LLVM 22.0.0git
AsmPrinter.cpp
Go to the documentation of this file.
1//===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the AsmPrinter class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "CodeViewDebug.h"
15#include "DwarfDebug.h"
16#include "DwarfException.h"
17#include "PseudoProbePrinter.h"
18#include "WasmException.h"
19#include "WinCFGuard.h"
20#include "WinException.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/APInt.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/StringRef.h"
33#include "llvm/ADT/Twine.h"
65#include "llvm/Config/config.h"
66#include "llvm/IR/BasicBlock.h"
67#include "llvm/IR/Comdat.h"
68#include "llvm/IR/Constant.h"
69#include "llvm/IR/Constants.h"
70#include "llvm/IR/DataLayout.h"
74#include "llvm/IR/Function.h"
75#include "llvm/IR/GCStrategy.h"
76#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalIFunc.h"
79#include "llvm/IR/GlobalValue.h"
81#include "llvm/IR/Instruction.h"
84#include "llvm/IR/Mangler.h"
85#include "llvm/IR/Metadata.h"
86#include "llvm/IR/Module.h"
87#include "llvm/IR/Operator.h"
88#include "llvm/IR/PseudoProbe.h"
89#include "llvm/IR/Type.h"
90#include "llvm/IR/Value.h"
91#include "llvm/IR/ValueHandle.h"
92#include "llvm/MC/MCAsmInfo.h"
93#include "llvm/MC/MCContext.h"
95#include "llvm/MC/MCExpr.h"
96#include "llvm/MC/MCInst.h"
97#include "llvm/MC/MCSchedule.h"
98#include "llvm/MC/MCSection.h"
100#include "llvm/MC/MCSectionELF.h"
103#include "llvm/MC/MCStreamer.h"
105#include "llvm/MC/MCSymbol.h"
106#include "llvm/MC/MCSymbolELF.h"
108#include "llvm/MC/MCValue.h"
109#include "llvm/MC/SectionKind.h"
110#include "llvm/Object/ELFTypes.h"
111#include "llvm/Pass.h"
113#include "llvm/Support/Casting.h"
118#include "llvm/Support/Format.h"
120#include "llvm/Support/Path.h"
121#include "llvm/Support/VCSRevision.h"
128#include <algorithm>
129#include <cassert>
130#include <cinttypes>
131#include <cstdint>
132#include <iterator>
133#include <memory>
134#include <optional>
135#include <string>
136#include <utility>
137#include <vector>
138
139using namespace llvm;
140
141#define DEBUG_TYPE "asm-printer"
142
143// This is a replication of fields of object::PGOAnalysisMap::Features. It
144// should match the order of the fields so that
145// `object::PGOAnalysisMap::Features::decode(PgoAnalysisMapFeatures.getBits())`
146// succeeds.
155 "pgo-analysis-map", cl::Hidden, cl::CommaSeparated,
157 clEnumValN(PGOMapFeaturesEnum::None, "none", "Disable all options"),
159 "Function Entry Count"),
161 "Basic Block Frequency"),
162 clEnumValN(PGOMapFeaturesEnum::BrProb, "br-prob", "Branch Probability"),
163 clEnumValN(PGOMapFeaturesEnum::All, "all", "Enable all options")),
164 cl::desc(
165 "Enable extended information within the SHT_LLVM_BB_ADDR_MAP that is "
166 "extracted from PGO related analysis."));
167
169 "basic-block-address-map-skip-bb-entries",
170 cl::desc("Skip emitting basic block entries in the SHT_LLVM_BB_ADDR_MAP "
171 "section. It's used to save binary size when BB entries are "
172 "unnecessary for some PGOAnalysisMap features."),
173 cl::Hidden, cl::init(false));
174
176 "emit-jump-table-sizes-section",
177 cl::desc("Emit a section containing jump table addresses and sizes"),
178 cl::Hidden, cl::init(false));
179
180// This isn't turned on by default, since several of the scheduling models are
181// not completely accurate, and we don't want to be misleading.
183 "asm-print-latency",
184 cl::desc("Print instruction latencies as verbose asm comments"), cl::Hidden,
185 cl::init(false));
186
187STATISTIC(EmittedInsts, "Number of machine instrs printed");
188
189char AsmPrinter::ID = 0;
190
191namespace {
192class AddrLabelMapCallbackPtr final : CallbackVH {
193 AddrLabelMap *Map = nullptr;
194
195public:
196 AddrLabelMapCallbackPtr() = default;
197 AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {}
198
199 void setPtr(BasicBlock *BB) {
201 }
202
203 void setMap(AddrLabelMap *map) { Map = map; }
204
205 void deleted() override;
206 void allUsesReplacedWith(Value *V2) override;
207};
208} // namespace
209
210namespace callgraph {
219} // namespace callgraph
220
222 MCContext &Context;
223 struct AddrLabelSymEntry {
224 /// The symbols for the label.
226
227 Function *Fn; // The containing function of the BasicBlock.
228 unsigned Index; // The index in BBCallbacks for the BasicBlock.
229 };
230
231 DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols;
232
233 /// Callbacks for the BasicBlock's that we have entries for. We use this so
234 /// we get notified if a block is deleted or RAUWd.
235 std::vector<AddrLabelMapCallbackPtr> BBCallbacks;
236
237 /// This is a per-function list of symbols whose corresponding BasicBlock got
238 /// deleted. These symbols need to be emitted at some point in the file, so
239 /// AsmPrinter emits them after the function body.
240 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>
241 DeletedAddrLabelsNeedingEmission;
242
243public:
244 AddrLabelMap(MCContext &context) : Context(context) {}
245
247 assert(DeletedAddrLabelsNeedingEmission.empty() &&
248 "Some labels for deleted blocks never got emitted");
249 }
250
252
254 std::vector<MCSymbol *> &Result);
255
258};
259
261 assert(BB->hasAddressTaken() &&
262 "Shouldn't get label for block without address taken");
263 AddrLabelSymEntry &Entry = AddrLabelSymbols[BB];
264
265 // If we already had an entry for this block, just return it.
266 if (!Entry.Symbols.empty()) {
267 assert(BB->getParent() == Entry.Fn && "Parent changed");
268 return Entry.Symbols;
269 }
270
271 // Otherwise, this is a new entry, create a new symbol for it and add an
272 // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd.
273 BBCallbacks.emplace_back(BB);
274 BBCallbacks.back().setMap(this);
275 Entry.Index = BBCallbacks.size() - 1;
276 Entry.Fn = BB->getParent();
277 MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol()
278 : Context.createTempSymbol();
279 Entry.Symbols.push_back(Sym);
280 return Entry.Symbols;
281}
282
283/// If we have any deleted symbols for F, return them.
285 Function *F, std::vector<MCSymbol *> &Result) {
286 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I =
287 DeletedAddrLabelsNeedingEmission.find(F);
288
289 // If there are no entries for the function, just return.
290 if (I == DeletedAddrLabelsNeedingEmission.end())
291 return;
292
293 // Otherwise, take the list.
294 std::swap(Result, I->second);
295 DeletedAddrLabelsNeedingEmission.erase(I);
296}
297
298//===- Address of Block Management ----------------------------------------===//
299
302 // Lazily create AddrLabelSymbols.
303 if (!AddrLabelSymbols)
304 AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext);
305 return AddrLabelSymbols->getAddrLabelSymbolToEmit(
306 const_cast<BasicBlock *>(BB));
307}
308
310 const Function *F, std::vector<MCSymbol *> &Result) {
311 // If no blocks have had their addresses taken, we're done.
312 if (!AddrLabelSymbols)
313 return;
314 return AddrLabelSymbols->takeDeletedSymbolsForFunction(
315 const_cast<Function *>(F), Result);
316}
317
319 // If the block got deleted, there is no need for the symbol. If the symbol
320 // was already emitted, we can just forget about it, otherwise we need to
321 // queue it up for later emission when the function is output.
322 AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]);
323 AddrLabelSymbols.erase(BB);
324 assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?");
325 BBCallbacks[Entry.Index] = nullptr; // Clear the callback.
326
327#if !LLVM_MEMORY_SANITIZER_BUILD
328 // BasicBlock is destroyed already, so this access is UB detectable by msan.
329 assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) &&
330 "Block/parent mismatch");
331#endif
332
333 for (MCSymbol *Sym : Entry.Symbols) {
334 if (Sym->isDefined())
335 return;
336
337 // If the block is not yet defined, we need to emit it at the end of the
338 // function. Add the symbol to the DeletedAddrLabelsNeedingEmission list
339 // for the containing Function. Since the block is being deleted, its
340 // parent may already be removed, we have to get the function from 'Entry'.
341 DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym);
342 }
343}
344
346 // Get the entry for the RAUW'd block and remove it from our map.
347 AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]);
348 AddrLabelSymbols.erase(Old);
349 assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?");
350
351 AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New];
352
353 // If New is not address taken, just move our symbol over to it.
354 if (NewEntry.Symbols.empty()) {
355 BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback.
356 NewEntry = std::move(OldEntry); // Set New's entry.
357 return;
358 }
359
360 BBCallbacks[OldEntry.Index] = nullptr; // Update the callback.
361
362 // Otherwise, we need to add the old symbols to the new block's set.
363 llvm::append_range(NewEntry.Symbols, OldEntry.Symbols);
364}
365
366void AddrLabelMapCallbackPtr::deleted() {
367 Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr()));
368}
369
370void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) {
371 Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2));
372}
373
374/// getGVAlignment - Return the alignment to use for the specified global
375/// value. This rounds up to the preferred alignment if possible and legal.
377 Align InAlign) {
378 Align Alignment;
379 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
380 Alignment = DL.getPreferredAlign(GVar);
381
382 // If InAlign is specified, round it to it.
383 if (InAlign > Alignment)
384 Alignment = InAlign;
385
386 // If the GV has a specified alignment, take it into account.
387 MaybeAlign GVAlign;
388 if (auto *GVar = dyn_cast<GlobalVariable>(GV))
389 GVAlign = GVar->getAlign();
390 else if (auto *F = dyn_cast<Function>(GV))
391 GVAlign = F->getAlign();
392 if (!GVAlign)
393 return Alignment;
394
395 assert(GVAlign && "GVAlign must be set");
396
397 // If the GVAlign is larger than NumBits, or if we are required to obey
398 // NumBits because the GV has an assigned section, obey it.
399 if (*GVAlign > Alignment || GV->hasSection())
400 Alignment = *GVAlign;
401 return Alignment;
402}
403
404AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer,
405 char &ID)
406 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
407 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)),
408 SM(*this) {
409 VerboseAsm = OutStreamer->isVerboseAsm();
410 DwarfUsesRelocationsAcrossSections =
411 MAI->doesDwarfUseRelocationsAcrossSections();
412}
413
415 assert(!DD && Handlers.size() == NumUserHandlers &&
416 "Debug/EH info didn't get finalized");
417}
418
420 return TM.isPositionIndependent();
421}
422
423/// getFunctionNumber - Return a unique ID for the current function.
425 return MF->getFunctionNumber();
426}
427
429 return *TM.getObjFileLowering();
430}
431
433 assert(MMI && "MMI could not be nullptr!");
434 return MMI->getModule()->getDataLayout();
435}
436
437// Do not use the cached DataLayout because some client use it without a Module
438// (dsymutil, llvm-dwarfdump).
440 return TM.getPointerSize(0); // FIXME: Default address space
441}
442
444 assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
445 return MF->getSubtarget<MCSubtargetInfo>();
446}
447
451
453 if (DD) {
454 assert(OutStreamer->hasRawTextSupport() &&
455 "Expected assembly output mode.");
456 // This is NVPTX specific and it's unclear why.
457 // PR51079: If we have code without debug information we need to give up.
458 DISubprogram *MFSP = MF.getFunction().getSubprogram();
459 if (!MFSP)
460 return;
461 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
462 }
463}
464
465/// getCurrentSection() - Return the current section we are emitting to.
467 return OutStreamer->getCurrentSectionOnly();
468}
469
478
482 MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
483 HasSplitStack = false;
484 HasNoSplitStack = false;
485 DbgInfoAvailable = !M.debug_compile_units().empty();
486
487 AddrLabelSymbols = nullptr;
488
489 // Initialize TargetLoweringObjectFile.
490 TM.getObjFileLowering()->Initialize(OutContext, TM);
491
492 TM.getObjFileLowering()->getModuleMetadata(M);
493
494 // On AIX, we delay emitting any section information until
495 // after emitting the .file pseudo-op. This allows additional
496 // information (such as the embedded command line) to be associated
497 // with all sections in the object file rather than a single section.
498 if (!TM.getTargetTriple().isOSBinFormatXCOFF())
499 OutStreamer->initSections(false, *TM.getMCSubtargetInfo());
500
501 // Emit the version-min deployment target directive if needed.
502 //
503 // FIXME: If we end up with a collection of these sorts of Darwin-specific
504 // or ELF-specific things, it may make sense to have a platform helper class
505 // that will work with the target helper class. For now keep it here, as the
506 // alternative is duplicated code in each of the target asm printers that
507 // use the directive, where it would need the same conditionalization
508 // anyway.
509 const Triple &Target = TM.getTargetTriple();
510 if (Target.isOSBinFormatMachO() && Target.isOSDarwin()) {
511 Triple TVT(M.getDarwinTargetVariantTriple());
512 OutStreamer->emitVersionForTarget(
513 Target, M.getSDKVersion(),
514 M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT,
515 M.getDarwinTargetVariantSDKVersion());
516 }
517
518 // Allow the target to emit any magic that it wants at the start of the file.
520
521 // Very minimal debug info. It is ignored if we emit actual debug info. If we
522 // don't, this at least helps the user find where a global came from.
523 if (MAI->hasSingleParameterDotFile()) {
524 // .file "foo.c"
525 if (MAI->isAIX()) {
526 const char VerStr[] =
527#ifdef PACKAGE_VENDOR
528 PACKAGE_VENDOR " "
529#endif
530 PACKAGE_NAME " version " PACKAGE_VERSION
531#ifdef LLVM_REVISION
532 " (" LLVM_REVISION ")"
533#endif
534 ;
535 // TODO: Add timestamp and description.
536 OutStreamer->emitFileDirective(M.getSourceFileName(), VerStr, "", "");
537 } else {
538 OutStreamer->emitFileDirective(
539 llvm::sys::path::filename(M.getSourceFileName()));
540 }
541 }
542
543 // On AIX, emit bytes for llvm.commandline metadata after .file so that the
544 // C_INFO symbol is preserved if any csect is kept by the linker.
545 if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
546 emitModuleCommandLines(M);
547 // Now we can generate section information.
548 OutStreamer->switchSection(
549 OutContext.getObjectFileInfo()->getTextSection());
550
551 // To work around an AIX assembler and/or linker bug, generate
552 // a rename for the default text-section symbol name. This call has
553 // no effect when generating object code directly.
554 MCSection *TextSection =
555 OutStreamer->getContext().getObjectFileInfo()->getTextSection();
556 MCSymbolXCOFF *XSym =
557 static_cast<MCSectionXCOFF *>(TextSection)->getQualNameSymbol();
558 if (XSym->hasRename())
559 OutStreamer->emitXCOFFRenameDirective(XSym, XSym->getSymbolTableName());
560 }
561
563 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
564 for (const auto &I : *MI)
565 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I))
566 MP->beginAssembly(M, *MI, *this);
567
568 // Emit module-level inline asm if it exists.
569 if (!M.getModuleInlineAsm().empty()) {
570 OutStreamer->AddComment("Start of file scope inline assembly");
571 OutStreamer->addBlankLine();
572 emitInlineAsm(
573 M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(),
574 TM.Options.MCOptions, nullptr,
575 InlineAsm::AsmDialect(TM.getMCAsmInfo()->getAssemblerDialect()));
576 OutStreamer->AddComment("End of file scope inline assembly");
577 OutStreamer->addBlankLine();
578 }
579
580 if (MAI->doesSupportDebugInformation()) {
581 bool EmitCodeView = M.getCodeViewFlag();
582 // On Windows targets, emit minimal CodeView compiler info even when debug
583 // info is disabled.
584 if ((TM.getTargetTriple().isOSWindows() &&
585 M.getNamedMetadata("llvm.dbg.cu")) ||
586 (TM.getTargetTriple().isUEFI() && EmitCodeView))
587 Handlers.push_back(std::make_unique<CodeViewDebug>(this));
588 if (!EmitCodeView || M.getDwarfVersion()) {
589 if (hasDebugInfo()) {
590 DD = new DwarfDebug(this);
591 Handlers.push_back(std::unique_ptr<DwarfDebug>(DD));
592 }
593 }
594 }
595
596 if (M.getNamedMetadata(PseudoProbeDescMetadataName))
597 PP = std::make_unique<PseudoProbeHandler>(this);
598
599 switch (MAI->getExceptionHandlingType()) {
601 // We may want to emit CFI for debug.
602 [[fallthrough]];
606 for (auto &F : M.getFunctionList()) {
608 ModuleCFISection = getFunctionCFISectionType(F);
609 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
610 // the module needs .eh_frame. If we have found that case, we are done.
611 if (ModuleCFISection == CFISection::EH)
612 break;
613 }
614 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
615 usesCFIWithoutEH() || ModuleCFISection != CFISection::EH);
616 break;
617 default:
618 break;
619 }
620
621 EHStreamer *ES = nullptr;
622 switch (MAI->getExceptionHandlingType()) {
624 if (!usesCFIWithoutEH())
625 break;
626 [[fallthrough]];
630 ES = new DwarfCFIException(this);
631 break;
633 ES = new ARMException(this);
634 break;
636 switch (MAI->getWinEHEncodingType()) {
637 default: llvm_unreachable("unsupported unwinding information encoding");
639 break;
642 ES = new WinException(this);
643 break;
644 }
645 break;
647 ES = new WasmException(this);
648 break;
650 ES = new AIXException(this);
651 break;
652 }
653 if (ES)
654 Handlers.push_back(std::unique_ptr<EHStreamer>(ES));
655
656 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
657 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
658 EHHandlers.push_back(std::make_unique<WinCFGuard>(this));
659
660 for (auto &Handler : Handlers)
661 Handler->beginModule(&M);
662 for (auto &Handler : EHHandlers)
663 Handler->beginModule(&M);
664
665 return false;
666}
667
668static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
670 return false;
671
672 return GV->canBeOmittedFromSymbolTable();
673}
674
675void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
677 switch (Linkage) {
683 if (MAI->isMachO()) {
684 // .globl _foo
685 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
686
687 if (!canBeHidden(GV, *MAI))
688 // .weak_definition _foo
689 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
690 else
691 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
692 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
693 // .globl _foo
694 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
695 //NOTE: linkonce is handled by the section the symbol was assigned to.
696 } else {
697 // .weak _foo
698 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
699 }
700 return;
702 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
703 return;
706 return;
710 llvm_unreachable("Should never emit this");
711 }
712 llvm_unreachable("Unknown linkage type!");
713}
714
716 const GlobalValue *GV) const {
717 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
718}
719
721 return TM.getSymbol(GV);
722}
723
725 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
726 // exact definion (intersection of GlobalValue::hasExactDefinition() and
727 // !isInterposable()). These linkages include: external, appending, internal,
728 // private. It may be profitable to use a local alias for external. The
729 // assembler would otherwise be conservative and assume a global default
730 // visibility symbol can be interposable, even if the code generator already
731 // assumed it.
732 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
733 const Module &M = *GV.getParent();
734 if (TM.getRelocationModel() != Reloc::Static &&
735 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
736 return getSymbolWithGlobalValueBase(&GV, "$local");
737 }
738 return TM.getSymbol(&GV);
739}
740
741/// EmitGlobalVariable - Emit the specified global variable to the .s file.
743 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
744 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
745 "No emulated TLS variables in the common section");
746
747 // Never emit TLS variable xyz in emulated TLS model.
748 // The initialization value is in __emutls_t.xyz instead of xyz.
749 if (IsEmuTLSVar)
750 return;
751
752 if (GV->hasInitializer()) {
753 // Check to see if this is a special global used by LLVM, if so, emit it.
754 if (emitSpecialLLVMGlobal(GV))
755 return;
756
757 // Skip the emission of global equivalents. The symbol can be emitted later
758 // on by emitGlobalGOTEquivs in case it turns out to be needed.
759 if (GlobalGOTEquivs.count(getSymbol(GV)))
760 return;
761
762 if (isVerbose()) {
763 // When printing the control variable __emutls_v.*,
764 // we don't need to print the original TLS variable name.
765 GV->printAsOperand(OutStreamer->getCommentOS(),
766 /*PrintType=*/false, GV->getParent());
767 OutStreamer->getCommentOS() << '\n';
768 }
769 }
770
771 MCSymbol *GVSym = getSymbol(GV);
772 MCSymbol *EmittedSym = GVSym;
773
774 // getOrCreateEmuTLSControlSym only creates the symbol with name and default
775 // attributes.
776 // GV's or GVSym's attributes will be used for the EmittedSym.
777 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
778
779 if (GV->isTagged()) {
780 Triple T = TM.getTargetTriple();
781
782 if (T.getArch() != Triple::aarch64 || !T.isAndroid())
783 OutContext.reportError(SMLoc(),
784 "tagged symbols (-fsanitize=memtag-globals) are "
785 "only supported on AArch64 Android");
786 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_Memtag);
787 }
788
789 if (!GV->hasInitializer()) // External globals require no extra code.
790 return;
791
792 GVSym->redefineIfPossible();
793 if (GVSym->isDefined() || GVSym->isVariable())
794 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
795 "' is already defined");
796
797 if (MAI->hasDotTypeDotSizeDirective())
798 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
799
801
802 const DataLayout &DL = GV->getDataLayout();
803 uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
804
805 // If the alignment is specified, we *must* obey it. Overaligning a global
806 // with a specified alignment is a prompt way to break globals emitted to
807 // sections and expected to be contiguous (e.g. ObjC metadata).
808 const Align Alignment = getGVAlignment(GV, DL);
809
810 for (auto &Handler : Handlers)
811 Handler->setSymbolSize(GVSym, Size);
812
813 // Handle common symbols
814 if (GVKind.isCommon()) {
815 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
816 // .comm _foo, 42, 4
817 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
818 return;
819 }
820
821 // Determine to which section this global should be emitted.
822 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
823
824 // If we have a bss global going to a section that supports the
825 // zerofill directive, do so here.
826 if (GVKind.isBSS() && MAI->isMachO() && TheSection->isBssSection()) {
827 if (Size == 0)
828 Size = 1; // zerofill of 0 bytes is undefined.
829 emitLinkage(GV, GVSym);
830 // .zerofill __DATA, __bss, _foo, 400, 5
831 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment);
832 return;
833 }
834
835 // If this is a BSS local symbol and we are emitting in the BSS
836 // section use .lcomm/.comm directive.
837 if (GVKind.isBSSLocal() &&
838 getObjFileLowering().getBSSSection() == TheSection) {
839 if (Size == 0)
840 Size = 1; // .comm Foo, 0 is undefined, avoid it.
841
842 // Use .lcomm only if it supports user-specified alignment.
843 // Otherwise, while it would still be correct to use .lcomm in some
844 // cases (e.g. when Align == 1), the external assembler might enfore
845 // some -unknown- default alignment behavior, which could cause
846 // spurious differences between external and integrated assembler.
847 // Prefer to simply fall back to .local / .comm in this case.
848 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
849 // .lcomm _foo, 42
850 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment);
851 return;
852 }
853
854 // .local _foo
855 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
856 // .comm _foo, 42, 4
857 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
858 return;
859 }
860
861 // Handle thread local data for mach-o which requires us to output an
862 // additional structure of data and mangle the original symbol so that we
863 // can reference it later.
864 //
865 // TODO: This should become an "emit thread local global" method on TLOF.
866 // All of this macho specific stuff should be sunk down into TLOFMachO and
867 // stuff like "TLSExtraDataSection" should no longer be part of the parent
868 // TLOF class. This will also make it more obvious that stuff like
869 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
870 // specific code.
871 if (GVKind.isThreadLocal() && MAI->isMachO()) {
872 // Emit the .tbss symbol
873 MCSymbol *MangSym =
874 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
875
876 if (GVKind.isThreadBSS()) {
877 TheSection = getObjFileLowering().getTLSBSSSection();
878 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment);
879 } else if (GVKind.isThreadData()) {
880 OutStreamer->switchSection(TheSection);
881
882 emitAlignment(Alignment, GV);
883 OutStreamer->emitLabel(MangSym);
884
886 GV->getInitializer());
887 }
888
889 OutStreamer->addBlankLine();
890
891 // Emit the variable struct for the runtime.
893
894 OutStreamer->switchSection(TLVSect);
895 // Emit the linkage here.
896 emitLinkage(GV, GVSym);
897 OutStreamer->emitLabel(GVSym);
898
899 // Three pointers in size:
900 // - __tlv_bootstrap - used to make sure support exists
901 // - spare pointer, used when mapped by the runtime
902 // - pointer to mangled symbol above with initializer
903 unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
904 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
905 PtrSize);
906 OutStreamer->emitIntValue(0, PtrSize);
907 OutStreamer->emitSymbolValue(MangSym, PtrSize);
908
909 OutStreamer->addBlankLine();
910 return;
911 }
912
913 MCSymbol *EmittedInitSym = GVSym;
914
915 OutStreamer->switchSection(TheSection);
916
917 emitLinkage(GV, EmittedInitSym);
918 emitAlignment(Alignment, GV);
919
920 OutStreamer->emitLabel(EmittedInitSym);
921 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
922 if (LocalAlias != EmittedInitSym)
923 OutStreamer->emitLabel(LocalAlias);
924
926
927 if (MAI->hasDotTypeDotSizeDirective())
928 // .size foo, 42
929 OutStreamer->emitELFSize(EmittedInitSym,
931
932 OutStreamer->addBlankLine();
933}
934
935/// Emit the directive and value for debug thread local expression
936///
937/// \p Value - The value to emit.
938/// \p Size - The size of the integer (in bytes) to emit.
939void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
940 OutStreamer->emitValue(Value, Size);
941}
942
943void AsmPrinter::emitFunctionHeaderComment() {}
944
945void AsmPrinter::emitFunctionPrefix(ArrayRef<const Constant *> Prefix) {
946 const Function &F = MF->getFunction();
948 for (auto &C : Prefix)
949 emitGlobalConstant(F.getDataLayout(), C);
950 return;
951 }
952 // Preserving prefix-like data on platforms which use subsections-via-symbols
953 // is a bit tricky. Here we introduce a symbol for the prefix-like data
954 // and use the .alt_entry attribute to mark the function's real entry point
955 // as an alternative entry point to the symbol that precedes the function..
956 OutStreamer->emitLabel(OutContext.createLinkerPrivateTempSymbol());
957
958 for (auto &C : Prefix) {
959 emitGlobalConstant(F.getDataLayout(), C);
960 }
961
962 // Emit an .alt_entry directive for the actual function symbol.
963 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
964}
965
966/// EmitFunctionHeader - This method emits the header for the current
967/// function.
968void AsmPrinter::emitFunctionHeader() {
969 const Function &F = MF->getFunction();
970
971 if (isVerbose())
972 OutStreamer->getCommentOS()
973 << "-- Begin function "
974 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
975
976 // Print out constants referenced by the function
978
979 // Print the 'header' of function.
980 // If basic block sections are desired, explicitly request a unique section
981 // for this function's entry block.
982 if (MF->front().isBeginSection())
983 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
984 else
985 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
986 OutStreamer->switchSection(MF->getSection());
987
988 if (MAI->isAIX())
990 else
991 emitVisibility(CurrentFnSym, F.getVisibility());
992
994 if (MAI->hasFunctionAlignment())
995 emitAlignment(MF->getAlignment(), &F);
996
997 if (MAI->hasDotTypeDotSizeDirective())
998 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
999
1000 if (F.hasFnAttribute(Attribute::Cold))
1001 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
1002
1003 // Emit the prefix data.
1004 if (F.hasPrefixData())
1005 emitFunctionPrefix({F.getPrefixData()});
1006
1007 // Emit KCFI type information before patchable-function-prefix nops.
1009
1010 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
1011 // place prefix data before NOPs.
1012 unsigned PatchableFunctionPrefix = 0;
1013 unsigned PatchableFunctionEntry = 0;
1014 (void)F.getFnAttribute("patchable-function-prefix")
1015 .getValueAsString()
1016 .getAsInteger(10, PatchableFunctionPrefix);
1017 (void)F.getFnAttribute("patchable-function-entry")
1018 .getValueAsString()
1019 .getAsInteger(10, PatchableFunctionEntry);
1020 if (PatchableFunctionPrefix) {
1022 OutContext.createLinkerPrivateTempSymbol();
1024 emitNops(PatchableFunctionPrefix);
1025 } else if (PatchableFunctionEntry) {
1026 // May be reassigned when emitting the body, to reference the label after
1027 // the initial BTI (AArch64) or endbr32/endbr64 (x86).
1029 }
1030
1031 // Emit the function prologue data for the indirect call sanitizer.
1032 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) {
1033 assert(MD->getNumOperands() == 2);
1034
1035 auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0));
1036 auto *TypeHash = mdconst::extract<Constant>(MD->getOperand(1));
1037 emitFunctionPrefix({PrologueSig, TypeHash});
1038 }
1039
1040 if (isVerbose()) {
1041 F.printAsOperand(OutStreamer->getCommentOS(),
1042 /*PrintType=*/false, F.getParent());
1043 emitFunctionHeaderComment();
1044 OutStreamer->getCommentOS() << '\n';
1045 }
1046
1047 // Emit the function descriptor. This is a virtual function to allow targets
1048 // to emit their specific function descriptor. Right now it is only used by
1049 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
1050 // descriptors and should be converted to use this hook as well.
1051 if (MAI->isAIX())
1053
1054 // Emit the CurrentFnSym. This is a virtual function to allow targets to do
1055 // their wild and crazy things as required.
1057
1058 // If the function had address-taken blocks that got deleted, then we have
1059 // references to the dangling symbols. Emit them at the start of the function
1060 // so that we don't get references to undefined symbols.
1061 std::vector<MCSymbol*> DeadBlockSyms;
1062 takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
1063 for (MCSymbol *DeadBlockSym : DeadBlockSyms) {
1064 OutStreamer->AddComment("Address taken block that was later removed");
1065 OutStreamer->emitLabel(DeadBlockSym);
1066 }
1067
1068 if (CurrentFnBegin) {
1069 if (MAI->useAssignmentForEHBegin()) {
1070 MCSymbol *CurPos = OutContext.createTempSymbol();
1071 OutStreamer->emitLabel(CurPos);
1072 OutStreamer->emitAssignment(CurrentFnBegin,
1074 } else {
1075 OutStreamer->emitLabel(CurrentFnBegin);
1076 }
1077 }
1078
1079 // Emit pre-function debug and/or EH information.
1080 for (auto &Handler : Handlers) {
1081 Handler->beginFunction(MF);
1082 Handler->beginBasicBlockSection(MF->front());
1083 }
1084 for (auto &Handler : EHHandlers) {
1085 Handler->beginFunction(MF);
1086 Handler->beginBasicBlockSection(MF->front());
1087 }
1088
1089 // Emit the prologue data.
1090 if (F.hasPrologueData())
1091 emitGlobalConstant(F.getDataLayout(), F.getPrologueData());
1092}
1093
1094/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
1095/// function. This can be overridden by targets as required to do custom stuff.
1097 CurrentFnSym->redefineIfPossible();
1098 OutStreamer->emitLabel(CurrentFnSym);
1099
1100 if (TM.getTargetTriple().isOSBinFormatELF()) {
1101 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
1102 if (Sym != CurrentFnSym) {
1103 CurrentFnBeginLocal = Sym;
1104 OutStreamer->emitLabel(Sym);
1105 OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction);
1106 }
1107 }
1108}
1109
1110/// emitComments - Pretty-print comments for instructions.
1111static void emitComments(const MachineInstr &MI, const MCSubtargetInfo *STI,
1112 raw_ostream &CommentOS) {
1113 const MachineFunction *MF = MI.getMF();
1115
1116 // Check for spills and reloads
1117
1118 // We assume a single instruction only has a spill or reload, not
1119 // both.
1120 std::optional<LocationSize> Size;
1121 if ((Size = MI.getRestoreSize(TII))) {
1122 CommentOS << Size->getValue() << "-byte Reload\n";
1123 } else if ((Size = MI.getFoldedRestoreSize(TII))) {
1124 if (!Size->hasValue())
1125 CommentOS << "Unknown-size Folded Reload\n";
1126 else if (Size->getValue())
1127 CommentOS << Size->getValue() << "-byte Folded Reload\n";
1128 } else if ((Size = MI.getSpillSize(TII))) {
1129 CommentOS << Size->getValue() << "-byte Spill\n";
1130 } else if ((Size = MI.getFoldedSpillSize(TII))) {
1131 if (!Size->hasValue())
1132 CommentOS << "Unknown-size Folded Spill\n";
1133 else if (Size->getValue())
1134 CommentOS << Size->getValue() << "-byte Folded Spill\n";
1135 }
1136
1137 // Check for spill-induced copies
1138 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
1139 CommentOS << " Reload Reuse\n";
1140
1141 if (PrintLatency) {
1143 const MCSchedModel &SCModel = STI->getSchedModel();
1146 *STI, *TII, MI);
1147 // Report only interesting latencies.
1148 if (1 < Latency)
1149 CommentOS << " Latency: " << Latency << "\n";
1150 }
1151}
1152
1153/// emitImplicitDef - This method emits the specified machine instruction
1154/// that is an implicit def.
1156 Register RegNo = MI->getOperand(0).getReg();
1157
1158 SmallString<128> Str;
1159 raw_svector_ostream OS(Str);
1160 OS << "implicit-def: "
1161 << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
1162
1163 OutStreamer->AddComment(OS.str());
1164 OutStreamer->addBlankLine();
1165}
1166
1167static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
1168 std::string Str;
1169 raw_string_ostream OS(Str);
1170 OS << "kill:";
1171 for (const MachineOperand &Op : MI->operands()) {
1172 assert(Op.isReg() && "KILL instruction must have only register operands");
1173 OS << ' ' << (Op.isDef() ? "def " : "killed ")
1174 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
1175 }
1176 AP.OutStreamer->AddComment(Str);
1177 AP.OutStreamer->addBlankLine();
1178}
1179
1180static void emitFakeUse(const MachineInstr *MI, AsmPrinter &AP) {
1181 std::string Str;
1182 raw_string_ostream OS(Str);
1183 OS << "fake_use:";
1184 for (const MachineOperand &Op : MI->operands()) {
1185 // In some circumstances we can end up with fake uses of constants; skip
1186 // these.
1187 if (!Op.isReg())
1188 continue;
1189 OS << ' ' << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
1190 }
1191 AP.OutStreamer->AddComment(OS.str());
1192 AP.OutStreamer->addBlankLine();
1193}
1194
1195/// emitDebugValueComment - This method handles the target-independent form
1196/// of DBG_VALUE, returning true if it was able to do so. A false return
1197/// means the target will need to handle MI in EmitInstruction.
1199 // This code handles only the 4-operand target-independent form.
1200 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
1201 return false;
1202
1203 SmallString<128> Str;
1204 raw_svector_ostream OS(Str);
1205 OS << "DEBUG_VALUE: ";
1206
1207 const DILocalVariable *V = MI->getDebugVariable();
1208 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
1209 StringRef Name = SP->getName();
1210 if (!Name.empty())
1211 OS << Name << ":";
1212 }
1213 OS << V->getName();
1214 OS << " <- ";
1215
1216 const DIExpression *Expr = MI->getDebugExpression();
1217 // First convert this to a non-variadic expression if possible, to simplify
1218 // the output.
1219 if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr))
1220 Expr = *NonVariadicExpr;
1221 // Then, output the possibly-simplified expression.
1222 if (Expr->getNumElements()) {
1223 OS << '[';
1224 ListSeparator LS;
1225 for (auto &Op : Expr->expr_ops()) {
1226 OS << LS << dwarf::OperationEncodingString(Op.getOp());
1227 for (unsigned I = 0; I < Op.getNumArgs(); ++I)
1228 OS << ' ' << Op.getArg(I);
1229 }
1230 OS << "] ";
1231 }
1232
1233 // Register or immediate value. Register 0 means undef.
1234 for (const MachineOperand &Op : MI->debug_operands()) {
1235 if (&Op != MI->debug_operands().begin())
1236 OS << ", ";
1237 switch (Op.getType()) {
1239 APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
1240 Type *ImmTy = Op.getFPImm()->getType();
1241 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() ||
1242 ImmTy->isDoubleTy()) {
1243 OS << APF.convertToDouble();
1244 } else {
1245 // There is no good way to print long double. Convert a copy to
1246 // double. Ah well, it's only a comment.
1247 bool ignored;
1249 &ignored);
1250 OS << "(long double) " << APF.convertToDouble();
1251 }
1252 break;
1253 }
1255 OS << Op.getImm();
1256 break;
1257 }
1259 Op.getCImm()->getValue().print(OS, false /*isSigned*/);
1260 break;
1261 }
1263 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
1264 break;
1265 }
1268 Register Reg;
1269 std::optional<StackOffset> Offset;
1270 if (Op.isReg()) {
1271 Reg = Op.getReg();
1272 } else {
1273 const TargetFrameLowering *TFI =
1275 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
1276 }
1277 if (!Reg) {
1278 // Suppress offset, it is not meaningful here.
1279 OS << "undef";
1280 break;
1281 }
1282 // The second operand is only an offset if it's an immediate.
1283 if (MI->isIndirectDebugValue())
1284 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
1285 if (Offset)
1286 OS << '[';
1287 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
1288 if (Offset)
1289 OS << '+' << Offset->getFixed() << ']';
1290 break;
1291 }
1292 default:
1293 llvm_unreachable("Unknown operand type");
1294 }
1295 }
1296
1297 // NOTE: Want this comment at start of line, don't emit with AddComment.
1298 AP.OutStreamer->emitRawComment(Str);
1299 return true;
1300}
1301
1302/// This method handles the target-independent form of DBG_LABEL, returning
1303/// true if it was able to do so. A false return means the target will need
1304/// to handle MI in EmitInstruction.
1306 if (MI->getNumOperands() != 1)
1307 return false;
1308
1309 SmallString<128> Str;
1310 raw_svector_ostream OS(Str);
1311 OS << "DEBUG_LABEL: ";
1312
1313 const DILabel *V = MI->getDebugLabel();
1314 if (auto *SP = dyn_cast<DISubprogram>(
1315 V->getScope()->getNonLexicalBlockFileScope())) {
1316 StringRef Name = SP->getName();
1317 if (!Name.empty())
1318 OS << Name << ":";
1319 }
1320 OS << V->getName();
1321
1322 // NOTE: Want this comment at start of line, don't emit with AddComment.
1323 AP.OutStreamer->emitRawComment(OS.str());
1324 return true;
1325}
1326
1329 // Ignore functions that won't get emitted.
1330 if (F.isDeclarationForLinker())
1331 return CFISection::None;
1332
1333 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1334 F.needsUnwindTableEntry())
1335 return CFISection::EH;
1336
1337 if (MAI->usesCFIWithoutEH() && F.hasUWTable())
1338 return CFISection::EH;
1339
1340 if (hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
1341 return CFISection::Debug;
1342
1343 return CFISection::None;
1344}
1345
1350
1352 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1353}
1354
1356 return MAI->usesCFIWithoutEH() && ModuleCFISection != CFISection::None;
1357}
1358
1360 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1361 if (!usesCFIWithoutEH() &&
1362 ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1363 ExceptionHandlingType != ExceptionHandling::ARM)
1364 return;
1365
1367 return;
1368
1369 // If there is no "real" instruction following this CFI instruction, skip
1370 // emitting it; it would be beyond the end of the function's FDE range.
1371 auto *MBB = MI.getParent();
1372 auto I = std::next(MI.getIterator());
1373 while (I != MBB->end() && I->isTransient())
1374 ++I;
1375 if (I == MBB->instr_end() &&
1376 MBB->getReverseIterator() == MBB->getParent()->rbegin())
1377 return;
1378
1379 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1380 unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1381 const MCCFIInstruction &CFI = Instrs[CFIIndex];
1382 emitCFIInstruction(CFI);
1383}
1384
1386 // The operands are the MCSymbol and the frame offset of the allocation.
1387 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1388 int FrameOffset = MI.getOperand(1).getImm();
1389
1390 // Emit a symbol assignment.
1391 OutStreamer->emitAssignment(FrameAllocSym,
1392 MCConstantExpr::create(FrameOffset, OutContext));
1393}
1394
1395/// Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section
1396/// for a given basic block. This can be used to capture more precise profile
1397/// information.
1399 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1401 MBB.isReturnBlock(), !MBB.empty() && TII->isTailCall(MBB.back()),
1402 MBB.isEHPad(), const_cast<MachineBasicBlock &>(MBB).canFallThrough(),
1403 !MBB.empty() && MBB.rbegin()->isIndirectBranch()}
1404 .encode();
1405}
1406
1408getBBAddrMapFeature(const MachineFunction &MF, int NumMBBSectionRanges,
1409 bool HasCalls) {
1410 // Ensure that the user has not passed in additional options while also
1411 // specifying all or none.
1414 popcount(PgoAnalysisMapFeatures.getBits()) != 1) {
1416 "-pgo-anaylsis-map can accept only all or none with no additional "
1417 "values.");
1418 }
1419
1420 bool NoFeatures = PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::None);
1422 bool FuncEntryCountEnabled =
1423 AllFeatures || (!NoFeatures && PgoAnalysisMapFeatures.isSet(
1425 bool BBFreqEnabled =
1426 AllFeatures ||
1427 (!NoFeatures && PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BBFreq));
1428 bool BrProbEnabled =
1429 AllFeatures ||
1430 (!NoFeatures && PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BrProb));
1431
1432 if ((BBFreqEnabled || BrProbEnabled) && BBAddrMapSkipEmitBBEntries) {
1434 "BB entries info is required for BBFreq and BrProb "
1435 "features");
1436 }
1437 return {FuncEntryCountEnabled,
1438 BBFreqEnabled,
1439 BrProbEnabled,
1440 MF.hasBBSections() && NumMBBSectionRanges > 1,
1441 static_cast<bool>(BBAddrMapSkipEmitBBEntries),
1442 HasCalls,
1443 false};
1444}
1445
1447 MCSection *BBAddrMapSection =
1448 getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1449 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1450 bool HasCalls = !CurrentFnCallsiteEndSymbols.empty();
1451
1452 const MCSymbol *FunctionSymbol = getFunctionBegin();
1453
1454 OutStreamer->pushSection();
1455 OutStreamer->switchSection(BBAddrMapSection);
1456 OutStreamer->AddComment("version");
1457 uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion();
1458 OutStreamer->emitInt8(BBAddrMapVersion);
1459 OutStreamer->AddComment("feature");
1460 auto Features = getBBAddrMapFeature(MF, MBBSectionRanges.size(), HasCalls);
1461 OutStreamer->emitInt8(Features.encode());
1462 // Emit BB Information for each basic block in the function.
1463 if (Features.MultiBBRange) {
1464 OutStreamer->AddComment("number of basic block ranges");
1465 OutStreamer->emitULEB128IntValue(MBBSectionRanges.size());
1466 }
1467 // Number of blocks in each MBB section.
1468 MapVector<MBBSectionID, unsigned> MBBSectionNumBlocks;
1469 const MCSymbol *PrevMBBEndSymbol = nullptr;
1470 if (!Features.MultiBBRange) {
1471 OutStreamer->AddComment("function address");
1472 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1473 OutStreamer->AddComment("number of basic blocks");
1474 OutStreamer->emitULEB128IntValue(MF.size());
1475 PrevMBBEndSymbol = FunctionSymbol;
1476 } else {
1477 unsigned BBCount = 0;
1478 for (const MachineBasicBlock &MBB : MF) {
1479 BBCount++;
1480 if (MBB.isEndSection()) {
1481 // Store each section's basic block count when it ends.
1482 MBBSectionNumBlocks[MBB.getSectionID()] = BBCount;
1483 // Reset the count for the next section.
1484 BBCount = 0;
1485 }
1486 }
1487 }
1488 // Emit the BB entry for each basic block in the function.
1489 for (const MachineBasicBlock &MBB : MF) {
1490 const MCSymbol *MBBSymbol =
1491 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1492 bool IsBeginSection =
1493 Features.MultiBBRange && (MBB.isBeginSection() || MBB.isEntryBlock());
1494 if (IsBeginSection) {
1495 OutStreamer->AddComment("base address");
1496 OutStreamer->emitSymbolValue(MBBSymbol, getPointerSize());
1497 OutStreamer->AddComment("number of basic blocks");
1498 OutStreamer->emitULEB128IntValue(MBBSectionNumBlocks[MBB.getSectionID()]);
1499 PrevMBBEndSymbol = MBBSymbol;
1500 }
1501
1502 if (!Features.OmitBBEntries) {
1503 OutStreamer->AddComment("BB id");
1504 // Emit the BB ID for this basic block.
1505 // We only emit BaseID since CloneID is unset for
1506 // -basic-block-adress-map.
1507 // TODO: Emit the full BBID when labels and sections can be mixed
1508 // together.
1509 OutStreamer->emitULEB128IntValue(MBB.getBBID()->BaseID);
1510 // Emit the basic block offset relative to the end of the previous block.
1511 // This is zero unless the block is padded due to alignment.
1512 emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol);
1513 const MCSymbol *CurrentLabel = MBBSymbol;
1514 if (HasCalls) {
1515 auto CallsiteEndSymbols = CurrentFnCallsiteEndSymbols.lookup(&MBB);
1516 OutStreamer->AddComment("number of callsites");
1517 OutStreamer->emitULEB128IntValue(CallsiteEndSymbols.size());
1518 for (const MCSymbol *CallsiteEndSymbol : CallsiteEndSymbols) {
1519 // Emit the callsite offset.
1520 emitLabelDifferenceAsULEB128(CallsiteEndSymbol, CurrentLabel);
1521 CurrentLabel = CallsiteEndSymbol;
1522 }
1523 }
1524 // Emit the offset to the end of the block, which can be used to compute
1525 // the total block size.
1526 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), CurrentLabel);
1527 // Emit the Metadata.
1528 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1529 }
1530 PrevMBBEndSymbol = MBB.getEndSymbol();
1531 }
1532
1533 if (Features.hasPGOAnalysis()) {
1534 assert(BBAddrMapVersion >= 2 &&
1535 "PGOAnalysisMap only supports version 2 or later");
1536
1537 if (Features.FuncEntryCount) {
1538 OutStreamer->AddComment("function entry count");
1539 auto MaybeEntryCount = MF.getFunction().getEntryCount();
1540 OutStreamer->emitULEB128IntValue(
1541 MaybeEntryCount ? MaybeEntryCount->getCount() : 0);
1542 }
1543 const MachineBlockFrequencyInfo *MBFI =
1544 Features.BBFreq
1546 : nullptr;
1547 const MachineBranchProbabilityInfo *MBPI =
1548 Features.BrProb
1550 : nullptr;
1551
1552 if (Features.BBFreq || Features.BrProb) {
1553 for (const MachineBasicBlock &MBB : MF) {
1554 if (Features.BBFreq) {
1555 OutStreamer->AddComment("basic block frequency");
1556 OutStreamer->emitULEB128IntValue(
1557 MBFI->getBlockFreq(&MBB).getFrequency());
1558 }
1559 if (Features.BrProb) {
1560 unsigned SuccCount = MBB.succ_size();
1561 OutStreamer->AddComment("basic block successor count");
1562 OutStreamer->emitULEB128IntValue(SuccCount);
1563 for (const MachineBasicBlock *SuccMBB : MBB.successors()) {
1564 OutStreamer->AddComment("successor BB ID");
1565 OutStreamer->emitULEB128IntValue(SuccMBB->getBBID()->BaseID);
1566 OutStreamer->AddComment("successor branch probability");
1567 OutStreamer->emitULEB128IntValue(
1568 MBPI->getEdgeProbability(&MBB, SuccMBB).getNumerator());
1569 }
1570 }
1571 }
1572 }
1573 }
1574
1575 OutStreamer->popSection();
1576}
1577
1579 const MCSymbol *Symbol) {
1580 MCSection *Section =
1581 getObjFileLowering().getKCFITrapSection(*MF.getSection());
1582 if (!Section)
1583 return;
1584
1585 OutStreamer->pushSection();
1586 OutStreamer->switchSection(Section);
1587
1588 MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol();
1589 OutStreamer->emitLabel(Loc);
1590 OutStreamer->emitAbsoluteSymbolDiff(Symbol, Loc, 4);
1591
1592 OutStreamer->popSection();
1593}
1594
1596 const Function &F = MF.getFunction();
1597 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type))
1598 emitGlobalConstant(F.getDataLayout(),
1599 mdconst::extract<ConstantInt>(MD->getOperand(0)));
1600}
1601
1603 if (PP) {
1604 auto GUID = MI.getOperand(0).getImm();
1605 auto Index = MI.getOperand(1).getImm();
1606 auto Type = MI.getOperand(2).getImm();
1607 auto Attr = MI.getOperand(3).getImm();
1608 DILocation *DebugLoc = MI.getDebugLoc();
1609 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1610 }
1611}
1612
1614 if (!MF.getTarget().Options.EmitStackSizeSection)
1615 return;
1616
1617 MCSection *StackSizeSection =
1619 if (!StackSizeSection)
1620 return;
1621
1622 const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1623 // Don't emit functions with dynamic stack allocations.
1624 if (FrameInfo.hasVarSizedObjects())
1625 return;
1626
1627 OutStreamer->pushSection();
1628 OutStreamer->switchSection(StackSizeSection);
1629
1630 const MCSymbol *FunctionSymbol = getFunctionBegin();
1631 uint64_t StackSize =
1632 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1633 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1634 OutStreamer->emitULEB128IntValue(StackSize);
1635
1636 OutStreamer->popSection();
1637}
1638
1640 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput;
1641
1642 // OutputFilename empty implies -fstack-usage is not passed.
1643 if (OutputFilename.empty())
1644 return;
1645
1646 const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1647 uint64_t StackSize =
1648 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1649
1650 if (StackUsageStream == nullptr) {
1651 std::error_code EC;
1652 StackUsageStream =
1653 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text);
1654 if (EC) {
1655 errs() << "Could not open file: " << EC.message();
1656 return;
1657 }
1658 }
1659
1660 if (const DISubprogram *DSP = MF.getFunction().getSubprogram())
1661 *StackUsageStream << DSP->getFilename() << ':' << DSP->getLine();
1662 else
1663 *StackUsageStream << MF.getFunction().getParent()->getName();
1664
1665 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t';
1666 if (FrameInfo.hasVarSizedObjects())
1667 *StackUsageStream << "dynamic\n";
1668 else
1669 *StackUsageStream << "static\n";
1670}
1671
1672/// Extracts a generalized numeric type identifier of a Function's type from
1673/// type metadata. Returns null if metadata cannot be found.
1676 F.getMetadata(LLVMContext::MD_type, Types);
1677 for (const auto &Type : Types) {
1678 if (Type->hasGeneralizedMDString()) {
1679 MDString *MDGeneralizedTypeId = cast<MDString>(Type->getOperand(1));
1680 uint64_t TypeIdVal = llvm::MD5Hash(MDGeneralizedTypeId->getString());
1681 IntegerType *Int64Ty = Type::getInt64Ty(F.getContext());
1682 return ConstantInt::get(Int64Ty, TypeIdVal);
1683 }
1684 }
1685 return nullptr;
1686}
1687
1688/// Emits .llvm.callgraph section.
1690 FunctionCallGraphInfo &FuncCGInfo) {
1691 if (!MF.getTarget().Options.EmitCallGraphSection)
1692 return;
1693
1694 // Switch to the call graph section for the function
1695 MCSection *FuncCGSection =
1697 assert(FuncCGSection && "null callgraph section");
1698 OutStreamer->pushSection();
1699 OutStreamer->switchSection(FuncCGSection);
1700
1701 const MCSymbol *FunctionSymbol = getFunctionBegin();
1702 const Function &F = MF.getFunction();
1703 // If this function has external linkage or has its address taken and
1704 // it is not a callback, then anything could call it.
1705 bool IsIndirectTarget =
1706 !F.hasLocalLinkage() || F.hasAddressTaken(nullptr,
1707 /*IgnoreCallbackUses=*/true,
1708 /*IgnoreAssumeLikeCalls=*/true,
1709 /*IgnoreLLVMUsed=*/false);
1710
1711 const auto &DirectCallees = FuncCGInfo.DirectCallees;
1712 const auto &IndirectCalleeTypeIDs = FuncCGInfo.IndirectCalleeTypeIDs;
1713
1714 using namespace callgraph;
1715 Flags CGFlags = Flags::None;
1716 if (IsIndirectTarget)
1717 CGFlags |= Flags::IsIndirectTarget;
1718 if (DirectCallees.size() > 0)
1719 CGFlags |= Flags::HasDirectCallees;
1720 if (IndirectCalleeTypeIDs.size() > 0)
1721 CGFlags |= Flags::HasIndirectCallees;
1722
1723 // Emit function's call graph information.
1724 // 1) CallGraphSectionFormatVersion
1725 // 2) Flags
1726 // a. LSB bit 0 is set to 1 if the function is a potential indirect
1727 // target.
1728 // b. LSB bit 1 is set to 1 if there are direct callees.
1729 // c. LSB bit 2 is set to 1 if there are indirect callees.
1730 // d. Rest of the 5 bits in Flags are reserved for any future use.
1731 // 3) Function entry PC.
1732 // 4) FunctionTypeID if the function is indirect target and its type id
1733 // is known, otherwise it is set to 0.
1734 // 5) Number of unique direct callees, if at least one exists.
1735 // 6) For each unique direct callee, the callee's PC.
1736 // 7) Number of unique indirect target type IDs, if at least one exists.
1737 // 8) Each unique indirect target type id.
1738 OutStreamer->emitInt8(CallGraphSectionFormatVersion::V_0);
1739 OutStreamer->emitInt8(static_cast<uint8_t>(CGFlags));
1740 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1741 const auto *TypeId = extractNumericCGTypeId(F);
1742 if (IsIndirectTarget && TypeId)
1743 OutStreamer->emitInt64(TypeId->getZExtValue());
1744 else
1745 OutStreamer->emitInt64(0);
1746
1747 if (DirectCallees.size() > 0) {
1748 OutStreamer->emitULEB128IntValue(DirectCallees.size());
1749 for (const auto &CalleeSymbol : DirectCallees)
1750 OutStreamer->emitSymbolValue(CalleeSymbol, TM.getProgramPointerSize());
1751 FuncCGInfo.DirectCallees.clear();
1752 }
1753 if (IndirectCalleeTypeIDs.size() > 0) {
1754 OutStreamer->emitULEB128IntValue(IndirectCalleeTypeIDs.size());
1755 for (const auto &CalleeTypeId : IndirectCalleeTypeIDs)
1756 OutStreamer->emitInt64(CalleeTypeId);
1757 FuncCGInfo.IndirectCalleeTypeIDs.clear();
1758 }
1759 // End of emitting call graph section contents.
1760 OutStreamer->popSection();
1761}
1762
1764 const MDNode &MD) {
1765 MCSymbol *S = MF.getContext().createTempSymbol("pcsection");
1766 OutStreamer->emitLabel(S);
1767 PCSectionsSymbols[&MD].emplace_back(S);
1768}
1769
1771 const Function &F = MF.getFunction();
1772 if (PCSectionsSymbols.empty() && !F.hasMetadata(LLVMContext::MD_pcsections))
1773 return;
1774
1775 const CodeModel::Model CM = MF.getTarget().getCodeModel();
1776 const unsigned RelativeRelocSize =
1778 : 4;
1779
1780 // Switch to PCSection, short-circuiting the common case where the current
1781 // section is still valid (assume most MD_pcsections contain just 1 section).
1782 auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable {
1783 if (Sec == Prev)
1784 return;
1785 MCSection *S = getObjFileLowering().getPCSection(Sec, MF.getSection());
1786 assert(S && "PC section is not initialized");
1787 OutStreamer->switchSection(S);
1788 Prev = Sec;
1789 };
1790 // Emit symbols into sections and data as specified in the pcsections MDNode.
1791 auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms,
1792 bool Deltas) {
1793 // Expect the first operand to be a section name. After that, a tuple of
1794 // constants may appear, which will simply be emitted into the current
1795 // section (the user of MD_pcsections decides the format of encoded data).
1796 assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string");
1797 bool ConstULEB128 = false;
1798 for (const MDOperand &MDO : MD.operands()) {
1799 if (auto *S = dyn_cast<MDString>(MDO)) {
1800 // Found string, start of new section!
1801 // Find options for this section "<section>!<opts>" - supported options:
1802 // C = Compress constant integers of size 2-8 bytes as ULEB128.
1803 const StringRef SecWithOpt = S->getString();
1804 const size_t OptStart = SecWithOpt.find('!'); // likely npos
1805 const StringRef Sec = SecWithOpt.substr(0, OptStart);
1806 const StringRef Opts = SecWithOpt.substr(OptStart); // likely empty
1807 ConstULEB128 = Opts.contains('C');
1808#ifndef NDEBUG
1809 for (char O : Opts)
1810 assert((O == '!' || O == 'C') && "Invalid !pcsections options");
1811#endif
1812 SwitchSection(Sec);
1813 const MCSymbol *Prev = Syms.front();
1814 for (const MCSymbol *Sym : Syms) {
1815 if (Sym == Prev || !Deltas) {
1816 // Use the entry itself as the base of the relative offset.
1817 MCSymbol *Base = MF.getContext().createTempSymbol("pcsection_base");
1818 OutStreamer->emitLabel(Base);
1819 // Emit relative relocation `addr - base`, which avoids a dynamic
1820 // relocation in the final binary. User will get the address with
1821 // `base + addr`.
1822 emitLabelDifference(Sym, Base, RelativeRelocSize);
1823 } else {
1824 // Emit delta between symbol and previous symbol.
1825 if (ConstULEB128)
1827 else
1828 emitLabelDifference(Sym, Prev, 4);
1829 }
1830 Prev = Sym;
1831 }
1832 } else {
1833 // Emit auxiliary data after PC.
1834 assert(isa<MDNode>(MDO) && "expecting either string or tuple");
1835 const auto *AuxMDs = cast<MDNode>(MDO);
1836 for (const MDOperand &AuxMDO : AuxMDs->operands()) {
1837 assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant");
1838 const Constant *C = cast<ConstantAsMetadata>(AuxMDO)->getValue();
1839 const DataLayout &DL = F.getDataLayout();
1840 const uint64_t Size = DL.getTypeStoreSize(C->getType());
1841
1842 if (auto *CI = dyn_cast<ConstantInt>(C);
1843 CI && ConstULEB128 && Size > 1 && Size <= 8) {
1844 emitULEB128(CI->getZExtValue());
1845 } else {
1847 }
1848 }
1849 }
1850 }
1851 };
1852
1853 OutStreamer->pushSection();
1854 // Emit PCs for function start and function size.
1855 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_pcsections))
1856 EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true);
1857 // Emit PCs for instructions collected.
1858 for (const auto &MS : PCSectionsSymbols)
1859 EmitForMD(*MS.first, MS.second, false);
1860 OutStreamer->popSection();
1861 PCSectionsSymbols.clear();
1862}
1863
1864/// Returns true if function begin and end labels should be emitted.
1865static bool needFuncLabels(const MachineFunction &MF, const AsmPrinter &Asm) {
1866 if (Asm.hasDebugInfo() || !MF.getLandingPads().empty() ||
1867 MF.hasEHFunclets() ||
1868 MF.getFunction().hasMetadata(LLVMContext::MD_pcsections))
1869 return true;
1870
1871 // We might emit an EH table that uses function begin and end labels even if
1872 // we don't have any landingpads.
1873 if (!MF.getFunction().hasPersonalityFn())
1874 return false;
1875 return !isNoOpWithoutInvoke(
1877}
1878
1879// Return the mnemonic of a MachineInstr if available, or the MachineInstr
1880// opcode name otherwise.
1882 const TargetInstrInfo *TII =
1883 MI.getParent()->getParent()->getSubtarget().getInstrInfo();
1884 MCInst MCI;
1885 MCI.setOpcode(MI.getOpcode());
1886 if (StringRef Name = Streamer.getMnemonic(MCI); !Name.empty())
1887 return Name;
1888 StringRef Name = TII->getName(MI.getOpcode());
1889 assert(!Name.empty() && "Missing mnemonic and name for opcode");
1890 return Name;
1891}
1892
1894 FunctionCallGraphInfo &FuncCGInfo,
1895 const MachineFunction::CallSiteInfoMap &CallSitesInfoMap,
1896 const MachineInstr &MI) {
1897 assert(MI.isCall() && "This method is meant for call instructions only.");
1898 const MachineOperand &CalleeOperand = MI.getOperand(0);
1899 if (CalleeOperand.isGlobal() || CalleeOperand.isSymbol()) {
1900 // Handle direct calls.
1901 MCSymbol *CalleeSymbol = nullptr;
1902 switch (CalleeOperand.getType()) {
1904 CalleeSymbol = getSymbol(CalleeOperand.getGlobal());
1905 break;
1907 CalleeSymbol = GetExternalSymbolSymbol(CalleeOperand.getSymbolName());
1908 break;
1909 default:
1911 "Expected to only handle direct call instructions here.");
1912 }
1913 FuncCGInfo.DirectCallees.insert(CalleeSymbol);
1914 return; // Early exit after handling the direct call instruction.
1915 }
1916 const auto &CallSiteInfo = CallSitesInfoMap.find(&MI);
1917 if (CallSiteInfo == CallSitesInfoMap.end())
1918 return;
1919 // Handle indirect callsite info.
1920 // Only indirect calls have type identifiers set.
1921 for (ConstantInt *CalleeTypeId : CallSiteInfo->second.CalleeTypeIds) {
1922 uint64_t CalleeTypeIdVal = CalleeTypeId->getZExtValue();
1923 FuncCGInfo.IndirectCalleeTypeIDs.insert(CalleeTypeIdVal);
1924 }
1925}
1926
1927/// EmitFunctionBody - This method emits the body and trailer for a
1928/// function.
1930 emitFunctionHeader();
1931
1932 // Emit target-specific gunk before the function body.
1934
1935 if (isVerbose()) {
1936 // Get MachineDominatorTree or compute it on the fly if it's unavailable
1938 MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr;
1939 if (!MDT) {
1940 OwnedMDT = std::make_unique<MachineDominatorTree>();
1941 OwnedMDT->recalculate(*MF);
1942 MDT = OwnedMDT.get();
1943 }
1944
1945 // Get MachineLoopInfo or compute it on the fly if it's unavailable
1947 MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr;
1948 if (!MLI) {
1949 OwnedMLI = std::make_unique<MachineLoopInfo>();
1950 OwnedMLI->analyze(*MDT);
1951 MLI = OwnedMLI.get();
1952 }
1953 }
1954
1955 // Print out code for the function.
1956 bool HasAnyRealCode = false;
1957 int NumInstsInFunction = 0;
1958 bool IsEHa = MMI->getModule()->getModuleFlag("eh-asynch");
1959
1960 const MCSubtargetInfo *STI = nullptr;
1961 if (this->MF)
1962 STI = &getSubtargetInfo();
1963 else
1964 STI = TM.getMCSubtargetInfo();
1965
1966 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1967 // Create a slot for the entry basic block section so that the section
1968 // order is preserved when iterating over MBBSectionRanges.
1969 if (!MF->empty())
1970 MBBSectionRanges[MF->front().getSectionID()] =
1972
1973 FunctionCallGraphInfo FuncCGInfo;
1974 const auto &CallSitesInfoMap = MF->getCallSitesInfo();
1975 for (auto &MBB : *MF) {
1976 // Print a label for the basic block.
1978 DenseMap<StringRef, unsigned> MnemonicCounts;
1979 for (auto &MI : MBB) {
1980 // Print the assembly for the instruction.
1981 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1982 !MI.isDebugInstr()) {
1983 HasAnyRealCode = true;
1984 }
1985
1986 // If there is a pre-instruction symbol, emit a label for it here.
1987 if (MCSymbol *S = MI.getPreInstrSymbol())
1988 OutStreamer->emitLabel(S);
1989
1990 if (MDNode *MD = MI.getPCSections())
1991 emitPCSectionsLabel(*MF, *MD);
1992
1993 for (auto &Handler : Handlers)
1994 Handler->beginInstruction(&MI);
1995
1996 if (isVerbose())
1997 emitComments(MI, STI, OutStreamer->getCommentOS());
1998
1999 switch (MI.getOpcode()) {
2000 case TargetOpcode::CFI_INSTRUCTION:
2002 break;
2003 case TargetOpcode::LOCAL_ESCAPE:
2005 break;
2006 case TargetOpcode::ANNOTATION_LABEL:
2007 case TargetOpcode::GC_LABEL:
2008 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
2009 break;
2010 case TargetOpcode::EH_LABEL:
2011 OutStreamer->AddComment("EH_LABEL");
2012 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
2013 // For AsynchEH, insert a Nop if followed by a trap inst
2014 // Or the exception won't be caught.
2015 // (see MCConstantExpr::create(1,..) in WinException.cpp)
2016 // Ignore SDiv/UDiv because a DIV with Const-0 divisor
2017 // must have being turned into an UndefValue.
2018 // Div with variable opnds won't be the first instruction in
2019 // an EH region as it must be led by at least a Load
2020 {
2021 auto MI2 = std::next(MI.getIterator());
2022 if (IsEHa && MI2 != MBB.end() &&
2023 (MI2->mayLoadOrStore() || MI2->mayRaiseFPException()))
2024 emitNops(1);
2025 }
2026 break;
2027 case TargetOpcode::INLINEASM:
2028 case TargetOpcode::INLINEASM_BR:
2029 emitInlineAsm(&MI);
2030 break;
2031 case TargetOpcode::DBG_VALUE:
2032 case TargetOpcode::DBG_VALUE_LIST:
2033 if (isVerbose()) {
2034 if (!emitDebugValueComment(&MI, *this))
2036 }
2037 break;
2038 case TargetOpcode::DBG_INSTR_REF:
2039 // This instruction reference will have been resolved to a machine
2040 // location, and a nearby DBG_VALUE created. We can safely ignore
2041 // the instruction reference.
2042 break;
2043 case TargetOpcode::DBG_PHI:
2044 // This instruction is only used to label a program point, it's purely
2045 // meta information.
2046 break;
2047 case TargetOpcode::DBG_LABEL:
2048 if (isVerbose()) {
2049 if (!emitDebugLabelComment(&MI, *this))
2051 }
2052 break;
2053 case TargetOpcode::IMPLICIT_DEF:
2054 if (isVerbose()) emitImplicitDef(&MI);
2055 break;
2056 case TargetOpcode::KILL:
2057 if (isVerbose()) emitKill(&MI, *this);
2058 break;
2059 case TargetOpcode::FAKE_USE:
2060 if (isVerbose())
2061 emitFakeUse(&MI, *this);
2062 break;
2063 case TargetOpcode::PSEUDO_PROBE:
2065 break;
2066 case TargetOpcode::ARITH_FENCE:
2067 if (isVerbose())
2068 OutStreamer->emitRawComment("ARITH_FENCE");
2069 break;
2070 case TargetOpcode::MEMBARRIER:
2071 OutStreamer->emitRawComment("MEMBARRIER");
2072 break;
2073 case TargetOpcode::JUMP_TABLE_DEBUG_INFO:
2074 // This instruction is only used to note jump table debug info, it's
2075 // purely meta information.
2076 break;
2077 case TargetOpcode::INIT_UNDEF:
2078 // This is only used to influence register allocation behavior, no
2079 // actual initialization is needed.
2080 break;
2081 default:
2083
2084 auto CountInstruction = [&](const MachineInstr &MI) {
2085 // Skip Meta instructions inside bundles.
2086 if (MI.isMetaInstruction())
2087 return;
2088 ++NumInstsInFunction;
2089 if (CanDoExtraAnalysis) {
2091 ++MnemonicCounts[Name];
2092 }
2093 };
2094 if (!MI.isBundle()) {
2095 CountInstruction(MI);
2096 break;
2097 }
2098 // Separately count all the instructions in a bundle.
2099 for (auto It = std::next(MI.getIterator());
2100 It != MBB.end() && It->isInsideBundle(); ++It) {
2101 CountInstruction(*It);
2102 }
2103 break;
2104 }
2105
2106 if (MI.isCall() && MF->getTarget().Options.BBAddrMap)
2108
2109 if (TM.Options.EmitCallGraphSection && MI.isCall())
2110 handleCallsiteForCallgraph(FuncCGInfo, CallSitesInfoMap, MI);
2111
2112 // If there is a post-instruction symbol, emit a label for it here.
2113 if (MCSymbol *S = MI.getPostInstrSymbol())
2114 OutStreamer->emitLabel(S);
2115
2116 for (auto &Handler : Handlers)
2117 Handler->endInstruction();
2118 }
2119
2120 // We must emit temporary symbol for the end of this basic block, if either
2121 // we have BBLabels enabled or if this basic blocks marks the end of a
2122 // section.
2123 if (MF->getTarget().Options.BBAddrMap ||
2124 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection()))
2125 OutStreamer->emitLabel(MBB.getEndSymbol());
2126
2127 if (MBB.isEndSection()) {
2128 // The size directive for the section containing the entry block is
2129 // handled separately by the function section.
2130 if (!MBB.sameSection(&MF->front())) {
2131 if (MAI->hasDotTypeDotSizeDirective()) {
2132 // Emit the size directive for the basic block section.
2133 const MCExpr *SizeExp = MCBinaryExpr::createSub(
2134 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
2135 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
2136 OutContext);
2137 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
2138 }
2139 assert(!MBBSectionRanges.contains(MBB.getSectionID()) &&
2140 "Overwrite section range");
2141 MBBSectionRanges[MBB.getSectionID()] =
2142 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
2143 }
2144 }
2146
2147 if (CanDoExtraAnalysis) {
2148 // Skip empty blocks.
2149 if (MBB.empty())
2150 continue;
2151
2153 MBB.begin()->getDebugLoc(), &MBB);
2154
2155 // Generate instruction mix remark. First, sort counts in descending order
2156 // by count and name.
2158 for (auto &KV : MnemonicCounts)
2159 MnemonicVec.emplace_back(KV.first, KV.second);
2160
2161 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
2162 const std::pair<StringRef, unsigned> &B) {
2163 if (A.second > B.second)
2164 return true;
2165 if (A.second == B.second)
2166 return StringRef(A.first) < StringRef(B.first);
2167 return false;
2168 });
2169 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
2170 for (auto &KV : MnemonicVec) {
2171 auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str();
2172 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
2173 }
2174 ORE->emit(R);
2175 }
2176 }
2177
2178 EmittedInsts += NumInstsInFunction;
2179 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
2180 MF->getFunction().getSubprogram(),
2181 &MF->front());
2182 R << ore::NV("NumInstructions", NumInstsInFunction)
2183 << " instructions in function";
2184 ORE->emit(R);
2185
2186 // If the function is empty and the object file uses .subsections_via_symbols,
2187 // then we need to emit *something* to the function body to prevent the
2188 // labels from collapsing together. Just emit a noop.
2189 // Similarly, don't emit empty functions on Windows either. It can lead to
2190 // duplicate entries (two functions with the same RVA) in the Guard CF Table
2191 // after linking, causing the kernel not to load the binary:
2192 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
2193 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
2194 const Triple &TT = TM.getTargetTriple();
2195 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
2196 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
2197 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
2198
2199 // Targets can opt-out of emitting the noop here by leaving the opcode
2200 // unspecified.
2201 if (Noop.getOpcode()) {
2202 OutStreamer->AddComment("avoids zero-length function");
2203 emitNops(1);
2204 }
2205 }
2206
2207 // Switch to the original section in case basic block sections was used.
2208 OutStreamer->switchSection(MF->getSection());
2209
2210 const Function &F = MF->getFunction();
2211 for (const auto &BB : F) {
2212 if (!BB.hasAddressTaken())
2213 continue;
2214 MCSymbol *Sym = GetBlockAddressSymbol(&BB);
2215 if (Sym->isDefined())
2216 continue;
2217 OutStreamer->AddComment("Address of block that was removed by CodeGen");
2218 OutStreamer->emitLabel(Sym);
2219 }
2220
2221 // Emit target-specific gunk after the function body.
2223
2224 // Even though wasm supports .type and .size in general, function symbols
2225 // are automatically sized.
2226 bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm();
2227
2228 // SPIR-V supports label instructions only inside a block, not after the
2229 // function body.
2230 if (TT.getObjectFormat() != Triple::SPIRV &&
2231 (EmitFunctionSize || needFuncLabels(*MF, *this))) {
2232 // Create a symbol for the end of function.
2233 CurrentFnEnd = createTempSymbol("func_end");
2234 OutStreamer->emitLabel(CurrentFnEnd);
2235 }
2236
2237 // If the target wants a .size directive for the size of the function, emit
2238 // it.
2239 if (EmitFunctionSize) {
2240 // We can get the size as difference between the function label and the
2241 // temp label.
2242 const MCExpr *SizeExp = MCBinaryExpr::createSub(
2243 MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
2245 OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
2247 OutStreamer->emitELFSize(CurrentFnBeginLocal, SizeExp);
2248 }
2249
2250 // Call endBasicBlockSection on the last block now, if it wasn't already
2251 // called.
2252 if (!MF->back().isEndSection()) {
2253 for (auto &Handler : Handlers)
2254 Handler->endBasicBlockSection(MF->back());
2255 for (auto &Handler : EHHandlers)
2256 Handler->endBasicBlockSection(MF->back());
2257 }
2258 for (auto &Handler : Handlers)
2259 Handler->markFunctionEnd();
2260 for (auto &Handler : EHHandlers)
2261 Handler->markFunctionEnd();
2262 // Update the end label of the entry block's section.
2263 MBBSectionRanges[MF->front().getSectionID()].EndLabel = CurrentFnEnd;
2264
2265 // Print out jump tables referenced by the function.
2267
2268 // Emit post-function debug and/or EH information.
2269 for (auto &Handler : Handlers)
2270 Handler->endFunction(MF);
2271 for (auto &Handler : EHHandlers)
2272 Handler->endFunction(MF);
2273
2274 // Emit section containing BB address offsets and their metadata, when
2275 // BB labels are requested for this function. Skip empty functions.
2276 if (HasAnyRealCode) {
2277 if (MF->getTarget().Options.BBAddrMap)
2279 else if (PgoAnalysisMapFeatures.getBits() != 0)
2280 MF->getContext().reportWarning(
2281 SMLoc(), "pgo-analysis-map is enabled for function " + MF->getName() +
2282 " but it does not have labels");
2283 }
2284
2285 // Emit sections containing instruction and function PCs.
2287
2288 // Emit section containing stack size metadata.
2290
2291 // Emit section containing call graph metadata.
2292 emitCallGraphSection(*MF, FuncCGInfo);
2293
2294 // Emit .su file containing function stack size information.
2296
2298
2299 if (isVerbose())
2300 OutStreamer->getCommentOS() << "-- End function\n";
2301
2302 OutStreamer->addBlankLine();
2303}
2304
2305/// Compute the number of Global Variables that uses a Constant.
2306static unsigned getNumGlobalVariableUses(const Constant *C,
2307 bool &HasNonGlobalUsers) {
2308 if (!C) {
2309 HasNonGlobalUsers = true;
2310 return 0;
2311 }
2312
2314 return 1;
2315
2316 unsigned NumUses = 0;
2317 for (const auto *CU : C->users())
2318 NumUses +=
2319 getNumGlobalVariableUses(dyn_cast<Constant>(CU), HasNonGlobalUsers);
2320
2321 return NumUses;
2322}
2323
2324/// Only consider global GOT equivalents if at least one user is a
2325/// cstexpr inside an initializer of another global variables. Also, don't
2326/// handle cstexpr inside instructions. During global variable emission,
2327/// candidates are skipped and are emitted later in case at least one cstexpr
2328/// isn't replaced by a PC relative GOT entry access.
2330 unsigned &NumGOTEquivUsers,
2331 bool &HasNonGlobalUsers) {
2332 // Global GOT equivalents are unnamed private globals with a constant
2333 // pointer initializer to another global symbol. They must point to a
2334 // GlobalVariable or Function, i.e., as GlobalValue.
2335 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
2336 !GV->isConstant() || !GV->isDiscardableIfUnused() ||
2338 return false;
2339
2340 // To be a got equivalent, at least one of its users need to be a constant
2341 // expression used by another global variable.
2342 for (const auto *U : GV->users())
2343 NumGOTEquivUsers +=
2344 getNumGlobalVariableUses(dyn_cast<Constant>(U), HasNonGlobalUsers);
2345
2346 return NumGOTEquivUsers > 0;
2347}
2348
2349/// Unnamed constant global variables solely contaning a pointer to
2350/// another globals variable is equivalent to a GOT table entry; it contains the
2351/// the address of another symbol. Optimize it and replace accesses to these
2352/// "GOT equivalents" by using the GOT entry for the final global instead.
2353/// Compute GOT equivalent candidates among all global variables to avoid
2354/// emitting them if possible later on, after it use is replaced by a GOT entry
2355/// access.
2357 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
2358 return;
2359
2360 for (const auto &G : M.globals()) {
2361 unsigned NumGOTEquivUsers = 0;
2362 bool HasNonGlobalUsers = false;
2363 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers, HasNonGlobalUsers))
2364 continue;
2365 // If non-global variables use it, we still need to emit it.
2366 // Add 1 here, then emit it in `emitGlobalGOTEquivs`.
2367 if (HasNonGlobalUsers)
2368 NumGOTEquivUsers += 1;
2369 const MCSymbol *GOTEquivSym = getSymbol(&G);
2370 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
2371 }
2372}
2373
2374/// Constant expressions using GOT equivalent globals may not be eligible
2375/// for PC relative GOT entry conversion, in such cases we need to emit such
2376/// globals we previously omitted in EmitGlobalVariable.
2378 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
2379 return;
2380
2382 for (auto &I : GlobalGOTEquivs) {
2383 const GlobalVariable *GV = I.second.first;
2384 unsigned Cnt = I.second.second;
2385 if (Cnt)
2386 FailedCandidates.push_back(GV);
2387 }
2388 GlobalGOTEquivs.clear();
2389
2390 for (const auto *GV : FailedCandidates)
2392}
2393
2395 MCSymbol *Name = getSymbol(&GA);
2396 bool IsFunction = GA.getValueType()->isFunctionTy();
2397 // Treat bitcasts of functions as functions also. This is important at least
2398 // on WebAssembly where object and function addresses can't alias each other.
2399 if (!IsFunction)
2400 IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts());
2401
2402 // AIX's assembly directive `.set` is not usable for aliasing purpose,
2403 // so AIX has to use the extra-label-at-definition strategy. At this
2404 // point, all the extra label is emitted, we just have to emit linkage for
2405 // those labels.
2406 if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
2407 // Linkage for alias of global variable has been emitted.
2409 return;
2410
2411 emitLinkage(&GA, Name);
2412 // If it's a function, also emit linkage for aliases of function entry
2413 // point.
2414 if (IsFunction)
2415 emitLinkage(&GA,
2416 getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM));
2417 return;
2418 }
2419
2420 if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective())
2421 OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
2422 else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage())
2423 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
2424 else
2425 assert(GA.hasLocalLinkage() && "Invalid alias linkage");
2426
2427 // Set the symbol type to function if the alias has a function type.
2428 // This affects codegen when the aliasee is not a function.
2429 if (IsFunction) {
2430 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
2431 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
2432 OutStreamer->beginCOFFSymbolDef(Name);
2433 OutStreamer->emitCOFFSymbolStorageClass(
2438 OutStreamer->endCOFFSymbolDef();
2439 }
2440 }
2441
2442 emitVisibility(Name, GA.getVisibility());
2443
2444 const MCExpr *Expr = lowerConstant(GA.getAliasee());
2445
2446 if (MAI->isMachO() && isa<MCBinaryExpr>(Expr))
2447 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
2448
2449 // Emit the directives as assignments aka .set:
2450 OutStreamer->emitAssignment(Name, Expr);
2451 MCSymbol *LocalAlias = getSymbolPreferLocal(GA);
2452 if (LocalAlias != Name)
2453 OutStreamer->emitAssignment(LocalAlias, Expr);
2454
2455 // If the aliasee does not correspond to a symbol in the output, i.e. the
2456 // alias is not of an object or the aliased object is private, then set the
2457 // size of the alias symbol from the type of the alias. We don't do this in
2458 // other situations as the alias and aliasee having differing types but same
2459 // size may be intentional.
2460 const GlobalObject *BaseObject = GA.getAliaseeObject();
2461 if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() &&
2462 (!BaseObject || BaseObject->hasPrivateLinkage())) {
2463 const DataLayout &DL = M.getDataLayout();
2464 uint64_t Size = DL.getTypeAllocSize(GA.getValueType());
2465 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
2466 }
2467}
2468
2469void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) {
2471 "IFunc is not supported on AIX.");
2472
2473 auto EmitLinkage = [&](MCSymbol *Sym) {
2475 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
2476 else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage())
2477 OutStreamer->emitSymbolAttribute(Sym, MCSA_WeakReference);
2478 else
2479 assert(GI.hasLocalLinkage() && "Invalid ifunc linkage");
2480 };
2481
2483 MCSymbol *Name = getSymbol(&GI);
2484 EmitLinkage(Name);
2485 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
2486 emitVisibility(Name, GI.getVisibility());
2487
2488 // Emit the directives as assignments aka .set:
2489 const MCExpr *Expr = lowerConstant(GI.getResolver());
2490 OutStreamer->emitAssignment(Name, Expr);
2491 MCSymbol *LocalAlias = getSymbolPreferLocal(GI);
2492 if (LocalAlias != Name)
2493 OutStreamer->emitAssignment(LocalAlias, Expr);
2494
2495 return;
2496 }
2497
2498 if (!TM.getTargetTriple().isOSBinFormatMachO() || !getIFuncMCSubtargetInfo())
2499 reportFatalUsageError("IFuncs are not supported on this platform");
2500
2501 // On Darwin platforms, emit a manually-constructed .symbol_resolver that
2502 // implements the symbol resolution duties of the IFunc.
2503 //
2504 // Normally, this would be handled by linker magic, but unfortunately there
2505 // are a few limitations in ld64 and ld-prime's implementation of
2506 // .symbol_resolver that mean we can't always use them:
2507 //
2508 // * resolvers cannot be the target of an alias
2509 // * resolvers cannot have private linkage
2510 // * resolvers cannot have linkonce linkage
2511 // * resolvers cannot appear in executables
2512 // * resolvers cannot appear in bundles
2513 //
2514 // This works around that by emitting a close approximation of what the
2515 // linker would have done.
2516
2517 MCSymbol *LazyPointer =
2518 GetExternalSymbolSymbol(GI.getName() + ".lazy_pointer");
2519 MCSymbol *StubHelper = GetExternalSymbolSymbol(GI.getName() + ".stub_helper");
2520
2521 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getDataSection());
2522
2523 const DataLayout &DL = M.getDataLayout();
2524 emitAlignment(Align(DL.getPointerSize()));
2525 OutStreamer->emitLabel(LazyPointer);
2526 emitVisibility(LazyPointer, GI.getVisibility());
2527 OutStreamer->emitValue(MCSymbolRefExpr::create(StubHelper, OutContext), 8);
2528
2529 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getTextSection());
2530
2531 const TargetSubtargetInfo *STI =
2532 TM.getSubtargetImpl(*GI.getResolverFunction());
2533 const TargetLowering *TLI = STI->getTargetLowering();
2534 Align TextAlign(TLI->getMinFunctionAlignment());
2535
2536 MCSymbol *Stub = getSymbol(&GI);
2537 EmitLinkage(Stub);
2538 OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo());
2539 OutStreamer->emitLabel(Stub);
2540 emitVisibility(Stub, GI.getVisibility());
2541 emitMachOIFuncStubBody(M, GI, LazyPointer);
2542
2543 OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo());
2544 OutStreamer->emitLabel(StubHelper);
2545 emitVisibility(StubHelper, GI.getVisibility());
2546 emitMachOIFuncStubHelperBody(M, GI, LazyPointer);
2547}
2548
2550 if (!RS.needsSection())
2551 return;
2552 if (!RS.getFilename())
2553 return;
2554
2555 MCSection *RemarksSection =
2556 OutContext.getObjectFileInfo()->getRemarksSection();
2557 if (!RemarksSection) {
2558 OutContext.reportWarning(SMLoc(), "Current object file format does not "
2559 "support remarks sections. Use the yaml "
2560 "remark format instead.");
2561 return;
2562 }
2563
2564 SmallString<128> Filename = *RS.getFilename();
2565 sys::fs::make_absolute(Filename);
2566 assert(!Filename.empty() && "The filename can't be empty.");
2567
2568 std::string Buf;
2569 raw_string_ostream OS(Buf);
2570
2571 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
2572 std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
2573 RemarkSerializer.metaSerializer(OS, Filename);
2574 MetaSerializer->emit();
2575
2576 // Switch to the remarks section.
2577 OutStreamer->switchSection(RemarksSection);
2578 OutStreamer->emitBinaryData(Buf);
2579}
2580
2582 const Constant *Initializer = G.getInitializer();
2583 return G.getParent()->getDataLayout().getTypeAllocSize(
2584 Initializer->getType());
2585}
2586
2588 // We used to do this in clang, but there are optimization passes that turn
2589 // non-constant globals into constants. So now, clang only tells us whether
2590 // it would *like* a global to be tagged, but we still make the decision here.
2591 //
2592 // For now, don't instrument constant data, as it'll be in .rodata anyway. It
2593 // may be worth instrumenting these in future to stop them from being used as
2594 // gadgets.
2595 if (G.getName().starts_with("llvm.") || G.isThreadLocal() || G.isConstant())
2596 return false;
2597
2598 // Globals can be placed implicitly or explicitly in sections. There's two
2599 // different types of globals that meet this criteria that cause problems:
2600 // 1. Function pointers that are going into various init arrays (either
2601 // explicitly through `__attribute__((section(<foo>)))` or implicitly
2602 // through `__attribute__((constructor)))`, such as ".(pre)init(_array)",
2603 // ".fini(_array)", ".ctors", and ".dtors". These function pointers end up
2604 // overaligned and overpadded, making iterating over them problematic, and
2605 // each function pointer is individually tagged (so the iteration over
2606 // them causes SIGSEGV/MTE[AS]ERR).
2607 // 2. Global variables put into an explicit section, where the section's name
2608 // is a valid C-style identifier. The linker emits a `__start_<name>` and
2609 // `__stop_<name>` symbol for the section, so that you can iterate over
2610 // globals within this section. Unfortunately, again, these globals would
2611 // be tagged and so iteration causes SIGSEGV/MTE[AS]ERR.
2612 //
2613 // To mitigate both these cases, and because specifying a section is rare
2614 // outside of these two cases, disable MTE protection for globals in any
2615 // section.
2616 if (G.hasSection())
2617 return false;
2618
2619 return globalSize(G) > 0;
2620}
2621
2623 uint64_t SizeInBytes = globalSize(*G);
2624
2625 uint64_t NewSize = alignTo(SizeInBytes, 16);
2626 if (SizeInBytes != NewSize) {
2627 // Pad the initializer out to the next multiple of 16 bytes.
2628 llvm::SmallVector<uint8_t> Init(NewSize - SizeInBytes, 0);
2629 Constant *Padding = ConstantDataArray::get(M.getContext(), Init);
2630 Constant *Initializer = G->getInitializer();
2631 Initializer = ConstantStruct::getAnon({Initializer, Padding});
2632 auto *NewGV = new GlobalVariable(
2633 M, Initializer->getType(), G->isConstant(), G->getLinkage(),
2634 Initializer, "", G, G->getThreadLocalMode(), G->getAddressSpace());
2635 NewGV->copyAttributesFrom(G);
2636 NewGV->setComdat(G->getComdat());
2637 NewGV->copyMetadata(G, 0);
2638
2639 NewGV->takeName(G);
2640 G->replaceAllUsesWith(NewGV);
2641 G->eraseFromParent();
2642 G = NewGV;
2643 }
2644
2645 if (G->getAlign().valueOrOne() < 16)
2646 G->setAlignment(Align(16));
2647
2648 // Ensure that tagged globals don't get merged by ICF - as they should have
2649 // different tags at runtime.
2650 G->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2651}
2652
2654 auto Meta = G.getSanitizerMetadata();
2655 Meta.Memtag = false;
2656 G.setSanitizerMetadata(Meta);
2657}
2658
2660 // Set the MachineFunction to nullptr so that we can catch attempted
2661 // accesses to MF specific features at the module level and so that
2662 // we can conditionalize accesses based on whether or not it is nullptr.
2663 MF = nullptr;
2664
2665 std::vector<GlobalVariable *> GlobalsToTag;
2666 for (GlobalVariable &G : M.globals()) {
2667 if (G.isDeclaration() || !G.isTagged())
2668 continue;
2669 if (!shouldTagGlobal(G)) {
2670 assert(G.hasSanitizerMetadata()); // because isTagged.
2672 assert(!G.isTagged());
2673 continue;
2674 }
2675 GlobalsToTag.push_back(&G);
2676 }
2677 for (GlobalVariable *G : GlobalsToTag)
2679
2680 // Gather all GOT equivalent globals in the module. We really need two
2681 // passes over the globals: one to compute and another to avoid its emission
2682 // in EmitGlobalVariable, otherwise we would not be able to handle cases
2683 // where the got equivalent shows up before its use.
2685
2686 // Emit global variables.
2687 for (const auto &G : M.globals())
2689
2690 // Emit remaining GOT equivalent globals.
2692
2694
2695 // Emit linkage(XCOFF) and visibility info for declarations
2696 for (const Function &F : M) {
2697 if (!F.isDeclarationForLinker())
2698 continue;
2699
2700 MCSymbol *Name = getSymbol(&F);
2701 // Function getSymbol gives us the function descriptor symbol for XCOFF.
2702
2703 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
2704 GlobalValue::VisibilityTypes V = F.getVisibility();
2706 continue;
2707
2708 emitVisibility(Name, V, false);
2709 continue;
2710 }
2711
2712 if (F.isIntrinsic())
2713 continue;
2714
2715 // Handle the XCOFF case.
2716 // Variable `Name` is the function descriptor symbol (see above). Get the
2717 // function entry point symbol.
2718 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
2719 // Emit linkage for the function entry point.
2720 emitLinkage(&F, FnEntryPointSym);
2721
2722 // If a function's address is taken, which means it may be called via a
2723 // function pointer, we need the function descriptor for it.
2724 if (F.hasAddressTaken())
2725 emitLinkage(&F, Name);
2726 }
2727
2728 // Emit the remarks section contents.
2729 // FIXME: Figure out when is the safest time to emit this section. It should
2730 // not come after debug info.
2731 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
2732 emitRemarksSection(*RS);
2733
2735
2736 if (TM.getTargetTriple().isOSBinFormatELF()) {
2737 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
2738
2739 // Output stubs for external and common global variables.
2741 if (!Stubs.empty()) {
2742 OutStreamer->switchSection(TLOF.getDataSection());
2743 const DataLayout &DL = M.getDataLayout();
2744
2745 emitAlignment(Align(DL.getPointerSize()));
2746 for (const auto &Stub : Stubs) {
2747 OutStreamer->emitLabel(Stub.first);
2748 OutStreamer->emitSymbolValue(Stub.second.getPointer(),
2749 DL.getPointerSize());
2750 }
2751 }
2752 }
2753
2754 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
2755 MachineModuleInfoCOFF &MMICOFF =
2756 MMI->getObjFileInfo<MachineModuleInfoCOFF>();
2757
2758 // Output stubs for external and common global variables.
2760 if (!Stubs.empty()) {
2761 const DataLayout &DL = M.getDataLayout();
2762
2763 for (const auto &Stub : Stubs) {
2765 SectionName += Stub.first->getName();
2766 OutStreamer->switchSection(OutContext.getCOFFSection(
2770 Stub.first->getName(), COFF::IMAGE_COMDAT_SELECT_ANY));
2771 emitAlignment(Align(DL.getPointerSize()));
2772 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
2773 OutStreamer->emitLabel(Stub.first);
2774 OutStreamer->emitSymbolValue(Stub.second.getPointer(),
2775 DL.getPointerSize());
2776 }
2777 }
2778 }
2779
2780 // This needs to happen before emitting debug information since that can end
2781 // arbitrary sections.
2782 if (auto *TS = OutStreamer->getTargetStreamer())
2783 TS->emitConstantPools();
2784
2785 // Emit Stack maps before any debug info. Mach-O requires that no data or
2786 // text sections come after debug info has been emitted. This matters for
2787 // stack maps as they are arbitrary data, and may even have a custom format
2788 // through user plugins.
2789 emitStackMaps();
2790
2791 // Print aliases in topological order, that is, for each alias a = b,
2792 // b must be printed before a.
2793 // This is because on some targets (e.g. PowerPC) linker expects aliases in
2794 // such an order to generate correct TOC information.
2797 for (const auto &Alias : M.aliases()) {
2798 if (Alias.hasAvailableExternallyLinkage())
2799 continue;
2800 for (const GlobalAlias *Cur = &Alias; Cur;
2801 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
2802 if (!AliasVisited.insert(Cur).second)
2803 break;
2804 AliasStack.push_back(Cur);
2805 }
2806 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
2807 emitGlobalAlias(M, *AncestorAlias);
2808 AliasStack.clear();
2809 }
2810
2811 // IFuncs must come before deubginfo in case the backend decides to emit them
2812 // as actual functions, since on Mach-O targets, we cannot create regular
2813 // sections after DWARF.
2814 for (const auto &IFunc : M.ifuncs())
2815 emitGlobalIFunc(M, IFunc);
2816
2817 // Finalize debug and EH information.
2818 for (auto &Handler : Handlers)
2819 Handler->endModule();
2820 for (auto &Handler : EHHandlers)
2821 Handler->endModule();
2822
2823 // This deletes all the ephemeral handlers that AsmPrinter added, while
2824 // keeping all the user-added handlers alive until the AsmPrinter is
2825 // destroyed.
2826 EHHandlers.clear();
2827 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
2828 DD = nullptr;
2829
2830 // If the target wants to know about weak references, print them all.
2831 if (MAI->getWeakRefDirective()) {
2832 // FIXME: This is not lazy, it would be nice to only print weak references
2833 // to stuff that is actually used. Note that doing so would require targets
2834 // to notice uses in operands (due to constant exprs etc). This should
2835 // happen with the MC stuff eventually.
2836
2837 // Print out module-level global objects here.
2838 for (const auto &GO : M.global_objects()) {
2839 if (!GO.hasExternalWeakLinkage())
2840 continue;
2841 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
2842 }
2844 auto SymbolName = "swift_async_extendedFramePointerFlags";
2845 auto Global = M.getGlobalVariable(SymbolName);
2846 if (!Global) {
2847 auto PtrTy = PointerType::getUnqual(M.getContext());
2848 Global = new GlobalVariable(M, PtrTy, false,
2850 SymbolName);
2851 OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference);
2852 }
2853 }
2854 }
2855
2857 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
2858 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
2859 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(**--I))
2860 MP->finishAssembly(M, *MI, *this);
2861
2862 // Emit llvm.ident metadata in an '.ident' directive.
2863 emitModuleIdents(M);
2864
2865 // Emit bytes for llvm.commandline metadata.
2866 // The command line metadata is emitted earlier on XCOFF.
2867 if (!TM.getTargetTriple().isOSBinFormatXCOFF())
2868 emitModuleCommandLines(M);
2869
2870 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
2871 // split-stack is used.
2872 if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) {
2873 OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack",
2874 ELF::SHT_PROGBITS, 0));
2875 if (HasNoSplitStack)
2876 OutStreamer->switchSection(OutContext.getELFSection(
2877 ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
2878 }
2879
2880 // If we don't have any trampolines, then we don't require stack memory
2881 // to be executable. Some targets have a directive to declare this.
2882 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
2883 bool HasTrampolineUses =
2884 InitTrampolineIntrinsic && !InitTrampolineIntrinsic->use_empty();
2885 MCSection *S = MAI->getStackSection(OutContext, /*Exec=*/HasTrampolineUses);
2886 if (S)
2887 OutStreamer->switchSection(S);
2888
2889 if (TM.Options.EmitAddrsig) {
2890 // Emit address-significance attributes for all globals.
2891 OutStreamer->emitAddrsig();
2892 for (const GlobalValue &GV : M.global_values()) {
2893 if (!GV.use_empty() && !GV.isThreadLocal() &&
2894 !GV.hasDLLImportStorageClass() &&
2895 !GV.getName().starts_with("llvm.") &&
2896 !GV.hasAtLeastLocalUnnamedAddr())
2897 OutStreamer->emitAddrsigSym(getSymbol(&GV));
2898 }
2899 }
2900
2901 // Emit symbol partition specifications (ELF only).
2902 if (TM.getTargetTriple().isOSBinFormatELF()) {
2903 unsigned UniqueID = 0;
2904 for (const GlobalValue &GV : M.global_values()) {
2905 if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
2906 GV.getVisibility() != GlobalValue::DefaultVisibility)
2907 continue;
2908
2909 OutStreamer->switchSection(
2910 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
2911 "", false, ++UniqueID, nullptr));
2912 OutStreamer->emitBytes(GV.getPartition());
2913 OutStreamer->emitZeros(1);
2914 OutStreamer->emitValue(
2916 MAI->getCodePointerSize());
2917 }
2918 }
2919
2920 // Allow the target to emit any magic that it wants at the end of the file,
2921 // after everything else has gone out.
2923
2924 MMI = nullptr;
2925 AddrLabelSymbols = nullptr;
2926
2927 OutStreamer->finish();
2928 OutStreamer->reset();
2929 OwnedMLI.reset();
2930 OwnedMDT.reset();
2931
2932 return false;
2933}
2934
2936 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionID());
2937 if (Res.second)
2938 Res.first->second = createTempSymbol("exception");
2939 return Res.first->second;
2940}
2941
2943 MCContext &Ctx = MF->getContext();
2944 MCSymbol *Sym = Ctx.createTempSymbol("BB" + Twine(MF->getFunctionNumber()) +
2945 "_" + Twine(MBB.getNumber()) + "_CS");
2946 CurrentFnCallsiteEndSymbols[&MBB].push_back(Sym);
2947 return Sym;
2948}
2949
2951 this->MF = &MF;
2952 const Function &F = MF.getFunction();
2953
2954 // Record that there are split-stack functions, so we will emit a special
2955 // section to tell the linker.
2956 if (MF.shouldSplitStack()) {
2957 HasSplitStack = true;
2958
2959 if (!MF.getFrameInfo().needsSplitStackProlog())
2960 HasNoSplitStack = true;
2961 } else
2962 HasNoSplitStack = true;
2963
2964 // Get the function symbol.
2965 if (!MAI->isAIX()) {
2966 CurrentFnSym = getSymbol(&MF.getFunction());
2967 } else {
2968 assert(TM.getTargetTriple().isOSAIX() &&
2969 "Only AIX uses the function descriptor hooks.");
2970 // AIX is unique here in that the name of the symbol emitted for the
2971 // function body does not have the same name as the source function's
2972 // C-linkage name.
2973 assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
2974 " initalized first.");
2975
2976 // Get the function entry point symbol.
2978 }
2979
2981 CurrentFnBegin = nullptr;
2982 CurrentFnBeginLocal = nullptr;
2983 CurrentSectionBeginSym = nullptr;
2985 MBBSectionRanges.clear();
2986 MBBSectionExceptionSyms.clear();
2987 bool NeedsLocalForSize = MAI->needsLocalForSize();
2988 if (F.hasFnAttribute("patchable-function-entry") ||
2989 F.hasFnAttribute("function-instrument") ||
2990 F.hasFnAttribute("xray-instruction-threshold") ||
2991 needFuncLabels(MF, *this) || NeedsLocalForSize ||
2992 MF.getTarget().Options.EmitStackSizeSection ||
2993 MF.getTarget().Options.EmitCallGraphSection ||
2994 MF.getTarget().Options.BBAddrMap) {
2995 CurrentFnBegin = createTempSymbol("func_begin");
2996 if (NeedsLocalForSize)
2998 }
2999
3001}
3002
3003namespace {
3004
3005// Keep track the alignment, constpool entries per Section.
3006 struct SectionCPs {
3007 MCSection *S;
3008 Align Alignment;
3010
3011 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
3012 };
3013
3014} // end anonymous namespace
3015
3017 if (TM.Options.EnableStaticDataPartitioning && C && SDPI && PSI)
3018 return SDPI->getConstantSectionPrefix(C, PSI);
3019
3020 return "";
3021}
3022
3023/// EmitConstantPool - Print to the current output stream assembly
3024/// representations of the constants in the constant pool MCP. This is
3025/// used to print out constants which have been "spilled to memory" by
3026/// the code generator.
3028 const MachineConstantPool *MCP = MF->getConstantPool();
3029 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
3030 if (CP.empty()) return;
3031
3032 // Calculate sections for constant pool entries. We collect entries to go into
3033 // the same section together to reduce amount of section switch statements.
3034 SmallVector<SectionCPs, 4> CPSections;
3035 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
3036 const MachineConstantPoolEntry &CPE = CP[i];
3037 Align Alignment = CPE.getAlign();
3038
3040
3041 const Constant *C = nullptr;
3042 if (!CPE.isMachineConstantPoolEntry())
3043 C = CPE.Val.ConstVal;
3044
3046 getDataLayout(), Kind, C, Alignment, getConstantSectionSuffix(C));
3047
3048 // The number of sections are small, just do a linear search from the
3049 // last section to the first.
3050 bool Found = false;
3051 unsigned SecIdx = CPSections.size();
3052 while (SecIdx != 0) {
3053 if (CPSections[--SecIdx].S == S) {
3054 Found = true;
3055 break;
3056 }
3057 }
3058 if (!Found) {
3059 SecIdx = CPSections.size();
3060 CPSections.push_back(SectionCPs(S, Alignment));
3061 }
3062
3063 if (Alignment > CPSections[SecIdx].Alignment)
3064 CPSections[SecIdx].Alignment = Alignment;
3065 CPSections[SecIdx].CPEs.push_back(i);
3066 }
3067
3068 // Now print stuff into the calculated sections.
3069 const MCSection *CurSection = nullptr;
3070 unsigned Offset = 0;
3071 for (const SectionCPs &CPSection : CPSections) {
3072 for (unsigned CPI : CPSection.CPEs) {
3073 MCSymbol *Sym = GetCPISymbol(CPI);
3074 if (!Sym->isUndefined())
3075 continue;
3076
3077 if (CurSection != CPSection.S) {
3078 OutStreamer->switchSection(CPSection.S);
3079 emitAlignment(Align(CPSection.Alignment));
3080 CurSection = CPSection.S;
3081 Offset = 0;
3082 }
3083
3084 MachineConstantPoolEntry CPE = CP[CPI];
3085
3086 // Emit inter-object padding for alignment.
3087 unsigned NewOffset = alignTo(Offset, CPE.getAlign());
3088 OutStreamer->emitZeros(NewOffset - Offset);
3089
3090 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
3091
3092 OutStreamer->emitLabel(Sym);
3095 else
3097 }
3098 }
3099}
3100
3101// Print assembly representations of the jump tables used by the current
3102// function.
3104 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
3105 if (!MJTI) return;
3106
3107 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
3108 if (JT.empty()) return;
3109
3110 if (!TM.Options.EnableStaticDataPartitioning) {
3111 emitJumpTableImpl(*MJTI, llvm::to_vector(llvm::seq<unsigned>(JT.size())));
3112 return;
3113 }
3114
3115 SmallVector<unsigned> HotJumpTableIndices, ColdJumpTableIndices;
3116 // When static data partitioning is enabled, collect jump table entries that
3117 // go into the same section together to reduce the amount of section switch
3118 // statements.
3119 for (unsigned JTI = 0, JTSize = JT.size(); JTI < JTSize; ++JTI) {
3120 if (JT[JTI].Hotness == MachineFunctionDataHotness::Cold) {
3121 ColdJumpTableIndices.push_back(JTI);
3122 } else {
3123 HotJumpTableIndices.push_back(JTI);
3124 }
3125 }
3126
3127 emitJumpTableImpl(*MJTI, HotJumpTableIndices);
3128 emitJumpTableImpl(*MJTI, ColdJumpTableIndices);
3129}
3130
3131void AsmPrinter::emitJumpTableImpl(const MachineJumpTableInfo &MJTI,
3132 ArrayRef<unsigned> JumpTableIndices) {
3134 JumpTableIndices.empty())
3135 return;
3136
3138 const Function &F = MF->getFunction();
3139 const std::vector<MachineJumpTableEntry> &JT = MJTI.getJumpTables();
3140 MCSection *JumpTableSection = nullptr;
3141
3142 const bool UseLabelDifference =
3145 // Pick the directive to use to print the jump table entries, and switch to
3146 // the appropriate section.
3147 const bool JTInDiffSection =
3148 !TLOF.shouldPutJumpTableInFunctionSection(UseLabelDifference, F);
3149 if (JTInDiffSection) {
3151 JumpTableSection =
3152 TLOF.getSectionForJumpTable(F, TM, &JT[JumpTableIndices.front()]);
3153 } else {
3154 JumpTableSection = TLOF.getSectionForJumpTable(F, TM);
3155 }
3156 OutStreamer->switchSection(JumpTableSection);
3157 }
3158
3159 const DataLayout &DL = MF->getDataLayout();
3161
3162 // Jump tables in code sections are marked with a data_region directive
3163 // where that's supported.
3164 if (!JTInDiffSection)
3165 OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
3166
3167 for (const unsigned JumpTableIndex : JumpTableIndices) {
3168 ArrayRef<MachineBasicBlock *> JTBBs = JT[JumpTableIndex].MBBs;
3169
3170 // If this jump table was deleted, ignore it.
3171 if (JTBBs.empty())
3172 continue;
3173
3174 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
3175 /// emit a .set directive for each unique entry.
3177 MAI->doesSetDirectiveSuppressReloc()) {
3178 SmallPtrSet<const MachineBasicBlock *, 16> EmittedSets;
3179 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
3180 const MCExpr *Base =
3181 TLI->getPICJumpTableRelocBaseExpr(MF, JumpTableIndex, OutContext);
3182 for (const MachineBasicBlock *MBB : JTBBs) {
3183 if (!EmittedSets.insert(MBB).second)
3184 continue;
3185
3186 // .set LJTSet, LBB32-base
3187 const MCExpr *LHS =
3189 OutStreamer->emitAssignment(
3190 GetJTSetSymbol(JumpTableIndex, MBB->getNumber()),
3192 }
3193 }
3194
3195 // On some targets (e.g. Darwin) we want to emit two consecutive labels
3196 // before each jump table. The first label is never referenced, but tells
3197 // the assembler and linker the extents of the jump table object. The
3198 // second label is actually referenced by the code.
3199 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
3200 // FIXME: This doesn't have to have any specific name, just any randomly
3201 // named and numbered local label started with 'l' would work. Simplify
3202 // GetJTISymbol.
3203 OutStreamer->emitLabel(GetJTISymbol(JumpTableIndex, true));
3204
3205 MCSymbol *JTISymbol = GetJTISymbol(JumpTableIndex);
3206 OutStreamer->emitLabel(JTISymbol);
3207
3208 // Defer MCAssembler based constant folding due to a performance issue. The
3209 // label differences will be evaluated at write time.
3210 for (const MachineBasicBlock *MBB : JTBBs)
3211 emitJumpTableEntry(MJTI, MBB, JumpTableIndex);
3212 }
3213
3215 emitJumpTableSizesSection(MJTI, MF->getFunction());
3216
3217 if (!JTInDiffSection)
3218 OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
3219}
3220
3221void AsmPrinter::emitJumpTableSizesSection(const MachineJumpTableInfo &MJTI,
3222 const Function &F) const {
3223 const std::vector<MachineJumpTableEntry> &JT = MJTI.getJumpTables();
3224
3225 if (JT.empty())
3226 return;
3227
3228 StringRef GroupName = F.hasComdat() ? F.getComdat()->getName() : "";
3229 MCSection *JumpTableSizesSection = nullptr;
3230 StringRef sectionName = ".llvm_jump_table_sizes";
3231
3232 bool isElf = TM.getTargetTriple().isOSBinFormatELF();
3233 bool isCoff = TM.getTargetTriple().isOSBinFormatCOFF();
3234
3235 if (!isCoff && !isElf)
3236 return;
3237
3238 if (isElf) {
3239 auto *LinkedToSym = static_cast<MCSymbolELF *>(CurrentFnSym);
3240 int Flags = F.hasComdat() ? static_cast<int>(ELF::SHF_GROUP) : 0;
3241
3242 JumpTableSizesSection = OutContext.getELFSection(
3243 sectionName, ELF::SHT_LLVM_JT_SIZES, Flags, 0, GroupName, F.hasComdat(),
3244 MCSection::NonUniqueID, LinkedToSym);
3245 } else if (isCoff) {
3246 if (F.hasComdat()) {
3247 JumpTableSizesSection = OutContext.getCOFFSection(
3248 sectionName,
3251 F.getComdat()->getName(), COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE);
3252 } else {
3253 JumpTableSizesSection = OutContext.getCOFFSection(
3257 }
3258 }
3259
3260 OutStreamer->switchSection(JumpTableSizesSection);
3261
3262 for (unsigned JTI = 0, E = JT.size(); JTI != E; ++JTI) {
3263 const std::vector<MachineBasicBlock *> &JTBBs = JT[JTI].MBBs;
3264 OutStreamer->emitSymbolValue(GetJTISymbol(JTI), TM.getProgramPointerSize());
3265 OutStreamer->emitIntValue(JTBBs.size(), TM.getProgramPointerSize());
3266 }
3267}
3268
3269/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
3270/// current stream.
3272 const MachineBasicBlock *MBB,
3273 unsigned UID) const {
3274 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
3275 const MCExpr *Value = nullptr;
3276 switch (MJTI.getEntryKind()) {
3278 llvm_unreachable("Cannot emit EK_Inline jump table entry");
3281 llvm_unreachable("MIPS specific");
3283 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
3284 &MJTI, MBB, UID, OutContext);
3285 break;
3287 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
3288 // .word LBB123
3290 break;
3291
3294 // Each entry is the address of the block minus the address of the jump
3295 // table. This is used for PIC jump tables where gprel32 is not supported.
3296 // e.g.:
3297 // .word LBB123 - LJTI1_2
3298 // If the .set directive avoids relocations, this is emitted as:
3299 // .set L4_5_set_123, LBB123 - LJTI1_2
3300 // .word L4_5_set_123
3302 MAI->doesSetDirectiveSuppressReloc()) {
3303 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
3304 OutContext);
3305 break;
3306 }
3308 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
3311 break;
3312 }
3313 }
3314
3315 assert(Value && "Unknown entry kind!");
3316
3317 unsigned EntrySize = MJTI.getEntrySize(getDataLayout());
3318 OutStreamer->emitValue(Value, EntrySize);
3319}
3320
3321/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
3322/// special global used by LLVM. If so, emit it and return true, otherwise
3323/// do nothing and return false.
3325 if (GV->getName() == "llvm.used") {
3326 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
3327 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
3328 return true;
3329 }
3330
3331 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
3332 if (GV->getSection() == "llvm.metadata" ||
3334 return true;
3335
3336 if (GV->getName() == "llvm.arm64ec.symbolmap") {
3337 // For ARM64EC, print the table that maps between symbols and the
3338 // corresponding thunks to translate between x64 and AArch64 code.
3339 // This table is generated by AArch64Arm64ECCallLowering.
3340 OutStreamer->switchSection(
3341 OutContext.getCOFFSection(".hybmp$x", COFF::IMAGE_SCN_LNK_INFO));
3342 auto *Arr = cast<ConstantArray>(GV->getInitializer());
3343 for (auto &U : Arr->operands()) {
3344 auto *C = cast<Constant>(U);
3345 auto *Src = cast<GlobalValue>(C->getOperand(0)->stripPointerCasts());
3346 auto *Dst = cast<GlobalValue>(C->getOperand(1)->stripPointerCasts());
3347 int Kind = cast<ConstantInt>(C->getOperand(2))->getZExtValue();
3348
3349 if (Src->hasDLLImportStorageClass()) {
3350 // For now, we assume dllimport functions aren't directly called.
3351 // (We might change this later to match MSVC.)
3352 OutStreamer->emitCOFFSymbolIndex(
3353 OutContext.getOrCreateSymbol("__imp_" + Src->getName()));
3354 OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst));
3355 OutStreamer->emitInt32(Kind);
3356 } else {
3357 // FIXME: For non-dllimport functions, MSVC emits the same entry
3358 // twice, for reasons I don't understand. I have to assume the linker
3359 // ignores the redundant entry; there aren't any reasonable semantics
3360 // to attach to it.
3361 OutStreamer->emitCOFFSymbolIndex(getSymbol(Src));
3362 OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst));
3363 OutStreamer->emitInt32(Kind);
3364 }
3365 }
3366 return true;
3367 }
3368
3369 if (!GV->hasAppendingLinkage()) return false;
3370
3371 assert(GV->hasInitializer() && "Not a special LLVM global!");
3372
3373 if (GV->getName() == "llvm.global_ctors") {
3375 /* isCtor */ true);
3376
3377 return true;
3378 }
3379
3380 if (GV->getName() == "llvm.global_dtors") {
3382 /* isCtor */ false);
3383
3384 return true;
3385 }
3386
3387 GV->getContext().emitError(
3388 "unknown special variable with appending linkage: " +
3389 GV->getNameOrAsOperand());
3390 return true;
3391}
3392
3393/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
3394/// global in the specified llvm.used list.
3395void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
3396 // Should be an array of 'i8*'.
3397 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
3398 const GlobalValue *GV =
3400 if (GV)
3401 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
3402 }
3403}
3404
3406 const Constant *List,
3407 SmallVector<Structor, 8> &Structors) {
3408 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is
3409 // the init priority.
3411 return;
3412
3413 // Gather the structors in a form that's convenient for sorting by priority.
3414 for (Value *O : cast<ConstantArray>(List)->operands()) {
3415 auto *CS = cast<ConstantStruct>(O);
3416 if (CS->getOperand(1)->isNullValue())
3417 break; // Found a null terminator, skip the rest.
3418 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
3419 if (!Priority)
3420 continue; // Malformed.
3421 Structors.push_back(Structor());
3422 Structor &S = Structors.back();
3423 S.Priority = Priority->getLimitedValue(65535);
3424 S.Func = CS->getOperand(1);
3425 if (!CS->getOperand(2)->isNullValue()) {
3426 if (TM.getTargetTriple().isOSAIX()) {
3427 CS->getContext().emitError(
3428 "associated data of XXStructor list is not yet supported on AIX");
3429 }
3430
3431 S.ComdatKey =
3432 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
3433 }
3434 }
3435
3436 // Emit the function pointers in the target-specific order
3437 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
3438 return L.Priority < R.Priority;
3439 });
3440}
3441
3442/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
3443/// priority.
3445 bool IsCtor) {
3446 SmallVector<Structor, 8> Structors;
3447 preprocessXXStructorList(DL, List, Structors);
3448 if (Structors.empty())
3449 return;
3450
3451 // Emit the structors in reverse order if we are using the .ctor/.dtor
3452 // initialization scheme.
3453 if (!TM.Options.UseInitArray)
3454 std::reverse(Structors.begin(), Structors.end());
3455
3456 const Align Align = DL.getPointerPrefAlignment();
3457 for (Structor &S : Structors) {
3459 const MCSymbol *KeySym = nullptr;
3460 if (GlobalValue *GV = S.ComdatKey) {
3461 if (GV->isDeclarationForLinker())
3462 // If the associated variable is not defined in this module
3463 // (it might be available_externally, or have been an
3464 // available_externally definition that was dropped by the
3465 // EliminateAvailableExternally pass), some other TU
3466 // will provide its dynamic initializer.
3467 continue;
3468
3469 KeySym = getSymbol(GV);
3470 }
3471
3472 MCSection *OutputSection =
3473 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
3474 : Obj.getStaticDtorSection(S.Priority, KeySym));
3475 OutStreamer->switchSection(OutputSection);
3476 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
3478 emitXXStructor(DL, S.Func);
3479 }
3480}
3481
3482void AsmPrinter::emitModuleIdents(Module &M) {
3483 if (!MAI->hasIdentDirective())
3484 return;
3485
3486 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
3487 for (const MDNode *N : NMD->operands()) {
3488 assert(N->getNumOperands() == 1 &&
3489 "llvm.ident metadata entry can have only one operand");
3490 const MDString *S = cast<MDString>(N->getOperand(0));
3491 OutStreamer->emitIdent(S->getString());
3492 }
3493 }
3494}
3495
3496void AsmPrinter::emitModuleCommandLines(Module &M) {
3497 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
3498 if (!CommandLine)
3499 return;
3500
3501 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
3502 if (!NMD || !NMD->getNumOperands())
3503 return;
3504
3505 OutStreamer->pushSection();
3506 OutStreamer->switchSection(CommandLine);
3507 OutStreamer->emitZeros(1);
3508 for (const MDNode *N : NMD->operands()) {
3509 assert(N->getNumOperands() == 1 &&
3510 "llvm.commandline metadata entry can have only one operand");
3511 const MDString *S = cast<MDString>(N->getOperand(0));
3512 OutStreamer->emitBytes(S->getString());
3513 OutStreamer->emitZeros(1);
3514 }
3515 OutStreamer->popSection();
3516}
3517
3518//===--------------------------------------------------------------------===//
3519// Emission and print routines
3520//
3521
3522/// Emit a byte directive and value.
3523///
3524void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
3525
3526/// Emit a short directive and value.
3527void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
3528
3529/// Emit a long directive and value.
3530void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
3531
3532/// EmitSLEB128 - emit the specified signed leb128 value.
3533void AsmPrinter::emitSLEB128(int64_t Value, const char *Desc) const {
3534 if (isVerbose() && Desc)
3535 OutStreamer->AddComment(Desc);
3536
3537 OutStreamer->emitSLEB128IntValue(Value);
3538}
3539
3541 unsigned PadTo) const {
3542 if (isVerbose() && Desc)
3543 OutStreamer->AddComment(Desc);
3544
3545 OutStreamer->emitULEB128IntValue(Value, PadTo);
3546}
3547
3548/// Emit a long long directive and value.
3550 OutStreamer->emitInt64(Value);
3551}
3552
3553/// Emit something like ".long Hi-Lo" where the size in bytes of the directive
3554/// is specified by Size and Hi/Lo specify the labels. This implicitly uses
3555/// .set if it avoids relocations.
3557 unsigned Size) const {
3558 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
3559}
3560
3561/// Emit something like ".uleb128 Hi-Lo".
3563 const MCSymbol *Lo) const {
3564 OutStreamer->emitAbsoluteSymbolDiffAsULEB128(Hi, Lo);
3565}
3566
3567/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
3568/// where the size in bytes of the directive is specified by Size and Label
3569/// specifies the label. This implicitly uses .set if it is available.
3571 unsigned Size,
3572 bool IsSectionRelative) const {
3573 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
3574 OutStreamer->emitCOFFSecRel32(Label, Offset);
3575 if (Size > 4)
3576 OutStreamer->emitZeros(Size - 4);
3577 return;
3578 }
3579
3580 // Emit Label+Offset (or just Label if Offset is zero)
3581 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
3582 if (Offset)
3585
3586 OutStreamer->emitValue(Expr, Size);
3587}
3588
3589//===----------------------------------------------------------------------===//
3590
3591// EmitAlignment - Emit an alignment directive to the specified power of
3592// two boundary. If a global value is specified, and if that global has
3593// an explicit alignment requested, it will override the alignment request
3594// if required for correctness.
3596 unsigned MaxBytesToEmit) const {
3597 if (GV)
3598 Alignment = getGVAlignment(GV, GV->getDataLayout(), Alignment);
3599
3600 if (Alignment == Align(1))
3601 return; // 1-byte aligned: no need to emit alignment.
3602
3603 if (getCurrentSection()->isText()) {
3604 const MCSubtargetInfo *STI = nullptr;
3605 if (this->MF)
3606 STI = &getSubtargetInfo();
3607 else
3608 STI = TM.getMCSubtargetInfo();
3609 OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit);
3610 } else
3611 OutStreamer->emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit);
3612}
3613
3614//===----------------------------------------------------------------------===//
3615// Constant emission.
3616//===----------------------------------------------------------------------===//
3617
3619 const Constant *BaseCV,
3620 uint64_t Offset) {
3621 MCContext &Ctx = OutContext;
3622
3623 if (CV->isNullValue() || isa<UndefValue>(CV))
3624 return MCConstantExpr::create(0, Ctx);
3625
3626 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
3627 return MCConstantExpr::create(CI->getZExtValue(), Ctx);
3628
3629 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(CV))
3630 return lowerConstantPtrAuth(*CPA);
3631
3632 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
3633 return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
3634
3635 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
3636 return lowerBlockAddressConstant(*BA);
3637
3638 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
3640 getSymbol(Equiv->getGlobalValue()), nullptr, 0, std::nullopt, TM);
3641
3642 if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV))
3643 return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx);
3644
3645 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
3646 if (!CE) {
3647 llvm_unreachable("Unknown constant value to lower!");
3648 }
3649
3650 // The constant expression opcodes are limited to those that are necessary
3651 // to represent relocations on supported targets. Expressions involving only
3652 // constant addresses are constant folded instead.
3653 switch (CE->getOpcode()) {
3654 default:
3655 break; // Error
3656 case Instruction::AddrSpaceCast: {
3657 const Constant *Op = CE->getOperand(0);
3658 unsigned DstAS = CE->getType()->getPointerAddressSpace();
3659 unsigned SrcAS = Op->getType()->getPointerAddressSpace();
3660 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
3661 return lowerConstant(Op);
3662
3663 break; // Error
3664 }
3665 case Instruction::GetElementPtr: {
3666 // Generate a symbolic expression for the byte address
3667 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
3668 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
3669
3670 const MCExpr *Base = lowerConstant(CE->getOperand(0));
3671 if (!OffsetAI)
3672 return Base;
3673
3674 int64_t Offset = OffsetAI.getSExtValue();
3676 Ctx);
3677 }
3678
3679 case Instruction::Trunc:
3680 // We emit the value and depend on the assembler to truncate the generated
3681 // expression properly. This is important for differences between
3682 // blockaddress labels. Since the two labels are in the same function, it
3683 // is reasonable to treat their delta as a 32-bit value.
3684 [[fallthrough]];
3685 case Instruction::BitCast:
3686 return lowerConstant(CE->getOperand(0), BaseCV, Offset);
3687
3688 case Instruction::IntToPtr: {
3689 const DataLayout &DL = getDataLayout();
3690
3691 // Handle casts to pointers by changing them into casts to the appropriate
3692 // integer type. This promotes constant folding and simplifies this code.
3693 Constant *Op = CE->getOperand(0);
3694 Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()),
3695 /*IsSigned*/ false, DL);
3696 if (Op)
3697 return lowerConstant(Op);
3698
3699 break; // Error
3700 }
3701
3702 case Instruction::PtrToAddr:
3703 case Instruction::PtrToInt: {
3704 const DataLayout &DL = getDataLayout();
3705
3706 // Support only foldable casts to/from pointers that can be eliminated by
3707 // changing the pointer to the appropriately sized integer type.
3708 Constant *Op = CE->getOperand(0);
3709 Type *Ty = CE->getType();
3710
3711 const MCExpr *OpExpr = lowerConstant(Op);
3712
3713 // We can emit the pointer value into this slot if the slot is an
3714 // integer slot equal to the size of the pointer.
3715 //
3716 // If the pointer is larger than the resultant integer, then
3717 // as with Trunc just depend on the assembler to truncate it.
3718 if (DL.getTypeAllocSize(Ty).getFixedValue() <=
3719 DL.getTypeAllocSize(Op->getType()).getFixedValue())
3720 return OpExpr;
3721
3722 break; // Error
3723 }
3724
3725 case Instruction::Sub: {
3726 GlobalValue *LHSGV, *RHSGV;
3727 APInt LHSOffset, RHSOffset;
3728 DSOLocalEquivalent *DSOEquiv;
3729 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
3730 getDataLayout(), &DSOEquiv) &&
3731 IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
3732 getDataLayout())) {
3733 auto *LHSSym = getSymbol(LHSGV);
3734 auto *RHSSym = getSymbol(RHSGV);
3735 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
3736 std::optional<int64_t> PCRelativeOffset;
3737 if (getObjFileLowering().hasPLTPCRelative() && RHSGV == BaseCV)
3738 PCRelativeOffset = Offset;
3739
3740 // Try the generic symbol difference first.
3742 LHSGV, RHSGV, Addend, PCRelativeOffset, TM);
3743
3744 // (ELF-specific) If the generic symbol difference does not apply, and
3745 // LHS is a dso_local_equivalent of a function, reference the PLT entry
3746 // instead. Note: A default visibility symbol is by default preemptible
3747 // during linking, and should not be referenced with PC-relative
3748 // relocations. Therefore, use a PLT relocation even if the function is
3749 // dso_local.
3750 if (DSOEquiv && TM.getTargetTriple().isOSBinFormatELF())
3752 LHSSym, RHSSym, Addend, PCRelativeOffset, TM);
3753
3754 // Otherwise, return LHS-RHS+Addend.
3755 if (!Res) {
3756 Res =
3758 MCSymbolRefExpr::create(RHSSym, Ctx), Ctx);
3759 if (Addend != 0)
3761 Res, MCConstantExpr::create(Addend, Ctx), Ctx);
3762 }
3763 return Res;
3764 }
3765
3766 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
3767 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
3768 return MCBinaryExpr::createSub(LHS, RHS, Ctx);
3769 break;
3770 }
3771
3772 case Instruction::Add: {
3773 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
3774 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
3775 return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
3776 }
3777 }
3778
3779 // If the code isn't optimized, there may be outstanding folding
3780 // opportunities. Attempt to fold the expression using DataLayout as a
3781 // last resort before giving up.
3783 if (C != CE)
3784 return lowerConstant(C);
3785
3786 // Otherwise report the problem to the user.
3787 std::string S;
3788 raw_string_ostream OS(S);
3789 OS << "unsupported expression in static initializer: ";
3790 CE->printAsOperand(OS, /*PrintType=*/false,
3791 !MF ? nullptr : MF->getFunction().getParent());
3792 CE->getContext().emitError(S);
3793 return MCConstantExpr::create(0, Ctx);
3794}
3795
3796static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
3797 AsmPrinter &AP,
3798 const Constant *BaseCV = nullptr,
3799 uint64_t Offset = 0,
3800 AsmPrinter::AliasMapTy *AliasList = nullptr);
3801
3802static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
3803static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
3804
3805/// isRepeatedByteSequence - Determine whether the given value is
3806/// composed of a repeated sequence of identical bytes and return the
3807/// byte value. If it is not a repeated sequence, return -1.
3809 StringRef Data = V->getRawDataValues();
3810 assert(!Data.empty() && "Empty aggregates should be CAZ node");
3811 char C = Data[0];
3812 for (unsigned i = 1, e = Data.size(); i != e; ++i)
3813 if (Data[i] != C) return -1;
3814 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
3815}
3816
3817/// isRepeatedByteSequence - Determine whether the given value is
3818/// composed of a repeated sequence of identical bytes and return the
3819/// byte value. If it is not a repeated sequence, return -1.
3820static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
3821 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
3822 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
3823 assert(Size % 8 == 0);
3824
3825 // Extend the element to take zero padding into account.
3826 APInt Value = CI->getValue().zext(Size);
3827 if (!Value.isSplat(8))
3828 return -1;
3829
3830 return Value.zextOrTrunc(8).getZExtValue();
3831 }
3832 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
3833 // Make sure all array elements are sequences of the same repeated
3834 // byte.
3835 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
3836 Constant *Op0 = CA->getOperand(0);
3837 int Byte = isRepeatedByteSequence(Op0, DL);
3838 if (Byte == -1)
3839 return -1;
3840
3841 // All array elements must be equal.
3842 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
3843 if (CA->getOperand(i) != Op0)
3844 return -1;
3845 return Byte;
3846 }
3847
3849 return isRepeatedByteSequence(CDS);
3850
3851 return -1;
3852}
3853
3855 AsmPrinter::AliasMapTy *AliasList) {
3856 if (AliasList) {
3857 auto AliasIt = AliasList->find(Offset);
3858 if (AliasIt != AliasList->end()) {
3859 for (const GlobalAlias *GA : AliasIt->second)
3860 AP.OutStreamer->emitLabel(AP.getSymbol(GA));
3861 AliasList->erase(Offset);
3862 }
3863 }
3864}
3865
3867 const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP,
3868 AsmPrinter::AliasMapTy *AliasList) {
3869 // See if we can aggregate this into a .fill, if so, emit it as such.
3870 int Value = isRepeatedByteSequence(CDS, DL);
3871 if (Value != -1) {
3872 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
3873 // Don't emit a 1-byte object as a .fill.
3874 if (Bytes > 1)
3875 return AP.OutStreamer->emitFill(Bytes, Value);
3876 }
3877
3878 // If this can be emitted with .ascii/.asciz, emit it as such.
3879 if (CDS->isString())
3880 return AP.OutStreamer->emitBytes(CDS->getAsString());
3881
3882 // Otherwise, emit the values in successive locations.
3883 uint64_t ElementByteSize = CDS->getElementByteSize();
3884 if (isa<IntegerType>(CDS->getElementType())) {
3885 for (uint64_t I = 0, E = CDS->getNumElements(); I != E; ++I) {
3886 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList);
3887 if (AP.isVerbose())
3888 AP.OutStreamer->getCommentOS()
3889 << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I));
3890 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I),
3891 ElementByteSize);
3892 }
3893 } else {
3894 Type *ET = CDS->getElementType();
3895 for (uint64_t I = 0, E = CDS->getNumElements(); I != E; ++I) {
3896 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList);
3898 }
3899 }
3900
3901 unsigned Size = DL.getTypeAllocSize(CDS->getType());
3902 unsigned EmittedSize =
3903 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
3904 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
3905 if (unsigned Padding = Size - EmittedSize)
3906 AP.OutStreamer->emitZeros(Padding);
3907}
3908
3910 const ConstantArray *CA, AsmPrinter &AP,
3911 const Constant *BaseCV, uint64_t Offset,
3912 AsmPrinter::AliasMapTy *AliasList) {
3913 // See if we can aggregate some values. Make sure it can be
3914 // represented as a series of bytes of the constant value.
3915 int Value = isRepeatedByteSequence(CA, DL);
3916
3917 if (Value != -1) {
3918 uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
3919 AP.OutStreamer->emitFill(Bytes, Value);
3920 } else {
3921 for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) {
3922 emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset,
3923 AliasList);
3924 Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType());
3925 }
3926 }
3927}
3928
3929static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP);
3930
3931static void emitGlobalConstantVector(const DataLayout &DL, const Constant *CV,
3932 AsmPrinter &AP,
3933 AsmPrinter::AliasMapTy *AliasList) {
3934 auto *VTy = cast<FixedVectorType>(CV->getType());
3935 Type *ElementType = VTy->getElementType();
3936 uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType);
3937 uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType);
3938 uint64_t EmittedSize;
3939 if (ElementSizeInBits != ElementAllocSizeInBits) {
3940 // If the allocation size of an element is different from the size in bits,
3941 // printing each element separately will insert incorrect padding.
3942 //
3943 // The general algorithm here is complicated; instead of writing it out
3944 // here, just use the existing code in ConstantFolding.
3945 Type *IntT =
3946 IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType()));
3948 ConstantExpr::getBitCast(const_cast<Constant *>(CV), IntT), DL));
3949 if (!CI) {
3951 "Cannot lower vector global with unusual element type");
3952 }
3953 emitGlobalAliasInline(AP, 0, AliasList);
3955 EmittedSize = DL.getTypeStoreSize(CV->getType());
3956 } else {
3957 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
3958 emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList);
3960 }
3961 EmittedSize = DL.getTypeAllocSize(ElementType) * VTy->getNumElements();
3962 }
3963
3964 unsigned Size = DL.getTypeAllocSize(CV->getType());
3965 if (unsigned Padding = Size - EmittedSize)
3966 AP.OutStreamer->emitZeros(Padding);
3967}
3968
3970 const ConstantStruct *CS, AsmPrinter &AP,
3971 const Constant *BaseCV, uint64_t Offset,
3972 AsmPrinter::AliasMapTy *AliasList) {
3973 // Print the fields in successive locations. Pad to align if needed!
3974 uint64_t Size = DL.getTypeAllocSize(CS->getType());
3975 const StructLayout *Layout = DL.getStructLayout(CS->getType());
3976 uint64_t SizeSoFar = 0;
3977 for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) {
3978 const Constant *Field = CS->getOperand(I);
3979
3980 // Print the actual field value.
3981 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar,
3982 AliasList);
3983
3984 // Check if padding is needed and insert one or more 0s.
3985 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
3986 uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) -
3987 Layout->getElementOffset(I)) -
3988 FieldSize;
3989 SizeSoFar += FieldSize + PadSize;
3990
3991 // Insert padding - this may include padding to increase the size of the
3992 // current field up to the ABI size (if the struct is not packed) as well
3993 // as padding to ensure that the next field starts at the right offset.
3994 AP.OutStreamer->emitZeros(PadSize);
3995 }
3996 assert(SizeSoFar == Layout->getSizeInBytes() &&
3997 "Layout of constant struct may be incorrect!");
3998}
3999
4000static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
4001 assert(ET && "Unknown float type");
4002 APInt API = APF.bitcastToAPInt();
4003
4004 // First print a comment with what we think the original floating-point value
4005 // should have been.
4006 if (AP.isVerbose()) {
4007 SmallString<8> StrVal;
4008 APF.toString(StrVal);
4009 ET->print(AP.OutStreamer->getCommentOS());
4010 AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n';
4011 }
4012
4013 // Now iterate through the APInt chunks, emitting them in endian-correct
4014 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
4015 // floats).
4016 unsigned NumBytes = API.getBitWidth() / 8;
4017 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
4018 const uint64_t *p = API.getRawData();
4019
4020 // PPC's long double has odd notions of endianness compared to how LLVM
4021 // handles it: p[0] goes first for *big* endian on PPC.
4022 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
4023 int Chunk = API.getNumWords() - 1;
4024
4025 if (TrailingBytes)
4026 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
4027
4028 for (; Chunk >= 0; --Chunk)
4029 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
4030 } else {
4031 unsigned Chunk;
4032 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
4033 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
4034
4035 if (TrailingBytes)
4036 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
4037 }
4038
4039 // Emit the tail padding for the long double.
4040 const DataLayout &DL = AP.getDataLayout();
4041 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
4042}
4043
4044static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
4045 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
4046}
4047
4049 const DataLayout &DL = AP.getDataLayout();
4050 unsigned BitWidth = CI->getBitWidth();
4051
4052 // Copy the value as we may massage the layout for constants whose bit width
4053 // is not a multiple of 64-bits.
4054 APInt Realigned(CI->getValue());
4055 uint64_t ExtraBits = 0;
4056 unsigned ExtraBitsSize = BitWidth & 63;
4057
4058 if (ExtraBitsSize) {
4059 // The bit width of the data is not a multiple of 64-bits.
4060 // The extra bits are expected to be at the end of the chunk of the memory.
4061 // Little endian:
4062 // * Nothing to be done, just record the extra bits to emit.
4063 // Big endian:
4064 // * Record the extra bits to emit.
4065 // * Realign the raw data to emit the chunks of 64-bits.
4066 if (DL.isBigEndian()) {
4067 // Basically the structure of the raw data is a chunk of 64-bits cells:
4068 // 0 1 BitWidth / 64
4069 // [chunk1][chunk2] ... [chunkN].
4070 // The most significant chunk is chunkN and it should be emitted first.
4071 // However, due to the alignment issue chunkN contains useless bits.
4072 // Realign the chunks so that they contain only useful information:
4073 // ExtraBits 0 1 (BitWidth / 64) - 1
4074 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
4075 ExtraBitsSize = alignTo(ExtraBitsSize, 8);
4076 ExtraBits = Realigned.getRawData()[0] &
4077 (((uint64_t)-1) >> (64 - ExtraBitsSize));
4078 if (BitWidth >= 64)
4079 Realigned.lshrInPlace(ExtraBitsSize);
4080 } else
4081 ExtraBits = Realigned.getRawData()[BitWidth / 64];
4082 }
4083
4084 // We don't expect assemblers to support integer data directives
4085 // for more than 64 bits, so we emit the data in at most 64-bit
4086 // quantities at a time.
4087 const uint64_t *RawData = Realigned.getRawData();
4088 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
4089 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
4090 AP.OutStreamer->emitIntValue(Val, 8);
4091 }
4092
4093 if (ExtraBitsSize) {
4094 // Emit the extra bits after the 64-bits chunks.
4095
4096 // Emit a directive that fills the expected size.
4098 Size -= (BitWidth / 64) * 8;
4099 assert(Size && Size * 8 >= ExtraBitsSize &&
4100 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
4101 == ExtraBits && "Directive too small for extra bits.");
4102 AP.OutStreamer->emitIntValue(ExtraBits, Size);
4103 }
4104}
4105
4106/// Transform a not absolute MCExpr containing a reference to a GOT
4107/// equivalent global, by a target specific GOT pc relative access to the
4108/// final symbol.
4110 const Constant *BaseCst,
4111 uint64_t Offset) {
4112 // The global @foo below illustrates a global that uses a got equivalent.
4113 //
4114 // @bar = global i32 42
4115 // @gotequiv = private unnamed_addr constant i32* @bar
4116 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
4117 // i64 ptrtoint (i32* @foo to i64))
4118 // to i32)
4119 //
4120 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
4121 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
4122 // form:
4123 //
4124 // foo = cstexpr, where
4125 // cstexpr := <gotequiv> - "." + <cst>
4126 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
4127 //
4128 // After canonicalization by evaluateAsRelocatable `ME` turns into:
4129 //
4130 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
4131 // gotpcrelcst := <offset from @foo base> + <cst>
4132 MCValue MV;
4133 if (!(*ME)->evaluateAsRelocatable(MV, nullptr) || MV.isAbsolute())
4134 return;
4135 const MCSymbol *GOTEquivSym = MV.getAddSym();
4136 if (!GOTEquivSym)
4137 return;
4138
4139 // Check that GOT equivalent symbol is cached.
4140 if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
4141 return;
4142
4143 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
4144 if (!BaseGV)
4145 return;
4146
4147 // Check for a valid base symbol
4148 const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
4149 const MCSymbol *SymB = MV.getSubSym();
4150
4151 if (!SymB || BaseSym != SymB)
4152 return;
4153
4154 // Make sure to match:
4155 //
4156 // gotpcrelcst := <offset from @foo base> + <cst>
4157 //
4158 int64_t GOTPCRelCst = Offset + MV.getConstant();
4159 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
4160 return;
4161
4162 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
4163 //
4164 // bar:
4165 // .long 42
4166 // gotequiv:
4167 // .quad bar
4168 // foo:
4169 // .long gotequiv - "." + <cst>
4170 //
4171 // is replaced by the target specific equivalent to:
4172 //
4173 // bar:
4174 // .long 42
4175 // foo:
4176 // .long bar@GOTPCREL+<gotpcrelcst>
4177 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
4178 const GlobalVariable *GV = Result.first;
4179 int NumUses = (int)Result.second;
4180 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
4181 const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
4183 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
4184
4185 // Update GOT equivalent usage information
4186 --NumUses;
4187 if (NumUses >= 0)
4188 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
4189}
4190
4191static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
4192 AsmPrinter &AP, const Constant *BaseCV,
4194 AsmPrinter::AliasMapTy *AliasList) {
4195 assert((!AliasList || AP.TM.getTargetTriple().isOSBinFormatXCOFF()) &&
4196 "AliasList only expected for XCOFF");
4197 emitGlobalAliasInline(AP, Offset, AliasList);
4198 uint64_t Size = DL.getTypeAllocSize(CV->getType());
4199
4200 // Globals with sub-elements such as combinations of arrays and structs
4201 // are handled recursively by emitGlobalConstantImpl. Keep track of the
4202 // constant symbol base and the current position with BaseCV and Offset.
4203 if (!BaseCV && CV->hasOneUse())
4204 BaseCV = dyn_cast<Constant>(CV->user_back());
4205
4207 StructType *structType;
4208 if (AliasList && (structType = llvm::dyn_cast<StructType>(CV->getType()))) {
4209 unsigned numElements = {structType->getNumElements()};
4210 if (numElements != 0) {
4211 // Handle cases of aliases to direct struct elements
4212 const StructLayout *Layout = DL.getStructLayout(structType);
4213 uint64_t SizeSoFar = 0;
4214 for (unsigned int i = 0; i < numElements - 1; ++i) {
4215 uint64_t GapToNext = Layout->getElementOffset(i + 1) - SizeSoFar;
4216 AP.OutStreamer->emitZeros(GapToNext);
4217 SizeSoFar += GapToNext;
4218 emitGlobalAliasInline(AP, Offset + SizeSoFar, AliasList);
4219 }
4220 AP.OutStreamer->emitZeros(Size - SizeSoFar);
4221 return;
4222 }
4223 }
4224 return AP.OutStreamer->emitZeros(Size);
4225 }
4226
4227 if (isa<UndefValue>(CV))
4228 return AP.OutStreamer->emitZeros(Size);
4229
4230 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
4231 if (isa<VectorType>(CV->getType()))
4232 return emitGlobalConstantVector(DL, CV, AP, AliasList);
4233
4234 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
4235 if (StoreSize <= 8) {
4236 if (AP.isVerbose())
4237 AP.OutStreamer->getCommentOS()
4238 << format("0x%" PRIx64 "\n", CI->getZExtValue());
4239 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
4240 } else {
4242 }
4243
4244 // Emit tail padding if needed
4245 if (Size != StoreSize)
4246 AP.OutStreamer->emitZeros(Size - StoreSize);
4247
4248 return;
4249 }
4250
4251 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
4252 if (isa<VectorType>(CV->getType()))
4253 return emitGlobalConstantVector(DL, CV, AP, AliasList);
4254 else
4255 return emitGlobalConstantFP(CFP, AP);
4256 }
4257
4258 if (isa<ConstantPointerNull>(CV)) {
4259 AP.OutStreamer->emitIntValue(0, Size);
4260 return;
4261 }
4262
4264 return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList);
4265
4266 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
4267 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList);
4268
4269 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
4270 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList);
4271
4272 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
4273 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
4274 // vectors).
4275 if (CE->getOpcode() == Instruction::BitCast)
4276 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
4277
4278 if (Size > 8) {
4279 // If the constant expression's size is greater than 64-bits, then we have
4280 // to emit the value in chunks. Try to constant fold the value and emit it
4281 // that way.
4282 Constant *New = ConstantFoldConstant(CE, DL);
4283 if (New != CE)
4284 return emitGlobalConstantImpl(DL, New, AP);
4285 }
4286 }
4287
4288 if (isa<ConstantVector>(CV))
4289 return emitGlobalConstantVector(DL, CV, AP, AliasList);
4290
4291 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
4292 // thread the streamer with EmitValue.
4293 const MCExpr *ME = AP.lowerConstant(CV, BaseCV, Offset);
4294
4295 // Since lowerConstant already folded and got rid of all IR pointer and
4296 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
4297 // directly.
4299 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
4300
4301 AP.OutStreamer->emitValue(ME, Size);
4302}
4303
4304/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
4306 AliasMapTy *AliasList) {
4307 uint64_t Size = DL.getTypeAllocSize(CV->getType());
4308 if (Size)
4309 emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList);
4310 else if (MAI->hasSubsectionsViaSymbols()) {
4311 // If the global has zero size, emit a single byte so that two labels don't
4312 // look like they are at the same location.
4313 OutStreamer->emitIntValue(0, 1);
4314 }
4315 if (!AliasList)
4316 return;
4317 // TODO: These remaining aliases are not emitted in the correct location. Need
4318 // to handle the case where the alias offset doesn't refer to any sub-element.
4319 for (auto &AliasPair : *AliasList) {
4320 for (const GlobalAlias *GA : AliasPair.second)
4321 OutStreamer->emitLabel(getSymbol(GA));
4322 }
4323}
4324
4326 // Target doesn't support this yet!
4327 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
4328}
4329
4331 if (Offset > 0)
4332 OS << '+' << Offset;
4333 else if (Offset < 0)
4334 OS << Offset;
4335}
4336
4337void AsmPrinter::emitNops(unsigned N) {
4338 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
4339 for (; N; --N)
4341}
4342
4343//===----------------------------------------------------------------------===//
4344// Symbol Lowering Routines.
4345//===----------------------------------------------------------------------===//
4346
4348 return OutContext.createTempSymbol(Name, true);
4349}
4350
4352 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(
4353 BA->getBasicBlock());
4354}
4355
4357 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB);
4358}
4359
4363
4364/// GetCPISymbol - Return the symbol for the specified constant pool entry.
4365MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
4366 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment() ||
4367 getSubtargetInfo().getTargetTriple().isUEFI()) {
4368 const MachineConstantPoolEntry &CPE =
4369 MF->getConstantPool()->getConstants()[CPID];
4370 if (!CPE.isMachineConstantPoolEntry()) {
4371 const DataLayout &DL = MF->getDataLayout();
4372 SectionKind Kind = CPE.getSectionKind(&DL);
4373 const Constant *C = CPE.Val.ConstVal;
4374 Align Alignment = CPE.Alignment;
4375 auto *S =
4376 getObjFileLowering().getSectionForConstant(DL, Kind, C, Alignment);
4377 if (S && TM.getTargetTriple().isOSBinFormatCOFF()) {
4378 if (MCSymbol *Sym =
4379 static_cast<const MCSectionCOFF *>(S)->getCOMDATSymbol()) {
4380 if (Sym->isUndefined())
4381 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
4382 return Sym;
4383 }
4384 }
4385 }
4386 }
4387
4388 const DataLayout &DL = getDataLayout();
4389 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
4390 "CPI" + Twine(getFunctionNumber()) + "_" +
4391 Twine(CPID));
4392}
4393
4394/// GetJTISymbol - Return the symbol for the specified jump table entry.
4395MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
4396 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
4397}
4398
4399/// GetJTSetSymbol - Return the symbol for the specified jump table .set
4400/// FIXME: privatize to AsmPrinter.
4401MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
4402 const DataLayout &DL = getDataLayout();
4403 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
4404 Twine(getFunctionNumber()) + "_" +
4405 Twine(UID) + "_set_" + Twine(MBBID));
4406}
4407
4412
4413/// Return the MCSymbol for the specified ExternalSymbol.
4415 SmallString<60> NameStr;
4417 return OutContext.getOrCreateSymbol(NameStr);
4418}
4419
4420/// PrintParentLoopComment - Print comments about parent loops of this one.
4422 unsigned FunctionNumber) {
4423 if (!Loop) return;
4424 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
4425 OS.indent(Loop->getLoopDepth()*2)
4426 << "Parent Loop BB" << FunctionNumber << "_"
4427 << Loop->getHeader()->getNumber()
4428 << " Depth=" << Loop->getLoopDepth() << '\n';
4429}
4430
4431/// PrintChildLoopComment - Print comments about child loops within
4432/// the loop for this basic block, with nesting.
4434 unsigned FunctionNumber) {
4435 // Add child loop information
4436 for (const MachineLoop *CL : *Loop) {
4437 OS.indent(CL->getLoopDepth()*2)
4438 << "Child Loop BB" << FunctionNumber << "_"
4439 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
4440 << '\n';
4441 PrintChildLoopComment(OS, CL, FunctionNumber);
4442 }
4443}
4444
4445/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
4447 const MachineLoopInfo *LI,
4448 const AsmPrinter &AP) {
4449 // Add loop depth information
4450 const MachineLoop *Loop = LI->getLoopFor(&MBB);
4451 if (!Loop) return;
4452
4453 MachineBasicBlock *Header = Loop->getHeader();
4454 assert(Header && "No header for loop");
4455
4456 // If this block is not a loop header, just print out what is the loop header
4457 // and return.
4458 if (Header != &MBB) {
4459 AP.OutStreamer->AddComment(" in Loop: Header=BB" +
4460 Twine(AP.getFunctionNumber())+"_" +
4462 " Depth="+Twine(Loop->getLoopDepth()));
4463 return;
4464 }
4465
4466 // Otherwise, it is a loop header. Print out information about child and
4467 // parent loops.
4468 raw_ostream &OS = AP.OutStreamer->getCommentOS();
4469
4471
4472 OS << "=>";
4473 OS.indent(Loop->getLoopDepth()*2-2);
4474
4475 OS << "This ";
4476 if (Loop->isInnermost())
4477 OS << "Inner ";
4478 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
4479
4481}
4482
4483/// emitBasicBlockStart - This method prints the label for the specified
4484/// MachineBasicBlock, an alignment (if present) and a comment describing
4485/// it if appropriate.
4487 // End the previous funclet and start a new one.
4488 if (MBB.isEHFuncletEntry()) {
4489 for (auto &Handler : Handlers) {
4490 Handler->endFunclet();
4491 Handler->beginFunclet(MBB);
4492 }
4493 for (auto &Handler : EHHandlers) {
4494 Handler->endFunclet();
4495 Handler->beginFunclet(MBB);
4496 }
4497 }
4498
4499 // Switch to a new section if this basic block must begin a section. The
4500 // entry block is always placed in the function section and is handled
4501 // separately.
4502 if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
4503 OutStreamer->switchSection(
4504 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
4505 MBB, TM));
4506 CurrentSectionBeginSym = MBB.getSymbol();
4507 }
4508
4509 for (auto &Handler : Handlers)
4510 Handler->beginCodeAlignment(MBB);
4511
4512 // Emit an alignment directive for this block, if needed.
4513 const Align Alignment = MBB.getAlignment();
4514 if (Alignment != Align(1))
4515 emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment());
4516
4517 // If the block has its address taken, emit any labels that were used to
4518 // reference the block. It is possible that there is more than one label
4519 // here, because multiple LLVM BB's may have been RAUW'd to this block after
4520 // the references were generated.
4521 if (MBB.isIRBlockAddressTaken()) {
4522 if (isVerbose())
4523 OutStreamer->AddComment("Block address taken");
4524
4525 BasicBlock *BB = MBB.getAddressTakenIRBlock();
4526 assert(BB && BB->hasAddressTaken() && "Missing BB");
4527 for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB))
4528 OutStreamer->emitLabel(Sym);
4529 } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) {
4530 OutStreamer->AddComment("Block address taken");
4531 } else if (isVerbose() && MBB.isInlineAsmBrIndirectTarget()) {
4532 OutStreamer->AddComment("Inline asm indirect target");
4533 }
4534
4535 // Print some verbose block comments.
4536 if (isVerbose()) {
4537 if (const BasicBlock *BB = MBB.getBasicBlock()) {
4538 if (BB->hasName()) {
4539 BB->printAsOperand(OutStreamer->getCommentOS(),
4540 /*PrintType=*/false, BB->getModule());
4541 OutStreamer->getCommentOS() << '\n';
4542 }
4543 }
4544
4545 assert(MLI != nullptr && "MachineLoopInfo should has been computed");
4547 }
4548
4549 // Print the main label for the block.
4550 if (shouldEmitLabelForBasicBlock(MBB)) {
4551 if (isVerbose() && MBB.hasLabelMustBeEmitted())
4552 OutStreamer->AddComment("Label of block must be emitted");
4553 OutStreamer->emitLabel(MBB.getSymbol());
4554 } else {
4555 if (isVerbose()) {
4556 // NOTE: Want this comment at start of line, don't emit with AddComment.
4557 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
4558 false);
4559 }
4560 }
4561
4562 if (MBB.isEHContTarget() &&
4563 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
4564 OutStreamer->emitLabel(MBB.getEHContSymbol());
4565 }
4566
4567 // With BB sections, each basic block must handle CFI information on its own
4568 // if it begins a section (Entry block call is handled separately, next to
4569 // beginFunction).
4570 if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
4571 for (auto &Handler : Handlers)
4572 Handler->beginBasicBlockSection(MBB);
4573 for (auto &Handler : EHHandlers)
4574 Handler->beginBasicBlockSection(MBB);
4575 }
4576}
4577
4579 // Check if CFI information needs to be updated for this MBB with basic block
4580 // sections.
4581 if (MBB.isEndSection()) {
4582 for (auto &Handler : Handlers)
4583 Handler->endBasicBlockSection(MBB);
4584 for (auto &Handler : EHHandlers)
4585 Handler->endBasicBlockSection(MBB);
4586 }
4587}
4588
4589void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
4590 bool IsDefinition) const {
4592
4593 switch (Visibility) {
4594 default: break;
4596 if (IsDefinition)
4597 Attr = MAI->getHiddenVisibilityAttr();
4598 else
4599 Attr = MAI->getHiddenDeclarationVisibilityAttr();
4600 break;
4602 Attr = MAI->getProtectedVisibilityAttr();
4603 break;
4604 }
4605
4606 if (Attr != MCSA_Invalid)
4607 OutStreamer->emitSymbolAttribute(Sym, Attr);
4608}
4609
4610bool AsmPrinter::shouldEmitLabelForBasicBlock(
4611 const MachineBasicBlock &MBB) const {
4612 // With `-fbasic-block-sections=`, a label is needed for every non-entry block
4613 // in the labels mode (option `=labels`) and every section beginning in the
4614 // sections mode (`=all` and `=list=`).
4615 if ((MF->getTarget().Options.BBAddrMap || MBB.isBeginSection()) &&
4616 !MBB.isEntryBlock())
4617 return true;
4618 // A label is needed for any block with at least one predecessor (when that
4619 // predecessor is not the fallthrough predecessor, or if it is an EH funclet
4620 // entry, or if a label is forced).
4621 return !MBB.pred_empty() &&
4622 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
4623 MBB.hasLabelMustBeEmitted());
4624}
4625
4626/// isBlockOnlyReachableByFallthough - Return true if the basic block has
4627/// exactly one predecessor and the control transfer mechanism between
4628/// the predecessor and this block is a fall-through.
4631 // If this is a landing pad, it isn't a fall through. If it has no preds,
4632 // then nothing falls through to it.
4633 if (MBB->isEHPad() || MBB->pred_empty())
4634 return false;
4635
4636 // If there isn't exactly one predecessor, it can't be a fall through.
4637 if (MBB->pred_size() > 1)
4638 return false;
4639
4640 // The predecessor has to be immediately before this block.
4641 MachineBasicBlock *Pred = *MBB->pred_begin();
4642 if (!Pred->isLayoutSuccessor(MBB))
4643 return false;
4644
4645 // If the block is completely empty, then it definitely does fall through.
4646 if (Pred->empty())
4647 return true;
4648
4649 // Check the terminators in the previous blocks
4650 for (const auto &MI : Pred->terminators()) {
4651 // If it is not a simple branch, we are in a table somewhere.
4652 if (!MI.isBranch() || MI.isIndirectBranch())
4653 return false;
4654
4655 // If we are the operands of one of the branches, this is not a fall
4656 // through. Note that targets with delay slots will usually bundle
4657 // terminators with the delay slot instruction.
4658 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
4659 if (OP->isJTI())
4660 return false;
4661 if (OP->isMBB() && OP->getMBB() == MBB)
4662 return false;
4663 }
4664 }
4665
4666 return true;
4667}
4668
4669GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) {
4670 if (!S.usesMetadata())
4671 return nullptr;
4672
4673 auto [GCPI, Inserted] = GCMetadataPrinters.try_emplace(&S);
4674 if (!Inserted)
4675 return GCPI->second.get();
4676
4677 auto Name = S.getName();
4678
4679 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
4681 if (Name == GCMetaPrinter.getName()) {
4682 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
4683 GMP->S = &S;
4684 GCPI->second = std::move(GMP);
4685 return GCPI->second.get();
4686 }
4687
4688 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
4689}
4690
4693 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
4694 bool NeedsDefault = false;
4695 if (MI->begin() == MI->end())
4696 // No GC strategy, use the default format.
4697 NeedsDefault = true;
4698 else
4699 for (const auto &I : *MI) {
4700 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I))
4701 if (MP->emitStackMaps(SM, *this))
4702 continue;
4703 // The strategy doesn't have printer or doesn't emit custom stack maps.
4704 // Use the default format.
4705 NeedsDefault = true;
4706 }
4707
4708 if (NeedsDefault)
4709 SM.serializeToStackMapSection();
4710}
4711
4713 std::unique_ptr<AsmPrinterHandler> Handler) {
4714 Handlers.insert(Handlers.begin(), std::move(Handler));
4716}
4717
4718/// Pin vtables to this file.
4720
4722
4723// In the binary's "xray_instr_map" section, an array of these function entries
4724// describes each instrumentation point. When XRay patches your code, the index
4725// into this table will be given to your handler as a patch point identifier.
4727 auto Kind8 = static_cast<uint8_t>(Kind);
4728 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
4729 Out->emitBinaryData(
4730 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
4731 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
4732 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
4733 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
4734 Out->emitZeros(Padding);
4735}
4736
4738 if (Sleds.empty())
4739 return;
4740
4741 auto PrevSection = OutStreamer->getCurrentSectionOnly();
4742 const Function &F = MF->getFunction();
4743 MCSection *InstMap = nullptr;
4744 MCSection *FnSledIndex = nullptr;
4745 const Triple &TT = TM.getTargetTriple();
4746 // Use PC-relative addresses on all targets.
4747 if (TT.isOSBinFormatELF()) {
4748 auto LinkedToSym = static_cast<const MCSymbolELF *>(CurrentFnSym);
4749 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
4750 StringRef GroupName;
4751 if (F.hasComdat()) {
4752 Flags |= ELF::SHF_GROUP;
4753 GroupName = F.getComdat()->getName();
4754 }
4755 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
4756 Flags, 0, GroupName, F.hasComdat(),
4757 MCSection::NonUniqueID, LinkedToSym);
4758
4759 if (TM.Options.XRayFunctionIndex)
4760 FnSledIndex = OutContext.getELFSection(
4761 "xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, GroupName, F.hasComdat(),
4762 MCSection::NonUniqueID, LinkedToSym);
4763 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
4764 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map",
4767 if (TM.Options.XRayFunctionIndex)
4768 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx",
4771 } else {
4772 llvm_unreachable("Unsupported target");
4773 }
4774
4775 auto WordSizeBytes = MAI->getCodePointerSize();
4776
4777 // Now we switch to the instrumentation map section. Because this is done
4778 // per-function, we are able to create an index entry that will represent the
4779 // range of sleds associated with a function.
4780 auto &Ctx = OutContext;
4781 MCSymbol *SledsStart =
4782 OutContext.createLinkerPrivateSymbol("xray_sleds_start");
4783 OutStreamer->switchSection(InstMap);
4784 OutStreamer->emitLabel(SledsStart);
4785 for (const auto &Sled : Sleds) {
4786 MCSymbol *Dot = Ctx.createTempSymbol();
4787 OutStreamer->emitLabel(Dot);
4788 OutStreamer->emitValueImpl(
4790 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
4791 WordSizeBytes);
4792 OutStreamer->emitValueImpl(
4796 MCConstantExpr::create(WordSizeBytes, Ctx),
4797 Ctx),
4798 Ctx),
4799 WordSizeBytes);
4800 Sled.emit(WordSizeBytes, OutStreamer.get());
4801 }
4802 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
4803 OutStreamer->emitLabel(SledsEnd);
4804
4805 // We then emit a single entry in the index per function. We use the symbols
4806 // that bound the instrumentation map as the range for a specific function.
4807 // Each entry contains 2 words and needs to be word-aligned.
4808 if (FnSledIndex) {
4809 OutStreamer->switchSection(FnSledIndex);
4810 OutStreamer->emitValueToAlignment(Align(WordSizeBytes));
4811 // For Mach-O, use an "l" symbol as the atom of this subsection. The label
4812 // difference uses a SUBTRACTOR external relocation which references the
4813 // symbol.
4814 MCSymbol *Dot = Ctx.createLinkerPrivateSymbol("xray_fn_idx");
4815 OutStreamer->emitLabel(Dot);
4816 OutStreamer->emitValueImpl(
4818 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
4819 WordSizeBytes);
4820 OutStreamer->emitValueImpl(MCConstantExpr::create(Sleds.size(), Ctx),
4821 WordSizeBytes);
4822 OutStreamer->switchSection(PrevSection);
4823 }
4824 Sleds.clear();
4825}
4826
4828 SledKind Kind, uint8_t Version) {
4829 const Function &F = MI.getMF()->getFunction();
4830 auto Attr = F.getFnAttribute("function-instrument");
4831 bool LogArgs = F.hasFnAttribute("xray-log-args");
4832 bool AlwaysInstrument =
4833 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
4834 if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
4836 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
4837 AlwaysInstrument, &F, Version});
4838}
4839
4841 const Function &F = MF->getFunction();
4842 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
4843 (void)F.getFnAttribute("patchable-function-prefix")
4844 .getValueAsString()
4845 .getAsInteger(10, PatchableFunctionPrefix);
4846 (void)F.getFnAttribute("patchable-function-entry")
4847 .getValueAsString()
4848 .getAsInteger(10, PatchableFunctionEntry);
4849 if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
4850 return;
4851 const unsigned PointerSize = getPointerSize();
4852 if (TM.getTargetTriple().isOSBinFormatELF()) {
4853 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
4854 const MCSymbolELF *LinkedToSym = nullptr;
4855 StringRef GroupName, SectionName;
4856
4857 if (F.hasFnAttribute("patchable-function-entry-section"))
4858 SectionName = F.getFnAttribute("patchable-function-entry-section")
4859 .getValueAsString();
4860 if (SectionName.empty())
4861 SectionName = "__patchable_function_entries";
4862
4863 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
4864 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
4865 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
4866 Flags |= ELF::SHF_LINK_ORDER;
4867 if (F.hasComdat()) {
4868 Flags |= ELF::SHF_GROUP;
4869 GroupName = F.getComdat()->getName();
4870 }
4871 LinkedToSym = static_cast<const MCSymbolELF *>(CurrentFnSym);
4872 }
4873 OutStreamer->switchSection(OutContext.getELFSection(
4874 SectionName, ELF::SHT_PROGBITS, Flags, 0, GroupName, F.hasComdat(),
4875 MCSection::NonUniqueID, LinkedToSym));
4876 emitAlignment(Align(PointerSize));
4877 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
4878 }
4879}
4880
4882 return OutStreamer->getContext().getDwarfVersion();
4883}
4884
4886 OutStreamer->getContext().setDwarfVersion(Version);
4887}
4888
4890 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
4891}
4892
4895 OutStreamer->getContext().getDwarfFormat());
4896}
4897
4899 return {getDwarfVersion(), uint8_t(MAI->getCodePointerSize()),
4900 OutStreamer->getContext().getDwarfFormat(),
4902}
4903
4906 OutStreamer->getContext().getDwarfFormat());
4907}
4908
4909std::tuple<const MCSymbol *, uint64_t, const MCSymbol *,
4912 const MCSymbol *BranchLabel) const {
4913 const auto TLI = MF->getSubtarget().getTargetLowering();
4914 const auto BaseExpr =
4915 TLI->getPICJumpTableRelocBaseExpr(MF, JTI, MMI->getContext());
4916 const auto Base = &cast<MCSymbolRefExpr>(BaseExpr)->getSymbol();
4917
4918 // By default, for the architectures that support CodeView,
4919 // EK_LabelDifference32 is implemented as an Int32 from the base address.
4920 return std::make_tuple(Base, 0, BranchLabel,
4922}
4923
4925 const Triple &TT = TM.getTargetTriple();
4926 assert(TT.isOSBinFormatCOFF());
4927
4928 bool IsTargetArm64EC = TT.isWindowsArm64EC();
4930 SmallVector<MCSymbol *> FuncOverrideDefaultSymbols;
4931 bool SwitchedToDirectiveSection = false;
4932 for (const Function &F : M.functions()) {
4933 if (F.hasFnAttribute("loader-replaceable")) {
4934 if (!SwitchedToDirectiveSection) {
4935 OutStreamer->switchSection(
4936 OutContext.getObjectFileInfo()->getDrectveSection());
4937 SwitchedToDirectiveSection = true;
4938 }
4939
4940 StringRef Name = F.getName();
4941
4942 // For hybrid-patchable targets, strip the prefix so that we can mark
4943 // the real function as replaceable.
4944 if (IsTargetArm64EC && Name.ends_with(HybridPatchableTargetSuffix)) {
4945 Name = Name.drop_back(HybridPatchableTargetSuffix.size());
4946 }
4947
4948 MCSymbol *FuncOverrideSymbol =
4949 MMI->getContext().getOrCreateSymbol(Name + "_$fo$");
4950 OutStreamer->beginCOFFSymbolDef(FuncOverrideSymbol);
4951 OutStreamer->emitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_EXTERNAL);
4952 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL);
4953 OutStreamer->endCOFFSymbolDef();
4954
4955 MCSymbol *FuncOverrideDefaultSymbol =
4956 MMI->getContext().getOrCreateSymbol(Name + "_$fo_default$");
4957 OutStreamer->beginCOFFSymbolDef(FuncOverrideDefaultSymbol);
4958 OutStreamer->emitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_EXTERNAL);
4959 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL);
4960 OutStreamer->endCOFFSymbolDef();
4961 FuncOverrideDefaultSymbols.push_back(FuncOverrideDefaultSymbol);
4962
4963 OutStreamer->emitBytes((Twine(" /ALTERNATENAME:") +
4964 FuncOverrideSymbol->getName() + "=" +
4965 FuncOverrideDefaultSymbol->getName())
4966 .toStringRef(Buf));
4967 Buf.clear();
4968 }
4969 }
4970
4971 if (SwitchedToDirectiveSection)
4972 OutStreamer->popSection();
4973
4974 if (FuncOverrideDefaultSymbols.empty())
4975 return;
4976
4977 // MSVC emits the symbols for the default variables pointing at the start of
4978 // the .data section, but doesn't actually allocate any space for them. LLVM
4979 // can't do this, so have all of the variables pointing at a single byte
4980 // instead.
4981 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getDataSection());
4982 for (MCSymbol *Symbol : FuncOverrideDefaultSymbols) {
4983 OutStreamer->emitLabel(Symbol);
4984 }
4985 OutStreamer->emitZeros(1);
4986 OutStreamer->popSection();
4987}
4988
4990 const Triple &TT = TM.getTargetTriple();
4991 assert(TT.isOSBinFormatCOFF());
4992
4993 // Emit an absolute @feat.00 symbol.
4994 MCSymbol *S = MMI->getContext().getOrCreateSymbol(StringRef("@feat.00"));
4995 OutStreamer->beginCOFFSymbolDef(S);
4996 OutStreamer->emitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC);
4997 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL);
4998 OutStreamer->endCOFFSymbolDef();
4999 int64_t Feat00Value = 0;
5000
5001 if (TT.getArch() == Triple::x86) {
5002 // According to the PE-COFF spec, the LSB of this value marks the object
5003 // for "registered SEH". This means that all SEH handler entry points
5004 // must be registered in .sxdata. Use of any unregistered handlers will
5005 // cause the process to terminate immediately. LLVM does not know how to
5006 // register any SEH handlers, so its object files should be safe.
5007 Feat00Value |= COFF::Feat00Flags::SafeSEH;
5008 }
5009
5010 if (M.getModuleFlag("cfguard")) {
5011 // Object is CFG-aware.
5012 Feat00Value |= COFF::Feat00Flags::GuardCF;
5013 }
5014
5015 if (M.getModuleFlag("ehcontguard")) {
5016 // Object also has EHCont.
5017 Feat00Value |= COFF::Feat00Flags::GuardEHCont;
5018 }
5019
5020 if (M.getModuleFlag("ms-kernel")) {
5021 // Object is compiled with /kernel.
5022 Feat00Value |= COFF::Feat00Flags::Kernel;
5023 }
5024
5025 OutStreamer->emitSymbolAttribute(S, MCSA_Global);
5026 OutStreamer->emitAssignment(
5027 S, MCConstantExpr::create(Feat00Value, MMI->getContext()));
5028}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP)
emitDebugValueComment - This method handles the target-independent form of DBG_VALUE,...
static uint32_t getBBAddrMapMetadata(const MachineBasicBlock &MBB)
Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section for a given basic block.
static cl::opt< bool > BBAddrMapSkipEmitBBEntries("basic-block-address-map-skip-bb-entries", cl::desc("Skip emitting basic block entries in the SHT_LLVM_BB_ADDR_MAP " "section. It's used to save binary size when BB entries are " "unnecessary for some PGOAnalysisMap features."), cl::Hidden, cl::init(false))
static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP)
static void emitFakeUse(const MachineInstr *MI, AsmPrinter &AP)
static bool isGOTEquivalentCandidate(const GlobalVariable *GV, unsigned &NumGOTEquivUsers, bool &HasNonGlobalUsers)
Only consider global GOT equivalents if at least one user is a cstexpr inside an initializer of anoth...
static void tagGlobalDefinition(Module &M, GlobalVariable *G)
static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, const MachineLoopInfo *LI, const AsmPrinter &AP)
emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, const Constant *BaseCst, uint64_t Offset)
Transform a not absolute MCExpr containing a reference to a GOT equivalent global,...
static int isRepeatedByteSequence(const ConstantDataSequential *V)
isRepeatedByteSequence - Determine whether the given value is composed of a repeated sequence of iden...
static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset, AsmPrinter::AliasMapTy *AliasList)
static bool needFuncLabels(const MachineFunction &MF, const AsmPrinter &Asm)
Returns true if function begin and end labels should be emitted.
static unsigned getNumGlobalVariableUses(const Constant *C, bool &HasNonGlobalUsers)
Compute the number of Global Variables that uses a Constant.
static cl::bits< PGOMapFeaturesEnum > PgoAnalysisMapFeatures("pgo-analysis-map", cl::Hidden, cl::CommaSeparated, cl::values(clEnumValN(PGOMapFeaturesEnum::None, "none", "Disable all options"), clEnumValN(PGOMapFeaturesEnum::FuncEntryCount, "func-entry-count", "Function Entry Count"), clEnumValN(PGOMapFeaturesEnum::BBFreq, "bb-freq", "Basic Block Frequency"), clEnumValN(PGOMapFeaturesEnum::BrProb, "br-prob", "Branch Probability"), clEnumValN(PGOMapFeaturesEnum::All, "all", "Enable all options")), cl::desc("Enable extended information within the SHT_LLVM_BB_ADDR_MAP that is " "extracted from PGO related analysis."))
static void removeMemtagFromGlobal(GlobalVariable &G)
static uint64_t globalSize(const llvm::GlobalVariable &G)
static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, unsigned FunctionNumber)
PrintChildLoopComment - Print comments about child loops within the loop for this basic block,...
static StringRef getMIMnemonic(const MachineInstr &MI, MCStreamer &Streamer)
PGOMapFeaturesEnum
static void emitComments(const MachineInstr &MI, const MCSubtargetInfo *STI, raw_ostream &CommentOS)
emitComments - Pretty-print comments for instructions.
static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, unsigned FunctionNumber)
PrintParentLoopComment - Print comments about parent loops of this one.
static void emitGlobalConstantStruct(const DataLayout &DL, const ConstantStruct *CS, AsmPrinter &AP, const Constant *BaseCV, uint64_t Offset, AsmPrinter::AliasMapTy *AliasList)
static void emitGlobalConstantDataSequential(const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP, AsmPrinter::AliasMapTy *AliasList)
static void emitKill(const MachineInstr *MI, AsmPrinter &AP)
static bool shouldTagGlobal(const llvm::GlobalVariable &G)
static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, AsmPrinter &AP, const Constant *BaseCV=nullptr, uint64_t Offset=0, AsmPrinter::AliasMapTy *AliasList=nullptr)
static ConstantInt * extractNumericCGTypeId(const Function &F)
Extracts a generalized numeric type identifier of a Function's type from type metadata.
static llvm::object::BBAddrMap::Features getBBAddrMapFeature(const MachineFunction &MF, int NumMBBSectionRanges, bool HasCalls)
static cl::opt< bool > PrintLatency("asm-print-latency", cl::desc("Print instruction latencies as verbose asm comments"), cl::Hidden, cl::init(false))
static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP)
This method handles the target-independent form of DBG_LABEL, returning true if it was able to do so.
static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI)
static void emitGlobalConstantVector(const DataLayout &DL, const Constant *CV, AsmPrinter &AP, AsmPrinter::AliasMapTy *AliasList)
static cl::opt< bool > EmitJumpTableSizesSection("emit-jump-table-sizes-section", cl::desc("Emit a section containing jump table addresses and sizes"), cl::Hidden, cl::init(false))
static void emitGlobalConstantArray(const DataLayout &DL, const ConstantArray *CA, AsmPrinter &AP, const Constant *BaseCV, uint64_t Offset, AsmPrinter::AliasMapTy *AliasList)
static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP)
#define LLVM_MARK_AS_BITMASK_ENUM(LargestValue)
LLVM_MARK_AS_BITMASK_ENUM lets you opt in an individual enum type so you can perform bitwise operatio...
Definition BitmaskEnum.h:43
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
This file contains constants used for implementing Dwarf debug support.
#define DEBUG_TYPE
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
===- LazyMachineBlockFrequencyInfo.h - Lazy Block Frequency -*- C++ -*–===//
const FeatureInfo AllFeatures[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define G(x, y, z)
Definition MD5.cpp:56
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
===- MachineOptimizationRemarkEmitter.h - Opt Diagnostics -*- C++ -*-—===//
Register Reg
static cl::opt< std::string > OutputFilename("o", cl::desc("Output filename"), cl::value_desc("filename"), cl::init("-"))
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define T
OptimizedStructLayoutField Field
This file contains some templates that are useful if you are working with the STL at all.
#define OP(OPC)
Definition Instruction.h:46
This file defines the SmallPtrSet class.
This file defines the SmallString class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
This file contains some functions that are useful when dealing with strings.
This file describes how to lower LLVM code to machine code.
Defines the virtual file system interface vfs::FileSystem.
Value * LHS
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6057
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
Definition APFloat.cpp:6115
void toString(SmallVectorImpl< char > &Str, unsigned FormatPrecision=0, unsigned FormatMaxPadding=3, bool TruncateZero=true) const
Definition APFloat.h:1478
APInt bitcastToAPInt() const
Definition APFloat.h:1353
Class for arbitrary precision integers.
Definition APInt.h:78
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
unsigned getNumWords() const
Get the number of words.
Definition APInt.h:1495
const uint64_t * getRawData() const
This function returns a pointer to the internal storage of the APInt.
Definition APInt.h:569
int64_t getSExtValue() const
Get sign extended value.
Definition APInt.h:1562
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition APInt.h:858
AddrLabelMap(MCContext &context)
void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New)
void takeDeletedSymbolsForFunction(Function *F, std::vector< MCSymbol * > &Result)
If we have any deleted symbols for F, return them.
void UpdateForDeletedBlock(BasicBlock *BB)
ArrayRef< MCSymbol * > getAddrLabelSymbolToEmit(BasicBlock *BB)
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesAll()
Set by analyses that do not transform their input at all.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
const T & front() const
front - Get the first element.
Definition ArrayRef.h:150
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
virtual ~AsmPrinterHandler()
Pin vtables to this file.
virtual void markFunctionEnd()
This class is intended to be used as a driving class for all asm writers.
Definition AsmPrinter.h:96
virtual void emitInstruction(const MachineInstr *)
Targets should implement this to emit instructions.
Definition AsmPrinter.h:627
const TargetLoweringObjectFile & getObjFileLowering() const
Return information about object file lowering.
MCSymbol * getSymbolWithGlobalValueBase(const GlobalValue *GV, StringRef Suffix) const
Return the MCSymbol for a private symbol with global value name as its base, with the specified suffi...
MCSymbol * getSymbol(const GlobalValue *GV) const
void emitULEB128(uint64_t Value, const char *Desc=nullptr, unsigned PadTo=0) const
Emit the specified unsigned leb128 value.
SmallVector< XRayFunctionEntry, 4 > Sleds
Definition AsmPrinter.h:422
MapVector< MBBSectionID, MBBSectionRange > MBBSectionRanges
Definition AsmPrinter.h:166
bool isDwarf64() const
void emitNops(unsigned N)
Emit N NOP instructions.
MCSymbol * CurrentFnBegin
Definition AsmPrinter.h:228
MachineLoopInfo * MLI
This is a pointer to the current MachineLoopInfo.
Definition AsmPrinter.h:126
virtual void emitDebugValue(const MCExpr *Value, unsigned Size) const
Emit the directive and value for debug thread local expression.
void EmitToStreamer(MCStreamer &S, const MCInst &Inst)
virtual void emitConstantPool()
Print to the current output stream assembly representations of the constants in the constant pool MCP...
virtual void emitGlobalVariable(const GlobalVariable *GV)
Emit the specified global variable to the .s file.
IntrusiveRefCntPtr< vfs::FileSystem > VFS
The VFS to resolve asm include directives.
Definition AsmPrinter.h:114
virtual const MCExpr * lowerConstantPtrAuth(const ConstantPtrAuth &CPA)
Definition AsmPrinter.h:648
unsigned int getUnitLengthFieldByteSize() const
Returns 4 for DWARF32 and 12 for DWARF64.
void emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, unsigned Size, bool IsSectionRelative=false) const
Emit something like ".long Label+Offset" where the size in bytes of the directive is specified by Siz...
~AsmPrinter() override
TargetMachine & TM
Target machine description.
Definition AsmPrinter.h:99
void emitXRayTable()
Emit a table with all XRay instrumentation points.
virtual void emitGlobalAlias(const Module &M, const GlobalAlias &GA)
DenseMap< const MachineBasicBlock *, SmallVector< MCSymbol *, 1 > > CurrentFnCallsiteEndSymbols
Vector of symbols marking the end of the callsites in the current function, keyed by their containing...
Definition AsmPrinter.h:152
virtual void emitBasicBlockEnd(const MachineBasicBlock &MBB)
Targets can override this to emit stuff at the end of a basic block.
virtual void emitJumpTableEntry(const MachineJumpTableInfo &MJTI, const MachineBasicBlock *MBB, unsigned uid) const
EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the current stream.
MCSymbol * CurrentFnDescSym
The symbol for the current function descriptor on AIX.
Definition AsmPrinter.h:140
MCSymbol * CurrentFnBeginLocal
For dso_local functions, the current $local alias for the function.
Definition AsmPrinter.h:231
MapVector< const MCSymbol *, GOTEquivUsePair > GlobalGOTEquivs
Definition AsmPrinter.h:171
virtual MCSymbol * GetCPISymbol(unsigned CPID) const
Return the symbol for the specified constant pool entry.
void emitGlobalGOTEquivs()
Constant expressions using GOT equivalent globals may not be eligible for PC relative GOT entry conve...
MCSymbol * getFunctionBegin() const
Definition AsmPrinter.h:312
void emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, unsigned Size) const
Emit something like ".long Hi-Lo" where the size in bytes of the directive is specified by Size and H...
void emitKCFITrapEntry(const MachineFunction &MF, const MCSymbol *Symbol)
virtual void emitMachOIFuncStubHelperBody(Module &M, const GlobalIFunc &GI, MCSymbol *LazyPointer)
Definition AsmPrinter.h:679
MCSymbol * getMBBExceptionSym(const MachineBasicBlock &MBB)
MCSymbol * getAddrLabelSymbol(const BasicBlock *BB)
Return the symbol to be used for the specified basic block when its address is taken.
Definition AsmPrinter.h:322
const MCAsmInfo * MAI
Target Asm Printer information.
Definition AsmPrinter.h:102
SmallVector< std::unique_ptr< AsmPrinterHandler >, 2 > Handlers
Definition AsmPrinter.h:241
bool emitSpecialLLVMGlobal(const GlobalVariable *GV)
Check to see if the specified global is a special global used by LLVM.
MachineFunction * MF
The current machine function.
Definition AsmPrinter.h:117
virtual void emitJumpTableInfo()
Print assembly representations of the jump tables used by the current function to the current output ...
void computeGlobalGOTEquivs(Module &M)
Unnamed constant global variables solely contaning a pointer to another globals variable act like a g...
static Align getGVAlignment(const GlobalObject *GV, const DataLayout &DL, Align InAlign=Align(1))
Return the alignment for the specified GV.
MCSymbol * createCallsiteEndSymbol(const MachineBasicBlock &MBB)
Creates a new symbol to be used for the end of a callsite at the specified basic block.
virtual const MCExpr * lowerConstant(const Constant *CV, const Constant *BaseCV=nullptr, uint64_t Offset=0)
Lower the specified LLVM Constant to an MCExpr.
void emitCallGraphSection(const MachineFunction &MF, FunctionCallGraphInfo &FuncCGInfo)
Emits .llvm.callgraph section.
void emitInt8(int Value) const
Emit a byte directive and value.
CFISection getFunctionCFISectionType(const Function &F) const
Get the CFISection type for a function.
virtual void SetupMachineFunction(MachineFunction &MF)
This should be called when a new MachineFunction is being processed from runOnMachineFunction.
void emitFunctionBody()
This method emits the body and trailer for a function.
virtual bool isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const
Return true if the basic block has exactly one predecessor and the control transfer mechanism between...
void emitBBAddrMapSection(const MachineFunction &MF)
void emitPCSections(const MachineFunction &MF)
Emits the PC sections collected from instructions.
MachineDominatorTree * MDT
This is a pointer to the current MachineDominatorTree.
Definition AsmPrinter.h:123
virtual void emitStartOfAsmFile(Module &)
This virtual method can be overridden by targets that want to emit something at the start of their fi...
Definition AsmPrinter.h:603
MCSymbol * GetJTISymbol(unsigned JTID, bool isLinkerPrivate=false) const
Return the symbol for the specified jump table entry.
virtual void emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV)
void emitStackMaps()
Emit the stack maps.
bool hasDebugInfo() const
Returns true if valid debug info is present.
Definition AsmPrinter.h:502
virtual void emitFunctionBodyStart()
Targets can override this to emit stuff before the first basic block in the function.
Definition AsmPrinter.h:611
std::pair< const GlobalVariable *, unsigned > GOTEquivUsePair
Map global GOT equivalent MCSymbols to GlobalVariables and keep track of its number of uses by other ...
Definition AsmPrinter.h:170
void emitPatchableFunctionEntries()
void recordSled(MCSymbol *Sled, const MachineInstr &MI, SledKind Kind, uint8_t Version=0)
virtual void emitEndOfAsmFile(Module &)
This virtual method can be overridden by targets that want to emit something at the end of their file...
Definition AsmPrinter.h:607
bool doInitialization(Module &M) override
Set up the AsmPrinter when we are working on a new module.
MCSymbol * GetJTSetSymbol(unsigned UID, unsigned MBBID) const
Return the symbol for the specified jump table .set FIXME: privatize to AsmPrinter.
virtual void emitMachOIFuncStubBody(Module &M, const GlobalIFunc &GI, MCSymbol *LazyPointer)
Definition AsmPrinter.h:673
virtual void emitImplicitDef(const MachineInstr *MI) const
Targets can override this to customize the output of IMPLICIT_DEF instructions in verbose mode.
virtual void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const
This emits linkage information about GVSym based on GV, if this is supported by the target.
void getAnalysisUsage(AnalysisUsage &AU) const override
Record analysis usage.
unsigned getFunctionNumber() const
Return a unique ID for the current function.
MachineOptimizationRemarkEmitter * ORE
Optimization remark emitter.
Definition AsmPrinter.h:129
DenseMap< uint64_t, SmallVector< const GlobalAlias *, 1 > > AliasMapTy
Print a general LLVM constant to the .s file.
Definition AsmPrinter.h:570
virtual bool shouldEmitWeakSwiftAsyncExtendedFramePointerFlags() const
Definition AsmPrinter.h:995
AsmPrinter(TargetMachine &TM, std::unique_ptr< MCStreamer > Streamer, char &ID=AsmPrinter::ID)
void printOffset(int64_t Offset, raw_ostream &OS) const
This is just convenient handler for printing offsets.
void emitGlobalConstant(const DataLayout &DL, const Constant *CV, AliasMapTy *AliasList=nullptr)
EmitGlobalConstant - Print a general LLVM constant to the .s file.
void emitFrameAlloc(const MachineInstr &MI)
void emitStackSizeSection(const MachineFunction &MF)
MCSymbol * getSymbolPreferLocal(const GlobalValue &GV) const
Similar to getSymbol() but preferred for references.
MCSymbol * CurrentFnSym
The symbol for the current function.
Definition AsmPrinter.h:136
MachineModuleInfo * MMI
This is a pointer to the current MachineModuleInfo.
Definition AsmPrinter.h:120
void emitSLEB128(int64_t Value, const char *Desc=nullptr) const
Emit the specified signed leb128 value.
void emitAlignment(Align Alignment, const GlobalObject *GV=nullptr, unsigned MaxBytesToEmit=0) const
Emit an alignment directive to the specified power of two boundary.
MCContext & OutContext
This is the context for the output file that we are streaming.
Definition AsmPrinter.h:106
const StaticDataProfileInfo * SDPI
Provides the profile information for constants.
Definition AsmPrinter.h:155
void emitCFIInstruction(const MachineInstr &MI)
MCSymbol * createTempSymbol(const Twine &Name) const
bool doFinalization(Module &M) override
Shut down the asmprinter.
virtual const MCSubtargetInfo * getIFuncMCSubtargetInfo() const
getSubtargetInfo() cannot be used where this is needed because we don't have a MachineFunction when w...
Definition AsmPrinter.h:669
void emitStackUsage(const MachineFunction &MF)
virtual void emitKCFITypeId(const MachineFunction &MF)
bool isPositionIndependent() const
virtual void emitXXStructorList(const DataLayout &DL, const Constant *List, bool IsCtor)
This method emits llvm.global_ctors or llvm.global_dtors list.
void emitPCSectionsLabel(const MachineFunction &MF, const MDNode &MD)
Emits a label as reference for PC sections.
MCSymbol * CurrentPatchableFunctionEntrySym
The symbol for the entry in __patchable_function_entires.
Definition AsmPrinter.h:132
virtual void emitBasicBlockStart(const MachineBasicBlock &MBB)
Targets can override this to emit stuff at the start of a basic block.
void takeDeletedSymbolsForFunction(const Function *F, std::vector< MCSymbol * > &Result)
If the specified function has had any references to address-taken blocks generated,...
void emitVisibility(MCSymbol *Sym, unsigned Visibility, bool IsDefinition=true) const
This emits visibility information about symbol, if this is supported by the target.
void emitInt32(int Value) const
Emit a long directive and value.
std::unique_ptr< MCStreamer > OutStreamer
This is the MCStreamer object for the file we are generating.
Definition AsmPrinter.h:111
const ProfileSummaryInfo * PSI
The profile summary information.
Definition AsmPrinter.h:158
virtual void emitFunctionDescriptor()
Definition AsmPrinter.h:636
const MCSection * getCurrentSection() const
Return the current section we are emitting to.
unsigned int getDwarfOffsetByteSize() const
Returns 4 for DWARF32 and 8 for DWARF64.
size_t NumUserHandlers
Definition AsmPrinter.h:242
MCSymbol * CurrentFnSymForSize
The symbol used to represent the start of the current function for the purpose of calculating its siz...
Definition AsmPrinter.h:145
bool isVerbose() const
Return true if assembly output should contain comments.
Definition AsmPrinter.h:303
MCSymbol * getFunctionEnd() const
Definition AsmPrinter.h:313
virtual void emitXXStructor(const DataLayout &DL, const Constant *CV)
Targets can override this to change how global constants that are part of a C++ static/global constru...
Definition AsmPrinter.h:644
void preprocessXXStructorList(const DataLayout &DL, const Constant *List, SmallVector< Structor, 8 > &Structors)
This method gathers an array of Structors and then sorts them out by Priority.
void emitInt16(int Value) const
Emit a short directive and value.
void setDwarfVersion(uint16_t Version)
void getNameWithPrefix(SmallVectorImpl< char > &Name, const GlobalValue *GV) const
StringRef getConstantSectionSuffix(const Constant *C) const
Returns a section suffix (hot or unlikely) for the constant if profiles are available.
SmallVector< std::unique_ptr< AsmPrinterHandler >, 1 > EHHandlers
A handle to the EH info emitter (if present).
Definition AsmPrinter.h:236
void emitPseudoProbe(const MachineInstr &MI)
unsigned getPointerSize() const
Return the pointer size from the TargetMachine.
void emitRemarksSection(remarks::RemarkStreamer &RS)
MCSymbol * GetBlockAddressSymbol(const BlockAddress *BA) const
Return the MCSymbol used to satisfy BlockAddress uses of the specified basic block.
ArrayRef< MCSymbol * > getAddrLabelSymbolToEmit(const BasicBlock *BB)
Return the symbol to be used for the specified basic block when its address is taken.
virtual void emitFunctionBodyEnd()
Targets can override this to emit stuff after the last basic block in the function.
Definition AsmPrinter.h:615
const DataLayout & getDataLayout() const
Return information about data layout.
void emitCOFFFeatureSymbol(Module &M)
Emits the @feat.00 symbol indicating the features enabled in this module.
virtual void emitFunctionEntryLabel()
EmitFunctionEntryLabel - Emit the label that is the entrypoint for the function.
void emitInitialRawDwarfLocDirective(const MachineFunction &MF)
Emits inital debug location directive.
MCSymbol * GetExternalSymbolSymbol(const Twine &Sym) const
Return the MCSymbol for the specified ExternalSymbol.
void handleCallsiteForCallgraph(FunctionCallGraphInfo &FuncCGInfo, const MachineFunction::CallSiteInfoMap &CallSitesInfoMap, const MachineInstr &MI)
If MI is an indirect call, add expected type IDs to indirect type ids list.
void emitInt64(uint64_t Value) const
Emit a long long directive and value.
uint16_t getDwarfVersion() const
dwarf::FormParams getDwarfFormParams() const
Returns information about the byte size of DW_FORM values.
const MCSubtargetInfo & getSubtargetInfo() const
Return information about subtarget.
void emitCOFFReplaceableFunctionData(Module &M)
Emits symbols and data to allow functions marked with the loader-replaceable attribute to be replacea...
bool usesCFIWithoutEH() const
Since emitting CFI unwind information is entangled with supporting the exceptions,...
bool doesDwarfUseRelocationsAcrossSections() const
Definition AsmPrinter.h:372
@ None
Do not emit either .eh_frame or .debug_frame.
Definition AsmPrinter.h:175
@ Debug
Emit .debug_frame.
Definition AsmPrinter.h:177
void addAsmPrinterHandler(std::unique_ptr< AsmPrinterHandler > Handler)
virtual std::tuple< const MCSymbol *, uint64_t, const MCSymbol *, codeview::JumpTableEntrySize > getCodeViewJumpTableInfo(int JTI, const MachineInstr *BranchInstr, const MCSymbol *BranchLabel) const
Gets information required to create a CodeView debug symbol for a jump table.
void emitLabelDifferenceAsULEB128(const MCSymbol *Hi, const MCSymbol *Lo) const
Emit something like ".uleb128 Hi-Lo".
virtual const MCExpr * lowerBlockAddressConstant(const BlockAddress &BA)
Lower the specified BlockAddress to an MCExpr.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
unsigned getNumber() const
Definition BasicBlock.h:95
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
Definition BasicBlock.h:690
The address of a basic block.
Definition Constants.h:899
BasicBlock * getBasicBlock() const
Definition Constants.h:934
uint64_t getFrequency() const
Returns the frequency as a fixpoint number scaled by the entry frequency.
uint32_t getNumerator() const
Value handle with callbacks on RAUW and destruction.
ConstMIBundleOperands - Iterate over all operands in a const bundle of machine instructions.
ConstantArray - Constant Array Declarations.
Definition Constants.h:433
ArrayType * getType() const
Specialize the getType() method to always return an ArrayType, which reduces the amount of casting ne...
Definition Constants.h:452
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
Definition Constants.h:715
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
Definition Constants.h:593
LLVM_ABI APFloat getElementAsAPFloat(uint64_t i) const
If this is a sequential container of floating point type, return the specified element as an APFloat.
LLVM_ABI uint64_t getElementAsInteger(uint64_t i) const
If this is a sequential container of integers (of any size), return the specified element in the low ...
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
Definition Constants.h:668
LLVM_ABI uint64_t getElementByteSize() const
Return the size (in bytes) of each element in the array/vector.
LLVM_ABI bool isString(unsigned CharSize=8) const
This method returns true if this is an array of CharSize integers.
LLVM_ABI uint64_t getNumElements() const
Return the number of elements in the array or vector.
LLVM_ABI Type * getElementType() const
Return the element type of the array/vector.
A constant value that is initialized with an expression using other constant values.
Definition Constants.h:1120
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValueAPF() const
Definition Constants.h:320
This is the shared class of boolean and integer constants.
Definition Constants.h:87
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
Definition Constants.h:264
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
Definition Constants.h:157
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:163
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
A signed pointer, in the ptrauth sense.
Definition Constants.h:1032
StructType * getType() const
Specialization - reduce amount of casting.
Definition Constants.h:504
static Constant * getAnon(ArrayRef< Constant * > V, bool Packed=false)
Return an anonymous struct that has the specified elements.
Definition Constants.h:486
This is an important base class in LLVM.
Definition Constant.h:43
const Constant * stripPointerCasts() const
Definition Constant.h:219
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
DWARF expression.
iterator_range< expr_op_iterator > expr_ops() const
unsigned getNumElements() const
static LLVM_ABI std::optional< const DIExpression * > convertToNonVariadicExpression(const DIExpression *Expr)
If Expr is a valid single-location expression, i.e.
Subprogram description. Uses SubclassData1.
Wrapper for a function that represents a value that functionally represents the original function.
Definition Constants.h:952
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
bool isBigEndian() const
Definition DataLayout.h:208
TypeSize getTypeStoreSize(Type *Ty) const
Returns the maximum number of bytes that may be overwritten by storing the specified type.
Definition DataLayout.h:557
A debug info location.
Definition DebugLoc.h:124
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:167
iterator end()
Definition DenseMap.h:81
Collects and handles dwarf debug information.
Definition DwarfDebug.h:351
Emits exception handling directives.
Definition EHStreamer.h:30
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition Function.h:903
Constant * getPersonalityFn() const
Get the personality function associated with this function.
const Function & getFunction() const
Definition Function.h:164
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:359
GCMetadataPrinter - Emits GC metadata as assembly code.
An analysis pass which caches information about the entire Module.
Definition GCMetadata.h:237
SmallVector< std::unique_ptr< GCStrategy >, 1 >::const_iterator iterator
Definition GCMetadata.h:266
GCStrategy describes a garbage collector algorithm's code generation requirements,...
Definition GCStrategy.h:64
bool usesMetadata() const
If set, appropriate metadata tables must be emitted by the back-end (assembler, JIT,...
Definition GCStrategy.h:120
const std::string & getName() const
Return the name of the GC strategy.
Definition GCStrategy.h:90
LLVM_ABI const GlobalObject * getAliaseeObject() const
Definition Globals.cpp:636
const Constant * getAliasee() const
Definition GlobalAlias.h:87
LLVM_ABI const Function * getResolverFunction() const
Definition Globals.cpp:665
const Constant * getResolver() const
Definition GlobalIFunc.h:73
StringRef getSection() const
Get the custom section of this global if it has one.
bool hasMetadata() const
Return true if this value has any metadata attached to it.
Definition Value.h:602
bool hasSection() const
Check if this global has a custom object file section.
bool hasLinkOnceLinkage() const
bool hasExternalLinkage() const
bool isDSOLocal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
VisibilityTypes getVisibility() const
LLVM_ABI bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition Globals.cpp:328
LinkageTypes getLinkage() const
bool hasLocalLinkage() const
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool hasPrivateLinkage() const
bool isTagged() const
bool isDeclarationForLinker() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
VisibilityTypes
An enumeration for the kinds of visibility of global values.
Definition GlobalValue.h:67
@ DefaultVisibility
The GV is visible.
Definition GlobalValue.h:68
@ HiddenVisibility
The GV is hidden.
Definition GlobalValue.h:69
@ ProtectedVisibility
The GV is protected.
Definition GlobalValue.h:70
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Definition Globals.cpp:132
LLVM_ABI bool canBenefitFromLocalAlias() const
Definition Globals.cpp:114
bool hasComdat() const
bool hasWeakLinkage() const
bool hasCommonLinkage() const
bool hasGlobalUnnamedAddr() const
bool hasAppendingLinkage() const
static bool isDiscardableIfUnused(LinkageTypes Linkage)
Whether the definition of this global may be discarded if it is not used in its compilation unit.
LLVM_ABI bool canBeOmittedFromSymbolTable() const
True if GV can be left out of the object symbol table.
Definition Globals.cpp:457
bool hasAvailableExternallyLinkage() const
LinkageTypes
An enumeration for the kinds of linkage for global values.
Definition GlobalValue.h:52
@ PrivateLinkage
Like Internal, but omit from symbol table.
Definition GlobalValue.h:61
@ CommonLinkage
Tentative definitions.
Definition GlobalValue.h:63
@ InternalLinkage
Rename collisions when linking (static functions).
Definition GlobalValue.h:60
@ LinkOnceAnyLinkage
Keep one copy of function when linking (inline)
Definition GlobalValue.h:55
@ WeakODRLinkage
Same, but only replaced by something equivalent.
Definition GlobalValue.h:58
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
@ WeakAnyLinkage
Keep one copy of named function when linking (weak)
Definition GlobalValue.h:57
@ AppendingLinkage
Special purpose, only applies to global arrays.
Definition GlobalValue.h:59
@ AvailableExternallyLinkage
Available for inspection, not emission.
Definition GlobalValue.h:54
@ ExternalWeakLinkage
ExternalWeak linkage description.
Definition GlobalValue.h:62
@ LinkOnceODRLinkage
Same, but only replaced by something equivalent.
Definition GlobalValue.h:56
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool hasInitializer() const
Definitions have initializers, declarations don't.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
Itinerary data supplied by a subtarget to be used by a target.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
LLVM_ABI void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
This is an alternative analysis pass to MachineBlockFrequencyInfo.
A helper class to return the specified delimiter string after the first invocation of operator String...
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition MCAsmInfo.h:64
bool hasWeakDefCanBeHiddenDirective() const
Definition MCAsmInfo.h:613
bool hasSubsectionsViaSymbols() const
Definition MCAsmInfo.h:457
const char * getWeakRefDirective() const
Definition MCAsmInfo.h:611
bool hasIdentDirective() const
Definition MCAsmInfo.h:608
static const MCBinaryExpr * createAdd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx, SMLoc Loc=SMLoc())
Definition MCExpr.h:343
static const MCBinaryExpr * createSub(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition MCExpr.h:428
static LLVM_ABI const MCConstantExpr * create(int64_t Value, MCContext &Ctx, bool PrintInHex=false, unsigned SizeInBytes=0)
Definition MCExpr.cpp:212
Context object for machine code objects.
Definition MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition MCExpr.h:34
Instances of this class represent a single low-level machine instruction.
Definition MCInst.h:188
unsigned getOpcode() const
Definition MCInst.h:202
void setOpcode(unsigned Op)
Definition MCInst.h:201
Interface to description of machine instruction set.
Definition MCInstrInfo.h:27
MCSection * getTLSBSSSection() const
MCSection * getStackSizesSection(const MCSection &TextSec) const
MCSection * getBBAddrMapSection(const MCSection &TextSec) const
MCSection * getTLSExtraDataSection() const
MCSection * getKCFITrapSection(const MCSection &TextSec) const
MCSection * getPCSection(StringRef Name, const MCSection *TextSec) const
MCSection * getCallGraphSection(const MCSection &TextSec) const
MCSection * getDataSection() const
This represents a section on Windows.
Instances of this class represent a uniqued identifier for a section in the current translation unit.
Definition MCSection.h:521
bool isBssSection() const
Check whether this section is "virtual", that is has no actual object file contents.
Definition MCSection.h:637
static constexpr unsigned NonUniqueID
Definition MCSection.h:526
Streaming machine code generation interface.
Definition MCStreamer.h:220
virtual void emitBinaryData(StringRef Data)
Functionally identical to EmitBytes.
virtual void emitInstruction(const MCInst &Inst, const MCSubtargetInfo &STI)
Emit the given Instruction into the current section.
virtual StringRef getMnemonic(const MCInst &MI) const
Returns the mnemonic for MI, if the streamer has access to a instruction printer and returns an empty...
Definition MCStreamer.h:471
void emitZeros(uint64_t NumBytes)
Emit NumBytes worth of zeros.
Generic base class for all target subtargets.
const MCSchedModel & getSchedModel() const
Get the machine model for this subtarget's CPU.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx, SMLoc Loc=SMLoc())
Definition MCExpr.h:214
StringRef getSymbolTableName() const
bool hasRename() const
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
bool isDefined() const
isDefined - Check if this symbol is defined (i.e., it has an address).
Definition MCSymbol.h:233
bool isUndefined() const
isUndefined - Check if this symbol undefined (i.e., implicitly defined).
Definition MCSymbol.h:243
StringRef getName() const
getName - Get the symbol name.
Definition MCSymbol.h:188
bool isVariable() const
isVariable - Check if this is a variable symbol.
Definition MCSymbol.h:267
void redefineIfPossible()
Prepare this symbol to be redefined.
Definition MCSymbol.h:212
const MCSymbol * getAddSym() const
Definition MCValue.h:49
int64_t getConstant() const
Definition MCValue.h:44
const MCSymbol * getSubSym() const
Definition MCValue.h:51
bool isAbsolute() const
Is this an absolute (as opposed to relocatable) value.
Definition MCValue.h:54
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
ArrayRef< MDOperand > operands() const
Definition Metadata.h:1440
Tracking metadata reference owned by Metadata.
Definition Metadata.h:900
A single uniqued string.
Definition Metadata.h:721
LLVM_ABI StringRef getString() const
Definition Metadata.cpp:618
LLVM_ABI MCSymbol * getSymbol() const
Return the MCSymbol for this basic block.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
MachineBlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate machine basic b...
LLVM_ABI BlockFrequency getBlockFreq(const MachineBasicBlock *MBB) const
getblockFreq - Return block frequency.
BranchProbability getEdgeProbability(const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const
This class is a data container for one entry in a MachineConstantPool.
union llvm::MachineConstantPoolEntry::@004270020304201266316354007027341142157160323045 Val
The constant itself.
bool isMachineConstantPoolEntry() const
isMachineConstantPoolEntry - Return true if the MachineConstantPoolEntry is indeed a target specific ...
MachineConstantPoolValue * MachineCPVal
Align Alignment
The required alignment for this entry.
unsigned getSizeInBytes(const DataLayout &DL) const
SectionKind getSectionKind(const DataLayout *DL) const
Abstract base class for all machine specific constantpool value subclasses.
The MachineConstantPool class keeps track of constants referenced by a function which must be spilled...
const std::vector< MachineConstantPoolEntry > & getConstants() const
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool hasVarSizedObjects() const
This method may be called any time after instruction selection is complete to determine if the stack ...
uint64_t getStackSize() const
Return the number of bytes that must be allocated to hold all of the fixed size frame objects.
uint64_t getUnsafeStackSize() const
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
DenseMap< const MachineInstr *, CallSiteInfo > CallSiteInfoMap
bool hasBBSections() const
Returns true if this function has basic block sections enabled.
Function & getFunction()
Return the LLVM function that this machine code represents.
const std::vector< LandingPadInfo > & getLandingPads() const
Return a reference to the landing pad info for the current function.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Representation of each machine instruction.
LLVM_ABI unsigned getEntrySize(const DataLayout &TD) const
getEntrySize - Return the size of each entry in the jump table.
@ EK_GPRel32BlockAddress
EK_GPRel32BlockAddress - Each entry is an address of block, encoded with a relocation as gp-relative,...
@ EK_Inline
EK_Inline - Jump table entries are emitted inline at their point of use.
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_Custom32
EK_Custom32 - Each entry is a 32-bit value that is custom lowered by the TargetLowering::LowerCustomJ...
@ EK_LabelDifference64
EK_LabelDifference64 - Each entry is the address of the block minus the address of the jump table.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
@ EK_GPRel64BlockAddress
EK_GPRel64BlockAddress - Each entry is an address of block, encoded with a relocation as gp-relative,...
LLVM_ABI unsigned getEntryAlignment(const DataLayout &TD) const
getEntryAlignment - Return the alignment of each entry in the jump table.
const std::vector< MachineJumpTableEntry > & getJumpTables() const
MachineModuleInfoCOFF - This is a MachineModuleInfoImpl implementation for COFF targets.
SymbolListTy GetGVStubList()
Accessor methods to return the set of stubs in sorted order.
MachineModuleInfoELF - This is a MachineModuleInfoImpl implementation for ELF targets.
SymbolListTy GetGVStubList()
Accessor methods to return the set of stubs in sorted order.
std::vector< std::pair< MCSymbol *, StubValueTy > > SymbolListTy
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
bool isSymbol() const
isSymbol - Tests if this is a MO_ExternalSymbol operand.
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
MachineOperandType getType() const
getType - Returns the MachineOperandType for this operand.
const char * getSymbolName() const
@ MO_Immediate
Immediate operand.
@ MO_GlobalAddress
Address of a global value.
@ MO_CImmediate
Immediate >64bit operand.
@ MO_FrameIndex
Abstract Stack Frame Index.
@ MO_Register
Register operand.
@ MO_ExternalSymbol
Name of external global symbol.
@ MO_TargetIndex
Target-dependent index+offset operand.
@ MO_FPImmediate
Floating-point immediate operand.
Diagnostic information for optimization analysis remarks.
LLVM_ABI void getNameWithPrefix(raw_ostream &OS, const GlobalValue *GV, bool CannotUsePrivateLabel) const
Print the appropriate prefix and the specified global variable's name.
Definition Mangler.cpp:121
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
A tuple of MDNodes.
Definition Metadata.h:1757
LLVM_ABI unsigned getNumOperands() const
iterator_range< op_iterator > operands()
Definition Metadata.h:1853
Wrapper for a value that won't be replaced with a CFI jump table pointer in LowerTypeTestsModule.
Definition Constants.h:991
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
AnalysisType * getAnalysisIfAvailable() const
getAnalysisIfAvailable<AnalysisType>() - Subclasses use this function to get analysis information tha...
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Wrapper class representing virtual and physical registers.
Definition Register.h:19
static iterator_range< iterator > entries()
Definition Registry.h:113
SimpleRegistryEntry< GCMetadataPrinter > entry
Definition Registry.h:47
Represents a location in source code.
Definition SMLoc.h:23
SectionKind - This is a simple POD value that classifies the properties of a section.
Definition SectionKind.h:22
bool isCommon() const
bool isBSS() const
static SectionKind getReadOnlyWithRel()
bool isBSSLocal() const
bool isThreadBSS() const
bool isThreadLocal() const
bool isThreadData() const
static SectionKind getReadOnly()
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
int64_t getFixed() const
Returns the fixed component of the stack.
Definition TypeSize.h:47
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
bool contains(StringRef Other) const
Return true if the given string is a substring of *this, and false otherwise.
Definition StringRef.h:426
size_t find(char C, size_t From=0) const
Search for the first character C in the string.
Definition StringRef.h:293
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition DataLayout.h:712
TypeSize getSizeInBytes() const
Definition DataLayout.h:721
TypeSize getElementOffset(unsigned Idx) const
Definition DataLayout.h:743
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Information about stack frame layout on the target.
virtual StackOffset getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const
getFrameIndexReference - This method should return the base register and offset used to reference a f...
TargetInstrInfo - Interface to description of machine instruction set.
Align getMinFunctionAlignment() const
Return the minimum function alignment.
virtual const MCExpr * lowerDSOLocalEquivalent(const MCSymbol *LHS, const MCSymbol *RHS, int64_t Addend, std::optional< int64_t > PCRelativeOffset, const TargetMachine &TM) const
virtual MCSection * getSectionForCommandLines() const
If supported, return the section to use for the llvm.commandline metadata.
static SectionKind getKindForGlobal(const GlobalObject *GO, const TargetMachine &TM)
Classify the specified global variable into a set of target independent categories embodied in Sectio...
virtual MCSection * getSectionForJumpTable(const Function &F, const TargetMachine &TM) const
virtual MCSection * getStaticDtorSection(unsigned Priority, const MCSymbol *KeySym) const
virtual bool shouldPutJumpTableInFunctionSection(bool UsesLabelDifference, const Function &F) const
virtual const MCExpr * getIndirectSymViaGOTPCRel(const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV, int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const
Get the target specific PC relative GOT entry relocation.
virtual void emitModuleMetadata(MCStreamer &Streamer, Module &M) const
Emit the module-level metadata that the platform cares about.
virtual MCSection * getSectionForConstant(const DataLayout &DL, SectionKind Kind, const Constant *C, Align &Alignment) const
Given a constant with the SectionKind, return a section that it should be placed in.
virtual const MCExpr * lowerRelativeReference(const GlobalValue *LHS, const GlobalValue *RHS, int64_t Addend, std::optional< int64_t > PCRelativeOffset, const TargetMachine &TM) const
MCSymbol * getSymbolWithGlobalValueBase(const GlobalValue *GV, StringRef Suffix, const TargetMachine &TM) const
Return the MCSymbol for a private symbol with global value name as its base, with the specified suffi...
virtual MCSection * getStaticCtorSection(unsigned Priority, const MCSymbol *KeySym) const
bool supportGOTPCRelWithOffset() const
Target GOT "PC"-relative relocation supports encoding an additional binary expression with an offset?
bool supportIndirectSymViaGOTPCRel() const
Target supports replacing a data "PC"-relative access to a symbol through another symbol,...
virtual MCSymbol * getFunctionEntryPointSymbol(const GlobalValue *Func, const TargetMachine &TM) const
If supported, return the function entry point symbol.
MCSection * SectionForGlobal(const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const
This method computes the appropriate section to emit the specified global variable or function defini...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
Primary interface to the complete machine description for the target machine.
const Triple & getTargetTriple() const
TargetOptions Options
unsigned EnableStaticDataPartitioning
Enables the StaticDataSplitter pass.
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
Target - Wrapper for Target specific information.
TinyPtrVector - This class is specialized for cases where there are normally 0 or 1 element in a vect...
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
bool isOSBinFormatXCOFF() const
Tests whether the OS uses the XCOFF binary format.
Definition Triple.h:793
bool isOSBinFormatELF() const
Tests whether the OS uses the ELF binary format.
Definition Triple.h:770
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:298
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition Type.h:153
bool isBFloatTy() const
Return true if this is 'bfloat', a 16-bit bfloat type.
Definition Type.h:145
bool isPPC_FP128Ty() const
Return true if this is powerpc long double.
Definition Type.h:165
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
Definition Type.h:142
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false, bool NoDetails=false) const
Print the current type.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition Type.h:156
bool isFunctionTy() const
True if this is an instance of FunctionType.
Definition Type.h:258
Value * getOperand(unsigned i) const
Definition User.h:232
unsigned getNumOperands() const
Definition User.h:254
Value * operator=(Value *RHS)
Definition ValueHandle.h:70
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI std::string getNameOrAsOperand() const
Definition Value.cpp:457
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
User * user_back()
Definition Value.h:412
LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
A raw_ostream that writes to an std::string.
std::string & str()
Returns the string's reference.
A raw_ostream that writes to an SmallVector or SmallString.
StringRef str() const
Return a StringRef for the vector contents.
LLVM_ABI StringRef OperationEncodingString(unsigned Encoding)
Definition Dwarf.cpp:138
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE()
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
@ IMAGE_SCN_MEM_READ
Definition COFF.h:336
@ IMAGE_SCN_MEM_DISCARDABLE
Definition COFF.h:331
@ IMAGE_SCN_LNK_INFO
Definition COFF.h:307
@ IMAGE_SCN_CNT_INITIALIZED_DATA
Definition COFF.h:304
@ IMAGE_SCN_LNK_COMDAT
Definition COFF.h:309
@ IMAGE_SYM_CLASS_EXTERNAL
External symbol.
Definition COFF.h:224
@ IMAGE_SYM_CLASS_STATIC
Static.
Definition COFF.h:225
@ IMAGE_COMDAT_SELECT_ASSOCIATIVE
Definition COFF.h:459
@ IMAGE_COMDAT_SELECT_ANY
Definition COFF.h:456
@ SafeSEH
Definition COFF.h:847
@ GuardEHCont
Definition COFF.h:855
@ GuardCF
Definition COFF.h:853
@ Kernel
Definition COFF.h:857
@ IMAGE_SYM_DTYPE_NULL
No complex type; simple scalar variable.
Definition COFF.h:274
@ IMAGE_SYM_DTYPE_FUNCTION
A function that returns a base type.
Definition COFF.h:276
@ SCT_COMPLEX_TYPE_SHIFT
Type is formed as (base + (derived << SCT_COMPLEX_TYPE_SHIFT))
Definition COFF.h:280
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ SHT_LLVM_JT_SIZES
Definition ELF.h:1186
@ SHT_PROGBITS
Definition ELF.h:1145
@ SHT_LLVM_SYMPART
Definition ELF.h:1178
@ SHF_ALLOC
Definition ELF.h:1245
@ SHF_LINK_ORDER
Definition ELF.h:1260
@ SHF_GROUP
Definition ELF.h:1267
@ SHF_WRITE
Definition ELF.h:1242
@ S_ATTR_LIVE_SUPPORT
S_ATTR_LIVE_SUPPORT - Blocks are live if they reference live blocks.
Definition MachO.h:202
@ Itanium
Windows CE ARM, PowerPC, SH3, SH4.
Definition MCAsmInfo.h:49
@ X86
Windows x64, Windows Itanium (IA-64)
Definition MCAsmInfo.h:50
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
uint8_t getUnitLengthFieldByteSize(DwarfFormat Format)
Get the byte size of the unit length field depending on the DWARF format.
Definition Dwarf.h:1136
@ DWARF64
Definition Dwarf.h:93
uint8_t getDwarfOffsetByteSize(DwarfFormat Format)
The size of a reference determined by the DWARF 32/64-bit format.
Definition Dwarf.h:1097
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract_or_null(Y &&MD)
Extract a Value from Metadata, allowing null.
Definition Metadata.h:682
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
DiagnosticInfoOptimizationBase::Argument NV
uint64_t MD5Hash(const FunctionId &Obj)
Definition FunctionId.h:167
@ OF_Text
The file should be opened in text mode on platforms like z/OS that make this distinction.
Definition FileSystem.h:755
LLVM_ABI std::error_code make_absolute(SmallVectorImpl< char > &path)
Make path an absolute path.
Definition Path.cpp:955
LLVM_ABI StringRef filename(StringRef path LLVM_LIFETIME_BOUND, Style style=Style::native)
Get filename.
Definition Path.cpp:577
LLVM_ABI IntrusiveRefCntPtr< FileSystem > getRealFileSystem()
Gets an vfs::FileSystem for the 'real' file system, as seen by the operating system.
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
void stable_sort(R &&Range)
Definition STLExtras.h:2058
LLVM_ABI std::pair< StringRef, StringRef > getToken(StringRef Source, StringRef Delimiters=" \t\n\v\f\r")
getToken - This function extracts one token from source, ignoring any leading characters that appear ...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
ExceptionHandling
Definition CodeGen.h:53
@ SjLj
setjmp/longjmp based exceptions
Definition CodeGen.h:56
@ ZOS
z/OS MVS Exception Handling.
Definition CodeGen.h:61
@ None
No exception support.
Definition CodeGen.h:54
@ AIX
AIX Exception Handling.
Definition CodeGen.h:60
@ DwarfCFI
DWARF-like instruction based exceptions.
Definition CodeGen.h:55
@ WinEH
Windows Exception Handling.
Definition CodeGen.h:58
@ Wasm
WebAssembly Exception Handling.
Definition CodeGen.h:59
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
Op::Description Desc
@ MCDR_DataRegionEnd
.end_data_region
@ MCDR_DataRegionJT32
.data_region jt32
bool isNoOpWithoutInvoke(EHPersonality Pers)
Return true if this personality may be safely removed if there are no invoke instructions remaining i...
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:754
FunctionAddr VTableAddr uintptr_t uintptr_t Version
Definition InstrProf.h:302
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1622
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:129
constexpr std::string_view HybridPatchableTargetSuffix
Definition Mangler.h:37
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Global
Append to llvm.global_dtors.
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1867
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
@ MCSA_Local
.local (ELF)
@ MCSA_WeakDefAutoPrivate
.weak_def_can_be_hidden (MachO)
@ MCSA_Memtag
.memtag (ELF)
@ MCSA_WeakReference
.weak_reference (MachO)
@ MCSA_AltEntry
.alt_entry (MachO)
@ MCSA_ELF_TypeIndFunction
.type _foo, STT_GNU_IFUNC
@ MCSA_Weak
.weak
@ MCSA_WeakDefinition
.weak_definition (MachO)
@ MCSA_Global
.type _foo, @gnu_unique_object
@ MCSA_Cold
.cold (MachO)
@ MCSA_ELF_TypeObject
.type _foo, STT_OBJECT # aka @object
@ MCSA_ELF_TypeFunction
.type _foo, STT_FUNC # aka @function
@ MCSA_Invalid
Not a valid directive.
@ MCSA_NoDeadStrip
.no_dead_strip (MachO)
int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
constexpr const char * PseudoProbeDescMetadataName
Definition PseudoProbe.h:26
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:867
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
#define NC
Definition regutils.h:42
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:304
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
Definition APFloat.cpp:267
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Map a basic block section ID to the begin and end symbols of that section which determine the section...
Definition AsmPrinter.h:162
llvm.global_ctors and llvm.global_dtors are arrays of Structor structs.
Definition AsmPrinter.h:534
LLVM_ABI void emit(int, MCStreamer *) const
Machine model for scheduling, bundling, and heuristics.
Definition MCSchedule.h:258
static LLVM_ABI int computeInstrLatency(const MCSubtargetInfo &STI, const MCSchedClassDesc &SCDesc)
Returns the latency value for the scheduling class.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
A helper struct providing information about the byte size of DW_FORM values that vary in size dependi...
Definition Dwarf.h:1110
This is the base class for a remark serializer.
virtual std::unique_ptr< MetaSerializer > metaSerializer(raw_ostream &OS, StringRef ExternalFilename)=0
Return the corresponding metadata serializer.