LLVM 20.0.0git
X86MCInstLower.cpp
Go to the documentation of this file.
1//===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains code to lower X86 MachineInstrs to their corresponding
10// MCInst records.
11//
12//===----------------------------------------------------------------------===//
13
20#include "X86AsmPrinter.h"
22#include "X86RegisterInfo.h"
24#include "X86Subtarget.h"
25#include "llvm/ADT/STLExtras.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/GlobalValue.h"
36#include "llvm/IR/Mangler.h"
37#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCFixup.h"
42#include "llvm/MC/MCInst.h"
44#include "llvm/MC/MCSection.h"
45#include "llvm/MC/MCStreamer.h"
46#include "llvm/MC/MCSymbol.h"
52#include <string>
53
54using namespace llvm;
55
56static cl::opt<bool> EnableBranchHint("enable-branch-hint",
57 cl::desc("Enable branch hint."),
58 cl::init(false), cl::Hidden);
60 "branch-hint-probability-threshold",
61 cl::desc("The probability threshold of enabling branch hint."),
62 cl::init(50), cl::Hidden);
63
64namespace {
65
66/// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
67class X86MCInstLower {
68 MCContext &Ctx;
69 const MachineFunction &MF;
70 const TargetMachine &TM;
71 const MCAsmInfo &MAI;
73
74public:
75 X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
76
77 MCOperand LowerMachineOperand(const MachineInstr *MI,
78 const MachineOperand &MO) const;
79 void Lower(const MachineInstr *MI, MCInst &OutMI) const;
80
83
84private:
85 MachineModuleInfoMachO &getMachOMMI() const;
86};
87
88} // end anonymous namespace
89
90/// A RAII helper which defines a region of instructions which can't have
91/// padding added between them for correctness.
96 : OS(OS), OldAllowAutoPadding(OS.getAllowAutoPadding()) {
97 changeAndComment(false);
98 }
100 void changeAndComment(bool b) {
101 if (b == OS.getAllowAutoPadding())
102 return;
104 if (b)
105 OS.emitRawComment("autopadding");
106 else
107 OS.emitRawComment("noautopadding");
108 }
109};
110
111// Emit a minimal sequence of nops spanning NumBytes bytes.
112static void emitX86Nops(MCStreamer &OS, unsigned NumBytes,
113 const X86Subtarget *Subtarget);
114
115void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
116 const MCSubtargetInfo &STI,
117 MCCodeEmitter *CodeEmitter) {
118 if (InShadow) {
121 CodeEmitter->encodeInstruction(Inst, Code, Fixups, STI);
122 CurrentShadowSize += Code.size();
123 if (CurrentShadowSize >= RequiredShadowSize)
124 InShadow = false; // The shadow is big enough. Stop counting.
125 }
126}
127
128void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
129 MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
130 if (InShadow && CurrentShadowSize < RequiredShadowSize) {
131 InShadow = false;
132 emitX86Nops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
133 &MF->getSubtarget<X86Subtarget>());
134 }
135}
136
137void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
138 OutStreamer->emitInstruction(Inst, getSubtargetInfo());
139 SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
140}
141
142X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
143 X86AsmPrinter &asmprinter)
144 : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
145 AsmPrinter(asmprinter) {}
146
147MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
149}
150
151/// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
152/// operand to an MCSymbol.
153MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const {
154 const Triple &TT = TM.getTargetTriple();
155 if (MO.isGlobal() && TT.isOSBinFormatELF())
157
158 const DataLayout &DL = MF.getDataLayout();
159 assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) &&
160 "Isn't a symbol reference");
161
162 MCSymbol *Sym = nullptr;
164 StringRef Suffix;
165
166 switch (MO.getTargetFlags()) {
168 // Handle dllimport linkage.
169 Name += "__imp_";
170 break;
172 Name += ".refptr.";
173 break;
176 Suffix = "$non_lazy_ptr";
177 break;
178 }
179
180 if (!Suffix.empty())
181 Name += DL.getPrivateGlobalPrefix();
182
183 if (MO.isGlobal()) {
184 const GlobalValue *GV = MO.getGlobal();
186 } else if (MO.isSymbol()) {
188 } else if (MO.isMBB()) {
189 assert(Suffix.empty());
190 Sym = MO.getMBB()->getSymbol();
191 }
192
193 Name += Suffix;
194 if (!Sym)
195 Sym = Ctx.getOrCreateSymbol(Name);
196
197 // If the target flags on the operand changes the name of the symbol, do that
198 // before we return the symbol.
199 switch (MO.getTargetFlags()) {
200 default:
201 break;
202 case X86II::MO_COFFSTUB: {
203 MachineModuleInfoCOFF &MMICOFF =
206 if (!StubSym.getPointer()) {
207 assert(MO.isGlobal() && "Extern symbol not handled yet");
209 AsmPrinter.getSymbol(MO.getGlobal()), true);
210 }
211 break;
212 }
216 getMachOMMI().getGVStubEntry(Sym);
217 if (!StubSym.getPointer()) {
218 assert(MO.isGlobal() && "Extern symbol not handled yet");
222 }
223 break;
224 }
225 }
226
227 return Sym;
228}
229
230MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
231 MCSymbol *Sym) const {
232 // FIXME: We would like an efficient form for this, so we don't have to do a
233 // lot of extra uniquing.
234 const MCExpr *Expr = nullptr;
236
237 switch (MO.getTargetFlags()) {
238 default:
239 llvm_unreachable("Unknown target flag on GV operand");
240 case X86II::MO_NO_FLAG: // No flag.
241 // These affect the name of the symbol, not any suffix.
245 break;
246
247 case X86II::MO_TLVP:
248 RefKind = MCSymbolRefExpr::VK_TLVP;
249 break;
252 // Subtract the pic base.
254 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
255 break;
256 case X86II::MO_SECREL:
258 break;
259 case X86II::MO_TLSGD:
261 break;
262 case X86II::MO_TLSLD:
264 break;
265 case X86II::MO_TLSLDM:
267 break;
270 break;
273 break;
274 case X86II::MO_TPOFF:
276 break;
277 case X86II::MO_DTPOFF:
279 break;
280 case X86II::MO_NTPOFF:
282 break;
285 break;
288 break;
291 break;
292 case X86II::MO_GOT:
293 RefKind = MCSymbolRefExpr::VK_GOT;
294 break;
295 case X86II::MO_GOTOFF:
297 break;
298 case X86II::MO_PLT:
299 RefKind = MCSymbolRefExpr::VK_PLT;
300 break;
301 case X86II::MO_ABS8:
303 break;
306 Expr = MCSymbolRefExpr::create(Sym, Ctx);
307 // Subtract the pic base.
309 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
310 if (MO.isJTI()) {
311 assert(MAI.doesSetDirectiveSuppressReloc());
312 // If .set directive is supported, use it to reduce the number of
313 // relocations the assembler will generate for differences between
314 // local labels. This is only safe when the symbols are in the same
315 // section so we are restricting it to jumptable references.
316 MCSymbol *Label = Ctx.createTempSymbol();
317 AsmPrinter.OutStreamer->emitAssignment(Label, Expr);
318 Expr = MCSymbolRefExpr::create(Label, Ctx);
319 }
320 break;
321 }
322
323 if (!Expr)
324 Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
325
326 if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
328 Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx);
329 return MCOperand::createExpr(Expr);
330}
331
332static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
333 return Subtarget.is64Bit() ? X86::RET64 : X86::RET32;
334}
335
336MCOperand X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
337 const MachineOperand &MO) const {
338 switch (MO.getType()) {
339 default:
340 MI->print(errs());
341 llvm_unreachable("unknown operand type");
343 // Ignore all implicit register operands.
344 if (MO.isImplicit())
345 return MCOperand();
346 return MCOperand::createReg(MO.getReg());
348 return MCOperand::createImm(MO.getImm());
354 Sym->setExternal(true);
355 return LowerSymbolOperand(MO, Sym);
356 }
358 return LowerSymbolOperand(MO, MO.getMCSymbol());
364 return LowerSymbolOperand(
367 // Ignore call clobbers.
368 return MCOperand();
369 }
370}
371
372// Replace TAILJMP opcodes with their equivalent opcodes that have encoding
373// information.
374static unsigned convertTailJumpOpcode(unsigned Opcode) {
375 switch (Opcode) {
376 case X86::TAILJMPr:
377 Opcode = X86::JMP32r;
378 break;
379 case X86::TAILJMPm:
380 Opcode = X86::JMP32m;
381 break;
382 case X86::TAILJMPr64:
383 Opcode = X86::JMP64r;
384 break;
385 case X86::TAILJMPm64:
386 Opcode = X86::JMP64m;
387 break;
388 case X86::TAILJMPr64_REX:
389 Opcode = X86::JMP64r_REX;
390 break;
391 case X86::TAILJMPm64_REX:
392 Opcode = X86::JMP64m_REX;
393 break;
394 case X86::TAILJMPd:
395 case X86::TAILJMPd64:
396 Opcode = X86::JMP_1;
397 break;
398 case X86::TAILJMPd_CC:
399 case X86::TAILJMPd64_CC:
400 Opcode = X86::JCC_1;
401 break;
402 }
403
404 return Opcode;
405}
406
407void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
408 OutMI.setOpcode(MI->getOpcode());
409
410 for (const MachineOperand &MO : MI->operands())
411 if (auto Op = LowerMachineOperand(MI, MO); Op.isValid())
412 OutMI.addOperand(Op);
413
414 bool In64BitMode = AsmPrinter.getSubtarget().is64Bit();
415 if (X86::optimizeInstFromVEX3ToVEX2(OutMI, MI->getDesc()) ||
418 X86::optimizeMOVSX(OutMI) || X86::optimizeINCDEC(OutMI, In64BitMode) ||
419 X86::optimizeMOV(OutMI, In64BitMode) ||
421 return;
422
423 // Handle a few special cases to eliminate operand modifiers.
424 switch (OutMI.getOpcode()) {
425 case X86::LEA64_32r:
426 case X86::LEA64r:
427 case X86::LEA16r:
428 case X86::LEA32r:
429 // LEA should have a segment register, but it must be empty.
431 "Unexpected # of LEA operands");
432 assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
433 "LEA has segment specified!");
434 break;
435 case X86::MULX32Hrr:
436 case X86::MULX32Hrm:
437 case X86::MULX64Hrr:
438 case X86::MULX64Hrm: {
439 // Turn into regular MULX by duplicating the destination.
440 unsigned NewOpc;
441 switch (OutMI.getOpcode()) {
442 default: llvm_unreachable("Invalid opcode");
443 case X86::MULX32Hrr: NewOpc = X86::MULX32rr; break;
444 case X86::MULX32Hrm: NewOpc = X86::MULX32rm; break;
445 case X86::MULX64Hrr: NewOpc = X86::MULX64rr; break;
446 case X86::MULX64Hrm: NewOpc = X86::MULX64rm; break;
447 }
448 OutMI.setOpcode(NewOpc);
449 // Duplicate the destination.
450 unsigned DestReg = OutMI.getOperand(0).getReg();
451 OutMI.insert(OutMI.begin(), MCOperand::createReg(DestReg));
452 break;
453 }
454 // CALL64r, CALL64pcrel32 - These instructions used to have
455 // register inputs modeled as normal uses instead of implicit uses. As such,
456 // they we used to truncate off all but the first operand (the callee). This
457 // issue seems to have been fixed at some point. This assert verifies that.
458 case X86::CALL64r:
459 case X86::CALL64pcrel32:
460 assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
461 break;
462 case X86::EH_RETURN:
463 case X86::EH_RETURN64: {
464 OutMI = MCInst();
465 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
466 break;
467 }
468 case X86::CLEANUPRET: {
469 // Replace CLEANUPRET with the appropriate RET.
470 OutMI = MCInst();
471 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
472 break;
473 }
474 case X86::CATCHRET: {
475 // Replace CATCHRET with the appropriate RET.
476 const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
477 unsigned ReturnReg = In64BitMode ? X86::RAX : X86::EAX;
478 OutMI = MCInst();
479 OutMI.setOpcode(getRetOpcode(Subtarget));
480 OutMI.addOperand(MCOperand::createReg(ReturnReg));
481 break;
482 }
483 // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
484 // instruction.
485 case X86::TAILJMPr:
486 case X86::TAILJMPr64:
487 case X86::TAILJMPr64_REX:
488 case X86::TAILJMPd:
489 case X86::TAILJMPd64:
490 assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
492 break;
493 case X86::TAILJMPd_CC:
494 case X86::TAILJMPd64_CC:
495 assert(OutMI.getNumOperands() == 2 && "Unexpected number of operands!");
497 break;
498 case X86::TAILJMPm:
499 case X86::TAILJMPm64:
500 case X86::TAILJMPm64_REX:
502 "Unexpected number of operands!");
504 break;
505 case X86::MASKMOVDQU:
506 case X86::VMASKMOVDQU:
507 if (In64BitMode)
509 break;
510 case X86::BSF16rm:
511 case X86::BSF16rr:
512 case X86::BSF32rm:
513 case X86::BSF32rr:
514 case X86::BSF64rm:
515 case X86::BSF64rr: {
516 // Add an REP prefix to BSF instructions so that new processors can
517 // recognize as TZCNT, which has better performance than BSF.
518 // BSF and TZCNT have different interpretations on ZF bit. So make sure
519 // it won't be used later.
520 const MachineOperand *FlagDef =
521 MI->findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
522 if (!MF.getFunction().hasOptSize() && FlagDef && FlagDef->isDead())
524 break;
525 }
526 default:
527 break;
528 }
529}
530
531void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
532 const MachineInstr &MI) {
533 NoAutoPaddingScope NoPadScope(*OutStreamer);
534 bool Is64Bits = getSubtarget().is64Bit();
535 bool Is64BitsLP64 = getSubtarget().isTarget64BitLP64();
536 MCContext &Ctx = OutStreamer->getContext();
537
539 switch (MI.getOpcode()) {
540 case X86::TLS_addr32:
541 case X86::TLS_addr64:
542 case X86::TLS_addrX32:
544 break;
545 case X86::TLS_base_addr32:
547 break;
548 case X86::TLS_base_addr64:
549 case X86::TLS_base_addrX32:
551 break;
552 case X86::TLS_desc32:
553 case X86::TLS_desc64:
555 break;
556 default:
557 llvm_unreachable("unexpected opcode");
558 }
559
561 MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)), SRVK, Ctx);
562
563 // Before binutils 2.41, ld has a bogus TLS relaxation error when the GD/LD
564 // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
565 // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by
566 // only using GOT when GOTPCRELX is enabled.
567 // TODO Delete the workaround when rustc no longer relies on the hack
568 bool UseGot = MMI->getModule()->getRtLibUseGOT() &&
570
571 if (SRVK == MCSymbolRefExpr::VK_TLSDESC) {
573 MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)),
575 EmitAndCountInstruction(
576 MCInstBuilder(Is64BitsLP64 ? X86::LEA64r : X86::LEA32r)
577 .addReg(Is64BitsLP64 ? X86::RAX : X86::EAX)
578 .addReg(Is64Bits ? X86::RIP : X86::EBX)
579 .addImm(1)
580 .addReg(0)
581 .addExpr(Sym)
582 .addReg(0));
583 EmitAndCountInstruction(
584 MCInstBuilder(Is64Bits ? X86::CALL64m : X86::CALL32m)
585 .addReg(Is64BitsLP64 ? X86::RAX : X86::EAX)
586 .addImm(1)
587 .addReg(0)
588 .addExpr(Expr)
589 .addReg(0));
590 } else if (Is64Bits) {
591 bool NeedsPadding = SRVK == MCSymbolRefExpr::VK_TLSGD;
592 if (NeedsPadding && Is64BitsLP64)
593 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
594 EmitAndCountInstruction(MCInstBuilder(X86::LEA64r)
595 .addReg(X86::RDI)
596 .addReg(X86::RIP)
597 .addImm(1)
598 .addReg(0)
599 .addExpr(Sym)
600 .addReg(0));
601 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("__tls_get_addr");
602 if (NeedsPadding) {
603 if (!UseGot)
604 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
605 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
606 EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
607 }
608 if (UseGot) {
609 const MCExpr *Expr = MCSymbolRefExpr::create(
610 TlsGetAddr, MCSymbolRefExpr::VK_GOTPCREL, Ctx);
611 EmitAndCountInstruction(MCInstBuilder(X86::CALL64m)
612 .addReg(X86::RIP)
613 .addImm(1)
614 .addReg(0)
615 .addExpr(Expr)
616 .addReg(0));
617 } else {
618 EmitAndCountInstruction(
619 MCInstBuilder(X86::CALL64pcrel32)
620 .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
622 }
623 } else {
624 if (SRVK == MCSymbolRefExpr::VK_TLSGD && !UseGot) {
625 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
626 .addReg(X86::EAX)
627 .addReg(0)
628 .addImm(1)
629 .addReg(X86::EBX)
630 .addExpr(Sym)
631 .addReg(0));
632 } else {
633 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
634 .addReg(X86::EAX)
635 .addReg(X86::EBX)
636 .addImm(1)
637 .addReg(0)
638 .addExpr(Sym)
639 .addReg(0));
640 }
641
642 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("___tls_get_addr");
643 if (UseGot) {
644 const MCExpr *Expr =
646 EmitAndCountInstruction(MCInstBuilder(X86::CALL32m)
647 .addReg(X86::EBX)
648 .addImm(1)
649 .addReg(0)
650 .addExpr(Expr)
651 .addReg(0));
652 } else {
653 EmitAndCountInstruction(
654 MCInstBuilder(X86::CALLpcrel32)
655 .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
657 }
658 }
659}
660
661/// Emit the largest nop instruction smaller than or equal to \p NumBytes
662/// bytes. Return the size of nop emitted.
663static unsigned emitNop(MCStreamer &OS, unsigned NumBytes,
664 const X86Subtarget *Subtarget) {
665 // Determine the longest nop which can be efficiently decoded for the given
666 // target cpu. 15-bytes is the longest single NOP instruction, but some
667 // platforms can't decode the longest forms efficiently.
668 unsigned MaxNopLength = 1;
669 if (Subtarget->is64Bit()) {
670 // FIXME: We can use NOOPL on 32-bit targets with FeatureNOPL, but the
671 // IndexReg/BaseReg below need to be updated.
672 if (Subtarget->hasFeature(X86::TuningFast7ByteNOP))
673 MaxNopLength = 7;
674 else if (Subtarget->hasFeature(X86::TuningFast15ByteNOP))
675 MaxNopLength = 15;
676 else if (Subtarget->hasFeature(X86::TuningFast11ByteNOP))
677 MaxNopLength = 11;
678 else
679 MaxNopLength = 10;
680 } if (Subtarget->is32Bit())
681 MaxNopLength = 2;
682
683 // Cap a single nop emission at the profitable value for the target
684 NumBytes = std::min(NumBytes, MaxNopLength);
685
686 unsigned NopSize;
687 unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
688 IndexReg = Displacement = SegmentReg = 0;
689 BaseReg = X86::RAX;
690 ScaleVal = 1;
691 switch (NumBytes) {
692 case 0:
693 llvm_unreachable("Zero nops?");
694 break;
695 case 1:
696 NopSize = 1;
697 Opc = X86::NOOP;
698 break;
699 case 2:
700 NopSize = 2;
701 Opc = X86::XCHG16ar;
702 break;
703 case 3:
704 NopSize = 3;
705 Opc = X86::NOOPL;
706 break;
707 case 4:
708 NopSize = 4;
709 Opc = X86::NOOPL;
710 Displacement = 8;
711 break;
712 case 5:
713 NopSize = 5;
714 Opc = X86::NOOPL;
715 Displacement = 8;
716 IndexReg = X86::RAX;
717 break;
718 case 6:
719 NopSize = 6;
720 Opc = X86::NOOPW;
721 Displacement = 8;
722 IndexReg = X86::RAX;
723 break;
724 case 7:
725 NopSize = 7;
726 Opc = X86::NOOPL;
727 Displacement = 512;
728 break;
729 case 8:
730 NopSize = 8;
731 Opc = X86::NOOPL;
732 Displacement = 512;
733 IndexReg = X86::RAX;
734 break;
735 case 9:
736 NopSize = 9;
737 Opc = X86::NOOPW;
738 Displacement = 512;
739 IndexReg = X86::RAX;
740 break;
741 default:
742 NopSize = 10;
743 Opc = X86::NOOPW;
744 Displacement = 512;
745 IndexReg = X86::RAX;
746 SegmentReg = X86::CS;
747 break;
748 }
749
750 unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
751 NopSize += NumPrefixes;
752 for (unsigned i = 0; i != NumPrefixes; ++i)
753 OS.emitBytes("\x66");
754
755 switch (Opc) {
756 default: llvm_unreachable("Unexpected opcode");
757 case X86::NOOP:
758 OS.emitInstruction(MCInstBuilder(Opc), *Subtarget);
759 break;
760 case X86::XCHG16ar:
761 OS.emitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX),
762 *Subtarget);
763 break;
764 case X86::NOOPL:
765 case X86::NOOPW:
766 OS.emitInstruction(MCInstBuilder(Opc)
767 .addReg(BaseReg)
768 .addImm(ScaleVal)
769 .addReg(IndexReg)
770 .addImm(Displacement)
771 .addReg(SegmentReg),
772 *Subtarget);
773 break;
774 }
775 assert(NopSize <= NumBytes && "We overemitted?");
776 return NopSize;
777}
778
779/// Emit the optimal amount of multi-byte nops on X86.
780static void emitX86Nops(MCStreamer &OS, unsigned NumBytes,
781 const X86Subtarget *Subtarget) {
782 unsigned NopsToEmit = NumBytes;
783 (void)NopsToEmit;
784 while (NumBytes) {
785 NumBytes -= emitNop(OS, NumBytes, Subtarget);
786 assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
787 }
788}
789
790void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
791 X86MCInstLower &MCIL) {
792 assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
793
794 NoAutoPaddingScope NoPadScope(*OutStreamer);
795
796 StatepointOpers SOpers(&MI);
797 if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
798 emitX86Nops(*OutStreamer, PatchBytes, Subtarget);
799 } else {
800 // Lower call target and choose correct opcode
801 const MachineOperand &CallTarget = SOpers.getCallTarget();
802 MCOperand CallTargetMCOp;
803 unsigned CallOpcode;
804 switch (CallTarget.getType()) {
807 CallTargetMCOp = MCIL.LowerSymbolOperand(
808 CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
809 CallOpcode = X86::CALL64pcrel32;
810 // Currently, we only support relative addressing with statepoints.
811 // Otherwise, we'll need a scratch register to hold the target
812 // address. You'll fail asserts during load & relocation if this
813 // symbol is to far away. (TODO: support non-relative addressing)
814 break;
816 CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
817 CallOpcode = X86::CALL64pcrel32;
818 // Currently, we only support relative addressing with statepoints.
819 // Otherwise, we'll need a scratch register to hold the target
820 // immediate. You'll fail asserts during load & relocation if this
821 // address is to far away. (TODO: support non-relative addressing)
822 break;
824 // FIXME: Add retpoline support and remove this.
825 if (Subtarget->useIndirectThunkCalls())
826 report_fatal_error("Lowering register statepoints with thunks not "
827 "yet implemented.");
828 CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
829 CallOpcode = X86::CALL64r;
830 break;
831 default:
832 llvm_unreachable("Unsupported operand type in statepoint call target");
833 break;
834 }
835
836 // Emit call
838 CallInst.setOpcode(CallOpcode);
839 CallInst.addOperand(CallTargetMCOp);
840 OutStreamer->emitInstruction(CallInst, getSubtargetInfo());
841 }
842
843 // Record our statepoint node in the same section used by STACKMAP
844 // and PATCHPOINT
845 auto &Ctx = OutStreamer->getContext();
846 MCSymbol *MILabel = Ctx.createTempSymbol();
847 OutStreamer->emitLabel(MILabel);
848 SM.recordStatepoint(*MILabel, MI);
849}
850
851void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI,
852 X86MCInstLower &MCIL) {
853 // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
854 // <opcode>, <operands>
855
856 NoAutoPaddingScope NoPadScope(*OutStreamer);
857
858 Register DefRegister = FaultingMI.getOperand(0).getReg();
860 static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
861 MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
862 unsigned Opcode = FaultingMI.getOperand(3).getImm();
863 unsigned OperandsBeginIdx = 4;
864
865 auto &Ctx = OutStreamer->getContext();
866 MCSymbol *FaultingLabel = Ctx.createTempSymbol();
867 OutStreamer->emitLabel(FaultingLabel);
868
869 assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
870 FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel);
871
872 MCInst MI;
873 MI.setOpcode(Opcode);
874
875 if (DefRegister != X86::NoRegister)
876 MI.addOperand(MCOperand::createReg(DefRegister));
877
878 for (const MachineOperand &MO :
879 llvm::drop_begin(FaultingMI.operands(), OperandsBeginIdx))
880 if (auto Op = MCIL.LowerMachineOperand(&FaultingMI, MO); Op.isValid())
881 MI.addOperand(Op);
882
883 OutStreamer->AddComment("on-fault: " + HandlerLabel->getName());
884 OutStreamer->emitInstruction(MI, getSubtargetInfo());
885}
886
887void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
888 X86MCInstLower &MCIL) {
889 bool Is64Bits = Subtarget->is64Bit();
890 MCContext &Ctx = OutStreamer->getContext();
891 MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
892 const MCSymbolRefExpr *Op =
894
895 EmitAndCountInstruction(
896 MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
897 .addExpr(Op));
898}
899
900void X86AsmPrinter::LowerKCFI_CHECK(const MachineInstr &MI) {
901 assert(std::next(MI.getIterator())->isCall() &&
902 "KCFI_CHECK not followed by a call instruction");
903
904 // Adjust the offset for patchable-function-prefix. X86InstrInfo::getNop()
905 // returns a 1-byte X86::NOOP, which means the offset is the same in
906 // bytes. This assumes that patchable-function-prefix is the same for all
907 // functions.
908 const MachineFunction &MF = *MI.getMF();
909 int64_t PrefixNops = 0;
910 (void)MF.getFunction()
911 .getFnAttribute("patchable-function-prefix")
913 .getAsInteger(10, PrefixNops);
914
915 // KCFI allows indirect calls to any location that's preceded by a valid
916 // type identifier. To avoid encoding the full constant into an instruction,
917 // and thus emitting potential call target gadgets at each indirect call
918 // site, load a negated constant to a register and compare that to the
919 // expected value at the call target.
920 const Register AddrReg = MI.getOperand(0).getReg();
921 const uint32_t Type = MI.getOperand(1).getImm();
922 // The check is immediately before the call. If the call target is in R10,
923 // we can clobber R11 for the check instead.
924 unsigned TempReg = AddrReg == X86::R10 ? X86::R11D : X86::R10D;
925 EmitAndCountInstruction(
926 MCInstBuilder(X86::MOV32ri).addReg(TempReg).addImm(-MaskKCFIType(Type)));
927 EmitAndCountInstruction(MCInstBuilder(X86::ADD32rm)
928 .addReg(X86::NoRegister)
929 .addReg(TempReg)
930 .addReg(AddrReg)
931 .addImm(1)
932 .addReg(X86::NoRegister)
933 .addImm(-(PrefixNops + 4))
934 .addReg(X86::NoRegister));
935
937 EmitAndCountInstruction(
938 MCInstBuilder(X86::JCC_1)
940 .addImm(X86::COND_E));
941
943 OutStreamer->emitLabel(Trap);
944 EmitAndCountInstruction(MCInstBuilder(X86::TRAP));
946 OutStreamer->emitLabel(Pass);
947}
948
949void X86AsmPrinter::LowerASAN_CHECK_MEMACCESS(const MachineInstr &MI) {
950 // FIXME: Make this work on non-ELF.
952 report_fatal_error("llvm.asan.check.memaccess only supported on ELF");
953 return;
954 }
955
956 const auto &Reg = MI.getOperand(0).getReg();
957 ASanAccessInfo AccessInfo(MI.getOperand(1).getImm());
958
959 uint64_t ShadowBase;
960 int MappingScale;
961 bool OrShadowOffset;
963 AccessInfo.CompileKernel, &ShadowBase,
964 &MappingScale, &OrShadowOffset);
965
966 StringRef Name = AccessInfo.IsWrite ? "store" : "load";
967 StringRef Op = OrShadowOffset ? "or" : "add";
968 std::string SymName = ("__asan_check_" + Name + "_" + Op + "_" +
969 Twine(1ULL << AccessInfo.AccessSizeIndex) + "_" +
970 TM.getMCRegisterInfo()->getName(Reg.asMCReg()))
971 .str();
972 if (OrShadowOffset)
974 "OrShadowOffset is not supported with optimized callbacks");
975
976 EmitAndCountInstruction(
977 MCInstBuilder(X86::CALL64pcrel32)
980}
981
982void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
983 X86MCInstLower &MCIL) {
984 // PATCHABLE_OP minsize
985
986 NoAutoPaddingScope NoPadScope(*OutStreamer);
987
988 auto NextMI = std::find_if(std::next(MI.getIterator()),
989 MI.getParent()->end().getInstrIterator(),
990 [](auto &II) { return !II.isMetaInstruction(); });
991
993 unsigned MinSize = MI.getOperand(0).getImm();
994
995 if (NextMI != MI.getParent()->end() && !NextMI->isInlineAsm()) {
996 // Lower the next MachineInstr to find its byte size.
997 // If the next instruction is inline assembly, we skip lowering it for now,
998 // and assume we should always generate NOPs.
999 MCInst MCI;
1000 MCIL.Lower(&*NextMI, MCI);
1001
1003 CodeEmitter->encodeInstruction(MCI, Code, Fixups, getSubtargetInfo());
1004 }
1005
1006 if (Code.size() < MinSize) {
1007 if (MinSize == 2 && Subtarget->is32Bit() &&
1008 Subtarget->isTargetWindowsMSVC() &&
1009 (Subtarget->getCPU().empty() || Subtarget->getCPU() == "pentium3")) {
1010 // For compatibility reasons, when targetting MSVC, it is important to
1011 // generate a 'legacy' NOP in the form of a 8B FF MOV EDI, EDI. Some tools
1012 // rely specifically on this pattern to be able to patch a function.
1013 // This is only for 32-bit targets, when using /arch:IA32 or /arch:SSE.
1014 OutStreamer->emitInstruction(
1015 MCInstBuilder(X86::MOV32rr_REV).addReg(X86::EDI).addReg(X86::EDI),
1016 *Subtarget);
1017 } else {
1018 unsigned NopSize = emitNop(*OutStreamer, MinSize, Subtarget);
1019 assert(NopSize == MinSize && "Could not implement MinSize!");
1020 (void)NopSize;
1021 }
1022 }
1023}
1024
1025// Lower a stackmap of the form:
1026// <id>, <shadowBytes>, ...
1027void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
1028 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1029
1030 auto &Ctx = OutStreamer->getContext();
1031 MCSymbol *MILabel = Ctx.createTempSymbol();
1032 OutStreamer->emitLabel(MILabel);
1033
1034 SM.recordStackMap(*MILabel, MI);
1035 unsigned NumShadowBytes = MI.getOperand(1).getImm();
1036 SMShadowTracker.reset(NumShadowBytes);
1037}
1038
1039// Lower a patchpoint of the form:
1040// [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
1041void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
1042 X86MCInstLower &MCIL) {
1043 assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
1044
1045 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1046
1047 NoAutoPaddingScope NoPadScope(*OutStreamer);
1048
1049 auto &Ctx = OutStreamer->getContext();
1050 MCSymbol *MILabel = Ctx.createTempSymbol();
1051 OutStreamer->emitLabel(MILabel);
1052 SM.recordPatchPoint(*MILabel, MI);
1053
1054 PatchPointOpers opers(&MI);
1055 unsigned ScratchIdx = opers.getNextScratchIdx();
1056 unsigned EncodedBytes = 0;
1057 const MachineOperand &CalleeMO = opers.getCallTarget();
1058
1059 // Check for null target. If target is non-null (i.e. is non-zero or is
1060 // symbolic) then emit a call.
1061 if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
1062 MCOperand CalleeMCOp;
1063 switch (CalleeMO.getType()) {
1064 default:
1065 /// FIXME: Add a verifier check for bad callee types.
1066 llvm_unreachable("Unrecognized callee operand type.");
1068 if (CalleeMO.getImm())
1069 CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
1070 break;
1073 CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO,
1074 MCIL.GetSymbolFromOperand(CalleeMO));
1075 break;
1076 }
1077
1078 // Emit MOV to materialize the target address and the CALL to target.
1079 // This is encoded with 12-13 bytes, depending on which register is used.
1080 Register ScratchReg = MI.getOperand(ScratchIdx).getReg();
1081 if (X86II::isX86_64ExtendedReg(ScratchReg))
1082 EncodedBytes = 13;
1083 else
1084 EncodedBytes = 12;
1085
1086 EmitAndCountInstruction(
1087 MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
1088 // FIXME: Add retpoline support and remove this.
1089 if (Subtarget->useIndirectThunkCalls())
1091 "Lowering patchpoint with thunks not yet implemented.");
1092 EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
1093 }
1094
1095 // Emit padding.
1096 unsigned NumBytes = opers.getNumPatchBytes();
1097 assert(NumBytes >= EncodedBytes &&
1098 "Patchpoint can't request size less than the length of a call.");
1099
1100 emitX86Nops(*OutStreamer, NumBytes - EncodedBytes, Subtarget);
1101}
1102
1103void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI,
1104 X86MCInstLower &MCIL) {
1105 assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64");
1106
1107 NoAutoPaddingScope NoPadScope(*OutStreamer);
1108
1109 // We want to emit the following pattern, which follows the x86 calling
1110 // convention to prepare for the trampoline call to be patched in.
1111 //
1112 // .p2align 1, ...
1113 // .Lxray_event_sled_N:
1114 // jmp +N // jump across the instrumentation sled
1115 // ... // set up arguments in register
1116 // callq __xray_CustomEvent@plt // force dependency to symbol
1117 // ...
1118 // <jump here>
1119 //
1120 // After patching, it would look something like:
1121 //
1122 // nopw (2-byte nop)
1123 // ...
1124 // callq __xrayCustomEvent // already lowered
1125 // ...
1126 //
1127 // ---
1128 // First we emit the label and the jump.
1129 auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true);
1130 OutStreamer->AddComment("# XRay Custom Event Log");
1131 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1132 OutStreamer->emitLabel(CurSled);
1133
1134 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1135 // an operand (computed as an offset from the jmp instruction).
1136 // FIXME: Find another less hacky way do force the relative jump.
1137 OutStreamer->emitBinaryData("\xeb\x0f");
1138
1139 // The default C calling convention will place two arguments into %rcx and
1140 // %rdx -- so we only work with those.
1141 const Register DestRegs[] = {X86::RDI, X86::RSI};
1142 bool UsedMask[] = {false, false};
1143 // Filled out in loop.
1144 Register SrcRegs[] = {0, 0};
1145
1146 // Then we put the operands in the %rdi and %rsi registers. We spill the
1147 // values in the register before we clobber them, and mark them as used in
1148 // UsedMask. In case the arguments are already in the correct register, we use
1149 // emit nops appropriately sized to keep the sled the same size in every
1150 // situation.
1151 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1152 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I));
1153 Op.isValid()) {
1154 assert(Op.isReg() && "Only support arguments in registers");
1155 SrcRegs[I] = getX86SubSuperRegister(Op.getReg(), 64);
1156 assert(SrcRegs[I].isValid() && "Invalid operand");
1157 if (SrcRegs[I] != DestRegs[I]) {
1158 UsedMask[I] = true;
1159 EmitAndCountInstruction(
1160 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1161 } else {
1162 emitX86Nops(*OutStreamer, 4, Subtarget);
1163 }
1164 }
1165
1166 // Now that the register values are stashed, mov arguments into place.
1167 // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1168 // earlier DestReg. We will have already overwritten over the register before
1169 // we can copy from it.
1170 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1171 if (SrcRegs[I] != DestRegs[I])
1172 EmitAndCountInstruction(
1173 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1174
1175 // We emit a hard dependency on the __xray_CustomEvent symbol, which is the
1176 // name of the trampoline to be implemented by the XRay runtime.
1177 auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent");
1181
1182 // Emit the call instruction.
1183 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1184 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1185
1186 // Restore caller-saved and used registers.
1187 for (unsigned I = sizeof UsedMask; I-- > 0;)
1188 if (UsedMask[I])
1189 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1190 else
1191 emitX86Nops(*OutStreamer, 1, Subtarget);
1192
1193 OutStreamer->AddComment("xray custom event end.");
1194
1195 // Record the sled version. Version 0 of this sled was spelled differently, so
1196 // we let the runtime handle the different offsets we're using. Version 2
1197 // changed the absolute address to a PC-relative address.
1198 recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 2);
1199}
1200
1201void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI,
1202 X86MCInstLower &MCIL) {
1203 assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64");
1204
1205 NoAutoPaddingScope NoPadScope(*OutStreamer);
1206
1207 // We want to emit the following pattern, which follows the x86 calling
1208 // convention to prepare for the trampoline call to be patched in.
1209 //
1210 // .p2align 1, ...
1211 // .Lxray_event_sled_N:
1212 // jmp +N // jump across the instrumentation sled
1213 // ... // set up arguments in register
1214 // callq __xray_TypedEvent@plt // force dependency to symbol
1215 // ...
1216 // <jump here>
1217 //
1218 // After patching, it would look something like:
1219 //
1220 // nopw (2-byte nop)
1221 // ...
1222 // callq __xrayTypedEvent // already lowered
1223 // ...
1224 //
1225 // ---
1226 // First we emit the label and the jump.
1227 auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true);
1228 OutStreamer->AddComment("# XRay Typed Event Log");
1229 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1230 OutStreamer->emitLabel(CurSled);
1231
1232 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1233 // an operand (computed as an offset from the jmp instruction).
1234 // FIXME: Find another less hacky way do force the relative jump.
1235 OutStreamer->emitBinaryData("\xeb\x14");
1236
1237 // An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
1238 // so we'll work with those. Or we may be called via SystemV, in which case
1239 // we don't have to do any translation.
1240 const Register DestRegs[] = {X86::RDI, X86::RSI, X86::RDX};
1241 bool UsedMask[] = {false, false, false};
1242
1243 // Will fill out src regs in the loop.
1244 Register SrcRegs[] = {0, 0, 0};
1245
1246 // Then we put the operands in the SystemV registers. We spill the values in
1247 // the registers before we clobber them, and mark them as used in UsedMask.
1248 // In case the arguments are already in the correct register, we emit nops
1249 // appropriately sized to keep the sled the same size in every situation.
1250 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1251 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I));
1252 Op.isValid()) {
1253 // TODO: Is register only support adequate?
1254 assert(Op.isReg() && "Only supports arguments in registers");
1255 SrcRegs[I] = getX86SubSuperRegister(Op.getReg(), 64);
1256 assert(SrcRegs[I].isValid() && "Invalid operand");
1257 if (SrcRegs[I] != DestRegs[I]) {
1258 UsedMask[I] = true;
1259 EmitAndCountInstruction(
1260 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1261 } else {
1262 emitX86Nops(*OutStreamer, 4, Subtarget);
1263 }
1264 }
1265
1266 // In the above loop we only stash all of the destination registers or emit
1267 // nops if the arguments are already in the right place. Doing the actually
1268 // moving is postponed until after all the registers are stashed so nothing
1269 // is clobbers. We've already added nops to account for the size of mov and
1270 // push if the register is in the right place, so we only have to worry about
1271 // emitting movs.
1272 // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1273 // earlier DestReg. We will have already overwritten over the register before
1274 // we can copy from it.
1275 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1276 if (UsedMask[I])
1277 EmitAndCountInstruction(
1278 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1279
1280 // We emit a hard dependency on the __xray_TypedEvent symbol, which is the
1281 // name of the trampoline to be implemented by the XRay runtime.
1282 auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent");
1286
1287 // Emit the call instruction.
1288 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1289 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1290
1291 // Restore caller-saved and used registers.
1292 for (unsigned I = sizeof UsedMask; I-- > 0;)
1293 if (UsedMask[I])
1294 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1295 else
1296 emitX86Nops(*OutStreamer, 1, Subtarget);
1297
1298 OutStreamer->AddComment("xray typed event end.");
1299
1300 // Record the sled version.
1301 recordSled(CurSled, MI, SledKind::TYPED_EVENT, 2);
1302}
1303
1304void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
1305 X86MCInstLower &MCIL) {
1306
1307 NoAutoPaddingScope NoPadScope(*OutStreamer);
1308
1309 const Function &F = MF->getFunction();
1310 if (F.hasFnAttribute("patchable-function-entry")) {
1311 unsigned Num;
1312 if (F.getFnAttribute("patchable-function-entry")
1313 .getValueAsString()
1314 .getAsInteger(10, Num))
1315 return;
1316 emitX86Nops(*OutStreamer, Num, Subtarget);
1317 return;
1318 }
1319 // We want to emit the following pattern:
1320 //
1321 // .p2align 1, ...
1322 // .Lxray_sled_N:
1323 // jmp .tmpN
1324 // # 9 bytes worth of noops
1325 //
1326 // We need the 9 bytes because at runtime, we'd be patching over the full 11
1327 // bytes with the following pattern:
1328 //
1329 // mov %r10, <function id, 32-bit> // 6 bytes
1330 // call <relative offset, 32-bits> // 5 bytes
1331 //
1332 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1333 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1334 OutStreamer->emitLabel(CurSled);
1335
1336 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1337 // an operand (computed as an offset from the jmp instruction).
1338 // FIXME: Find another less hacky way do force the relative jump.
1339 OutStreamer->emitBytes("\xeb\x09");
1340 emitX86Nops(*OutStreamer, 9, Subtarget);
1342}
1343
1344void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
1345 X86MCInstLower &MCIL) {
1346 NoAutoPaddingScope NoPadScope(*OutStreamer);
1347
1348 // Since PATCHABLE_RET takes the opcode of the return statement as an
1349 // argument, we use that to emit the correct form of the RET that we want.
1350 // i.e. when we see this:
1351 //
1352 // PATCHABLE_RET X86::RET ...
1353 //
1354 // We should emit the RET followed by sleds.
1355 //
1356 // .p2align 1, ...
1357 // .Lxray_sled_N:
1358 // ret # or equivalent instruction
1359 // # 10 bytes worth of noops
1360 //
1361 // This just makes sure that the alignment for the next instruction is 2.
1362 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1363 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1364 OutStreamer->emitLabel(CurSled);
1365 unsigned OpCode = MI.getOperand(0).getImm();
1366 MCInst Ret;
1367 Ret.setOpcode(OpCode);
1368 for (auto &MO : drop_begin(MI.operands()))
1369 if (auto Op = MCIL.LowerMachineOperand(&MI, MO); Op.isValid())
1370 Ret.addOperand(Op);
1371 OutStreamer->emitInstruction(Ret, getSubtargetInfo());
1372 emitX86Nops(*OutStreamer, 10, Subtarget);
1374}
1375
1376void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI,
1377 X86MCInstLower &MCIL) {
1378 MCInst TC;
1379 TC.setOpcode(convertTailJumpOpcode(MI.getOperand(0).getImm()));
1380 // Drop the tail jump opcode.
1381 auto TCOperands = drop_begin(MI.operands());
1382 bool IsConditional = TC.getOpcode() == X86::JCC_1;
1383 MCSymbol *FallthroughLabel;
1384 if (IsConditional) {
1385 // Rewrite:
1386 // je target
1387 //
1388 // To:
1389 // jne .fallthrough
1390 // .p2align 1, ...
1391 // .Lxray_sled_N:
1392 // SLED_CODE
1393 // jmp target
1394 // .fallthrough:
1395 FallthroughLabel = OutContext.createTempSymbol();
1397 *OutStreamer,
1398 MCInstBuilder(X86::JCC_1)
1399 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext))
1401 static_cast<X86::CondCode>(MI.getOperand(2).getImm()))));
1402 TC.setOpcode(X86::JMP_1);
1403 // Drop the condition code.
1404 TCOperands = drop_end(TCOperands);
1405 }
1406
1407 NoAutoPaddingScope NoPadScope(*OutStreamer);
1408
1409 // Like PATCHABLE_RET, we have the actual instruction in the operands to this
1410 // instruction so we lower that particular instruction and its operands.
1411 // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
1412 // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
1413 // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
1414 // tail call much like how we have it in PATCHABLE_RET.
1415 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1416 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1417 OutStreamer->emitLabel(CurSled);
1419
1420 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1421 // an operand (computed as an offset from the jmp instruction).
1422 // FIXME: Find another less hacky way do force the relative jump.
1423 OutStreamer->emitBytes("\xeb\x09");
1424 emitX86Nops(*OutStreamer, 9, Subtarget);
1425 OutStreamer->emitLabel(Target);
1426 recordSled(CurSled, MI, SledKind::TAIL_CALL, 2);
1427
1428 // Before emitting the instruction, add a comment to indicate that this is
1429 // indeed a tail call.
1430 OutStreamer->AddComment("TAILCALL");
1431 for (auto &MO : TCOperands)
1432 if (auto Op = MCIL.LowerMachineOperand(&MI, MO); Op.isValid())
1433 TC.addOperand(Op);
1434 OutStreamer->emitInstruction(TC, getSubtargetInfo());
1435
1436 if (IsConditional)
1437 OutStreamer->emitLabel(FallthroughLabel);
1438}
1439
1440// Returns instruction preceding MBBI in MachineFunction.
1441// If MBBI is the first instruction of the first basic block, returns null.
1444 const MachineBasicBlock *MBB = MBBI->getParent();
1445 while (MBBI == MBB->begin()) {
1446 if (MBB == &MBB->getParent()->front())
1448 MBB = MBB->getPrevNode();
1449 MBBI = MBB->end();
1450 }
1451 --MBBI;
1452 return MBBI;
1453}
1454
1455static unsigned getSrcIdx(const MachineInstr* MI, unsigned SrcIdx) {
1456 if (X86II::isKMasked(MI->getDesc().TSFlags)) {
1457 // Skip mask operand.
1458 ++SrcIdx;
1459 if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) {
1460 // Skip passthru operand.
1461 ++SrcIdx;
1462 }
1463 }
1464 return SrcIdx;
1465}
1466
1468 unsigned SrcOpIdx) {
1469 const MachineOperand &DstOp = MI->getOperand(0);
1471
1472 // Handle AVX512 MASK/MASXZ write mask comments.
1473 // MASK: zmmX {%kY}
1474 // MASKZ: zmmX {%kY} {z}
1475 if (X86II::isKMasked(MI->getDesc().TSFlags)) {
1476 const MachineOperand &WriteMaskOp = MI->getOperand(SrcOpIdx - 1);
1478 CS << " {%" << Mask << "}";
1479 if (!X86II::isKMergeMasked(MI->getDesc().TSFlags)) {
1480 CS << " {z}";
1481 }
1482 }
1483}
1484
1485static void printShuffleMask(raw_ostream &CS, StringRef Src1Name,
1486 StringRef Src2Name, ArrayRef<int> Mask) {
1487 // One source operand, fix the mask to print all elements in one span.
1488 SmallVector<int, 8> ShuffleMask(Mask);
1489 if (Src1Name == Src2Name)
1490 for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
1491 if (ShuffleMask[i] >= e)
1492 ShuffleMask[i] -= e;
1493
1494 for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
1495 if (i != 0)
1496 CS << ",";
1497 if (ShuffleMask[i] == SM_SentinelZero) {
1498 CS << "zero";
1499 continue;
1500 }
1501
1502 // Otherwise, it must come from src1 or src2. Print the span of elements
1503 // that comes from this src.
1504 bool isSrc1 = ShuffleMask[i] < (int)e;
1505 CS << (isSrc1 ? Src1Name : Src2Name) << '[';
1506
1507 bool IsFirst = true;
1508 while (i != e && ShuffleMask[i] != SM_SentinelZero &&
1509 (ShuffleMask[i] < (int)e) == isSrc1) {
1510 if (!IsFirst)
1511 CS << ',';
1512 else
1513 IsFirst = false;
1514 if (ShuffleMask[i] == SM_SentinelUndef)
1515 CS << "u";
1516 else
1517 CS << ShuffleMask[i] % (int)e;
1518 ++i;
1519 }
1520 CS << ']';
1521 --i; // For loop increments element #.
1522 }
1523}
1524
1525static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx,
1526 unsigned SrcOp2Idx, ArrayRef<int> Mask) {
1527 std::string Comment;
1528
1529 const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx);
1530 const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx);
1531 StringRef Src1Name = SrcOp1.isReg()
1533 : "mem";
1534 StringRef Src2Name = SrcOp2.isReg()
1536 : "mem";
1537
1538 raw_string_ostream CS(Comment);
1539 printDstRegisterName(CS, MI, SrcOp1Idx);
1540 CS << " = ";
1541 printShuffleMask(CS, Src1Name, Src2Name, Mask);
1542
1543 return Comment;
1544}
1545
1546static void printConstant(const APInt &Val, raw_ostream &CS,
1547 bool PrintZero = false) {
1548 if (Val.getBitWidth() <= 64) {
1549 CS << (PrintZero ? 0ULL : Val.getZExtValue());
1550 } else {
1551 // print multi-word constant as (w0,w1)
1552 CS << "(";
1553 for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
1554 if (i > 0)
1555 CS << ",";
1556 CS << (PrintZero ? 0ULL : Val.getRawData()[i]);
1557 }
1558 CS << ")";
1559 }
1560}
1561
1562static void printConstant(const APFloat &Flt, raw_ostream &CS,
1563 bool PrintZero = false) {
1564 SmallString<32> Str;
1565 // Force scientific notation to distinguish from integers.
1566 if (PrintZero)
1567 APFloat::getZero(Flt.getSemantics()).toString(Str, 0, 0);
1568 else
1569 Flt.toString(Str, 0, 0);
1570 CS << Str;
1571}
1572
1573static void printConstant(const Constant *COp, unsigned BitWidth,
1574 raw_ostream &CS, bool PrintZero = false) {
1575 if (isa<UndefValue>(COp)) {
1576 CS << "u";
1577 } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
1578 printConstant(CI->getValue(), CS, PrintZero);
1579 } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
1580 printConstant(CF->getValueAPF(), CS, PrintZero);
1581 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(COp)) {
1582 Type *EltTy = CDS->getElementType();
1583 bool IsInteger = EltTy->isIntegerTy();
1584 bool IsFP = EltTy->isHalfTy() || EltTy->isFloatTy() || EltTy->isDoubleTy();
1585 unsigned EltBits = EltTy->getPrimitiveSizeInBits();
1586 unsigned E = std::min(BitWidth / EltBits, CDS->getNumElements());
1587 assert((BitWidth % EltBits) == 0 && "Element size mismatch");
1588 for (unsigned I = 0; I != E; ++I) {
1589 if (I != 0)
1590 CS << ",";
1591 if (IsInteger)
1592 printConstant(CDS->getElementAsAPInt(I), CS, PrintZero);
1593 else if (IsFP)
1594 printConstant(CDS->getElementAsAPFloat(I), CS, PrintZero);
1595 else
1596 CS << "?";
1597 }
1598 } else if (auto *CV = dyn_cast<ConstantVector>(COp)) {
1599 unsigned EltBits = CV->getType()->getScalarSizeInBits();
1600 unsigned E = std::min(BitWidth / EltBits, CV->getNumOperands());
1601 assert((BitWidth % EltBits) == 0 && "Element size mismatch");
1602 for (unsigned I = 0; I != E; ++I) {
1603 if (I != 0)
1604 CS << ",";
1605 printConstant(CV->getOperand(I), EltBits, CS, PrintZero);
1606 }
1607 } else {
1608 CS << "?";
1609 }
1610}
1611
1612static void printZeroUpperMove(const MachineInstr *MI, MCStreamer &OutStreamer,
1613 int SclWidth, int VecWidth,
1614 const char *ShuffleComment) {
1615 unsigned SrcIdx = getSrcIdx(MI, 1);
1616
1617 std::string Comment;
1618 raw_string_ostream CS(Comment);
1619 printDstRegisterName(CS, MI, SrcIdx);
1620 CS << " = ";
1621
1622 if (auto *C = X86::getConstantFromPool(*MI, SrcIdx)) {
1623 CS << "[";
1624 printConstant(C, SclWidth, CS);
1625 for (int I = 1, E = VecWidth / SclWidth; I < E; ++I) {
1626 CS << ",";
1627 printConstant(C, SclWidth, CS, true);
1628 }
1629 CS << "]";
1630 OutStreamer.AddComment(CS.str());
1631 return; // early-out
1632 }
1633
1634 // We didn't find a constant load, fallback to a shuffle mask decode.
1635 CS << ShuffleComment;
1636 OutStreamer.AddComment(CS.str());
1637}
1638
1639static void printBroadcast(const MachineInstr *MI, MCStreamer &OutStreamer,
1640 int Repeats, int BitWidth) {
1641 unsigned SrcIdx = getSrcIdx(MI, 1);
1642 if (auto *C = X86::getConstantFromPool(*MI, SrcIdx)) {
1643 std::string Comment;
1644 raw_string_ostream CS(Comment);
1645 printDstRegisterName(CS, MI, SrcIdx);
1646 CS << " = [";
1647 for (int l = 0; l != Repeats; ++l) {
1648 if (l != 0)
1649 CS << ",";
1650 printConstant(C, BitWidth, CS);
1651 }
1652 CS << "]";
1653 OutStreamer.AddComment(CS.str());
1654 }
1655}
1656
1657static bool printExtend(const MachineInstr *MI, MCStreamer &OutStreamer,
1658 int SrcEltBits, int DstEltBits, bool IsSext) {
1659 unsigned SrcIdx = getSrcIdx(MI, 1);
1660 auto *C = X86::getConstantFromPool(*MI, SrcIdx);
1661 if (C && C->getType()->getScalarSizeInBits() == unsigned(SrcEltBits)) {
1662 if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
1663 int NumElts = CDS->getNumElements();
1664 std::string Comment;
1665 raw_string_ostream CS(Comment);
1666 printDstRegisterName(CS, MI, SrcIdx);
1667 CS << " = [";
1668 for (int i = 0; i != NumElts; ++i) {
1669 if (i != 0)
1670 CS << ",";
1671 if (CDS->getElementType()->isIntegerTy()) {
1672 APInt Elt = CDS->getElementAsAPInt(i);
1673 Elt = IsSext ? Elt.sext(DstEltBits) : Elt.zext(DstEltBits);
1674 printConstant(Elt, CS);
1675 } else
1676 CS << "?";
1677 }
1678 CS << "]";
1679 OutStreamer.AddComment(CS.str());
1680 return true;
1681 }
1682 }
1683
1684 return false;
1685}
1686static void printSignExtend(const MachineInstr *MI, MCStreamer &OutStreamer,
1687 int SrcEltBits, int DstEltBits) {
1688 printExtend(MI, OutStreamer, SrcEltBits, DstEltBits, true);
1689}
1690static void printZeroExtend(const MachineInstr *MI, MCStreamer &OutStreamer,
1691 int SrcEltBits, int DstEltBits) {
1692 if (printExtend(MI, OutStreamer, SrcEltBits, DstEltBits, false))
1693 return;
1694
1695 // We didn't find a constant load, fallback to a shuffle mask decode.
1696 std::string Comment;
1697 raw_string_ostream CS(Comment);
1699 CS << " = ";
1700
1701 SmallVector<int> Mask;
1702 unsigned Width = X86::getVectorRegisterWidth(MI->getDesc().operands()[0]);
1703 assert((Width % DstEltBits) == 0 && (DstEltBits % SrcEltBits) == 0 &&
1704 "Illegal extension ratio");
1705 DecodeZeroExtendMask(SrcEltBits, DstEltBits, Width / DstEltBits, false, Mask);
1706 printShuffleMask(CS, "mem", "", Mask);
1707
1708 OutStreamer.AddComment(CS.str());
1709}
1710
1711void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) {
1712 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1713 assert((getSubtarget().isOSWindows() || TM.getTargetTriple().isUEFI()) &&
1714 "SEH_ instruction Windows and UEFI only");
1715
1716 // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
1717 if (EmitFPOData) {
1718 X86TargetStreamer *XTS =
1719 static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer());
1720 switch (MI->getOpcode()) {
1721 case X86::SEH_PushReg:
1722 XTS->emitFPOPushReg(MI->getOperand(0).getImm());
1723 break;
1724 case X86::SEH_StackAlloc:
1725 XTS->emitFPOStackAlloc(MI->getOperand(0).getImm());
1726 break;
1727 case X86::SEH_StackAlign:
1728 XTS->emitFPOStackAlign(MI->getOperand(0).getImm());
1729 break;
1730 case X86::SEH_SetFrame:
1731 assert(MI->getOperand(1).getImm() == 0 &&
1732 ".cv_fpo_setframe takes no offset");
1733 XTS->emitFPOSetFrame(MI->getOperand(0).getImm());
1734 break;
1735 case X86::SEH_EndPrologue:
1736 XTS->emitFPOEndPrologue();
1737 break;
1738 case X86::SEH_SaveReg:
1739 case X86::SEH_SaveXMM:
1740 case X86::SEH_PushFrame:
1741 llvm_unreachable("SEH_ directive incompatible with FPO");
1742 break;
1743 default:
1744 llvm_unreachable("expected SEH_ instruction");
1745 }
1746 return;
1747 }
1748
1749 // Otherwise, use the .seh_ directives for all other Windows platforms.
1750 switch (MI->getOpcode()) {
1751 case X86::SEH_PushReg:
1752 OutStreamer->emitWinCFIPushReg(MI->getOperand(0).getImm());
1753 break;
1754
1755 case X86::SEH_SaveReg:
1756 OutStreamer->emitWinCFISaveReg(MI->getOperand(0).getImm(),
1757 MI->getOperand(1).getImm());
1758 break;
1759
1760 case X86::SEH_SaveXMM:
1761 OutStreamer->emitWinCFISaveXMM(MI->getOperand(0).getImm(),
1762 MI->getOperand(1).getImm());
1763 break;
1764
1765 case X86::SEH_StackAlloc:
1766 OutStreamer->emitWinCFIAllocStack(MI->getOperand(0).getImm());
1767 break;
1768
1769 case X86::SEH_SetFrame:
1770 OutStreamer->emitWinCFISetFrame(MI->getOperand(0).getImm(),
1771 MI->getOperand(1).getImm());
1772 break;
1773
1774 case X86::SEH_PushFrame:
1775 OutStreamer->emitWinCFIPushFrame(MI->getOperand(0).getImm());
1776 break;
1777
1778 case X86::SEH_EndPrologue:
1779 OutStreamer->emitWinCFIEndProlog();
1780 break;
1781
1782 default:
1783 llvm_unreachable("expected SEH_ instruction");
1784 }
1785}
1786
1788 MCStreamer &OutStreamer) {
1789 switch (MI->getOpcode()) {
1790 // Lower PSHUFB and VPERMILP normally but add a comment if we can find
1791 // a constant shuffle mask. We won't be able to do this at the MC layer
1792 // because the mask isn't an immediate.
1793 case X86::PSHUFBrm:
1794 case X86::VPSHUFBrm:
1795 case X86::VPSHUFBYrm:
1796 case X86::VPSHUFBZ128rm:
1797 case X86::VPSHUFBZ128rmk:
1798 case X86::VPSHUFBZ128rmkz:
1799 case X86::VPSHUFBZ256rm:
1800 case X86::VPSHUFBZ256rmk:
1801 case X86::VPSHUFBZ256rmkz:
1802 case X86::VPSHUFBZrm:
1803 case X86::VPSHUFBZrmk:
1804 case X86::VPSHUFBZrmkz: {
1805 unsigned SrcIdx = getSrcIdx(MI, 1);
1806 if (auto *C = X86::getConstantFromPool(*MI, SrcIdx + 1)) {
1807 unsigned Width = X86::getVectorRegisterWidth(MI->getDesc().operands()[0]);
1809 DecodePSHUFBMask(C, Width, Mask);
1810 if (!Mask.empty())
1811 OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
1812 }
1813 break;
1814 }
1815
1816 case X86::VPERMILPSrm:
1817 case X86::VPERMILPSYrm:
1818 case X86::VPERMILPSZ128rm:
1819 case X86::VPERMILPSZ128rmk:
1820 case X86::VPERMILPSZ128rmkz:
1821 case X86::VPERMILPSZ256rm:
1822 case X86::VPERMILPSZ256rmk:
1823 case X86::VPERMILPSZ256rmkz:
1824 case X86::VPERMILPSZrm:
1825 case X86::VPERMILPSZrmk:
1826 case X86::VPERMILPSZrmkz: {
1827 unsigned SrcIdx = getSrcIdx(MI, 1);
1828 if (auto *C = X86::getConstantFromPool(*MI, SrcIdx + 1)) {
1829 unsigned Width = X86::getVectorRegisterWidth(MI->getDesc().operands()[0]);
1831 DecodeVPERMILPMask(C, 32, Width, Mask);
1832 if (!Mask.empty())
1833 OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
1834 }
1835 break;
1836 }
1837 case X86::VPERMILPDrm:
1838 case X86::VPERMILPDYrm:
1839 case X86::VPERMILPDZ128rm:
1840 case X86::VPERMILPDZ128rmk:
1841 case X86::VPERMILPDZ128rmkz:
1842 case X86::VPERMILPDZ256rm:
1843 case X86::VPERMILPDZ256rmk:
1844 case X86::VPERMILPDZ256rmkz:
1845 case X86::VPERMILPDZrm:
1846 case X86::VPERMILPDZrmk:
1847 case X86::VPERMILPDZrmkz: {
1848 unsigned SrcIdx = getSrcIdx(MI, 1);
1849 if (auto *C = X86::getConstantFromPool(*MI, SrcIdx + 1)) {
1850 unsigned Width = X86::getVectorRegisterWidth(MI->getDesc().operands()[0]);
1852 DecodeVPERMILPMask(C, 64, Width, Mask);
1853 if (!Mask.empty())
1854 OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
1855 }
1856 break;
1857 }
1858
1859 case X86::VPERMIL2PDrm:
1860 case X86::VPERMIL2PSrm:
1861 case X86::VPERMIL2PDYrm:
1862 case X86::VPERMIL2PSYrm: {
1863 assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands + 1) &&
1864 "Unexpected number of operands!");
1865
1866 const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
1867 if (!CtrlOp.isImm())
1868 break;
1869
1870 unsigned ElSize;
1871 switch (MI->getOpcode()) {
1872 default: llvm_unreachable("Invalid opcode");
1873 case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break;
1874 case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break;
1875 }
1876
1877 if (auto *C = X86::getConstantFromPool(*MI, 3)) {
1878 unsigned Width = X86::getVectorRegisterWidth(MI->getDesc().operands()[0]);
1880 DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Width, Mask);
1881 if (!Mask.empty())
1882 OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask));
1883 }
1884 break;
1885 }
1886
1887 case X86::VPPERMrrm: {
1888 if (auto *C = X86::getConstantFromPool(*MI, 3)) {
1889 unsigned Width = X86::getVectorRegisterWidth(MI->getDesc().operands()[0]);
1891 DecodeVPPERMMask(C, Width, Mask);
1892 if (!Mask.empty())
1893 OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask));
1894 }
1895 break;
1896 }
1897
1898 case X86::MMX_MOVQ64rm: {
1899 if (auto *C = X86::getConstantFromPool(*MI, 1)) {
1900 std::string Comment;
1901 raw_string_ostream CS(Comment);
1902 const MachineOperand &DstOp = MI->getOperand(0);
1904 if (auto *CF = dyn_cast<ConstantFP>(C)) {
1905 CS << "0x" << toString(CF->getValueAPF().bitcastToAPInt(), 16, false);
1906 OutStreamer.AddComment(CS.str());
1907 }
1908 }
1909 break;
1910 }
1911
1912#define INSTR_CASE(Prefix, Instr, Suffix, Postfix) \
1913 case X86::Prefix##Instr##Suffix##rm##Postfix:
1914
1915#define CASE_ARITH_RM(Instr) \
1916 INSTR_CASE(, Instr, , ) /* SSE */ \
1917 INSTR_CASE(V, Instr, , ) /* AVX-128 */ \
1918 INSTR_CASE(V, Instr, Y, ) /* AVX-256 */ \
1919 INSTR_CASE(V, Instr, Z128, ) \
1920 INSTR_CASE(V, Instr, Z128, k) \
1921 INSTR_CASE(V, Instr, Z128, kz) \
1922 INSTR_CASE(V, Instr, Z256, ) \
1923 INSTR_CASE(V, Instr, Z256, k) \
1924 INSTR_CASE(V, Instr, Z256, kz) \
1925 INSTR_CASE(V, Instr, Z, ) \
1926 INSTR_CASE(V, Instr, Z, k) \
1927 INSTR_CASE(V, Instr, Z, kz)
1928
1929 // TODO: Add additional instructions when useful.
1930 CASE_ARITH_RM(PMADDUBSW) {
1931 unsigned SrcIdx = getSrcIdx(MI, 1);
1932 if (auto *C = X86::getConstantFromPool(*MI, SrcIdx + 1)) {
1933 if (C->getType()->getScalarSizeInBits() == 8) {
1934 std::string Comment;
1935 raw_string_ostream CS(Comment);
1936 unsigned VectorWidth =
1937 X86::getVectorRegisterWidth(MI->getDesc().operands()[0]);
1938 CS << "[";
1939 printConstant(C, VectorWidth, CS);
1940 CS << "]";
1941 OutStreamer.AddComment(CS.str());
1942 }
1943 }
1944 break;
1945 }
1946
1947 CASE_ARITH_RM(PMADDWD)
1948 CASE_ARITH_RM(PMULLW)
1949 CASE_ARITH_RM(PMULHW)
1950 CASE_ARITH_RM(PMULHUW)
1951 CASE_ARITH_RM(PMULHRSW) {
1952 unsigned SrcIdx = getSrcIdx(MI, 1);
1953 if (auto *C = X86::getConstantFromPool(*MI, SrcIdx + 1)) {
1954 if (C->getType()->getScalarSizeInBits() == 16) {
1955 std::string Comment;
1956 raw_string_ostream CS(Comment);
1957 unsigned VectorWidth =
1958 X86::getVectorRegisterWidth(MI->getDesc().operands()[0]);
1959 CS << "[";
1960 printConstant(C, VectorWidth, CS);
1961 CS << "]";
1962 OutStreamer.AddComment(CS.str());
1963 }
1964 }
1965 break;
1966 }
1967
1968#define MASK_AVX512_CASE(Instr) \
1969 case Instr: \
1970 case Instr##k: \
1971 case Instr##kz:
1972
1973 case X86::MOVSDrm:
1974 case X86::VMOVSDrm:
1975 MASK_AVX512_CASE(X86::VMOVSDZrm)
1976 case X86::MOVSDrm_alt:
1977 case X86::VMOVSDrm_alt:
1978 case X86::VMOVSDZrm_alt:
1979 case X86::MOVQI2PQIrm:
1980 case X86::VMOVQI2PQIrm:
1981 case X86::VMOVQI2PQIZrm:
1982 printZeroUpperMove(MI, OutStreamer, 64, 128, "mem[0],zero");
1983 break;
1984
1985 MASK_AVX512_CASE(X86::VMOVSHZrm)
1986 case X86::VMOVSHZrm_alt:
1987 printZeroUpperMove(MI, OutStreamer, 16, 128,
1988 "mem[0],zero,zero,zero,zero,zero,zero,zero");
1989 break;
1990
1991 case X86::MOVSSrm:
1992 case X86::VMOVSSrm:
1993 MASK_AVX512_CASE(X86::VMOVSSZrm)
1994 case X86::MOVSSrm_alt:
1995 case X86::VMOVSSrm_alt:
1996 case X86::VMOVSSZrm_alt:
1997 case X86::MOVDI2PDIrm:
1998 case X86::VMOVDI2PDIrm:
1999 case X86::VMOVDI2PDIZrm:
2000 printZeroUpperMove(MI, OutStreamer, 32, 128, "mem[0],zero,zero,zero");
2001 break;
2002
2003#define MOV_CASE(Prefix, Suffix) \
2004 case X86::Prefix##MOVAPD##Suffix##rm: \
2005 case X86::Prefix##MOVAPS##Suffix##rm: \
2006 case X86::Prefix##MOVUPD##Suffix##rm: \
2007 case X86::Prefix##MOVUPS##Suffix##rm: \
2008 case X86::Prefix##MOVDQA##Suffix##rm: \
2009 case X86::Prefix##MOVDQU##Suffix##rm:
2010
2011#define MOV_AVX512_CASE(Suffix, Postfix) \
2012 case X86::VMOVDQA64##Suffix##rm##Postfix: \
2013 case X86::VMOVDQA32##Suffix##rm##Postfix: \
2014 case X86::VMOVDQU64##Suffix##rm##Postfix: \
2015 case X86::VMOVDQU32##Suffix##rm##Postfix: \
2016 case X86::VMOVDQU16##Suffix##rm##Postfix: \
2017 case X86::VMOVDQU8##Suffix##rm##Postfix: \
2018 case X86::VMOVAPS##Suffix##rm##Postfix: \
2019 case X86::VMOVAPD##Suffix##rm##Postfix: \
2020 case X86::VMOVUPS##Suffix##rm##Postfix: \
2021 case X86::VMOVUPD##Suffix##rm##Postfix:
2022
2023#define CASE_128_MOV_RM() \
2024 MOV_CASE(, ) /* SSE */ \
2025 MOV_CASE(V, ) /* AVX-128 */ \
2026 MOV_AVX512_CASE(Z128, ) \
2027 MOV_AVX512_CASE(Z128, k) \
2028 MOV_AVX512_CASE(Z128, kz)
2029
2030#define CASE_256_MOV_RM() \
2031 MOV_CASE(V, Y) /* AVX-256 */ \
2032 MOV_AVX512_CASE(Z256, ) \
2033 MOV_AVX512_CASE(Z256, k) \
2034 MOV_AVX512_CASE(Z256, kz) \
2035
2036#define CASE_512_MOV_RM() \
2037 MOV_AVX512_CASE(Z, ) \
2038 MOV_AVX512_CASE(Z, k) \
2039 MOV_AVX512_CASE(Z, kz) \
2040
2041 // For loads from a constant pool to a vector register, print the constant
2042 // loaded.
2044 printBroadcast(MI, OutStreamer, 1, 128);
2045 break;
2047 printBroadcast(MI, OutStreamer, 1, 256);
2048 break;
2050 printBroadcast(MI, OutStreamer, 1, 512);
2051 break;
2052 case X86::VBROADCASTF128rm:
2053 case X86::VBROADCASTI128rm:
2054 MASK_AVX512_CASE(X86::VBROADCASTF32X4Z256rm)
2055 MASK_AVX512_CASE(X86::VBROADCASTF64X2Z256rm)
2056 MASK_AVX512_CASE(X86::VBROADCASTI32X4Z256rm)
2057 MASK_AVX512_CASE(X86::VBROADCASTI64X2Z256rm)
2058 printBroadcast(MI, OutStreamer, 2, 128);
2059 break;
2060 MASK_AVX512_CASE(X86::VBROADCASTF32X4Zrm)
2061 MASK_AVX512_CASE(X86::VBROADCASTF64X2Zrm)
2062 MASK_AVX512_CASE(X86::VBROADCASTI32X4Zrm)
2063 MASK_AVX512_CASE(X86::VBROADCASTI64X2Zrm)
2064 printBroadcast(MI, OutStreamer, 4, 128);
2065 break;
2066 MASK_AVX512_CASE(X86::VBROADCASTF32X8Zrm)
2067 MASK_AVX512_CASE(X86::VBROADCASTF64X4Zrm)
2068 MASK_AVX512_CASE(X86::VBROADCASTI32X8Zrm)
2069 MASK_AVX512_CASE(X86::VBROADCASTI64X4Zrm)
2070 printBroadcast(MI, OutStreamer, 2, 256);
2071 break;
2072
2073 // For broadcast loads from a constant pool to a vector register, repeatedly
2074 // print the constant loaded.
2075 case X86::MOVDDUPrm:
2076 case X86::VMOVDDUPrm:
2077 MASK_AVX512_CASE(X86::VMOVDDUPZ128rm)
2078 case X86::VPBROADCASTQrm:
2079 MASK_AVX512_CASE(X86::VPBROADCASTQZ128rm)
2080 printBroadcast(MI, OutStreamer, 2, 64);
2081 break;
2082 case X86::VBROADCASTSDYrm:
2083 MASK_AVX512_CASE(X86::VBROADCASTSDZ256rm)
2084 case X86::VPBROADCASTQYrm:
2085 MASK_AVX512_CASE(X86::VPBROADCASTQZ256rm)
2086 printBroadcast(MI, OutStreamer, 4, 64);
2087 break;
2088 MASK_AVX512_CASE(X86::VBROADCASTSDZrm)
2089 MASK_AVX512_CASE(X86::VPBROADCASTQZrm)
2090 printBroadcast(MI, OutStreamer, 8, 64);
2091 break;
2092 case X86::VBROADCASTSSrm:
2093 MASK_AVX512_CASE(X86::VBROADCASTSSZ128rm)
2094 case X86::VPBROADCASTDrm:
2095 MASK_AVX512_CASE(X86::VPBROADCASTDZ128rm)
2096 printBroadcast(MI, OutStreamer, 4, 32);
2097 break;
2098 case X86::VBROADCASTSSYrm:
2099 MASK_AVX512_CASE(X86::VBROADCASTSSZ256rm)
2100 case X86::VPBROADCASTDYrm:
2101 MASK_AVX512_CASE(X86::VPBROADCASTDZ256rm)
2102 printBroadcast(MI, OutStreamer, 8, 32);
2103 break;
2104 MASK_AVX512_CASE(X86::VBROADCASTSSZrm)
2105 MASK_AVX512_CASE(X86::VPBROADCASTDZrm)
2106 printBroadcast(MI, OutStreamer, 16, 32);
2107 break;
2108 case X86::VPBROADCASTWrm:
2109 MASK_AVX512_CASE(X86::VPBROADCASTWZ128rm)
2110 printBroadcast(MI, OutStreamer, 8, 16);
2111 break;
2112 case X86::VPBROADCASTWYrm:
2113 MASK_AVX512_CASE(X86::VPBROADCASTWZ256rm)
2114 printBroadcast(MI, OutStreamer, 16, 16);
2115 break;
2116 MASK_AVX512_CASE(X86::VPBROADCASTWZrm)
2117 printBroadcast(MI, OutStreamer, 32, 16);
2118 break;
2119 case X86::VPBROADCASTBrm:
2120 MASK_AVX512_CASE(X86::VPBROADCASTBZ128rm)
2121 printBroadcast(MI, OutStreamer, 16, 8);
2122 break;
2123 case X86::VPBROADCASTBYrm:
2124 MASK_AVX512_CASE(X86::VPBROADCASTBZ256rm)
2125 printBroadcast(MI, OutStreamer, 32, 8);
2126 break;
2127 MASK_AVX512_CASE(X86::VPBROADCASTBZrm)
2128 printBroadcast(MI, OutStreamer, 64, 8);
2129 break;
2130
2131#define MOVX_CASE(Prefix, Ext, Type, Suffix, Postfix) \
2132 case X86::Prefix##PMOV##Ext##Type##Suffix##rm##Postfix:
2133
2134#define CASE_MOVX_RM(Ext, Type) \
2135 MOVX_CASE(, Ext, Type, , ) \
2136 MOVX_CASE(V, Ext, Type, , ) \
2137 MOVX_CASE(V, Ext, Type, Y, ) \
2138 MOVX_CASE(V, Ext, Type, Z128, ) \
2139 MOVX_CASE(V, Ext, Type, Z128, k ) \
2140 MOVX_CASE(V, Ext, Type, Z128, kz ) \
2141 MOVX_CASE(V, Ext, Type, Z256, ) \
2142 MOVX_CASE(V, Ext, Type, Z256, k ) \
2143 MOVX_CASE(V, Ext, Type, Z256, kz ) \
2144 MOVX_CASE(V, Ext, Type, Z, ) \
2145 MOVX_CASE(V, Ext, Type, Z, k ) \
2146 MOVX_CASE(V, Ext, Type, Z, kz )
2147
2148 CASE_MOVX_RM(SX, BD)
2149 printSignExtend(MI, OutStreamer, 8, 32);
2150 break;
2151 CASE_MOVX_RM(SX, BQ)
2152 printSignExtend(MI, OutStreamer, 8, 64);
2153 break;
2154 CASE_MOVX_RM(SX, BW)
2155 printSignExtend(MI, OutStreamer, 8, 16);
2156 break;
2157 CASE_MOVX_RM(SX, DQ)
2158 printSignExtend(MI, OutStreamer, 32, 64);
2159 break;
2160 CASE_MOVX_RM(SX, WD)
2161 printSignExtend(MI, OutStreamer, 16, 32);
2162 break;
2163 CASE_MOVX_RM(SX, WQ)
2164 printSignExtend(MI, OutStreamer, 16, 64);
2165 break;
2166
2167 CASE_MOVX_RM(ZX, BD)
2168 printZeroExtend(MI, OutStreamer, 8, 32);
2169 break;
2170 CASE_MOVX_RM(ZX, BQ)
2171 printZeroExtend(MI, OutStreamer, 8, 64);
2172 break;
2173 CASE_MOVX_RM(ZX, BW)
2174 printZeroExtend(MI, OutStreamer, 8, 16);
2175 break;
2176 CASE_MOVX_RM(ZX, DQ)
2177 printZeroExtend(MI, OutStreamer, 32, 64);
2178 break;
2179 CASE_MOVX_RM(ZX, WD)
2180 printZeroExtend(MI, OutStreamer, 16, 32);
2181 break;
2182 CASE_MOVX_RM(ZX, WQ)
2183 printZeroExtend(MI, OutStreamer, 16, 64);
2184 break;
2185 }
2186}
2187
2189 // FIXME: Enable feature predicate checks once all the test pass.
2190 // X86_MC::verifyInstructionPredicates(MI->getOpcode(),
2191 // Subtarget->getFeatureBits());
2192
2193 X86MCInstLower MCInstLowering(*MF, *this);
2194 const X86RegisterInfo *RI =
2195 MF->getSubtarget<X86Subtarget>().getRegisterInfo();
2196
2197 if (MI->getOpcode() == X86::OR64rm) {
2198 for (auto &Opd : MI->operands()) {
2199 if (Opd.isSymbol() && StringRef(Opd.getSymbolName()) ==
2200 "swift_async_extendedFramePointerFlags") {
2201 ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags = true;
2202 }
2203 }
2204 }
2205
2206 // Add comments for values loaded from constant pool.
2207 if (OutStreamer->isVerboseAsm())
2209
2210 // Add a comment about EVEX compression
2212 if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_LEGACY)
2213 OutStreamer->AddComment("EVEX TO LEGACY Compression ", false);
2214 else if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX)
2215 OutStreamer->AddComment("EVEX TO VEX Compression ", false);
2216 else if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_EVEX)
2217 OutStreamer->AddComment("EVEX TO EVEX Compression ", false);
2218 }
2219
2220 switch (MI->getOpcode()) {
2221 case TargetOpcode::DBG_VALUE:
2222 llvm_unreachable("Should be handled target independently");
2223
2224 case X86::EH_RETURN:
2225 case X86::EH_RETURN64: {
2226 // Lower these as normal, but add some comments.
2227 Register Reg = MI->getOperand(0).getReg();
2228 OutStreamer->AddComment(StringRef("eh_return, addr: %") +
2230 break;
2231 }
2232 case X86::CLEANUPRET: {
2233 // Lower these as normal, but add some comments.
2234 OutStreamer->AddComment("CLEANUPRET");
2235 break;
2236 }
2237
2238 case X86::CATCHRET: {
2239 // Lower these as normal, but add some comments.
2240 OutStreamer->AddComment("CATCHRET");
2241 break;
2242 }
2243
2244 case X86::ENDBR32:
2245 case X86::ENDBR64: {
2246 // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for
2247 // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be
2248 // non-empty. If MI is the initial ENDBR, place the
2249 // __patchable_function_entries label after ENDBR.
2252 MI == &MF->front().front()) {
2253 MCInst Inst;
2254 MCInstLowering.Lower(MI, Inst);
2255 EmitAndCountInstruction(Inst);
2258 return;
2259 }
2260 break;
2261 }
2262
2263 case X86::TAILJMPd64:
2264 if (IndCSPrefix && MI->hasRegisterImplicitUseOperand(X86::R11))
2265 EmitAndCountInstruction(MCInstBuilder(X86::CS_PREFIX));
2266 [[fallthrough]];
2267 case X86::TAILJMPr:
2268 case X86::TAILJMPm:
2269 case X86::TAILJMPd:
2270 case X86::TAILJMPd_CC:
2271 case X86::TAILJMPr64:
2272 case X86::TAILJMPm64:
2273 case X86::TAILJMPd64_CC:
2274 case X86::TAILJMPr64_REX:
2275 case X86::TAILJMPm64_REX:
2276 // Lower these as normal, but add some comments.
2277 OutStreamer->AddComment("TAILCALL");
2278 break;
2279
2280 case X86::TLS_addr32:
2281 case X86::TLS_addr64:
2282 case X86::TLS_addrX32:
2283 case X86::TLS_base_addr32:
2284 case X86::TLS_base_addr64:
2285 case X86::TLS_base_addrX32:
2286 case X86::TLS_desc32:
2287 case X86::TLS_desc64:
2288 return LowerTlsAddr(MCInstLowering, *MI);
2289
2290 case X86::MOVPC32r: {
2291 // This is a pseudo op for a two instruction sequence with a label, which
2292 // looks like:
2293 // call "L1$pb"
2294 // "L1$pb":
2295 // popl %esi
2296
2297 // Emit the call.
2298 MCSymbol *PICBase = MF->getPICBaseSymbol();
2299 // FIXME: We would like an efficient form for this, so we don't have to do a
2300 // lot of extra uniquing.
2301 EmitAndCountInstruction(
2302 MCInstBuilder(X86::CALLpcrel32)
2303 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
2304
2305 const X86FrameLowering *FrameLowering =
2306 MF->getSubtarget<X86Subtarget>().getFrameLowering();
2307 bool hasFP = FrameLowering->hasFP(*MF);
2308
2309 // TODO: This is needed only if we require precise CFA.
2310 bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
2311 !OutStreamer->getDwarfFrameInfos().back().End;
2312
2313 int stackGrowth = -RI->getSlotSize();
2314
2315 if (HasActiveDwarfFrame && !hasFP) {
2316 OutStreamer->emitCFIAdjustCfaOffset(-stackGrowth);
2317 MF->getInfo<X86MachineFunctionInfo>()->setHasCFIAdjustCfa(true);
2318 }
2319
2320 // Emit the label.
2321 OutStreamer->emitLabel(PICBase);
2322
2323 // popl $reg
2324 EmitAndCountInstruction(
2325 MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg()));
2326
2327 if (HasActiveDwarfFrame && !hasFP) {
2328 OutStreamer->emitCFIAdjustCfaOffset(stackGrowth);
2329 }
2330 return;
2331 }
2332
2333 case X86::ADD32ri: {
2334 // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
2335 if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
2336 break;
2337
2338 // Okay, we have something like:
2339 // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
2340
2341 // For this, we want to print something like:
2342 // MYGLOBAL + (. - PICBASE)
2343 // However, we can't generate a ".", so just emit a new label here and refer
2344 // to it.
2346 OutStreamer->emitLabel(DotSym);
2347
2348 // Now that we have emitted the label, lower the complex operand expression.
2349 MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
2350
2351 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
2352 const MCExpr *PICBase =
2354 DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
2355
2356 DotExpr = MCBinaryExpr::createAdd(
2358
2359 EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
2360 .addReg(MI->getOperand(0).getReg())
2361 .addReg(MI->getOperand(1).getReg())
2362 .addExpr(DotExpr));
2363 return;
2364 }
2365 case TargetOpcode::STATEPOINT:
2366 return LowerSTATEPOINT(*MI, MCInstLowering);
2367
2368 case TargetOpcode::FAULTING_OP:
2369 return LowerFAULTING_OP(*MI, MCInstLowering);
2370
2371 case TargetOpcode::FENTRY_CALL:
2372 return LowerFENTRY_CALL(*MI, MCInstLowering);
2373
2374 case TargetOpcode::PATCHABLE_OP:
2375 return LowerPATCHABLE_OP(*MI, MCInstLowering);
2376
2377 case TargetOpcode::STACKMAP:
2378 return LowerSTACKMAP(*MI);
2379
2380 case TargetOpcode::PATCHPOINT:
2381 return LowerPATCHPOINT(*MI, MCInstLowering);
2382
2383 case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
2384 return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
2385
2386 case TargetOpcode::PATCHABLE_RET:
2387 return LowerPATCHABLE_RET(*MI, MCInstLowering);
2388
2389 case TargetOpcode::PATCHABLE_TAIL_CALL:
2390 return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering);
2391
2392 case TargetOpcode::PATCHABLE_EVENT_CALL:
2393 return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering);
2394
2395 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
2396 return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering);
2397
2398 case X86::MORESTACK_RET:
2399 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2400 return;
2401
2402 case X86::KCFI_CHECK:
2403 return LowerKCFI_CHECK(*MI);
2404
2405 case X86::ASAN_CHECK_MEMACCESS:
2406 return LowerASAN_CHECK_MEMACCESS(*MI);
2407
2408 case X86::MORESTACK_RET_RESTORE_R10:
2409 // Return, then restore R10.
2410 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2411 EmitAndCountInstruction(
2412 MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX));
2413 return;
2414
2415 case X86::SEH_PushReg:
2416 case X86::SEH_SaveReg:
2417 case X86::SEH_SaveXMM:
2418 case X86::SEH_StackAlloc:
2419 case X86::SEH_StackAlign:
2420 case X86::SEH_SetFrame:
2421 case X86::SEH_PushFrame:
2422 case X86::SEH_EndPrologue:
2423 EmitSEHInstruction(MI);
2424 return;
2425
2426 case X86::SEH_Epilogue: {
2427 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
2429 // Check if preceded by a call and emit nop if so.
2430 for (MBBI = PrevCrossBBInst(MBBI);
2433 // Pseudo instructions that aren't a call are assumed to not emit any
2434 // code. If they do, we worst case generate unnecessary noops after a
2435 // call.
2436 if (MBBI->isCall() || !MBBI->isPseudo()) {
2437 if (MBBI->isCall())
2438 EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
2439 break;
2440 }
2441 }
2442 return;
2443 }
2444 case X86::UBSAN_UD1:
2445 EmitAndCountInstruction(MCInstBuilder(X86::UD1Lm)
2446 .addReg(X86::EAX)
2447 .addReg(X86::EAX)
2448 .addImm(1)
2449 .addReg(X86::NoRegister)
2450 .addImm(MI->getOperand(0).getImm())
2451 .addReg(X86::NoRegister));
2452 return;
2453 case X86::CALL64pcrel32:
2454 if (IndCSPrefix && MI->hasRegisterImplicitUseOperand(X86::R11))
2455 EmitAndCountInstruction(MCInstBuilder(X86::CS_PREFIX));
2456 break;
2457 case X86::JCC_1:
2458 // Two instruction prefixes (2EH for branch not-taken and 3EH for branch
2459 // taken) are used as branch hints. Here we add branch taken prefix for
2460 // jump instruction with higher probability than threshold.
2461 if (getSubtarget().hasBranchHint() && EnableBranchHint) {
2462 const MachineBranchProbabilityInfo *MBPI =
2463 &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
2464 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
2465 BranchProbability EdgeProb =
2466 MBPI->getEdgeProbability(MI->getParent(), DestBB);
2468 if (EdgeProb > Threshold)
2469 EmitAndCountInstruction(MCInstBuilder(X86::DS_PREFIX));
2470 }
2471 break;
2472 }
2473
2474 MCInst TmpInst;
2475 MCInstLowering.Lower(MI, TmpInst);
2476
2477 // Stackmap shadows cannot include branch targets, so we can count the bytes
2478 // in a call towards the shadow, but must ensure that the no thread returns
2479 // in to the stackmap shadow. The only way to achieve this is if the call
2480 // is at the end of the shadow.
2481 if (MI->isCall()) {
2482 // Count then size of the call towards the shadow
2483 SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
2484 // Then flush the shadow so that we fill with nops before the call, not
2485 // after it.
2486 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
2487 // Then emit the call
2488 OutStreamer->emitInstruction(TmpInst, getSubtargetInfo());
2489 return;
2490 }
2491
2492 EmitAndCountInstruction(TmpInst);
2493}
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
std::string Name
Symbol * Sym
Definition: ELF_riscv.cpp:479
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
uint64_t IntrinsicInst * II
static cl::opt< bool > EnableBranchHint("ppc-use-branch-hint", cl::init(true), cl::desc("Enable static hinting of branches on ppc"), cl::Hidden)
static MCSymbol * GetSymbolFromOperand(const MachineOperand &MO, AsmPrinter &AP)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallString class.
static MCOperand LowerSymbolOperand(const MachineInstr *MI, const MachineOperand &MO, AsmPrinter &AP)
This file contains some functions that are useful when dealing with strings.
static void printShuffleMask(raw_ostream &CS, StringRef Src1Name, StringRef Src2Name, ArrayRef< int > Mask)
static void emitX86Nops(MCStreamer &OS, unsigned NumBytes, const X86Subtarget *Subtarget)
Emit the optimal amount of multi-byte nops on X86.
static unsigned getRetOpcode(const X86Subtarget &Subtarget)
static void printSignExtend(const MachineInstr *MI, MCStreamer &OutStreamer, int SrcEltBits, int DstEltBits)
static unsigned convertTailJumpOpcode(unsigned Opcode)
static unsigned getSrcIdx(const MachineInstr *MI, unsigned SrcIdx)
static void printBroadcast(const MachineInstr *MI, MCStreamer &OutStreamer, int Repeats, int BitWidth)
static bool printExtend(const MachineInstr *MI, MCStreamer &OutStreamer, int SrcEltBits, int DstEltBits, bool IsSext)
static void printZeroUpperMove(const MachineInstr *MI, MCStreamer &OutStreamer, int SclWidth, int VecWidth, const char *ShuffleComment)
#define MASK_AVX512_CASE(Instr)
#define CASE_ARITH_RM(Instr)
static void addConstantComments(const MachineInstr *MI, MCStreamer &OutStreamer)
#define CASE_256_MOV_RM()
static MachineBasicBlock::const_iterator PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI)
static unsigned emitNop(MCStreamer &OS, unsigned NumBytes, const X86Subtarget *Subtarget)
Emit the largest nop instruction smaller than or equal to NumBytes bytes.
static void printDstRegisterName(raw_ostream &CS, const MachineInstr *MI, unsigned SrcOpIdx)
#define CASE_MOVX_RM(Ext, Type)
static cl::opt< bool > EnableBranchHint("enable-branch-hint", cl::desc("Enable branch hint."), cl::init(false), cl::Hidden)
static void printConstant(const APInt &Val, raw_ostream &CS, bool PrintZero=false)
static void printZeroExtend(const MachineInstr *MI, MCStreamer &OutStreamer, int SrcEltBits, int DstEltBits)
static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx, unsigned SrcOp2Idx, ArrayRef< int > Mask)
#define CASE_512_MOV_RM()
static cl::opt< unsigned > BranchHintProbabilityThreshold("branch-hint-probability-threshold", cl::desc("The probability threshold of enabling branch hint."), cl::init(50), cl::Hidden)
#define CASE_128_MOV_RM()
void toString(SmallVectorImpl< char > &Str, unsigned FormatPrecision=0, unsigned FormatMaxPadding=3, bool TruncateZero=true) const
Definition: APFloat.h:1470
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition: APFloat.h:1076
Class for arbitrary precision integers.
Definition: APInt.h:78
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:986
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1520
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1468
unsigned getNumWords() const
Get the number of words.
Definition: APInt.h:1475
APInt sext(unsigned width) const
Sign extend to a new width.
Definition: APInt.cpp:959
const uint64_t * getRawData() const
This function returns a pointer to the internal storage of the APInt.
Definition: APInt.h:569
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
This class is intended to be used as a driving class for all asm writers.
Definition: AsmPrinter.h:86
MCSymbol * getSymbol(const GlobalValue *GV) const
Definition: AsmPrinter.cpp:701
MCSymbol * CurrentFnBegin
Definition: AsmPrinter.h:185
void EmitToStreamer(MCStreamer &S, const MCInst &Inst)
Definition: AsmPrinter.cpp:428
TargetMachine & TM
Target machine description.
Definition: AsmPrinter.h:89
virtual MCSymbol * GetCPISymbol(unsigned CPID) const
Return the symbol for the specified constant pool entry.
void emitKCFITrapEntry(const MachineFunction &MF, const MCSymbol *Symbol)
MachineFunction * MF
The current machine function.
Definition: AsmPrinter.h:104
MCSymbol * GetJTISymbol(unsigned JTID, bool isLinkerPrivate=false) const
Return the symbol for the specified jump table entry.
void recordSled(MCSymbol *Sled, const MachineInstr &MI, SledKind Kind, uint8_t Version=0)
MCSymbol * getSymbolPreferLocal(const GlobalValue &GV) const
Similar to getSymbol() but preferred for references.
Definition: AsmPrinter.cpp:705
MachineModuleInfo * MMI
This is a pointer to the current MachineModuleInfo.
Definition: AsmPrinter.h:107
MCContext & OutContext
This is the context for the output file that we are streaming.
Definition: AsmPrinter.h:96
MCSymbol * createTempSymbol(const Twine &Name) const
bool isPositionIndependent() const
Definition: AsmPrinter.cpp:399
MCSymbol * CurrentPatchableFunctionEntrySym
The symbol for the entry in __patchable_function_entires.
Definition: AsmPrinter.h:119
std::unique_ptr< MCStreamer > OutStreamer
This is the MCStreamer object for the file we are generating.
Definition: AsmPrinter.h:101
void getNameWithPrefix(SmallVectorImpl< char > &Name, const GlobalValue *GV) const
Definition: AsmPrinter.cpp:696
StackMaps SM
Definition: AsmPrinter.h:199
MCSymbol * GetBlockAddressSymbol(const BlockAddress *BA) const
Return the MCSymbol used to satisfy BlockAddress uses of the specified basic block.
const MCSubtargetInfo & getSubtargetInfo() const
Return information about subtarget.
Definition: AsmPrinter.cpp:423
StringRef getValueAsString() const
Return the attribute's value as a string.
Definition: Attributes.cpp:392
This class represents a function call, abstracting a target machine's calling convention.
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Register getReg() const
void recordFaultingOp(FaultKind FaultTy, const MCSymbol *FaultingLabel, const MCSymbol *HandlerLabel)
Definition: FaultMaps.cpp:28
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition: Function.cpp:766
bool hasInternalLinkage() const
Definition: GlobalValue.h:526
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition: MCAsmInfo.h:56
static const MCBinaryExpr * createAdd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:537
static const MCBinaryExpr * createSub(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:622
MCCodeEmitter - Generic instruction encoding interface.
Definition: MCCodeEmitter.h:21
virtual void encodeInstruction(const MCInst &Inst, SmallVectorImpl< char > &CB, SmallVectorImpl< MCFixup > &Fixups, const MCSubtargetInfo &STI) const =0
Encode the given Inst to bytes and append to CB.
static const MCConstantExpr * create(int64_t Value, MCContext &Ctx, bool PrintInHex=false, unsigned SizeInBytes=0)
Definition: MCExpr.cpp:222
Context object for machine code objects.
Definition: MCContext.h:83
MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
Definition: MCContext.cpp:345
MCSymbol * getOrCreateSymbol(const Twine &Name)
Lookup the symbol inside with the specified Name.
Definition: MCContext.cpp:212
const MCTargetOptions * getTargetOptions() const
Definition: MCContext.h:420
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:34
MCInstBuilder & addReg(MCRegister Reg)
Add a new register operand.
Definition: MCInstBuilder.h:37
MCInstBuilder & addExpr(const MCExpr *Val)
Add a new MCExpr operand.
Definition: MCInstBuilder.h:61
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:185
unsigned getNumOperands() const
Definition: MCInst.h:209
unsigned getOpcode() const
Definition: MCInst.h:199
iterator insert(iterator I, const MCOperand &Op)
Definition: MCInst.h:225
void setFlags(unsigned F)
Definition: MCInst.h:201
void addOperand(const MCOperand Op)
Definition: MCInst.h:211
iterator begin()
Definition: MCInst.h:220
void setOpcode(unsigned Op)
Definition: MCInst.h:198
const MCOperand & getOperand(unsigned i) const
Definition: MCInst.h:207
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:37
static MCOperand createExpr(const MCExpr *Val)
Definition: MCInst.h:163
static MCOperand createReg(MCRegister Reg)
Definition: MCInst.h:135
static MCOperand createImm(int64_t Val)
Definition: MCInst.h:142
MCRegister getReg() const
Returns the register number.
Definition: MCInst.h:70
const char * getName(MCRegister RegNo) const
Return the human-readable symbolic target-specific name for the specified physical register.
Streaming machine code generation interface.
Definition: MCStreamer.h:213
virtual void AddComment(const Twine &T, bool EOL=true)
Add a textual comment.
Definition: MCStreamer.h:366
virtual void emitRawComment(const Twine &T, bool TabPrefix=true)
Print T and prefix it with the comment string (normally #) and optionally a tab.
Definition: MCStreamer.cpp:120
void setAllowAutoPadding(bool v)
Definition: MCStreamer.h:313
bool getAllowAutoPadding() const
Definition: MCStreamer.h:314
Generic base class for all target subtargets.
Represent a reference to a symbol from inside an expression.
Definition: MCExpr.h:192
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx)
Definition: MCExpr.h:398
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
StringRef getName() const
getName - Get the symbol name.
Definition: MCSymbol.h:205
MachineInstrBundleIterator< const MachineInstr > const_iterator
MCSymbol * getSymbol() const
Return the MCSymbol for this basic block.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
BranchProbability getEdgeProbability(const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const
MCSymbol * getPICBaseSymbol() const
getPICBaseSymbol - Return a function-local symbol to represent the PIC base.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineBasicBlock & front() const
Representation of each machine instruction.
Definition: MachineInstr.h:69
iterator_range< mop_iterator > operands()
Definition: MachineInstr.h:691
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:585
MachineModuleInfoCOFF - This is a MachineModuleInfoImpl implementation for COFF targets.
StubValueTy & getGVStubEntry(MCSymbol *Sym)
PointerIntPair< MCSymbol *, 1, bool > StubValueTy
MachineModuleInfoMachO - This is a MachineModuleInfoImpl implementation for MachO targets.
const Module * getModule() const
Ty & getObjFileInfo()
Keep track of various per-module pieces of information for backends that would like to do so.
MachineOperand class - Representation of each machine instruction operand.
static MachineOperand CreateMCSymbol(MCSymbol *Sym, unsigned TargetFlags=0)
const GlobalValue * getGlobal() const
int64_t getImm() const
bool isImplicit() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
bool isSymbol() const
isSymbol - Tests if this is a MO_ExternalSymbol operand.
bool isJTI() const
isJTI - Tests if this is a MO_JumpTableIndex operand.
const BlockAddress * getBlockAddress() const
unsigned getTargetFlags() const
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
MachineOperandType getType() const
getType - Returns the MachineOperandType for this operand.
const char * getSymbolName() const
Register getReg() const
getReg - Returns the register number.
void setTargetFlags(unsigned F)
MCSymbol * getMCSymbol() const
@ MO_Immediate
Immediate operand.
@ MO_ConstantPoolIndex
Address of indexed Constant in Constant Pool.
@ MO_MCSymbol
MCSymbol reference (for debug/eh info)
@ MO_GlobalAddress
Address of a global value.
@ MO_RegisterMask
Mask of preserved registers.
@ MO_BlockAddress
Address of a basic block.
@ MO_MachineBasicBlock
MachineBasicBlock reference.
@ MO_Register
Register operand.
@ MO_ExternalSymbol
Name of external global symbol.
@ MO_JumpTableIndex
Address of indexed Jump Table for switch.
int64_t getOffset() const
Return the offset from the symbol in this operand.
bool isMBB() const
isMBB - Tests if this is a MO_MachineBasicBlock operand.
void getNameWithPrefix(raw_ostream &OS, const GlobalValue *GV, bool CannotUsePrivateLabel) const
Print the appropriate prefix and the specified global variable's name.
Definition: Mangler.cpp:121
bool getRtLibUseGOT() const
Returns true if PLT should be avoided for RTLib calls.
Definition: Module.cpp:712
Pass interface - Implemented by all 'passes'.
Definition: Pass.h:94
virtual void print(raw_ostream &OS, const Module *M) const
print - Print out the internal state of the pass.
Definition: Pass.cpp:130
MI-level patchpoint operands.
Definition: StackMaps.h:76
PointerIntPair - This class implements a pair of a pointer and small integer.
PointerTy getPointer() const
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
size_t size() const
Definition: SmallVector.h:78
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
void recordStatepoint(const MCSymbol &L, const MachineInstr &MI)
Generate a stackmap record for a statepoint instruction.
Definition: StackMaps.cpp:562
void recordPatchPoint(const MCSymbol &L, const MachineInstr &MI)
Generate a stackmap record for a patchpoint instruction.
Definition: StackMaps.cpp:541
void recordStackMap(const MCSymbol &L, const MachineInstr &MI)
Generate a stackmap record for a stackmap instruction.
Definition: StackMaps.cpp:531
MI-level Statepoint operands.
Definition: StackMaps.h:158
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
Definition: StringRef.h:470
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:147
bool hasFP(const MachineFunction &MF) const
hasFP - Return true if the specified function should have a dedicated frame pointer register.
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:77
const Triple & getTargetTriple() const
TargetOptions Options
const MCRegisterInfo * getMCRegisterInfo() const
MCTargetOptions MCOptions
Machine level options.
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
bool isUEFI() const
Tests whether the OS is UEFI.
Definition: Triple.h:630
bool isOSBinFormatELF() const
Tests whether the OS uses the ELF binary format.
Definition: Triple.h:730
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:153
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
Definition: Type.h:142
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:156
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:237
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static const char * getRegisterName(MCRegister Reg)
void emitInstruction(const MachineInstr *MI) override
Targets should implement this to emit instructions.
const X86Subtarget & getSubtarget() const
X86MachineFunctionInfo - This class is derived from MachineFunction and contains private X86 target-s...
unsigned getSlotSize() const
bool isTargetWindowsMSVC() const
Definition: X86Subtarget.h:300
bool isTarget64BitLP64() const
Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
Definition: X86Subtarget.h:178
bool useIndirectThunkCalls() const
Definition: X86Subtarget.h:218
X86 target streamer implementing x86-only assembly directives.
virtual bool emitFPOPushReg(MCRegister Reg, SMLoc L={})
virtual bool emitFPOEndPrologue(SMLoc L={})
virtual bool emitFPOStackAlign(unsigned Align, SMLoc L={})
virtual bool emitFPOSetFrame(MCRegister Reg, SMLoc L={})
virtual bool emitFPOStackAlloc(unsigned StackAlloc, SMLoc L={})
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
std::string & str()
Returns the string's reference.
Definition: raw_ostream.h:679
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Reg
All possible values of the reg field in the ModR/M byte.
bool isKMergeMasked(uint64_t TSFlags)
Definition: X86BaseInfo.h:1319
@ MO_TLSLD
MO_TLSLD - On a symbol operand this indicates that the immediate is the offset of the GOT entry with ...
Definition: X86BaseInfo.h:411
@ MO_GOTPCREL_NORELAX
MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL relocations are guaranteed to...
Definition: X86BaseInfo.h:391
@ MO_GOTOFF
MO_GOTOFF - On a symbol operand this indicates that the immediate is the offset to the location of th...
Definition: X86BaseInfo.h:381
@ MO_DARWIN_NONLAZY_PIC_BASE
MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates that the reference is actually...
Definition: X86BaseInfo.h:468
@ MO_GOT_ABSOLUTE_ADDRESS
MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a relocation of: SYMBOL_LABEL + [.
Definition: X86BaseInfo.h:367
@ MO_COFFSTUB
MO_COFFSTUB - On a symbol operand "FOO", this indicates that the reference is actually to the "....
Definition: X86BaseInfo.h:488
@ MO_NTPOFF
MO_NTPOFF - On a symbol operand this indicates that the immediate is the negative thread-pointer offs...
Definition: X86BaseInfo.h:450
@ MO_DARWIN_NONLAZY
MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the reference is actually to the "...
Definition: X86BaseInfo.h:464
@ MO_INDNTPOFF
MO_INDNTPOFF - On a symbol operand this indicates that the immediate is the absolute address of the G...
Definition: X86BaseInfo.h:432
@ MO_GOTNTPOFF
MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is the offset of the GOT entry w...
Definition: X86BaseInfo.h:456
@ MO_TPOFF
MO_TPOFF - On a symbol operand this indicates that the immediate is the thread-pointer offset for the...
Definition: X86BaseInfo.h:438
@ MO_TLVP_PIC_BASE
MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate is some TLS offset from the ...
Definition: X86BaseInfo.h:476
@ MO_GOT
MO_GOT - On a symbol operand this indicates that the immediate is the offset to the GOT entry for the...
Definition: X86BaseInfo.h:376
@ MO_ABS8
MO_ABS8 - On a symbol operand this indicates that the symbol is known to be an absolute symbol in ran...
Definition: X86BaseInfo.h:484
@ MO_PLT
MO_PLT - On a symbol operand this indicates that the immediate is offset to the PLT entry of symbol n...
Definition: X86BaseInfo.h:396
@ MO_TLSGD
MO_TLSGD - On a symbol operand this indicates that the immediate is the offset of the GOT entry with ...
Definition: X86BaseInfo.h:403
@ MO_NO_FLAG
MO_NO_FLAG - No flag for the operand.
Definition: X86BaseInfo.h:363
@ MO_TLVP
MO_TLVP - On a symbol operand this indicates that the immediate is some TLS offset.
Definition: X86BaseInfo.h:472
@ MO_DLLIMPORT
MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the reference is actually to the "__imp...
Definition: X86BaseInfo.h:460
@ MO_GOTTPOFF
MO_GOTTPOFF - On a symbol operand this indicates that the immediate is the offset of the GOT entry wi...
Definition: X86BaseInfo.h:425
@ MO_SECREL
MO_SECREL - On a symbol operand this indicates that the immediate is the offset from beginning of sec...
Definition: X86BaseInfo.h:480
@ MO_DTPOFF
MO_DTPOFF - On a symbol operand this indicates that the immediate is the offset of the GOT entry with...
Definition: X86BaseInfo.h:444
@ MO_PIC_BASE_OFFSET
MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the immediate should get the value of th...
Definition: X86BaseInfo.h:371
@ MO_TLSLDM
MO_TLSLDM - On a symbol operand this indicates that the immediate is the offset of the GOT entry with...
Definition: X86BaseInfo.h:419
@ MO_GOTPCREL
MO_GOTPCREL - On a symbol operand this indicates that the immediate is offset to the GOT entry for th...
Definition: X86BaseInfo.h:387
bool isKMasked(uint64_t TSFlags)
Definition: X86BaseInfo.h:1314
bool isX86_64ExtendedReg(MCRegister Reg)
Definition: X86BaseInfo.h:1193
bool optimizeToFixedRegisterOrShortImmediateForm(MCInst &MI)
@ AddrSegmentReg
Definition: X86BaseInfo.h:34
@ AddrNumOperands
Definition: X86BaseInfo.h:36
bool optimizeMOV(MCInst &MI, bool In64BitMode)
Simplify things like MOV32rm to MOV32o32a.
CondCode GetOppositeBranchCondition(CondCode CC)
GetOppositeBranchCondition - Return the inverse of the specified cond, e.g.
bool optimizeMOVSX(MCInst &MI)
bool optimizeVPCMPWithImmediateOneOrSix(MCInst &MI)
bool optimizeShiftRotateWithImmediateOne(MCInst &MI)
bool optimizeInstFromVEX3ToVEX2(MCInst &MI, const MCInstrDesc &Desc)
@ IP_HAS_AD_SIZE
Definition: X86BaseInfo.h:54
@ IP_HAS_REPEAT
Definition: X86BaseInfo.h:56
const Constant * getConstantFromPool(const MachineInstr &MI, unsigned OpNo)
Find any constant pool entry associated with a specific instruction operand.
@ AC_EVEX_2_EVEX
Definition: X86InstrInfo.h:43
@ AC_EVEX_2_LEGACY
Definition: X86InstrInfo.h:39
bool optimizeINCDEC(MCInst &MI, bool In64BitMode)
unsigned getVectorRegisterWidth(const MCOperandInfo &Info)
Get the width of the vector register operand.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
NodeAddr< CodeNode * > Code
Definition: RDFGraph.h:388
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void DecodeZeroExtendMask(unsigned SrcScalarBits, unsigned DstScalarBits, unsigned NumDstElts, bool IsAnyExtend, SmallVectorImpl< int > &ShuffleMask)
Decode a zero extension instruction as a shuffle mask.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
void DecodeVPERMILPMask(unsigned NumElts, unsigned ScalarBits, ArrayRef< uint64_t > RawMask, const APInt &UndefElts, SmallVectorImpl< int > &ShuffleMask)
Decode a VPERMILPD/VPERMILPS variable mask from a raw array of constants.
MCRegister getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High=false)
void DecodeVPERMIL2PMask(unsigned NumElts, unsigned ScalarBits, unsigned M2Z, ArrayRef< uint64_t > RawMask, const APInt &UndefElts, SmallVectorImpl< int > &ShuffleMask)
Decode a VPERMIL2PD/VPERMIL2PS variable mask from a raw array of constants.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition: STLExtras.h:336
@ SM_SentinelUndef
@ SM_SentinelZero
void DecodeVPPERMMask(ArrayRef< uint64_t > RawMask, const APInt &UndefElts, SmallVectorImpl< int > &ShuffleMask)
Decode a VPPERM mask from a raw array of constants such as from BUILD_VECTOR.
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:217
const char * toString(DWARFSectionKind Kind)
void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, bool IsKasan, uint64_t *ShadowBase, int *MappingScale, bool *OrShadowOffset)
void DecodePSHUFBMask(ArrayRef< uint64_t > RawMask, const APInt &UndefElts, SmallVectorImpl< int > &ShuffleMask)
Decode a PSHUFB mask from a raw array of constants such as from BUILD_VECTOR.
#define N
A RAII helper which defines a region of instructions which can't have padding added between them for ...
void changeAndComment(bool b)
NoAutoPaddingScope(MCStreamer &OS)
const bool OldAllowAutoPadding
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39