 if (!LiveRegs.available(SystemZ::CC))
2187 return false;
2188 }
2189
2190 // Update all CC users.
2191 for (unsigned Idx = 0; Idx < CCUsers.size(); ++Idx) {
2192 unsigned Flags = CCUsers[Idx]->getDesc().TSFlags;
2193 unsigned FirstOpNum = ((Flags & SystemZII::CCMaskFirst) ?
2194 0 : CCUsers[Idx]->getNumExplicitOperands() - 2);
2195 MachineOperand &CCMaskMO = CCUsers[Idx]->getOperand(FirstOpNum + 1);
2196 unsigned NewCCMask = SystemZ::reverseCCMask(CCMaskMO.getImm());
2197 CCMaskMO.setImm(NewCCMask);
2198 }
2199
2200 return true;
2201}
2202
2203unsigned SystemZ::reverseCCMask(unsigned CCMask) {
2204 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
2207 (CCMask & SystemZ::CCMASK_CMP_UO));
2208}
2209
2211 MachineFunction &MF = *MBB->getParent();
2212 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2213 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
2214 return NewMBB;
2215}
2216
2225
2233
2234unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
2235 if (!STI.hasLoadAndTrap())
2236 return 0;
2237 switch (Opcode) {
2238 case SystemZ::L:
2239 case SystemZ::LY:
2240 return SystemZ::LAT;
2241 case SystemZ::LG:
2242 return SystemZ::LGAT;
2243 case SystemZ::LFH:
2244 return SystemZ::LFHAT;
2245 case SystemZ::LLGF:
2246 return SystemZ::LLGFAT;
2247 case SystemZ::LLGT:
2248 return SystemZ::LLGTAT;
2249 }
2250 return 0;
2251}
2252
2255 unsigned Reg, uint64_t Value) const {
2256 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
2257 unsigned Opcode = 0;
2258 if (isInt<16>(Value))
2259 Opcode = SystemZ::LGHI;
2260 else if (SystemZ::isImmLL(Value))
2261 Opcode = SystemZ::LLILL;
2262 else if (SystemZ::isImmLH(Value)) {
2263 Opcode = SystemZ::LLILH;
2264 Value >>= 16;
2265 }
2266 else if (isInt<32>(Value))
2267 Opcode = SystemZ::LGFI;
2268 if (Opcode) {
2269 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
2270 return;
2271 }
2272
2273 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2274 assert (MRI.isSSA() && "Huge values only handled before reg-alloc .");
2275 Register Reg0 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
2276 Register Reg1 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
2277 BuildMI(MBB, MBBI, DL, get(SystemZ::IMPLICIT_DEF), Reg0);
2278 BuildMI(MBB, MBBI, DL, get(SystemZ::IIHF64), Reg1)
2279 .addReg(Reg0).addImm(Value >> 32);
2280 BuildMI(MBB, MBBI, DL, get(SystemZ::IILF64), Reg)
2281 .addReg(Reg1).addImm(Value & ((uint64_t(1) << 32) - 1));
2282}
2283
2285 StringRef &ErrInfo) const {
2286 const MCInstrDesc &MCID = MI.getDesc();
2287 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
2288 if (I >= MCID.getNumOperands())
2289 break;
2290 const MachineOperand &Op = MI.getOperand(I);
2291 const MCOperandInfo &MCOI = MCID.operands()[I];
2292 // Addressing modes have register and immediate operands. Op should be a
2293 // register (or frame index) operand if MCOI.RegClass contains a valid
2294 // register class, or an immediate otherwise.
2295 if (MCOI.OperandType == MCOI::OPERAND_MEMORY &&
2296 ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) ||
2297 (MCOI.RegClass == -1 && !Op.isImm()))) {
2298 ErrInfo = "Addressing mode operands corrupt!";
2299 return false;
2300 }
2301 }
2302
2303 return true;
2304}
2305
2308 const MachineInstr &MIb) const {
2309
2310 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
2311 return false;
2312
2313 // If mem-operands show that the same address Value is used by both
2314 // instructions, check for non-overlapping offsets and widths. Not
2315 // sure if a register based analysis would be an improvement...
2316
2317 MachineMemOperand *MMOa = *MIa.memoperands_begin();
2318 MachineMemOperand *MMOb = *MIb.memoperands_begin();
2319 const Value *VALa = MMOa->getValue();
2320 const Value *VALb = MMOb->getValue();
2321 bool SameVal = (VALa && VALb && (VALa == VALb));
2322 if (!SameVal) {
2323 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
2324 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
2325 if (PSVa && PSVb && (PSVa == PSVb))
2326 SameVal = true;
2327 }
2328 if (SameVal) {
2329 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
2330 LocationSize WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
2331 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
2332 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
2333 LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
2334 if (LowWidth.hasValue() &&
2335 LowOffset + (int)LowWidth.getValue() <= HighOffset)
2336 return true;
2337 }
2338
2339 return false;
2340}
2341
2343 const Register Reg,
2344 int64_t &ImmVal) const {
2345
2346 if (MI.getOpcode() == SystemZ::VGBM && Reg == MI.getOperand(0).getReg()) {
2347 ImmVal = MI.getOperand(1).getImm();
2348 // TODO: Handle non-0 values
2349 return ImmVal == 0;
2350 }
2351
2352 return false;
2353}
2354
2355std::optional<DestSourcePair>
2357 // if MI is a simple single-register copy operation, return operand pair
2358 if (MI.isMoveReg())
2359 return DestSourcePair(MI.getOperand(0), MI.getOperand(1));
2360
2361 return std::nullopt;
2362}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
DXIL Forward Handle Accesses
IRTranslator LLVM IR MI
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
A set of register units.
#define I(x, y, z)
Definition MD5.cpp:57
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition Value.cpp:480
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag)
static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI)
static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI, MachineInstr::MIFlag Flag)
static int isSimpleMove(const MachineInstr &MI, int &FrameIndex, unsigned Flag)
static LogicOp interpretAndImmediate(unsigned Opcode)
static uint64_t allOnes(unsigned int Count)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
A debug info location.
Definition DebugLoc.h:124
SlotIndexes * getSlotIndexes() const
VNInfo::Allocator & getVNInfoAllocator()
LiveRange & getRegUnit(MCRegUnit Unit)
Return the live range for register unit Unit.
SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI)
This class represents the liveness of a register, stack slot, etc.
bool liveAt(SlotIndex index) const
LLVM_ABI VNInfo * createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc)
createDeadDef - Make sure the range has a value defined at Def.
A set of register units used to track register liveness.
LLVM_ABI void replaceKillInstruction(Register Reg, MachineInstr &OldMI, MachineInstr &NewMI)
replaceKillInstruction - Update register kill info by replacing a kill instruction with a new one.
bool hasValue() const
TypeSize getValue() const
Describe properties that are true of each instruction in the target description file.
This holds information about one operand of a machine instruction, indicating the register class for ...
Definition MCInstrDesc.h:87
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:33
static MCRegister from(unsigned Val)
Check the provided unsigned value is a valid MCRegister.
Definition MCRegister.h:69
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
uint64_t getMaxCallFrameSize() const
Return the maximum size of a call frame that must be allocated for an outgoing function call.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
BasicBlockListType::iterator iterator
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addRegMask(const uint32_t *Mask) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineBasicBlock * getParent() const
bool getFlag(MIFlag Flag) const
Return whether an MI flag is set.
mop_range operands()
bool registerDefIsDead(Register Reg, const TargetRegisterInfo *TRI) const
Returns true if the register is dead in this machine instruction.
bool definesRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr fully defines the specified register.
LLVM_ABI void setDesc(const MCInstrDesc &TID)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one.
bool hasOneMemOperand() const
Return true if this instruction has exactly one MachineMemOperand.
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
void setFlag(MIFlag Flag)
Set a MI flag.
const MachineOperand & getOperand(unsigned i) const
MachineOperand * findRegisterDefOperand(Register Reg, const TargetRegisterInfo *TRI, bool isDead=false, bool Overlap=false)
Wrapper for findRegisterDefOperandIdx, it returns a pointer to the MachineOperand rather than an inde...
LLVM_ABI bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound=false)
We have determined MI defined a register without a use.
A description of a memory reference used in the backend.
LocationSize getSize() const
Return the size in bytes of the memory reference.
const PseudoSourceValue * getPseudoValue() const
bool isAtomic() const
Returns true if this operation has an atomic ordering requirement of unordered or higher,...
const Value * getValue() const
Return the base address of the memory access.
int64_t getOffset() const
For normal values, this is a byte offset added to the base address.
MachineOperand class - Representation of each machine instruction operand.
void setImm(int64_t immVal)
int64_t getImm() const
void setIsDead(bool Val=true)
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
void setIsKill(bool Val=true)
static MachineOperand CreateImm(int64_t Val)
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
const TargetRegisterClass * getRegClass(Register Reg) const
Return the register class of the specified virtual register.
MI-level patchpoint operands.
Definition StackMaps.h:77
uint32_t getNumPatchBytes() const
Return the number of patchable bytes the given patchpoint should emit.
Definition StackMaps.h:105
Special value supplied for machine level alias analysis.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
MCRegister asMCReg() const
Utility to check-convert this value to a MCRegister.
Definition Register.h:107
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:79
SlotIndex - An opaque wrapper around machine indexes.
Definition SlotIndexes.h:66
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def.
SlotIndex getInstructionIndex(const MachineInstr &MI, bool IgnoreBundle=false) const
Returns the base index for the given instruction.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
unsigned getLoadAndTrap(unsigned Opcode) const
void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
Register isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const override
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const override
bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const override
unsigned getLoadAndTest(unsigned Opcode) const
bool isPredicable(const MachineInstr &MI) const override
Register isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const override
bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, int &SrcFrameIndex) const override
MachineInstr * convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const override
unsigned getOpcodeForOffset(unsigned Opcode, int64_t Offset, const MachineInstr *MI=nullptr) const
unsigned getInstSizeInBytes(const MachineInstr &MI) const override
unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const override
Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override
bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg, int64_t &ImmVal) const override
bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert) const override
bool hasDisplacementPairInsn(unsigned Opcode) const
MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned CommuteOpIdx1, unsigned CommuteOpIdx2) const override
Commutes the operands in the given instruction by changing the operands order and/or changing the ins...
void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, Register DstReg, ArrayRef< MachineOperand > Cond, Register TrueReg, Register FalseReg) const override
std::optional< unsigned > getInverseOpcode(unsigned Opcode) const override
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, BranchProbability Probability) const override
SystemZII::Branch getBranchInfo(const MachineInstr &MI) const
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, Register DestReg, Register SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const override
bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const override
bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const override
unsigned getFusedCompare(unsigned Opcode, SystemZII::FusedCompareType Type, const MachineInstr *MI=nullptr) const
bool expandPostRAPseudo(MachineInstr &MBBI) const override
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &Mask, int64_t &Value) const override
bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const override
void getLoadStoreOpcodes(const TargetRegisterClass *RC, unsigned &LoadOpcode, unsigned &StoreOpcode) const
bool isRxSBGMask(uint64_t Mask, unsigned BitSize, unsigned &Start, unsigned &End) const
bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const override
bool canInsertSelect(const MachineBasicBlock &, ArrayRef< MachineOperand > Cond, Register, Register, Register, int &, int &, int &) const override
std::optional< DestSourcePair > isCopyInstrImpl(const MachineInstr &MI) const override
bool prepareCompareSwapOperands(MachineBasicBlock::iterator MBBI) const
Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override
MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const override
SystemZInstrInfo(const SystemZSubtarget &STI)
void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, int FrameIdx, const TargetRegisterClass *RC, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const override
void loadImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned Reg, uint64_t Value) const
bool PredicateInstruction(MachineInstr &MI, ArrayRef< MachineOperand > Pred) const override
virtual MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const
This method commutes the operands of the given machine instruction MI.
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
Target - Wrapper for Target specific information.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM Value Representation.
Definition Value.h:75
MCRegister getPhys(Register virtReg) const
returns the physical register mapped to the specified virtual register
Definition VirtRegMap.h:91
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Undef
Value of the register doesn't matter.
static unsigned getAccessSize(unsigned int Flags)
unsigned getFirstReg(unsigned Reg)
MachineBasicBlock * splitBlockBefore(MachineBasicBlock::iterator MI, MachineBasicBlock *MBB)
int getTargetMemOpcode(uint16_t Opcode)
const unsigned CCMASK_CMP_GT
Definition SystemZ.h:38
const unsigned CCMASK_ANY
Definition SystemZ.h:32
static bool isImmLL(uint64_t Val)
Definition SystemZ.h:162
static bool isImmLH(uint64_t Val)
Definition SystemZ.h:167
MachineBasicBlock * emitBlockAfter(MachineBasicBlock *MBB)
unsigned reverseCCMask(unsigned CCMask)
const unsigned IPM_CC
Definition SystemZ.h:113
const unsigned CCMASK_CMP_EQ
Definition SystemZ.h:36
const unsigned CCMASK_ICMP
Definition SystemZ.h:48
MachineBasicBlock * splitBlockAfter(MachineBasicBlock::iterator MI, MachineBasicBlock *MBB)
const unsigned CCMASK_CMP_LT
Definition SystemZ.h:37
const unsigned CCMASK_CMP_NE
Definition SystemZ.h:39
bool isHighReg(unsigned int Reg)
const unsigned CCMASK_CMP_UO
Definition SystemZ.h:44
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:477
@ Length
Definition DWP.cpp:477
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:165
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
static const MachineInstrBuilder & addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset=0, bool mem=true)
addFrameReference - This function is used to add a reference to the base of an abstract object on the...
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
Definition MathExtras.h:273
constexpr size_t range_size(R &&Range)
Returns the size of the Range, i.e., the number of elements.
Definition STLExtras.h:1680
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
Definition MathExtras.h:189
unsigned getUndefRegState(bool B)
unsigned getKillRegState(bool B)
DWARFExpression::Operation Op
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
Matching combinators.