LLVM 20.0.0git
AddressSanitizer.cpp
Go to the documentation of this file.
1//===- AddressSanitizer.cpp - memory error detector -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of AddressSanitizer, an address basic correctness
10// checker.
11// Details of the algorithm:
12// https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13//
14// FIXME: This sanitizer does not yet handle scalable vectors
15//
16//===----------------------------------------------------------------------===//
17
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/Twine.h"
35#include "llvm/IR/Argument.h"
36#include "llvm/IR/Attributes.h"
37#include "llvm/IR/BasicBlock.h"
38#include "llvm/IR/Comdat.h"
39#include "llvm/IR/Constant.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DIBuilder.h"
42#include "llvm/IR/DataLayout.h"
44#include "llvm/IR/DebugLoc.h"
47#include "llvm/IR/Function.h"
48#include "llvm/IR/GlobalAlias.h"
49#include "llvm/IR/GlobalValue.h"
51#include "llvm/IR/IRBuilder.h"
52#include "llvm/IR/InlineAsm.h"
53#include "llvm/IR/InstVisitor.h"
54#include "llvm/IR/InstrTypes.h"
55#include "llvm/IR/Instruction.h"
58#include "llvm/IR/Intrinsics.h"
59#include "llvm/IR/LLVMContext.h"
60#include "llvm/IR/MDBuilder.h"
61#include "llvm/IR/Metadata.h"
62#include "llvm/IR/Module.h"
63#include "llvm/IR/Type.h"
64#include "llvm/IR/Use.h"
65#include "llvm/IR/Value.h"
69#include "llvm/Support/Debug.h"
82#include <algorithm>
83#include <cassert>
84#include <cstddef>
85#include <cstdint>
86#include <iomanip>
87#include <limits>
88#include <sstream>
89#include <string>
90#include <tuple>
91
92using namespace llvm;
93
94#define DEBUG_TYPE "asan"
95
97static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
98static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
100 std::numeric_limits<uint64_t>::max();
101static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G.
103static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
104static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
105static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
106static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29;
107static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
108static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
109static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
110static const uint64_t kLoongArch64_ShadowOffset64 = 1ULL << 46;
112static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
113static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
114static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47;
115static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
116static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
117static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
118static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
119static const uint64_t kPS_ShadowOffset64 = 1ULL << 40;
120static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
122
123// The shadow memory space is dynamically allocated.
125
126static const size_t kMinStackMallocSize = 1 << 6; // 64B
127static const size_t kMaxStackMallocSize = 1 << 16; // 64K
128static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
129static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
130
131const char kAsanModuleCtorName[] = "asan.module_ctor";
132const char kAsanModuleDtorName[] = "asan.module_dtor";
134// On Emscripten, the system needs more than one priorities for constructors.
136const char kAsanReportErrorTemplate[] = "__asan_report_";
137const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
138const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
139const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
141 "__asan_unregister_image_globals";
142const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
143const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
144const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
145const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
146const char kAsanInitName[] = "__asan_init";
147const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
148const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
149const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
150const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
151static const int kMaxAsanStackMallocSizeClass = 10;
152const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
154 "__asan_stack_malloc_always_";
155const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
156const char kAsanGenPrefix[] = "___asan_gen_";
157const char kODRGenPrefix[] = "__odr_asan_gen_";
158const char kSanCovGenPrefix[] = "__sancov_gen_";
159const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
160const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
161const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
162
163// ASan version script has __asan_* wildcard. Triple underscore prevents a
164// linker (gold) warning about attempting to export a local symbol.
165const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
166
168 "__asan_option_detect_stack_use_after_return";
169
171 "__asan_shadow_memory_dynamic_address";
172
173const char kAsanAllocaPoison[] = "__asan_alloca_poison";
174const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
175
176const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
177const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
178const char kAMDGPUBallotName[] = "llvm.amdgcn.ballot.i64";
179const char kAMDGPUUnreachableName[] = "llvm.amdgcn.unreachable";
180
181// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
182static const size_t kNumberOfAccessSizes = 5;
183
184static const uint64_t kAllocaRzSize = 32;
185
186// ASanAccessInfo implementation constants.
187constexpr size_t kCompileKernelShift = 0;
188constexpr size_t kCompileKernelMask = 0x1;
189constexpr size_t kAccessSizeIndexShift = 1;
190constexpr size_t kAccessSizeIndexMask = 0xf;
191constexpr size_t kIsWriteShift = 5;
192constexpr size_t kIsWriteMask = 0x1;
193
194// Command-line flags.
195
197 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
198 cl::Hidden, cl::init(false));
199
201 "asan-recover",
202 cl::desc("Enable recovery mode (continue-after-error)."),
203 cl::Hidden, cl::init(false));
204
206 "asan-guard-against-version-mismatch",
207 cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden,
208 cl::init(true));
209
210// This flag may need to be replaced with -f[no-]asan-reads.
211static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
212 cl::desc("instrument read instructions"),
213 cl::Hidden, cl::init(true));
214
216 "asan-instrument-writes", cl::desc("instrument write instructions"),
217 cl::Hidden, cl::init(true));
218
219static cl::opt<bool>
220 ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(true),
221 cl::Hidden, cl::desc("Use Stack Safety analysis results"),
223
225 "asan-instrument-atomics",
226 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
227 cl::init(true));
228
229static cl::opt<bool>
230 ClInstrumentByval("asan-instrument-byval",
231 cl::desc("instrument byval call arguments"), cl::Hidden,
232 cl::init(true));
233
235 "asan-always-slow-path",
236 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
237 cl::init(false));
238
240 "asan-force-dynamic-shadow",
241 cl::desc("Load shadow address into a local variable for each function"),
242 cl::Hidden, cl::init(false));
243
244static cl::opt<bool>
245 ClWithIfunc("asan-with-ifunc",
246 cl::desc("Access dynamic shadow through an ifunc global on "
247 "platforms that support this"),
248 cl::Hidden, cl::init(true));
249
251 "asan-with-ifunc-suppress-remat",
252 cl::desc("Suppress rematerialization of dynamic shadow address by passing "
253 "it through inline asm in prologue."),
254 cl::Hidden, cl::init(true));
255
256// This flag limits the number of instructions to be instrumented
257// in any given BB. Normally, this should be set to unlimited (INT_MAX),
258// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
259// set it to 10000.
261 "asan-max-ins-per-bb", cl::init(10000),
262 cl::desc("maximal number of instructions to instrument in any given BB"),
263 cl::Hidden);
264
265// This flag may need to be replaced with -f[no]asan-stack.
266static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
267 cl::Hidden, cl::init(true));
269 "asan-max-inline-poisoning-size",
270 cl::desc(
271 "Inline shadow poisoning for blocks up to the given size in bytes."),
272 cl::Hidden, cl::init(64));
273
275 "asan-use-after-return",
276 cl::desc("Sets the mode of detection for stack-use-after-return."),
278 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",
279 "Never detect stack use after return."),
281 AsanDetectStackUseAfterReturnMode::Runtime, "runtime",
282 "Detect stack use after return if "
283 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."),
284 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",
285 "Always detect stack use after return.")),
286 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime));
287
288static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
289 cl::desc("Create redzones for byval "
290 "arguments (extra copy "
291 "required)"), cl::Hidden,
292 cl::init(true));
293
294static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
295 cl::desc("Check stack-use-after-scope"),
296 cl::Hidden, cl::init(false));
297
298// This flag may need to be replaced with -f[no]asan-globals.
299static cl::opt<bool> ClGlobals("asan-globals",
300 cl::desc("Handle global objects"), cl::Hidden,
301 cl::init(true));
302
303static cl::opt<bool> ClInitializers("asan-initialization-order",
304 cl::desc("Handle C++ initializer order"),
305 cl::Hidden, cl::init(true));
306
308 "asan-detect-invalid-pointer-pair",
309 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
310 cl::init(false));
311
313 "asan-detect-invalid-pointer-cmp",
314 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
315 cl::init(false));
316
318 "asan-detect-invalid-pointer-sub",
319 cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
320 cl::init(false));
321
323 "asan-realign-stack",
324 cl::desc("Realign stack to the value of this flag (power of two)"),
325 cl::Hidden, cl::init(32));
326
328 "asan-instrumentation-with-call-threshold",
329 cl::desc("If the function being instrumented contains more than "
330 "this number of memory accesses, use callbacks instead of "
331 "inline checks (-1 means never use callbacks)."),
332 cl::Hidden, cl::init(7000));
333
335 "asan-memory-access-callback-prefix",
336 cl::desc("Prefix for memory access callbacks"), cl::Hidden,
337 cl::init("__asan_"));
338
340 "asan-kernel-mem-intrinsic-prefix",
341 cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden,
342 cl::init(false));
343
344static cl::opt<bool>
345 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
346 cl::desc("instrument dynamic allocas"),
347 cl::Hidden, cl::init(true));
348
350 "asan-skip-promotable-allocas",
351 cl::desc("Do not instrument promotable allocas"), cl::Hidden,
352 cl::init(true));
353
355 "asan-constructor-kind",
356 cl::desc("Sets the ASan constructor kind"),
357 cl::values(clEnumValN(AsanCtorKind::None, "none", "No constructors"),
358 clEnumValN(AsanCtorKind::Global, "global",
359 "Use global constructors")),
360 cl::init(AsanCtorKind::Global), cl::Hidden);
361// These flags allow to change the shadow mapping.
362// The shadow mapping looks like
363// Shadow = (Mem >> scale) + offset
364
365static cl::opt<int> ClMappingScale("asan-mapping-scale",
366 cl::desc("scale of asan shadow mapping"),
367 cl::Hidden, cl::init(0));
368
370 ClMappingOffset("asan-mapping-offset",
371 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
372 cl::Hidden, cl::init(0));
373
374// Optimization flags. Not user visible, used mostly for testing
375// and benchmarking the tool.
376
377static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
378 cl::Hidden, cl::init(true));
379
380static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks",
381 cl::desc("Optimize callbacks"),
382 cl::Hidden, cl::init(false));
383
385 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
386 cl::Hidden, cl::init(true));
387
388static cl::opt<bool> ClOptGlobals("asan-opt-globals",
389 cl::desc("Don't instrument scalar globals"),
390 cl::Hidden, cl::init(true));
391
393 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
394 cl::Hidden, cl::init(false));
395
397 "asan-stack-dynamic-alloca",
398 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
399 cl::init(true));
400
402 "asan-force-experiment",
403 cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
404 cl::init(0));
405
406static cl::opt<bool>
407 ClUsePrivateAlias("asan-use-private-alias",
408 cl::desc("Use private aliases for global variables"),
409 cl::Hidden, cl::init(true));
410
411static cl::opt<bool>
412 ClUseOdrIndicator("asan-use-odr-indicator",
413 cl::desc("Use odr indicators to improve ODR reporting"),
414 cl::Hidden, cl::init(true));
415
416static cl::opt<bool>
417 ClUseGlobalsGC("asan-globals-live-support",
418 cl::desc("Use linker features to support dead "
419 "code stripping of globals"),
420 cl::Hidden, cl::init(true));
421
422// This is on by default even though there is a bug in gold:
423// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
424static cl::opt<bool>
425 ClWithComdat("asan-with-comdat",
426 cl::desc("Place ASan constructors in comdat sections"),
427 cl::Hidden, cl::init(true));
428
430 "asan-destructor-kind",
431 cl::desc("Sets the ASan destructor kind. The default is to use the value "
432 "provided to the pass constructor"),
433 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"),
434 clEnumValN(AsanDtorKind::Global, "global",
435 "Use global destructors")),
436 cl::init(AsanDtorKind::Invalid), cl::Hidden);
437
438// Debug flags.
439
440static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
441 cl::init(0));
442
443static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
444 cl::Hidden, cl::init(0));
445
447 cl::desc("Debug func"));
448
449static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
450 cl::Hidden, cl::init(-1));
451
452static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
453 cl::Hidden, cl::init(-1));
454
455STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
456STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
457STATISTIC(NumOptimizedAccessesToGlobalVar,
458 "Number of optimized accesses to global vars");
459STATISTIC(NumOptimizedAccessesToStackVar,
460 "Number of optimized accesses to stack vars");
461
462namespace {
463
464/// This struct defines the shadow mapping using the rule:
465/// shadow = (mem >> Scale) ADD-or-OR Offset.
466/// If InGlobal is true, then
467/// extern char __asan_shadow[];
468/// shadow = (mem >> Scale) + &__asan_shadow
469struct ShadowMapping {
470 int Scale;
471 uint64_t Offset;
472 bool OrShadowOffset;
473 bool InGlobal;
474};
475
476} // end anonymous namespace
477
478static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize,
479 bool IsKasan) {
480 bool IsAndroid = TargetTriple.isAndroid();
481 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() ||
482 TargetTriple.isDriverKit();
483 bool IsMacOS = TargetTriple.isMacOSX();
484 bool IsFreeBSD = TargetTriple.isOSFreeBSD();
485 bool IsNetBSD = TargetTriple.isOSNetBSD();
486 bool IsPS = TargetTriple.isPS();
487 bool IsLinux = TargetTriple.isOSLinux();
488 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
489 TargetTriple.getArch() == Triple::ppc64le;
490 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
491 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
492 bool IsMIPSN32ABI = TargetTriple.isABIN32();
493 bool IsMIPS32 = TargetTriple.isMIPS32();
494 bool IsMIPS64 = TargetTriple.isMIPS64();
495 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
496 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
497 TargetTriple.getArch() == Triple::aarch64_be;
498 bool IsLoongArch64 = TargetTriple.isLoongArch64();
499 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
500 bool IsWindows = TargetTriple.isOSWindows();
501 bool IsFuchsia = TargetTriple.isOSFuchsia();
502 bool IsEmscripten = TargetTriple.isOSEmscripten();
503 bool IsAMDGPU = TargetTriple.isAMDGPU();
504
505 ShadowMapping Mapping;
506
507 Mapping.Scale = kDefaultShadowScale;
508 if (ClMappingScale.getNumOccurrences() > 0) {
509 Mapping.Scale = ClMappingScale;
510 }
511
512 if (LongSize == 32) {
513 if (IsAndroid)
514 Mapping.Offset = kDynamicShadowSentinel;
515 else if (IsMIPSN32ABI)
516 Mapping.Offset = kMIPS_ShadowOffsetN32;
517 else if (IsMIPS32)
518 Mapping.Offset = kMIPS32_ShadowOffset32;
519 else if (IsFreeBSD)
520 Mapping.Offset = kFreeBSD_ShadowOffset32;
521 else if (IsNetBSD)
522 Mapping.Offset = kNetBSD_ShadowOffset32;
523 else if (IsIOS)
524 Mapping.Offset = kDynamicShadowSentinel;
525 else if (IsWindows)
526 Mapping.Offset = kWindowsShadowOffset32;
527 else if (IsEmscripten)
528 Mapping.Offset = kEmscriptenShadowOffset;
529 else
530 Mapping.Offset = kDefaultShadowOffset32;
531 } else { // LongSize == 64
532 // Fuchsia is always PIE, which means that the beginning of the address
533 // space is always available.
534 if (IsFuchsia)
535 Mapping.Offset = 0;
536 else if (IsPPC64)
537 Mapping.Offset = kPPC64_ShadowOffset64;
538 else if (IsSystemZ)
539 Mapping.Offset = kSystemZ_ShadowOffset64;
540 else if (IsFreeBSD && IsAArch64)
541 Mapping.Offset = kFreeBSDAArch64_ShadowOffset64;
542 else if (IsFreeBSD && !IsMIPS64) {
543 if (IsKasan)
544 Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
545 else
546 Mapping.Offset = kFreeBSD_ShadowOffset64;
547 } else if (IsNetBSD) {
548 if (IsKasan)
549 Mapping.Offset = kNetBSDKasan_ShadowOffset64;
550 else
551 Mapping.Offset = kNetBSD_ShadowOffset64;
552 } else if (IsPS)
553 Mapping.Offset = kPS_ShadowOffset64;
554 else if (IsLinux && IsX86_64) {
555 if (IsKasan)
556 Mapping.Offset = kLinuxKasan_ShadowOffset64;
557 else
558 Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
559 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
560 } else if (IsWindows && IsX86_64) {
561 Mapping.Offset = kWindowsShadowOffset64;
562 } else if (IsMIPS64)
563 Mapping.Offset = kMIPS64_ShadowOffset64;
564 else if (IsIOS)
565 Mapping.Offset = kDynamicShadowSentinel;
566 else if (IsMacOS && IsAArch64)
567 Mapping.Offset = kDynamicShadowSentinel;
568 else if (IsAArch64)
569 Mapping.Offset = kAArch64_ShadowOffset64;
570 else if (IsLoongArch64)
571 Mapping.Offset = kLoongArch64_ShadowOffset64;
572 else if (IsRISCV64)
573 Mapping.Offset = kRISCV64_ShadowOffset64;
574 else if (IsAMDGPU)
575 Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
576 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
577 else
578 Mapping.Offset = kDefaultShadowOffset64;
579 }
580
582 Mapping.Offset = kDynamicShadowSentinel;
583 }
584
585 if (ClMappingOffset.getNumOccurrences() > 0) {
586 Mapping.Offset = ClMappingOffset;
587 }
588
589 // OR-ing shadow offset if more efficient (at least on x86) if the offset
590 // is a power of two, but on ppc64 and loongarch64 we have to use add since
591 // the shadow offset is not necessarily 1/8-th of the address space. On
592 // SystemZ, we could OR the constant in a single instruction, but it's more
593 // efficient to load it once and use indexed addressing.
594 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS &&
595 !IsRISCV64 && !IsLoongArch64 &&
596 !(Mapping.Offset & (Mapping.Offset - 1)) &&
597 Mapping.Offset != kDynamicShadowSentinel;
598 bool IsAndroidWithIfuncSupport =
599 IsAndroid && !TargetTriple.isAndroidVersionLT(21);
600 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
601
602 return Mapping;
603}
604
605namespace llvm {
606void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize,
607 bool IsKasan, uint64_t *ShadowBase,
608 int *MappingScale, bool *OrShadowOffset) {
609 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan);
610 *ShadowBase = Mapping.Offset;
611 *MappingScale = Mapping.Scale;
612 *OrShadowOffset = Mapping.OrShadowOffset;
613}
614
616 : Packed(Packed),
617 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask),
618 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask),
619 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {}
620
621ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel,
622 uint8_t AccessSizeIndex)
623 : Packed((IsWrite << kIsWriteShift) +
624 (CompileKernel << kCompileKernelShift) +
625 (AccessSizeIndex << kAccessSizeIndexShift)),
626 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite),
627 CompileKernel(CompileKernel) {}
628
629} // namespace llvm
630
631static uint64_t getRedzoneSizeForScale(int MappingScale) {
632 // Redzone used for stack and globals is at least 32 bytes.
633 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
634 return std::max(32U, 1U << MappingScale);
635}
636
638 if (TargetTriple.isOSEmscripten()) {
640 } else {
642 }
643}
644
645static Twine genName(StringRef suffix) {
646 return Twine(kAsanGenPrefix) + suffix;
647}
648
649namespace {
650/// Helper RAII class to post-process inserted asan runtime calls during a
651/// pass on a single Function. Upon end of scope, detects and applies the
652/// required funclet OpBundle.
653class RuntimeCallInserter {
654 Function *OwnerFn = nullptr;
655 bool TrackInsertedCalls = false;
656 SmallVector<CallInst *> InsertedCalls;
657
658public:
659 RuntimeCallInserter(Function &Fn) : OwnerFn(&Fn) {
660 if (Fn.hasPersonalityFn()) {
661 auto Personality = classifyEHPersonality(Fn.getPersonalityFn());
662 if (isScopedEHPersonality(Personality))
663 TrackInsertedCalls = true;
664 }
665 }
666
667 ~RuntimeCallInserter() {
668 if (InsertedCalls.empty())
669 return;
670 assert(TrackInsertedCalls && "Calls were wrongly tracked");
671
673 for (CallInst *CI : InsertedCalls) {
674 BasicBlock *BB = CI->getParent();
675 assert(BB && "Instruction doesn't belong to a BasicBlock");
676 assert(BB->getParent() == OwnerFn &&
677 "Instruction doesn't belong to the expected Function!");
678
679 ColorVector &Colors = BlockColors[BB];
680 // funclet opbundles are only valid in monochromatic BBs.
681 // Note that unreachable BBs are seen as colorless by colorEHFunclets()
682 // and will be DCE'ed later.
683 if (Colors.empty())
684 continue;
685 if (Colors.size() != 1) {
686 OwnerFn->getContext().emitError(
687 "Instruction's BasicBlock is not monochromatic");
688 continue;
689 }
690
691 BasicBlock *Color = Colors.front();
692 Instruction *EHPad = Color->getFirstNonPHI();
693
694 if (EHPad && EHPad->isEHPad()) {
695 // Replace CI with a clone with an added funclet OperandBundle
696 OperandBundleDef OB("funclet", EHPad);
698 OB, CI->getIterator());
699 NewCall->copyMetadata(*CI);
700 CI->replaceAllUsesWith(NewCall);
701 CI->eraseFromParent();
702 }
703 }
704 }
705
706 CallInst *createRuntimeCall(IRBuilder<> &IRB, FunctionCallee Callee,
707 ArrayRef<Value *> Args = {},
708 const Twine &Name = "") {
709 assert(IRB.GetInsertBlock()->getParent() == OwnerFn);
710
711 CallInst *Inst = IRB.CreateCall(Callee, Args, Name, nullptr);
712 if (TrackInsertedCalls)
713 InsertedCalls.push_back(Inst);
714 return Inst;
715 }
716};
717
718/// AddressSanitizer: instrument the code in module to find memory bugs.
719struct AddressSanitizer {
720 AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI,
721 int InstrumentationWithCallsThreshold,
722 uint32_t MaxInlinePoisoningSize, bool CompileKernel = false,
723 bool Recover = false, bool UseAfterScope = false,
724 AsanDetectStackUseAfterReturnMode UseAfterReturn =
725 AsanDetectStackUseAfterReturnMode::Runtime)
726 : M(M),
727 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
728 : CompileKernel),
729 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
730 UseAfterScope(UseAfterScope || ClUseAfterScope),
731 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn
732 : UseAfterReturn),
733 SSGI(SSGI),
734 InstrumentationWithCallsThreshold(
735 ClInstrumentationWithCallsThreshold.getNumOccurrences() > 0
737 : InstrumentationWithCallsThreshold),
738 MaxInlinePoisoningSize(ClMaxInlinePoisoningSize.getNumOccurrences() > 0
740 : MaxInlinePoisoningSize) {
741 C = &(M.getContext());
742 DL = &M.getDataLayout();
743 LongSize = M.getDataLayout().getPointerSizeInBits();
744 IntptrTy = Type::getIntNTy(*C, LongSize);
745 PtrTy = PointerType::getUnqual(*C);
746 Int32Ty = Type::getInt32Ty(*C);
747 TargetTriple = Triple(M.getTargetTriple());
748
749 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
750
751 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid);
752 }
753
754 TypeSize getAllocaSizeInBytes(const AllocaInst &AI) const {
755 return *AI.getAllocationSize(AI.getDataLayout());
756 }
757
758 /// Check if we want (and can) handle this alloca.
759 bool isInterestingAlloca(const AllocaInst &AI);
760
761 bool ignoreAccess(Instruction *Inst, Value *Ptr);
764
765 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
766 InterestingMemoryOperand &O, bool UseCalls,
767 const DataLayout &DL, RuntimeCallInserter &RTCI);
768 void instrumentPointerComparisonOrSubtraction(Instruction *I,
769 RuntimeCallInserter &RTCI);
770 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
771 Value *Addr, MaybeAlign Alignment,
772 uint32_t TypeStoreSize, bool IsWrite,
773 Value *SizeArgument, bool UseCalls, uint32_t Exp,
774 RuntimeCallInserter &RTCI);
775 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
776 Instruction *InsertBefore, Value *Addr,
777 uint32_t TypeStoreSize, bool IsWrite,
778 Value *SizeArgument);
779 Instruction *genAMDGPUReportBlock(IRBuilder<> &IRB, Value *Cond,
780 bool Recover);
781 void instrumentUnusualSizeOrAlignment(Instruction *I,
782 Instruction *InsertBefore, Value *Addr,
783 TypeSize TypeStoreSize, bool IsWrite,
784 Value *SizeArgument, bool UseCalls,
785 uint32_t Exp,
786 RuntimeCallInserter &RTCI);
787 void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, const DataLayout &DL,
788 Type *IntptrTy, Value *Mask, Value *EVL,
789 Value *Stride, Instruction *I, Value *Addr,
790 MaybeAlign Alignment, unsigned Granularity,
791 Type *OpType, bool IsWrite,
792 Value *SizeArgument, bool UseCalls,
793 uint32_t Exp, RuntimeCallInserter &RTCI);
794 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
795 Value *ShadowValue, uint32_t TypeStoreSize);
796 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
797 bool IsWrite, size_t AccessSizeIndex,
798 Value *SizeArgument, uint32_t Exp,
799 RuntimeCallInserter &RTCI);
800 void instrumentMemIntrinsic(MemIntrinsic *MI, RuntimeCallInserter &RTCI);
801 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
802 bool suppressInstrumentationSiteForDebug(int &Instrumented);
803 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
804 bool maybeInsertAsanInitAtFunctionEntry(Function &F);
805 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
806 void markEscapedLocalAllocas(Function &F);
807
808private:
809 friend struct FunctionStackPoisoner;
810
811 void initializeCallbacks(const TargetLibraryInfo *TLI);
812
813 bool LooksLikeCodeInBug11395(Instruction *I);
814 bool GlobalIsLinkerInitialized(GlobalVariable *G);
815 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
816 TypeSize TypeStoreSize) const;
817
818 /// Helper to cleanup per-function state.
819 struct FunctionStateRAII {
820 AddressSanitizer *Pass;
821
822 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
823 assert(Pass->ProcessedAllocas.empty() &&
824 "last pass forgot to clear cache");
825 assert(!Pass->LocalDynamicShadow);
826 }
827
828 ~FunctionStateRAII() {
829 Pass->LocalDynamicShadow = nullptr;
830 Pass->ProcessedAllocas.clear();
831 }
832 };
833
834 Module &M;
835 LLVMContext *C;
836 const DataLayout *DL;
837 Triple TargetTriple;
838 int LongSize;
839 bool CompileKernel;
840 bool Recover;
841 bool UseAfterScope;
843 Type *IntptrTy;
844 Type *Int32Ty;
845 PointerType *PtrTy;
846 ShadowMapping Mapping;
847 FunctionCallee AsanHandleNoReturnFunc;
848 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
849 Constant *AsanShadowGlobal;
850
851 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
852 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
853 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
854
855 // These arrays is indexed by AccessIsWrite and Experiment.
856 FunctionCallee AsanErrorCallbackSized[2][2];
857 FunctionCallee AsanMemoryAccessCallbackSized[2][2];
858
859 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
860 Value *LocalDynamicShadow = nullptr;
861 const StackSafetyGlobalInfo *SSGI;
862 DenseMap<const AllocaInst *, bool> ProcessedAllocas;
863
864 FunctionCallee AMDGPUAddressShared;
865 FunctionCallee AMDGPUAddressPrivate;
866 int InstrumentationWithCallsThreshold;
867 uint32_t MaxInlinePoisoningSize;
868};
869
870class ModuleAddressSanitizer {
871public:
872 ModuleAddressSanitizer(Module &M, bool InsertVersionCheck,
873 bool CompileKernel = false, bool Recover = false,
874 bool UseGlobalsGC = true, bool UseOdrIndicator = true,
875 AsanDtorKind DestructorKind = AsanDtorKind::Global,
876 AsanCtorKind ConstructorKind = AsanCtorKind::Global)
877 : M(M),
878 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
879 : CompileKernel),
880 InsertVersionCheck(ClInsertVersionCheck.getNumOccurrences() > 0
882 : InsertVersionCheck),
883 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
884 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
885 // Enable aliases as they should have no downside with ODR indicators.
886 UsePrivateAlias(ClUsePrivateAlias.getNumOccurrences() > 0
888 : UseOdrIndicator),
889 UseOdrIndicator(ClUseOdrIndicator.getNumOccurrences() > 0
891 : UseOdrIndicator),
892 // Not a typo: ClWithComdat is almost completely pointless without
893 // ClUseGlobalsGC (because then it only works on modules without
894 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
895 // and both suffer from gold PR19002 for which UseGlobalsGC constructor
896 // argument is designed as workaround. Therefore, disable both
897 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
898 // do globals-gc.
899 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
900 DestructorKind(DestructorKind),
901 ConstructorKind(ClConstructorKind.getNumOccurrences() > 0
903 : ConstructorKind) {
904 C = &(M.getContext());
905 int LongSize = M.getDataLayout().getPointerSizeInBits();
906 IntptrTy = Type::getIntNTy(*C, LongSize);
907 PtrTy = PointerType::getUnqual(*C);
908 TargetTriple = Triple(M.getTargetTriple());
909 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
910
911 if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
912 this->DestructorKind = ClOverrideDestructorKind;
913 assert(this->DestructorKind != AsanDtorKind::Invalid);
914 }
915
916 bool instrumentModule();
917
918private:
919 void initializeCallbacks();
920
921 void instrumentGlobals(IRBuilder<> &IRB, bool *CtorComdat);
922 void InstrumentGlobalsCOFF(IRBuilder<> &IRB,
923 ArrayRef<GlobalVariable *> ExtendedGlobals,
924 ArrayRef<Constant *> MetadataInitializers);
925 void instrumentGlobalsELF(IRBuilder<> &IRB,
926 ArrayRef<GlobalVariable *> ExtendedGlobals,
927 ArrayRef<Constant *> MetadataInitializers,
928 const std::string &UniqueModuleId);
929 void InstrumentGlobalsMachO(IRBuilder<> &IRB,
930 ArrayRef<GlobalVariable *> ExtendedGlobals,
931 ArrayRef<Constant *> MetadataInitializers);
932 void
933 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB,
934 ArrayRef<GlobalVariable *> ExtendedGlobals,
935 ArrayRef<Constant *> MetadataInitializers);
936
937 GlobalVariable *CreateMetadataGlobal(Constant *Initializer,
938 StringRef OriginalName);
939 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
940 StringRef InternalSuffix);
941 Instruction *CreateAsanModuleDtor();
942
943 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
944 bool shouldInstrumentGlobal(GlobalVariable *G) const;
945 bool ShouldUseMachOGlobalsSection() const;
946 StringRef getGlobalMetadataSection() const;
947 void poisonOneInitializer(Function &GlobalInit);
948 void createInitializerPoisonCalls();
949 uint64_t getMinRedzoneSizeForGlobal() const {
950 return getRedzoneSizeForScale(Mapping.Scale);
951 }
952 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
953 int GetAsanVersion() const;
954 GlobalVariable *getOrCreateModuleName();
955
956 Module &M;
957 bool CompileKernel;
958 bool InsertVersionCheck;
959 bool Recover;
960 bool UseGlobalsGC;
961 bool UsePrivateAlias;
962 bool UseOdrIndicator;
963 bool UseCtorComdat;
964 AsanDtorKind DestructorKind;
965 AsanCtorKind ConstructorKind;
966 Type *IntptrTy;
967 PointerType *PtrTy;
968 LLVMContext *C;
969 Triple TargetTriple;
970 ShadowMapping Mapping;
971 FunctionCallee AsanPoisonGlobals;
972 FunctionCallee AsanUnpoisonGlobals;
973 FunctionCallee AsanRegisterGlobals;
974 FunctionCallee AsanUnregisterGlobals;
975 FunctionCallee AsanRegisterImageGlobals;
976 FunctionCallee AsanUnregisterImageGlobals;
977 FunctionCallee AsanRegisterElfGlobals;
978 FunctionCallee AsanUnregisterElfGlobals;
979
980 Function *AsanCtorFunction = nullptr;
981 Function *AsanDtorFunction = nullptr;
982 GlobalVariable *ModuleName = nullptr;
983};
984
985// Stack poisoning does not play well with exception handling.
986// When an exception is thrown, we essentially bypass the code
987// that unpoisones the stack. This is why the run-time library has
988// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
989// stack in the interceptor. This however does not work inside the
990// actual function which catches the exception. Most likely because the
991// compiler hoists the load of the shadow value somewhere too high.
992// This causes asan to report a non-existing bug on 453.povray.
993// It sounds like an LLVM bug.
994struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
995 Function &F;
996 AddressSanitizer &ASan;
997 RuntimeCallInserter &RTCI;
998 DIBuilder DIB;
999 LLVMContext *C;
1000 Type *IntptrTy;
1001 Type *IntptrPtrTy;
1002 ShadowMapping Mapping;
1003
1005 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
1007
1008 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
1009 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
1010 FunctionCallee AsanSetShadowFunc[0x100] = {};
1011 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
1012 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
1013
1014 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
1015 struct AllocaPoisonCall {
1016 IntrinsicInst *InsBefore;
1017 AllocaInst *AI;
1018 uint64_t Size;
1019 bool DoPoison;
1020 };
1021 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
1022 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
1023 bool HasUntracedLifetimeIntrinsic = false;
1024
1025 SmallVector<AllocaInst *, 1> DynamicAllocaVec;
1026 SmallVector<IntrinsicInst *, 1> StackRestoreVec;
1027 AllocaInst *DynamicAllocaLayout = nullptr;
1028 IntrinsicInst *LocalEscapeCall = nullptr;
1029
1030 bool HasInlineAsm = false;
1031 bool HasReturnsTwiceCall = false;
1032 bool PoisonStack;
1033
1034 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan,
1035 RuntimeCallInserter &RTCI)
1036 : F(F), ASan(ASan), RTCI(RTCI),
1037 DIB(*F.getParent(), /*AllowUnresolved*/ false), C(ASan.C),
1038 IntptrTy(ASan.IntptrTy),
1039 IntptrPtrTy(PointerType::get(IntptrTy->getContext(), 0)),
1040 Mapping(ASan.Mapping),
1041 PoisonStack(ClStack &&
1042 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}
1043
1044 bool runOnFunction() {
1045 if (!PoisonStack)
1046 return false;
1047
1049 copyArgsPassedByValToAllocas();
1050
1051 // Collect alloca, ret, lifetime instructions etc.
1052 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
1053
1054 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
1055
1056 initializeCallbacks(*F.getParent());
1057
1058 if (HasUntracedLifetimeIntrinsic) {
1059 // If there are lifetime intrinsics which couldn't be traced back to an
1060 // alloca, we may not know exactly when a variable enters scope, and
1061 // therefore should "fail safe" by not poisoning them.
1062 StaticAllocaPoisonCallVec.clear();
1063 DynamicAllocaPoisonCallVec.clear();
1064 }
1065
1066 processDynamicAllocas();
1067 processStaticAllocas();
1068
1069 if (ClDebugStack) {
1070 LLVM_DEBUG(dbgs() << F);
1071 }
1072 return true;
1073 }
1074
1075 // Arguments marked with the "byval" attribute are implicitly copied without
1076 // using an alloca instruction. To produce redzones for those arguments, we
1077 // copy them a second time into memory allocated with an alloca instruction.
1078 void copyArgsPassedByValToAllocas();
1079
1080 // Finds all Alloca instructions and puts
1081 // poisoned red zones around all of them.
1082 // Then unpoison everything back before the function returns.
1083 void processStaticAllocas();
1084 void processDynamicAllocas();
1085
1086 void createDynamicAllocasInitStorage();
1087
1088 // ----------------------- Visitors.
1089 /// Collect all Ret instructions, or the musttail call instruction if it
1090 /// precedes the return instruction.
1091 void visitReturnInst(ReturnInst &RI) {
1092 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
1093 RetVec.push_back(CI);
1094 else
1095 RetVec.push_back(&RI);
1096 }
1097
1098 /// Collect all Resume instructions.
1099 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
1100
1101 /// Collect all CatchReturnInst instructions.
1102 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
1103
1104 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
1105 Value *SavedStack) {
1106 IRBuilder<> IRB(InstBefore);
1107 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
1108 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1109 // need to adjust extracted SP to compute the address of the most recent
1110 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1111 // this purpose.
1112 if (!isa<ReturnInst>(InstBefore)) {
1113 Value *DynamicAreaOffset = IRB.CreateIntrinsic(
1114 Intrinsic::get_dynamic_area_offset, {IntptrTy}, {});
1115
1116 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
1117 DynamicAreaOffset);
1118 }
1119
1120 RTCI.createRuntimeCall(
1121 IRB, AsanAllocasUnpoisonFunc,
1122 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1123 }
1124
1125 // Unpoison dynamic allocas redzones.
1126 void unpoisonDynamicAllocas() {
1127 for (Instruction *Ret : RetVec)
1128 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1129
1130 for (Instruction *StackRestoreInst : StackRestoreVec)
1131 unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1132 StackRestoreInst->getOperand(0));
1133 }
1134
1135 // Deploy and poison redzones around dynamic alloca call. To do this, we
1136 // should replace this call with another one with changed parameters and
1137 // replace all its uses with new address, so
1138 // addr = alloca type, old_size, align
1139 // is replaced by
1140 // new_size = (old_size + additional_size) * sizeof(type)
1141 // tmp = alloca i8, new_size, max(align, 32)
1142 // addr = tmp + 32 (first 32 bytes are for the left redzone).
1143 // Additional_size is added to make new memory allocation contain not only
1144 // requested memory, but also left, partial and right redzones.
1145 void handleDynamicAllocaCall(AllocaInst *AI);
1146
1147 /// Collect Alloca instructions we want (and can) handle.
1148 void visitAllocaInst(AllocaInst &AI) {
1149 // FIXME: Handle scalable vectors instead of ignoring them.
1150 const Type *AllocaType = AI.getAllocatedType();
1151 const auto *STy = dyn_cast<StructType>(AllocaType);
1152 if (!ASan.isInterestingAlloca(AI) || isa<ScalableVectorType>(AllocaType) ||
1153 (STy && STy->containsHomogeneousScalableVectorTypes())) {
1154 if (AI.isStaticAlloca()) {
1155 // Skip over allocas that are present *before* the first instrumented
1156 // alloca, we don't want to move those around.
1157 if (AllocaVec.empty())
1158 return;
1159
1160 StaticAllocasToMoveUp.push_back(&AI);
1161 }
1162 return;
1163 }
1164
1165 if (!AI.isStaticAlloca())
1166 DynamicAllocaVec.push_back(&AI);
1167 else
1168 AllocaVec.push_back(&AI);
1169 }
1170
1171 /// Collect lifetime intrinsic calls to check for use-after-scope
1172 /// errors.
1174 Intrinsic::ID ID = II.getIntrinsicID();
1175 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1176 if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1177 if (!ASan.UseAfterScope)
1178 return;
1179 if (!II.isLifetimeStartOrEnd())
1180 return;
1181 // Found lifetime intrinsic, add ASan instrumentation if necessary.
1182 auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1183 // If size argument is undefined, don't do anything.
1184 if (Size->isMinusOne()) return;
1185 // Check that size doesn't saturate uint64_t and can
1186 // be stored in IntptrTy.
1187 const uint64_t SizeValue = Size->getValue().getLimitedValue();
1188 if (SizeValue == ~0ULL ||
1189 !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1190 return;
1191 // Find alloca instruction that corresponds to llvm.lifetime argument.
1192 // Currently we can only handle lifetime markers pointing to the
1193 // beginning of the alloca.
1194 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
1195 if (!AI) {
1196 HasUntracedLifetimeIntrinsic = true;
1197 return;
1198 }
1199 // We're interested only in allocas we can handle.
1200 if (!ASan.isInterestingAlloca(*AI))
1201 return;
1202 bool DoPoison = (ID == Intrinsic::lifetime_end);
1203 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1204 if (AI->isStaticAlloca())
1205 StaticAllocaPoisonCallVec.push_back(APC);
1207 DynamicAllocaPoisonCallVec.push_back(APC);
1208 }
1209
1210 void visitCallBase(CallBase &CB) {
1211 if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1212 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
1213 HasReturnsTwiceCall |= CI->canReturnTwice();
1214 }
1215 }
1216
1217 // ---------------------- Helpers.
1218 void initializeCallbacks(Module &M);
1219
1220 // Copies bytes from ShadowBytes into shadow memory for indexes where
1221 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1222 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1223 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1224 IRBuilder<> &IRB, Value *ShadowBase);
1225 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1226 size_t Begin, size_t End, IRBuilder<> &IRB,
1227 Value *ShadowBase);
1228 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1229 ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1230 size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1231
1232 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1233
1234 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1235 bool Dynamic);
1236 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1237 Instruction *ThenTerm, Value *ValueIfFalse);
1238};
1239
1240} // end anonymous namespace
1241
1243 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1245 OS, MapClassName2PassName);
1246 OS << '<';
1247 if (Options.CompileKernel)
1248 OS << "kernel";
1249 OS << '>';
1250}
1251
1253 const AddressSanitizerOptions &Options, bool UseGlobalGC,
1254 bool UseOdrIndicator, AsanDtorKind DestructorKind,
1255 AsanCtorKind ConstructorKind)
1256 : Options(Options), UseGlobalGC(UseGlobalGC),
1257 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind),
1258 ConstructorKind(ConstructorKind) {}
1259
1262 // Return early if nosanitize_address module flag is present for the module.
1263 // This implies that asan pass has already run before.
1264 if (checkIfAlreadyInstrumented(M, "nosanitize_address"))
1265 return PreservedAnalyses::all();
1266
1267 ModuleAddressSanitizer ModuleSanitizer(
1268 M, Options.InsertVersionCheck, Options.CompileKernel, Options.Recover,
1269 UseGlobalGC, UseOdrIndicator, DestructorKind, ConstructorKind);
1270 bool Modified = false;
1271 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1272 const StackSafetyGlobalInfo *const SSGI =
1274 for (Function &F : M) {
1275 AddressSanitizer FunctionSanitizer(
1276 M, SSGI, Options.InstrumentationWithCallsThreshold,
1277 Options.MaxInlinePoisoningSize, Options.CompileKernel, Options.Recover,
1278 Options.UseAfterScope, Options.UseAfterReturn);
1280 Modified |= FunctionSanitizer.instrumentFunction(F, &TLI);
1281 }
1282 Modified |= ModuleSanitizer.instrumentModule();
1283 if (!Modified)
1284 return PreservedAnalyses::all();
1285
1287 // GlobalsAA is considered stateless and does not get invalidated unless
1288 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
1289 // make changes that require GlobalsAA to be invalidated.
1290 PA.abandon<GlobalsAA>();
1291 return PA;
1292}
1293
1295 size_t Res = llvm::countr_zero(TypeSize / 8);
1297 return Res;
1298}
1299
1300/// Check if \p G has been created by a trusted compiler pass.
1302 // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1303 if (G->getName().starts_with("llvm.") ||
1304 // Do not instrument gcov counter arrays.
1305 G->getName().starts_with("__llvm_gcov_ctr") ||
1306 // Do not instrument rtti proxy symbols for function sanitizer.
1307 G->getName().starts_with("__llvm_rtti_proxy"))
1308 return true;
1309
1310 // Do not instrument asan globals.
1311 if (G->getName().starts_with(kAsanGenPrefix) ||
1312 G->getName().starts_with(kSanCovGenPrefix) ||
1313 G->getName().starts_with(kODRGenPrefix))
1314 return true;
1315
1316 return false;
1317}
1318
1320 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1321 unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
1322 if (AddrSpace == 3 || AddrSpace == 5)
1323 return true;
1324 return false;
1325}
1326
1327Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1328 // Shadow >> scale
1329 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1330 if (Mapping.Offset == 0) return Shadow;
1331 // (Shadow >> scale) | offset
1332 Value *ShadowBase;
1333 if (LocalDynamicShadow)
1334 ShadowBase = LocalDynamicShadow;
1335 else
1336 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1337 if (Mapping.OrShadowOffset)
1338 return IRB.CreateOr(Shadow, ShadowBase);
1339 else
1340 return IRB.CreateAdd(Shadow, ShadowBase);
1341}
1342
1343// Instrument memset/memmove/memcpy
1344void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI,
1345 RuntimeCallInserter &RTCI) {
1347 if (isa<MemTransferInst>(MI)) {
1348 RTCI.createRuntimeCall(
1349 IRB, isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1350 {IRB.CreateAddrSpaceCast(MI->getOperand(0), PtrTy),
1351 IRB.CreateAddrSpaceCast(MI->getOperand(1), PtrTy),
1352 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1353 } else if (isa<MemSetInst>(MI)) {
1354 RTCI.createRuntimeCall(
1355 IRB, AsanMemset,
1356 {IRB.CreateAddrSpaceCast(MI->getOperand(0), PtrTy),
1357 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1358 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1359 }
1360 MI->eraseFromParent();
1361}
1362
1363/// Check if we want (and can) handle this alloca.
1364bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1365 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1366
1367 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1368 return PreviouslySeenAllocaInfo->getSecond();
1369
1370 bool IsInteresting =
1371 (AI.getAllocatedType()->isSized() &&
1372 // alloca() may be called with 0 size, ignore it.
1373 ((!AI.isStaticAlloca()) || !getAllocaSizeInBytes(AI).isZero()) &&
1374 // We are only interested in allocas not promotable to registers.
1375 // Promotable allocas are common under -O0.
1377 // inalloca allocas are not treated as static, and we don't want
1378 // dynamic alloca instrumentation for them as well.
1379 !AI.isUsedWithInAlloca() &&
1380 // swifterror allocas are register promoted by ISel
1381 !AI.isSwiftError() &&
1382 // safe allocas are not interesting
1383 !(SSGI && SSGI->isSafe(AI)));
1384
1385 ProcessedAllocas[&AI] = IsInteresting;
1386 return IsInteresting;
1387}
1388
1389bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) {
1390 // Instrument accesses from different address spaces only for AMDGPU.
1391 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1392 if (PtrTy->getPointerAddressSpace() != 0 &&
1393 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
1394 return true;
1395
1396 // Ignore swifterror addresses.
1397 // swifterror memory addresses are mem2reg promoted by instruction
1398 // selection. As such they cannot have regular uses like an instrumentation
1399 // function and it makes no sense to track them as memory.
1400 if (Ptr->isSwiftError())
1401 return true;
1402
1403 // Treat memory accesses to promotable allocas as non-interesting since they
1404 // will not cause memory violations. This greatly speeds up the instrumented
1405 // executable at -O0.
1406 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1407 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1408 return true;
1409
1410 if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) &&
1412 return true;
1413
1414 return false;
1415}
1416
1417void AddressSanitizer::getInterestingMemoryOperands(
1419 // Do not instrument the load fetching the dynamic shadow address.
1420 if (LocalDynamicShadow == I)
1421 return;
1422
1423 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1424 if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand()))
1425 return;
1426 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1427 LI->getType(), LI->getAlign());
1428 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1429 if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand()))
1430 return;
1431 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1432 SI->getValueOperand()->getType(), SI->getAlign());
1433 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1434 if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand()))
1435 return;
1436 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1437 RMW->getValOperand()->getType(), std::nullopt);
1438 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1439 if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand()))
1440 return;
1441 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1442 XCHG->getCompareOperand()->getType(),
1443 std::nullopt);
1444 } else if (auto CI = dyn_cast<CallInst>(I)) {
1445 switch (CI->getIntrinsicID()) {
1446 case Intrinsic::masked_load:
1447 case Intrinsic::masked_store:
1448 case Intrinsic::masked_gather:
1449 case Intrinsic::masked_scatter: {
1450 bool IsWrite = CI->getType()->isVoidTy();
1451 // Masked store has an initial operand for the value.
1452 unsigned OpOffset = IsWrite ? 1 : 0;
1453 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1454 return;
1455
1456 auto BasePtr = CI->getOperand(OpOffset);
1457 if (ignoreAccess(I, BasePtr))
1458 return;
1459 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1460 MaybeAlign Alignment = Align(1);
1461 // Otherwise no alignment guarantees. We probably got Undef.
1462 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1463 Alignment = Op->getMaybeAlignValue();
1464 Value *Mask = CI->getOperand(2 + OpOffset);
1465 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1466 break;
1467 }
1468 case Intrinsic::masked_expandload:
1469 case Intrinsic::masked_compressstore: {
1470 bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_compressstore;
1471 unsigned OpOffset = IsWrite ? 1 : 0;
1472 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1473 return;
1474 auto BasePtr = CI->getOperand(OpOffset);
1475 if (ignoreAccess(I, BasePtr))
1476 return;
1477 MaybeAlign Alignment = BasePtr->getPointerAlignment(*DL);
1478 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1479
1480 IRBuilder IB(I);
1481 Value *Mask = CI->getOperand(1 + OpOffset);
1482 // Use the popcount of Mask as the effective vector length.
1483 Type *ExtTy = VectorType::get(IntptrTy, cast<VectorType>(Ty));
1484 Value *ExtMask = IB.CreateZExt(Mask, ExtTy);
1485 Value *EVL = IB.CreateAddReduce(ExtMask);
1486 Value *TrueMask = ConstantInt::get(Mask->getType(), 1);
1487 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, TrueMask,
1488 EVL);
1489 break;
1490 }
1491 case Intrinsic::vp_load:
1492 case Intrinsic::vp_store:
1493 case Intrinsic::experimental_vp_strided_load:
1494 case Intrinsic::experimental_vp_strided_store: {
1495 auto *VPI = cast<VPIntrinsic>(CI);
1496 unsigned IID = CI->getIntrinsicID();
1497 bool IsWrite = CI->getType()->isVoidTy();
1498 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1499 return;
1500 unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID);
1501 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1502 MaybeAlign Alignment = VPI->getOperand(PtrOpNo)->getPointerAlignment(*DL);
1503 Value *Stride = nullptr;
1504 if (IID == Intrinsic::experimental_vp_strided_store ||
1505 IID == Intrinsic::experimental_vp_strided_load) {
1506 Stride = VPI->getOperand(PtrOpNo + 1);
1507 // Use the pointer alignment as the element alignment if the stride is a
1508 // mutiple of the pointer alignment. Otherwise, the element alignment
1509 // should be Align(1).
1510 unsigned PointerAlign = Alignment.valueOrOne().value();
1511 if (!isa<ConstantInt>(Stride) ||
1512 cast<ConstantInt>(Stride)->getZExtValue() % PointerAlign != 0)
1513 Alignment = Align(1);
1514 }
1515 Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment,
1516 VPI->getMaskParam(), VPI->getVectorLengthParam(),
1517 Stride);
1518 break;
1519 }
1520 case Intrinsic::vp_gather:
1521 case Intrinsic::vp_scatter: {
1522 auto *VPI = cast<VPIntrinsic>(CI);
1523 unsigned IID = CI->getIntrinsicID();
1524 bool IsWrite = IID == Intrinsic::vp_scatter;
1525 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1526 return;
1527 unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID);
1528 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1529 MaybeAlign Alignment = VPI->getPointerAlignment();
1530 Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment,
1531 VPI->getMaskParam(),
1532 VPI->getVectorLengthParam());
1533 break;
1534 }
1535 default:
1536 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) {
1537 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1538 ignoreAccess(I, CI->getArgOperand(ArgNo)))
1539 continue;
1540 Type *Ty = CI->getParamByValType(ArgNo);
1541 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
1542 }
1543 }
1544 }
1545}
1546
1547static bool isPointerOperand(Value *V) {
1548 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1549}
1550
1551// This is a rough heuristic; it may cause both false positives and
1552// false negatives. The proper implementation requires cooperation with
1553// the frontend.
1555 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1556 if (!Cmp->isRelational())
1557 return false;
1558 } else {
1559 return false;
1560 }
1561 return isPointerOperand(I->getOperand(0)) &&
1562 isPointerOperand(I->getOperand(1));
1563}
1564
1565// This is a rough heuristic; it may cause both false positives and
1566// false negatives. The proper implementation requires cooperation with
1567// the frontend.
1569 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1570 if (BO->getOpcode() != Instruction::Sub)
1571 return false;
1572 } else {
1573 return false;
1574 }
1575 return isPointerOperand(I->getOperand(0)) &&
1576 isPointerOperand(I->getOperand(1));
1577}
1578
1579bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1580 // If a global variable does not have dynamic initialization we don't
1581 // have to instrument it. However, if a global does not have initializer
1582 // at all, we assume it has dynamic initializer (in other TU).
1583 if (!G->hasInitializer())
1584 return false;
1585
1586 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit)
1587 return false;
1588
1589 return true;
1590}
1591
1592void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1593 Instruction *I, RuntimeCallInserter &RTCI) {
1594 IRBuilder<> IRB(I);
1595 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1596 Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1597 for (Value *&i : Param) {
1598 if (i->getType()->isPointerTy())
1599 i = IRB.CreatePointerCast(i, IntptrTy);
1600 }
1601 RTCI.createRuntimeCall(IRB, F, Param);
1602}
1603
1604static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1605 Instruction *InsertBefore, Value *Addr,
1606 MaybeAlign Alignment, unsigned Granularity,
1607 TypeSize TypeStoreSize, bool IsWrite,
1608 Value *SizeArgument, bool UseCalls,
1609 uint32_t Exp, RuntimeCallInserter &RTCI) {
1610 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1611 // if the data is properly aligned.
1612 if (!TypeStoreSize.isScalable()) {
1613 const auto FixedSize = TypeStoreSize.getFixedValue();
1614 switch (FixedSize) {
1615 case 8:
1616 case 16:
1617 case 32:
1618 case 64:
1619 case 128:
1620 if (!Alignment || *Alignment >= Granularity ||
1621 *Alignment >= FixedSize / 8)
1622 return Pass->instrumentAddress(I, InsertBefore, Addr, Alignment,
1623 FixedSize, IsWrite, nullptr, UseCalls,
1624 Exp, RTCI);
1625 }
1626 }
1627 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeStoreSize,
1628 IsWrite, nullptr, UseCalls, Exp, RTCI);
1629}
1630
1631void AddressSanitizer::instrumentMaskedLoadOrStore(
1632 AddressSanitizer *Pass, const DataLayout &DL, Type *IntptrTy, Value *Mask,
1633 Value *EVL, Value *Stride, Instruction *I, Value *Addr,
1634 MaybeAlign Alignment, unsigned Granularity, Type *OpType, bool IsWrite,
1635 Value *SizeArgument, bool UseCalls, uint32_t Exp,
1636 RuntimeCallInserter &RTCI) {
1637 auto *VTy = cast<VectorType>(OpType);
1638 TypeSize ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1639 auto Zero = ConstantInt::get(IntptrTy, 0);
1640
1641 IRBuilder IB(I);
1642 Instruction *LoopInsertBefore = I;
1643 if (EVL) {
1644 // The end argument of SplitBlockAndInsertForLane is assumed bigger
1645 // than zero, so we should check whether EVL is zero here.
1646 Type *EVLType = EVL->getType();
1647 Value *IsEVLZero = IB.CreateICmpNE(EVL, ConstantInt::get(EVLType, 0));
1648 LoopInsertBefore = SplitBlockAndInsertIfThen(IsEVLZero, I, false);
1649 IB.SetInsertPoint(LoopInsertBefore);
1650 // Cast EVL to IntptrTy.
1651 EVL = IB.CreateZExtOrTrunc(EVL, IntptrTy);
1652 // To avoid undefined behavior for extracting with out of range index, use
1653 // the minimum of evl and element count as trip count.
1654 Value *EC = IB.CreateElementCount(IntptrTy, VTy->getElementCount());
1655 EVL = IB.CreateBinaryIntrinsic(Intrinsic::umin, EVL, EC);
1656 } else {
1657 EVL = IB.CreateElementCount(IntptrTy, VTy->getElementCount());
1658 }
1659
1660 // Cast Stride to IntptrTy.
1661 if (Stride)
1662 Stride = IB.CreateZExtOrTrunc(Stride, IntptrTy);
1663
1664 SplitBlockAndInsertForEachLane(EVL, LoopInsertBefore,
1665 [&](IRBuilderBase &IRB, Value *Index) {
1666 Value *MaskElem = IRB.CreateExtractElement(Mask, Index);
1667 if (auto *MaskElemC = dyn_cast<ConstantInt>(MaskElem)) {
1668 if (MaskElemC->isZero())
1669 // No check
1670 return;
1671 // Unconditional check
1672 } else {
1673 // Conditional check
1675 MaskElem, &*IRB.GetInsertPoint(), false);
1676 IRB.SetInsertPoint(ThenTerm);
1677 }
1678
1679 Value *InstrumentedAddress;
1680 if (isa<VectorType>(Addr->getType())) {
1681 assert(
1682 cast<VectorType>(Addr->getType())->getElementType()->isPointerTy() &&
1683 "Expected vector of pointer.");
1684 InstrumentedAddress = IRB.CreateExtractElement(Addr, Index);
1685 } else if (Stride) {
1686 Index = IRB.CreateMul(Index, Stride);
1687 InstrumentedAddress = IRB.CreatePtrAdd(Addr, Index);
1688 } else {
1689 InstrumentedAddress = IRB.CreateGEP(VTy, Addr, {Zero, Index});
1690 }
1691 doInstrumentAddress(Pass, I, &*IRB.GetInsertPoint(), InstrumentedAddress,
1692 Alignment, Granularity, ElemTypeSize, IsWrite,
1693 SizeArgument, UseCalls, Exp, RTCI);
1694 });
1695}
1696
1697void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1698 InterestingMemoryOperand &O, bool UseCalls,
1699 const DataLayout &DL,
1700 RuntimeCallInserter &RTCI) {
1701 Value *Addr = O.getPtr();
1702
1703 // Optimization experiments.
1704 // The experiments can be used to evaluate potential optimizations that remove
1705 // instrumentation (assess false negatives). Instead of completely removing
1706 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1707 // experiments that want to remove instrumentation of this instruction).
1708 // If Exp is non-zero, this pass will emit special calls into runtime
1709 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1710 // make runtime terminate the program in a special way (with a different
1711 // exit status). Then you run the new compiler on a buggy corpus, collect
1712 // the special terminations (ideally, you don't see them at all -- no false
1713 // negatives) and make the decision on the optimization.
1715
1716 if (ClOpt && ClOptGlobals) {
1717 // If initialization order checking is disabled, a simple access to a
1718 // dynamically initialized global is always valid.
1719 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
1720 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1721 isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) {
1722 NumOptimizedAccessesToGlobalVar++;
1723 return;
1724 }
1725 }
1726
1727 if (ClOpt && ClOptStack) {
1728 // A direct inbounds access to a stack variable is always valid.
1729 if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
1730 isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) {
1731 NumOptimizedAccessesToStackVar++;
1732 return;
1733 }
1734 }
1735
1736 if (O.IsWrite)
1737 NumInstrumentedWrites++;
1738 else
1739 NumInstrumentedReads++;
1740
1741 unsigned Granularity = 1 << Mapping.Scale;
1742 if (O.MaybeMask) {
1743 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.MaybeEVL,
1744 O.MaybeStride, O.getInsn(), Addr, O.Alignment,
1745 Granularity, O.OpType, O.IsWrite, nullptr,
1746 UseCalls, Exp, RTCI);
1747 } else {
1748 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1749 Granularity, O.TypeStoreSize, O.IsWrite, nullptr,
1750 UseCalls, Exp, RTCI);
1751 }
1752}
1753
1754Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1755 Value *Addr, bool IsWrite,
1756 size_t AccessSizeIndex,
1757 Value *SizeArgument,
1758 uint32_t Exp,
1759 RuntimeCallInserter &RTCI) {
1760 InstrumentationIRBuilder IRB(InsertBefore);
1761 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1762 CallInst *Call = nullptr;
1763 if (SizeArgument) {
1764 if (Exp == 0)
1765 Call = RTCI.createRuntimeCall(IRB, AsanErrorCallbackSized[IsWrite][0],
1766 {Addr, SizeArgument});
1767 else
1768 Call = RTCI.createRuntimeCall(IRB, AsanErrorCallbackSized[IsWrite][1],
1769 {Addr, SizeArgument, ExpVal});
1770 } else {
1771 if (Exp == 0)
1772 Call = RTCI.createRuntimeCall(
1773 IRB, AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1774 else
1775 Call = RTCI.createRuntimeCall(
1776 IRB, AsanErrorCallback[IsWrite][1][AccessSizeIndex], {Addr, ExpVal});
1777 }
1778
1779 Call->setCannotMerge();
1780 return Call;
1781}
1782
1783Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1784 Value *ShadowValue,
1785 uint32_t TypeStoreSize) {
1786 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1787 // Addr & (Granularity - 1)
1788 Value *LastAccessedByte =
1789 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1790 // (Addr & (Granularity - 1)) + size - 1
1791 if (TypeStoreSize / 8 > 1)
1792 LastAccessedByte = IRB.CreateAdd(
1793 LastAccessedByte, ConstantInt::get(IntptrTy, TypeStoreSize / 8 - 1));
1794 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1795 LastAccessedByte =
1796 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1797 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1798 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1799}
1800
1801Instruction *AddressSanitizer::instrumentAMDGPUAddress(
1802 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
1803 uint32_t TypeStoreSize, bool IsWrite, Value *SizeArgument) {
1804 // Do not instrument unsupported addrspaces.
1806 return nullptr;
1807 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1808 // Follow host instrumentation for global and constant addresses.
1809 if (PtrTy->getPointerAddressSpace() != 0)
1810 return InsertBefore;
1811 // Instrument generic addresses in supported addressspaces.
1812 IRBuilder<> IRB(InsertBefore);
1813 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {Addr});
1814 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {Addr});
1815 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
1816 Value *Cmp = IRB.CreateNot(IsSharedOrPrivate);
1817 Value *AddrSpaceZeroLanding =
1818 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
1819 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
1820 return InsertBefore;
1821}
1822
1823Instruction *AddressSanitizer::genAMDGPUReportBlock(IRBuilder<> &IRB,
1824 Value *Cond, bool Recover) {
1825 Module &M = *IRB.GetInsertBlock()->getModule();
1826 Value *ReportCond = Cond;
1827 if (!Recover) {
1828 auto Ballot = M.getOrInsertFunction(kAMDGPUBallotName, IRB.getInt64Ty(),
1829 IRB.getInt1Ty());
1830 ReportCond = IRB.CreateIsNotNull(IRB.CreateCall(Ballot, {Cond}));
1831 }
1832
1833 auto *Trm =
1834 SplitBlockAndInsertIfThen(ReportCond, &*IRB.GetInsertPoint(), false,
1836 Trm->getParent()->setName("asan.report");
1837
1838 if (Recover)
1839 return Trm;
1840
1841 Trm = SplitBlockAndInsertIfThen(Cond, Trm, false);
1842 IRB.SetInsertPoint(Trm);
1843 return IRB.CreateCall(
1844 M.getOrInsertFunction(kAMDGPUUnreachableName, IRB.getVoidTy()), {});
1845}
1846
1847void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1848 Instruction *InsertBefore, Value *Addr,
1849 MaybeAlign Alignment,
1850 uint32_t TypeStoreSize, bool IsWrite,
1851 Value *SizeArgument, bool UseCalls,
1852 uint32_t Exp,
1853 RuntimeCallInserter &RTCI) {
1854 if (TargetTriple.isAMDGPU()) {
1855 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
1856 TypeStoreSize, IsWrite, SizeArgument);
1857 if (!InsertBefore)
1858 return;
1859 }
1860
1861 InstrumentationIRBuilder IRB(InsertBefore);
1862 size_t AccessSizeIndex = TypeStoreSizeToSizeIndex(TypeStoreSize);
1863
1864 if (UseCalls && ClOptimizeCallbacks) {
1865 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
1866 IRB.CreateIntrinsic(Intrinsic::asan_check_memaccess, {},
1867 {IRB.CreatePointerCast(Addr, PtrTy),
1868 ConstantInt::get(Int32Ty, AccessInfo.Packed)});
1869 return;
1870 }
1871
1872 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1873 if (UseCalls) {
1874 if (Exp == 0)
1875 RTCI.createRuntimeCall(
1876 IRB, AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], AddrLong);
1877 else
1878 RTCI.createRuntimeCall(
1879 IRB, AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1880 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1881 return;
1882 }
1883
1884 Type *ShadowTy =
1885 IntegerType::get(*C, std::max(8U, TypeStoreSize >> Mapping.Scale));
1886 Type *ShadowPtrTy = PointerType::get(*C, 0);
1887 Value *ShadowPtr = memToShadow(AddrLong, IRB);
1888 const uint64_t ShadowAlign =
1889 std::max<uint64_t>(Alignment.valueOrOne().value() >> Mapping.Scale, 1);
1890 Value *ShadowValue = IRB.CreateAlignedLoad(
1891 ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy), Align(ShadowAlign));
1892
1893 Value *Cmp = IRB.CreateIsNotNull(ShadowValue);
1894 size_t Granularity = 1ULL << Mapping.Scale;
1895 Instruction *CrashTerm = nullptr;
1896
1897 bool GenSlowPath = (ClAlwaysSlowPath || (TypeStoreSize < 8 * Granularity));
1898
1899 if (TargetTriple.isAMDGCN()) {
1900 if (GenSlowPath) {
1901 auto *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize);
1902 Cmp = IRB.CreateAnd(Cmp, Cmp2);
1903 }
1904 CrashTerm = genAMDGPUReportBlock(IRB, Cmp, Recover);
1905 } else if (GenSlowPath) {
1906 // We use branch weights for the slow path check, to indicate that the slow
1907 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1909 Cmp, InsertBefore, false, MDBuilder(*C).createUnlikelyBranchWeights());
1910 assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1911 BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1912 IRB.SetInsertPoint(CheckTerm);
1913 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize);
1914 if (Recover) {
1915 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1916 } else {
1917 BasicBlock *CrashBlock =
1918 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1919 CrashTerm = new UnreachableInst(*C, CrashBlock);
1920 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1921 ReplaceInstWithInst(CheckTerm, NewTerm);
1922 }
1923 } else {
1924 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1925 }
1926
1927 Instruction *Crash = generateCrashCode(
1928 CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument, Exp, RTCI);
1929 if (OrigIns->getDebugLoc())
1930 Crash->setDebugLoc(OrigIns->getDebugLoc());
1931}
1932
1933// Instrument unusual size or unusual alignment.
1934// We can not do it with a single check, so we do 1-byte check for the first
1935// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1936// to report the actual access size.
1937void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1938 Instruction *I, Instruction *InsertBefore, Value *Addr,
1939 TypeSize TypeStoreSize, bool IsWrite, Value *SizeArgument, bool UseCalls,
1940 uint32_t Exp, RuntimeCallInserter &RTCI) {
1941 InstrumentationIRBuilder IRB(InsertBefore);
1942 Value *NumBits = IRB.CreateTypeSize(IntptrTy, TypeStoreSize);
1943 Value *Size = IRB.CreateLShr(NumBits, ConstantInt::get(IntptrTy, 3));
1944
1945 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1946 if (UseCalls) {
1947 if (Exp == 0)
1948 RTCI.createRuntimeCall(IRB, AsanMemoryAccessCallbackSized[IsWrite][0],
1949 {AddrLong, Size});
1950 else
1951 RTCI.createRuntimeCall(
1952 IRB, AsanMemoryAccessCallbackSized[IsWrite][1],
1953 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1954 } else {
1955 Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1));
1956 Value *LastByte = IRB.CreateIntToPtr(
1957 IRB.CreateAdd(AddrLong, SizeMinusOne),
1958 Addr->getType());
1959 instrumentAddress(I, InsertBefore, Addr, {}, 8, IsWrite, Size, false, Exp,
1960 RTCI);
1961 instrumentAddress(I, InsertBefore, LastByte, {}, 8, IsWrite, Size, false,
1962 Exp, RTCI);
1963 }
1964}
1965
1966void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit) {
1967 // Set up the arguments to our poison/unpoison functions.
1968 IRBuilder<> IRB(&GlobalInit.front(),
1969 GlobalInit.front().getFirstInsertionPt());
1970
1971 // Add a call to poison all external globals before the given function starts.
1972 Value *ModuleNameAddr =
1973 ConstantExpr::getPointerCast(getOrCreateModuleName(), IntptrTy);
1974 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1975
1976 // Add calls to unpoison all globals before each return instruction.
1977 for (auto &BB : GlobalInit)
1978 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1979 CallInst::Create(AsanUnpoisonGlobals, "", RI->getIterator());
1980}
1981
1982void ModuleAddressSanitizer::createInitializerPoisonCalls() {
1983 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1984 if (!GV)
1985 return;
1986
1987 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1988 if (!CA)
1989 return;
1990
1991 for (Use &OP : CA->operands()) {
1992 if (isa<ConstantAggregateZero>(OP)) continue;
1993 ConstantStruct *CS = cast<ConstantStruct>(OP);
1994
1995 // Must have a function or null ptr.
1996 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1997 if (F->getName() == kAsanModuleCtorName) continue;
1998 auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1999 // Don't instrument CTORs that will run before asan.module_ctor.
2000 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
2001 continue;
2002 poisonOneInitializer(*F);
2003 }
2004 }
2005}
2006
2007const GlobalVariable *
2008ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
2009 // In case this function should be expanded to include rules that do not just
2010 // apply when CompileKernel is true, either guard all existing rules with an
2011 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
2012 // should also apply to user space.
2013 assert(CompileKernel && "Only expecting to be called when compiling kernel");
2014
2015 const Constant *C = GA.getAliasee();
2016
2017 // When compiling the kernel, globals that are aliased by symbols prefixed
2018 // by "__" are special and cannot be padded with a redzone.
2019 if (GA.getName().starts_with("__"))
2020 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
2021
2022 return nullptr;
2023}
2024
2025bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
2026 Type *Ty = G->getValueType();
2027 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
2028
2029 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress)
2030 return false;
2031 if (!Ty->isSized()) return false;
2032 if (!G->hasInitializer()) return false;
2033 // Globals in address space 1 and 4 are supported for AMDGPU.
2034 if (G->getAddressSpace() &&
2035 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
2036 return false;
2037 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
2038 // Two problems with thread-locals:
2039 // - The address of the main thread's copy can't be computed at link-time.
2040 // - Need to poison all copies, not just the main thread's one.
2041 if (G->isThreadLocal()) return false;
2042 // For now, just ignore this Global if the alignment is large.
2043 if (G->getAlign() && *G->getAlign() > getMinRedzoneSizeForGlobal()) return false;
2044
2045 // For non-COFF targets, only instrument globals known to be defined by this
2046 // TU.
2047 // FIXME: We can instrument comdat globals on ELF if we are using the
2048 // GC-friendly metadata scheme.
2049 if (!TargetTriple.isOSBinFormatCOFF()) {
2050 if (!G->hasExactDefinition() || G->hasComdat())
2051 return false;
2052 } else {
2053 // On COFF, don't instrument non-ODR linkages.
2054 if (G->isInterposable())
2055 return false;
2056 // If the global has AvailableExternally linkage, then it is not in this
2057 // module, which means it does not need to be instrumented.
2058 if (G->hasAvailableExternallyLinkage())
2059 return false;
2060 }
2061
2062 // If a comdat is present, it must have a selection kind that implies ODR
2063 // semantics: no duplicates, any, or exact match.
2064 if (Comdat *C = G->getComdat()) {
2065 switch (C->getSelectionKind()) {
2066 case Comdat::Any:
2067 case Comdat::ExactMatch:
2069 break;
2070 case Comdat::Largest:
2071 case Comdat::SameSize:
2072 return false;
2073 }
2074 }
2075
2076 if (G->hasSection()) {
2077 // The kernel uses explicit sections for mostly special global variables
2078 // that we should not instrument. E.g. the kernel may rely on their layout
2079 // without redzones, or remove them at link time ("discard.*"), etc.
2080 if (CompileKernel)
2081 return false;
2082
2083 StringRef Section = G->getSection();
2084
2085 // Globals from llvm.metadata aren't emitted, do not instrument them.
2086 if (Section == "llvm.metadata") return false;
2087 // Do not instrument globals from special LLVM sections.
2088 if (Section.contains("__llvm") || Section.contains("__LLVM"))
2089 return false;
2090
2091 // Do not instrument function pointers to initialization and termination
2092 // routines: dynamic linker will not properly handle redzones.
2093 if (Section.starts_with(".preinit_array") ||
2094 Section.starts_with(".init_array") ||
2095 Section.starts_with(".fini_array")) {
2096 return false;
2097 }
2098
2099 // Do not instrument user-defined sections (with names resembling
2100 // valid C identifiers)
2101 if (TargetTriple.isOSBinFormatELF()) {
2102 if (llvm::all_of(Section,
2103 [](char c) { return llvm::isAlnum(c) || c == '_'; }))
2104 return false;
2105 }
2106
2107 // On COFF, if the section name contains '$', it is highly likely that the
2108 // user is using section sorting to create an array of globals similar to
2109 // the way initialization callbacks are registered in .init_array and
2110 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
2111 // to such globals is counterproductive, because the intent is that they
2112 // will form an array, and out-of-bounds accesses are expected.
2113 // See https://github.com/google/sanitizers/issues/305
2114 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
2115 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
2116 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
2117 << *G << "\n");
2118 return false;
2119 }
2120
2121 if (TargetTriple.isOSBinFormatMachO()) {
2122 StringRef ParsedSegment, ParsedSection;
2123 unsigned TAA = 0, StubSize = 0;
2124 bool TAAParsed;
2126 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
2127
2128 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
2129 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
2130 // them.
2131 if (ParsedSegment == "__OBJC" ||
2132 (ParsedSegment == "__DATA" && ParsedSection.starts_with("__objc_"))) {
2133 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
2134 return false;
2135 }
2136 // See https://github.com/google/sanitizers/issues/32
2137 // Constant CFString instances are compiled in the following way:
2138 // -- the string buffer is emitted into
2139 // __TEXT,__cstring,cstring_literals
2140 // -- the constant NSConstantString structure referencing that buffer
2141 // is placed into __DATA,__cfstring
2142 // Therefore there's no point in placing redzones into __DATA,__cfstring.
2143 // Moreover, it causes the linker to crash on OS X 10.7
2144 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
2145 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
2146 return false;
2147 }
2148 // The linker merges the contents of cstring_literals and removes the
2149 // trailing zeroes.
2150 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
2151 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
2152 return false;
2153 }
2154 }
2155 }
2156
2157 if (CompileKernel) {
2158 // Globals that prefixed by "__" are special and cannot be padded with a
2159 // redzone.
2160 if (G->getName().starts_with("__"))
2161 return false;
2162 }
2163
2164 return true;
2165}
2166
2167// On Mach-O platforms, we emit global metadata in a separate section of the
2168// binary in order to allow the linker to properly dead strip. This is only
2169// supported on recent versions of ld64.
2170bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
2171 if (!TargetTriple.isOSBinFormatMachO())
2172 return false;
2173
2174 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
2175 return true;
2176 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
2177 return true;
2178 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
2179 return true;
2180 if (TargetTriple.isDriverKit())
2181 return true;
2182 if (TargetTriple.isXROS())
2183 return true;
2184
2185 return false;
2186}
2187
2188StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
2189 switch (TargetTriple.getObjectFormat()) {
2190 case Triple::COFF: return ".ASAN$GL";
2191 case Triple::ELF: return "asan_globals";
2192 case Triple::MachO: return "__DATA,__asan_globals,regular";
2193 case Triple::Wasm:
2194 case Triple::GOFF:
2195 case Triple::SPIRV:
2196 case Triple::XCOFF:
2199 "ModuleAddressSanitizer not implemented for object file format");
2201 break;
2202 }
2203 llvm_unreachable("unsupported object format");
2204}
2205
2206void ModuleAddressSanitizer::initializeCallbacks() {
2207 IRBuilder<> IRB(*C);
2208
2209 // Declare our poisoning and unpoisoning functions.
2210 AsanPoisonGlobals =
2211 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
2212 AsanUnpoisonGlobals =
2213 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
2214
2215 // Declare functions that register/unregister globals.
2216 AsanRegisterGlobals = M.getOrInsertFunction(
2217 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2218 AsanUnregisterGlobals = M.getOrInsertFunction(
2219 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2220
2221 // Declare the functions that find globals in a shared object and then invoke
2222 // the (un)register function on them.
2223 AsanRegisterImageGlobals = M.getOrInsertFunction(
2224 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2225 AsanUnregisterImageGlobals = M.getOrInsertFunction(
2227
2228 AsanRegisterElfGlobals =
2229 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
2230 IntptrTy, IntptrTy, IntptrTy);
2231 AsanUnregisterElfGlobals =
2232 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
2233 IntptrTy, IntptrTy, IntptrTy);
2234}
2235
2236// Put the metadata and the instrumented global in the same group. This ensures
2237// that the metadata is discarded if the instrumented global is discarded.
2238void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2239 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2240 Module &M = *G->getParent();
2241 Comdat *C = G->getComdat();
2242 if (!C) {
2243 if (!G->hasName()) {
2244 // If G is unnamed, it must be internal. Give it an artificial name
2245 // so we can put it in a comdat.
2246 assert(G->hasLocalLinkage());
2247 G->setName(genName("anon_global"));
2248 }
2249
2250 if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2251 std::string Name = std::string(G->getName());
2252 Name += InternalSuffix;
2253 C = M.getOrInsertComdat(Name);
2254 } else {
2255 C = M.getOrInsertComdat(G->getName());
2256 }
2257
2258 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2259 // linkage to internal linkage so that a symbol table entry is emitted. This
2260 // is necessary in order to create the comdat group.
2261 if (TargetTriple.isOSBinFormatCOFF()) {
2262 C->setSelectionKind(Comdat::NoDeduplicate);
2263 if (G->hasPrivateLinkage())
2264 G->setLinkage(GlobalValue::InternalLinkage);
2265 }
2266 G->setComdat(C);
2267 }
2268
2269 assert(G->hasComdat());
2270 Metadata->setComdat(G->getComdat());
2271}
2272
2273// Create a separate metadata global and put it in the appropriate ASan
2274// global registration section.
2276ModuleAddressSanitizer::CreateMetadataGlobal(Constant *Initializer,
2277 StringRef OriginalName) {
2278 auto Linkage = TargetTriple.isOSBinFormatMachO()
2282 M, Initializer->getType(), false, Linkage, Initializer,
2283 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2284 Metadata->setSection(getGlobalMetadataSection());
2285 // Place metadata in a large section for x86-64 ELF binaries to mitigate
2286 // relocation pressure.
2288 return Metadata;
2289}
2290
2291Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor() {
2292 AsanDtorFunction = Function::createWithDefaultAttr(
2295 AsanDtorFunction->addFnAttr(Attribute::NoUnwind);
2296 // Ensure Dtor cannot be discarded, even if in a comdat.
2297 appendToUsed(M, {AsanDtorFunction});
2298 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2299
2300 return ReturnInst::Create(*C, AsanDtorBB);
2301}
2302
2303void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2304 IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals,
2305 ArrayRef<Constant *> MetadataInitializers) {
2306 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2307 auto &DL = M.getDataLayout();
2308
2309 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2310 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2311 Constant *Initializer = MetadataInitializers[i];
2312 GlobalVariable *G = ExtendedGlobals[i];
2313 GlobalVariable *Metadata = CreateMetadataGlobal(Initializer, G->getName());
2314 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2315 Metadata->setMetadata(LLVMContext::MD_associated, MD);
2316 MetadataGlobals[i] = Metadata;
2317
2318 // The MSVC linker always inserts padding when linking incrementally. We
2319 // cope with that by aligning each struct to its size, which must be a power
2320 // of two.
2321 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2322 assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2323 "global metadata will not be padded appropriately");
2324 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2325
2326 SetComdatForGlobalMetadata(G, Metadata, "");
2327 }
2328
2329 // Update llvm.compiler.used, adding the new metadata globals. This is
2330 // needed so that during LTO these variables stay alive.
2331 if (!MetadataGlobals.empty())
2332 appendToCompilerUsed(M, MetadataGlobals);
2333}
2334
2335void ModuleAddressSanitizer::instrumentGlobalsELF(
2336 IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals,
2337 ArrayRef<Constant *> MetadataInitializers,
2338 const std::string &UniqueModuleId) {
2339 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2340
2341 // Putting globals in a comdat changes the semantic and potentially cause
2342 // false negative odr violations at link time. If odr indicators are used, we
2343 // keep the comdat sections, as link time odr violations will be dectected on
2344 // the odr indicator symbols.
2345 bool UseComdatForGlobalsGC = UseOdrIndicator && !UniqueModuleId.empty();
2346
2347 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2348 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2349 GlobalVariable *G = ExtendedGlobals[i];
2351 CreateMetadataGlobal(MetadataInitializers[i], G->getName());
2352 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2353 Metadata->setMetadata(LLVMContext::MD_associated, MD);
2354 MetadataGlobals[i] = Metadata;
2355
2356 if (UseComdatForGlobalsGC)
2357 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2358 }
2359
2360 // Update llvm.compiler.used, adding the new metadata globals. This is
2361 // needed so that during LTO these variables stay alive.
2362 if (!MetadataGlobals.empty())
2363 appendToCompilerUsed(M, MetadataGlobals);
2364
2365 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2366 // to look up the loaded image that contains it. Second, we can store in it
2367 // whether registration has already occurred, to prevent duplicate
2368 // registration.
2369 //
2370 // Common linkage ensures that there is only one global per shared library.
2371 GlobalVariable *RegisteredFlag = new GlobalVariable(
2372 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2373 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2375
2376 // Create start and stop symbols.
2377 GlobalVariable *StartELFMetadata = new GlobalVariable(
2378 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2379 "__start_" + getGlobalMetadataSection());
2381 GlobalVariable *StopELFMetadata = new GlobalVariable(
2382 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2383 "__stop_" + getGlobalMetadataSection());
2385
2386 // Create a call to register the globals with the runtime.
2387 if (ConstructorKind == AsanCtorKind::Global)
2388 IRB.CreateCall(AsanRegisterElfGlobals,
2389 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2390 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2391 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2392
2393 // We also need to unregister globals at the end, e.g., when a shared library
2394 // gets closed.
2395 if (DestructorKind != AsanDtorKind::None && !MetadataGlobals.empty()) {
2396 IRBuilder<> IrbDtor(CreateAsanModuleDtor());
2397 IrbDtor.CreateCall(AsanUnregisterElfGlobals,
2398 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2399 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2400 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2401 }
2402}
2403
2404void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2405 IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals,
2406 ArrayRef<Constant *> MetadataInitializers) {
2407 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2408
2409 // On recent Mach-O platforms, use a structure which binds the liveness of
2410 // the global variable to the metadata struct. Keep the list of "Liveness" GV
2411 // created to be added to llvm.compiler.used
2412 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2413 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2414
2415 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2416 Constant *Initializer = MetadataInitializers[i];
2417 GlobalVariable *G = ExtendedGlobals[i];
2418 GlobalVariable *Metadata = CreateMetadataGlobal(Initializer, G->getName());
2419
2420 // On recent Mach-O platforms, we emit the global metadata in a way that
2421 // allows the linker to properly strip dead globals.
2422 auto LivenessBinder =
2423 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2425 GlobalVariable *Liveness = new GlobalVariable(
2426 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2427 Twine("__asan_binder_") + G->getName());
2428 Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2429 LivenessGlobals[i] = Liveness;
2430 }
2431
2432 // Update llvm.compiler.used, adding the new liveness globals. This is
2433 // needed so that during LTO these variables stay alive. The alternative
2434 // would be to have the linker handling the LTO symbols, but libLTO
2435 // current API does not expose access to the section for each symbol.
2436 if (!LivenessGlobals.empty())
2437 appendToCompilerUsed(M, LivenessGlobals);
2438
2439 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2440 // to look up the loaded image that contains it. Second, we can store in it
2441 // whether registration has already occurred, to prevent duplicate
2442 // registration.
2443 //
2444 // common linkage ensures that there is only one global per shared library.
2445 GlobalVariable *RegisteredFlag = new GlobalVariable(
2446 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2447 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2449
2450 if (ConstructorKind == AsanCtorKind::Global)
2451 IRB.CreateCall(AsanRegisterImageGlobals,
2452 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2453
2454 // We also need to unregister globals at the end, e.g., when a shared library
2455 // gets closed.
2456 if (DestructorKind != AsanDtorKind::None) {
2457 IRBuilder<> IrbDtor(CreateAsanModuleDtor());
2458 IrbDtor.CreateCall(AsanUnregisterImageGlobals,
2459 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2460 }
2461}
2462
2463void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2464 IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals,
2465 ArrayRef<Constant *> MetadataInitializers) {
2466 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2467 unsigned N = ExtendedGlobals.size();
2468 assert(N > 0);
2469
2470 // On platforms that don't have a custom metadata section, we emit an array
2471 // of global metadata structures.
2472 ArrayType *ArrayOfGlobalStructTy =
2473 ArrayType::get(MetadataInitializers[0]->getType(), N);
2474 auto AllGlobals = new GlobalVariable(
2475 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2476 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2477 if (Mapping.Scale > 3)
2478 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2479
2480 if (ConstructorKind == AsanCtorKind::Global)
2481 IRB.CreateCall(AsanRegisterGlobals,
2482 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2483 ConstantInt::get(IntptrTy, N)});
2484
2485 // We also need to unregister globals at the end, e.g., when a shared library
2486 // gets closed.
2487 if (DestructorKind != AsanDtorKind::None) {
2488 IRBuilder<> IrbDtor(CreateAsanModuleDtor());
2489 IrbDtor.CreateCall(AsanUnregisterGlobals,
2490 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2491 ConstantInt::get(IntptrTy, N)});
2492 }
2493}
2494
2495// This function replaces all global variables with new variables that have
2496// trailing redzones. It also creates a function that poisons
2497// redzones and inserts this function into llvm.global_ctors.
2498// Sets *CtorComdat to true if the global registration code emitted into the
2499// asan constructor is comdat-compatible.
2500void ModuleAddressSanitizer::instrumentGlobals(IRBuilder<> &IRB,
2501 bool *CtorComdat) {
2502 // Build set of globals that are aliased by some GA, where
2503 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
2504 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
2505 if (CompileKernel) {
2506 for (auto &GA : M.aliases()) {
2507 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
2508 AliasedGlobalExclusions.insert(GV);
2509 }
2510 }
2511
2512 SmallVector<GlobalVariable *, 16> GlobalsToChange;
2513 for (auto &G : M.globals()) {
2514 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
2515 GlobalsToChange.push_back(&G);
2516 }
2517
2518 size_t n = GlobalsToChange.size();
2519 auto &DL = M.getDataLayout();
2520
2521 // A global is described by a structure
2522 // size_t beg;
2523 // size_t size;
2524 // size_t size_with_redzone;
2525 // const char *name;
2526 // const char *module_name;
2527 // size_t has_dynamic_init;
2528 // size_t padding_for_windows_msvc_incremental_link;
2529 // size_t odr_indicator;
2530 // We initialize an array of such structures and pass it to a run-time call.
2531 StructType *GlobalStructTy =
2532 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2533 IntptrTy, IntptrTy, IntptrTy);
2535 SmallVector<Constant *, 16> Initializers(n);
2536
2537 for (size_t i = 0; i < n; i++) {
2538 GlobalVariable *G = GlobalsToChange[i];
2539
2541 if (G->hasSanitizerMetadata())
2542 MD = G->getSanitizerMetadata();
2543
2544 // The runtime library tries demangling symbol names in the descriptor but
2545 // functionality like __cxa_demangle may be unavailable (e.g.
2546 // -static-libstdc++). So we demangle the symbol names here.
2547 std::string NameForGlobal = G->getName().str();
2550 /*AllowMerging*/ true, genName("global"));
2551
2552 Type *Ty = G->getValueType();
2553 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2554 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2555 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2556
2557 StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2558 Constant *NewInitializer = ConstantStruct::get(
2559 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2560
2561 // Create a new global variable with enough space for a redzone.
2562 GlobalValue::LinkageTypes Linkage = G->getLinkage();
2563 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2565 GlobalVariable *NewGlobal = new GlobalVariable(
2566 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
2567 G->getThreadLocalMode(), G->getAddressSpace());
2568 NewGlobal->copyAttributesFrom(G);
2569 NewGlobal->setComdat(G->getComdat());
2570 NewGlobal->setAlignment(Align(getMinRedzoneSizeForGlobal()));
2571 // Don't fold globals with redzones. ODR violation detector and redzone
2572 // poisoning implicitly creates a dependence on the global's address, so it
2573 // is no longer valid for it to be marked unnamed_addr.
2575
2576 // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2577 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2578 G->isConstant()) {
2579 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2580 if (Seq && Seq->isCString())
2581 NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2582 }
2583
2584 // Transfer the debug info and type metadata. The payload starts at offset
2585 // zero so we can copy the metadata over as is.
2586 NewGlobal->copyMetadata(G, 0);
2587
2588 Value *Indices2[2];
2589 Indices2[0] = IRB.getInt32(0);
2590 Indices2[1] = IRB.getInt32(0);
2591
2592 G->replaceAllUsesWith(
2593 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2594 NewGlobal->takeName(G);
2595 G->eraseFromParent();
2596 NewGlobals[i] = NewGlobal;
2597
2598 Constant *ODRIndicator = ConstantPointerNull::get(PtrTy);
2599 GlobalValue *InstrumentedGlobal = NewGlobal;
2600
2601 bool CanUsePrivateAliases =
2602 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2603 TargetTriple.isOSBinFormatWasm();
2604 if (CanUsePrivateAliases && UsePrivateAlias) {
2605 // Create local alias for NewGlobal to avoid crash on ODR between
2606 // instrumented and non-instrumented libraries.
2607 InstrumentedGlobal =
2609 }
2610
2611 // ODR should not happen for local linkage.
2612 if (NewGlobal->hasLocalLinkage()) {
2613 ODRIndicator =
2614 ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), PtrTy);
2615 } else if (UseOdrIndicator) {
2616 // With local aliases, we need to provide another externally visible
2617 // symbol __odr_asan_XXX to detect ODR violation.
2618 auto *ODRIndicatorSym =
2619 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2621 kODRGenPrefix + NameForGlobal, nullptr,
2622 NewGlobal->getThreadLocalMode());
2623
2624 // Set meaningful attributes for indicator symbol.
2625 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2626 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2627 ODRIndicatorSym->setAlignment(Align(1));
2628 ODRIndicator = ODRIndicatorSym;
2629 }
2630
2631 Constant *Initializer = ConstantStruct::get(
2632 GlobalStructTy,
2633 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2634 ConstantInt::get(IntptrTy, SizeInBytes),
2635 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2637 ConstantExpr::getPointerCast(getOrCreateModuleName(), IntptrTy),
2638 ConstantInt::get(IntptrTy, MD.IsDynInit),
2639 Constant::getNullValue(IntptrTy),
2640 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2641
2642 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2643
2644 Initializers[i] = Initializer;
2645 }
2646
2647 // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2648 // ConstantMerge'ing them.
2649 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2650 for (size_t i = 0; i < n; i++) {
2651 GlobalVariable *G = NewGlobals[i];
2652 if (G->getName().empty()) continue;
2653 GlobalsToAddToUsedList.push_back(G);
2654 }
2655 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2656
2657 if (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) {
2658 // Use COMDAT and register globals even if n == 0 to ensure that (a) the
2659 // linkage unit will only have one module constructor, and (b) the register
2660 // function will be called. The module destructor is not created when n ==
2661 // 0.
2662 *CtorComdat = true;
2663 instrumentGlobalsELF(IRB, NewGlobals, Initializers, getUniqueModuleId(&M));
2664 } else if (n == 0) {
2665 // When UseGlobalsGC is false, COMDAT can still be used if n == 0, because
2666 // all compile units will have identical module constructor/destructor.
2667 *CtorComdat = TargetTriple.isOSBinFormatELF();
2668 } else {
2669 *CtorComdat = false;
2670 if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2671 InstrumentGlobalsCOFF(IRB, NewGlobals, Initializers);
2672 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2673 InstrumentGlobalsMachO(IRB, NewGlobals, Initializers);
2674 } else {
2675 InstrumentGlobalsWithMetadataArray(IRB, NewGlobals, Initializers);
2676 }
2677 }
2678
2679 // Create calls for poisoning before initializers run and unpoisoning after.
2680 if (ClInitializers)
2681 createInitializerPoisonCalls();
2682
2683 LLVM_DEBUG(dbgs() << M);
2684}
2685
2687ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2688 constexpr uint64_t kMaxRZ = 1 << 18;
2689 const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2690
2691 uint64_t RZ = 0;
2692 if (SizeInBytes <= MinRZ / 2) {
2693 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
2694 // at least 32 bytes, optimize when SizeInBytes is less than or equal to
2695 // half of MinRZ.
2696 RZ = MinRZ - SizeInBytes;
2697 } else {
2698 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2699 RZ = std::clamp((SizeInBytes / MinRZ / 4) * MinRZ, MinRZ, kMaxRZ);
2700
2701 // Round up to multiple of MinRZ.
2702 if (SizeInBytes % MinRZ)
2703 RZ += MinRZ - (SizeInBytes % MinRZ);
2704 }
2705
2706 assert((RZ + SizeInBytes) % MinRZ == 0);
2707
2708 return RZ;
2709}
2710
2711int ModuleAddressSanitizer::GetAsanVersion() const {
2712 int LongSize = M.getDataLayout().getPointerSizeInBits();
2713 bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2714 int Version = 8;
2715 // 32-bit Android is one version ahead because of the switch to dynamic
2716 // shadow.
2717 Version += (LongSize == 32 && isAndroid);
2718 return Version;
2719}
2720
2721GlobalVariable *ModuleAddressSanitizer::getOrCreateModuleName() {
2722 if (!ModuleName) {
2723 // We shouldn't merge same module names, as this string serves as unique
2724 // module ID in runtime.
2725 ModuleName =
2726 createPrivateGlobalForString(M, M.getModuleIdentifier(),
2727 /*AllowMerging*/ false, genName("module"));
2728 }
2729 return ModuleName;
2730}
2731
2732bool ModuleAddressSanitizer::instrumentModule() {
2733 initializeCallbacks();
2734
2735 // Create a module constructor. A destructor is created lazily because not all
2736 // platforms, and not all modules need it.
2737 if (ConstructorKind == AsanCtorKind::Global) {
2738 if (CompileKernel) {
2739 // The kernel always builds with its own runtime, and therefore does not
2740 // need the init and version check calls.
2741 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2742 } else {
2743 std::string AsanVersion = std::to_string(GetAsanVersion());
2744 std::string VersionCheckName =
2745 InsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2746 std::tie(AsanCtorFunction, std::ignore) =
2748 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{},
2749 /*InitArgs=*/{}, VersionCheckName);
2750 }
2751 }
2752
2753 bool CtorComdat = true;
2754 if (ClGlobals) {
2755 assert(AsanCtorFunction || ConstructorKind == AsanCtorKind::None);
2756 if (AsanCtorFunction) {
2757 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2758 instrumentGlobals(IRB, &CtorComdat);
2759 } else {
2760 IRBuilder<> IRB(*C);
2761 instrumentGlobals(IRB, &CtorComdat);
2762 }
2763 }
2764
2765 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2766
2767 // Put the constructor and destructor in comdat if both
2768 // (1) global instrumentation is not TU-specific
2769 // (2) target is ELF.
2770 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2771 if (AsanCtorFunction) {
2772 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2773 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2774 }
2775 if (AsanDtorFunction) {
2776 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2777 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2778 }
2779 } else {
2780 if (AsanCtorFunction)
2781 appendToGlobalCtors(M, AsanCtorFunction, Priority);
2782 if (AsanDtorFunction)
2783 appendToGlobalDtors(M, AsanDtorFunction, Priority);
2784 }
2785
2786 return true;
2787}
2788
2789void AddressSanitizer::initializeCallbacks(const TargetLibraryInfo *TLI) {
2790 IRBuilder<> IRB(*C);
2791 // Create __asan_report* callbacks.
2792 // IsWrite, TypeSize and Exp are encoded in the function name.
2793 for (int Exp = 0; Exp < 2; Exp++) {
2794 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2795 const std::string TypeStr = AccessIsWrite ? "store" : "load";
2796 const std::string ExpStr = Exp ? "exp_" : "";
2797 const std::string EndingStr = Recover ? "_noabort" : "";
2798
2799 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2800 SmallVector<Type *, 2> Args1{1, IntptrTy};
2801 AttributeList AL2;
2802 AttributeList AL1;
2803 if (Exp) {
2804 Type *ExpType = Type::getInt32Ty(*C);
2805 Args2.push_back(ExpType);
2806 Args1.push_back(ExpType);
2807 if (auto AK = TLI->getExtAttrForI32Param(false)) {
2808 AL2 = AL2.addParamAttribute(*C, 2, AK);
2809 AL1 = AL1.addParamAttribute(*C, 1, AK);
2810 }
2811 }
2812 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2813 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2814 FunctionType::get(IRB.getVoidTy(), Args2, false), AL2);
2815
2816 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2817 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2818 FunctionType::get(IRB.getVoidTy(), Args2, false), AL2);
2819
2820 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2821 AccessSizeIndex++) {
2822 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2823 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2824 M.getOrInsertFunction(
2825 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2826 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1);
2827
2828 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2829 M.getOrInsertFunction(
2830 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2831 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1);
2832 }
2833 }
2834 }
2835
2836 const std::string MemIntrinCallbackPrefix =
2837 (CompileKernel && !ClKasanMemIntrinCallbackPrefix)
2838 ? std::string("")
2840 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2841 PtrTy, PtrTy, PtrTy, IntptrTy);
2842 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", PtrTy,
2843 PtrTy, PtrTy, IntptrTy);
2844 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2845 TLI->getAttrList(C, {1}, /*Signed=*/false),
2846 PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy);
2847
2848 AsanHandleNoReturnFunc =
2849 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2850
2851 AsanPtrCmpFunction =
2852 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2853 AsanPtrSubFunction =
2854 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2855 if (Mapping.InGlobal)
2856 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2857 ArrayType::get(IRB.getInt8Ty(), 0));
2858
2859 AMDGPUAddressShared =
2860 M.getOrInsertFunction(kAMDGPUAddressSharedName, IRB.getInt1Ty(), PtrTy);
2861 AMDGPUAddressPrivate =
2862 M.getOrInsertFunction(kAMDGPUAddressPrivateName, IRB.getInt1Ty(), PtrTy);
2863}
2864
2865bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2866 // For each NSObject descendant having a +load method, this method is invoked
2867 // by the ObjC runtime before any of the static constructors is called.
2868 // Therefore we need to instrument such methods with a call to __asan_init
2869 // at the beginning in order to initialize our runtime before any access to
2870 // the shadow memory.
2871 // We cannot just ignore these methods, because they may call other
2872 // instrumented functions.
2873 if (F.getName().contains(" load]")) {
2874 FunctionCallee AsanInitFunction =
2875 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2876 IRBuilder<> IRB(&F.front(), F.front().begin());
2877 IRB.CreateCall(AsanInitFunction, {});
2878 return true;
2879 }
2880 return false;
2881}
2882
2883bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2884 // Generate code only when dynamic addressing is needed.
2885 if (Mapping.Offset != kDynamicShadowSentinel)
2886 return false;
2887
2888 IRBuilder<> IRB(&F.front().front());
2889 if (Mapping.InGlobal) {
2891 // An empty inline asm with input reg == output reg.
2892 // An opaque pointer-to-int cast, basically.
2894 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2895 StringRef(""), StringRef("=r,0"),
2896 /*hasSideEffects=*/false);
2897 LocalDynamicShadow =
2898 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2899 } else {
2900 LocalDynamicShadow =
2901 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2902 }
2903 } else {
2904 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2906 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2907 }
2908 return true;
2909}
2910
2911void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2912 // Find the one possible call to llvm.localescape and pre-mark allocas passed
2913 // to it as uninteresting. This assumes we haven't started processing allocas
2914 // yet. This check is done up front because iterating the use list in
2915 // isInterestingAlloca would be algorithmically slower.
2916 assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2917
2918 // Try to get the declaration of llvm.localescape. If it's not in the module,
2919 // we can exit early.
2920 if (!F.getParent()->getFunction("llvm.localescape")) return;
2921
2922 // Look for a call to llvm.localescape call in the entry block. It can't be in
2923 // any other block.
2924 for (Instruction &I : F.getEntryBlock()) {
2925 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2926 if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2927 // We found a call. Mark all the allocas passed in as uninteresting.
2928 for (Value *Arg : II->args()) {
2929 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2930 assert(AI && AI->isStaticAlloca() &&
2931 "non-static alloca arg to localescape");
2932 ProcessedAllocas[AI] = false;
2933 }
2934 break;
2935 }
2936 }
2937}
2938
2939bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2940 bool ShouldInstrument =
2941 ClDebugMin < 0 || ClDebugMax < 0 ||
2942 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2943 Instrumented++;
2944 return !ShouldInstrument;
2945}
2946
2947bool AddressSanitizer::instrumentFunction(Function &F,
2948 const TargetLibraryInfo *TLI) {
2949 if (F.empty())
2950 return false;
2951 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2952 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2953 if (F.getName().starts_with("__asan_")) return false;
2954 if (F.isPresplitCoroutine())
2955 return false;
2956
2957 bool FunctionModified = false;
2958
2959 // Do not apply any instrumentation for naked functions.
2960 if (F.hasFnAttribute(Attribute::Naked))
2961 return FunctionModified;
2962
2963 // If needed, insert __asan_init before checking for SanitizeAddress attr.
2964 // This function needs to be called even if the function body is not
2965 // instrumented.
2966 if (maybeInsertAsanInitAtFunctionEntry(F))
2967 FunctionModified = true;
2968
2969 // Leave if the function doesn't need instrumentation.
2970 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2971
2972 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
2973 return FunctionModified;
2974
2975 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2976
2977 initializeCallbacks(TLI);
2978
2979 FunctionStateRAII CleanupObj(this);
2980
2981 RuntimeCallInserter RTCI(F);
2982
2983 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2984
2985 // We can't instrument allocas used with llvm.localescape. Only static allocas
2986 // can be passed to that intrinsic.
2987 markEscapedLocalAllocas(F);
2988
2989 // We want to instrument every address only once per basic block (unless there
2990 // are calls between uses).
2991 SmallPtrSet<Value *, 16> TempsToInstrument;
2992 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2993 SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2994 SmallVector<Instruction *, 8> NoReturnCalls;
2996 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2997
2998 // Fill the set of memory operations to instrument.
2999 for (auto &BB : F) {
3000 AllBlocks.push_back(&BB);
3001 TempsToInstrument.clear();
3002 int NumInsnsPerBB = 0;
3003 for (auto &Inst : BB) {
3004 if (LooksLikeCodeInBug11395(&Inst)) return false;
3005 // Skip instructions inserted by another instrumentation.
3006 if (Inst.hasMetadata(LLVMContext::MD_nosanitize))
3007 continue;
3008 SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
3009 getInterestingMemoryOperands(&Inst, InterestingOperands);
3010
3011 if (!InterestingOperands.empty()) {
3012 for (auto &Operand : InterestingOperands) {
3013 if (ClOpt && ClOptSameTemp) {
3014 Value *Ptr = Operand.getPtr();
3015 // If we have a mask, skip instrumentation if we've already
3016 // instrumented the full object. But don't add to TempsToInstrument
3017 // because we might get another load/store with a different mask.
3018 if (Operand.MaybeMask) {
3019 if (TempsToInstrument.count(Ptr))
3020 continue; // We've seen this (whole) temp in the current BB.
3021 } else {
3022 if (!TempsToInstrument.insert(Ptr).second)
3023 continue; // We've seen this temp in the current BB.
3024 }
3025 }
3026 OperandsToInstrument.push_back(Operand);
3027 NumInsnsPerBB++;
3028 }
3029 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
3033 PointerComparisonsOrSubtracts.push_back(&Inst);
3034 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
3035 // ok, take it.
3036 IntrinToInstrument.push_back(MI);
3037 NumInsnsPerBB++;
3038 } else {
3039 if (auto *CB = dyn_cast<CallBase>(&Inst)) {
3040 // A call inside BB.
3041 TempsToInstrument.clear();
3042 if (CB->doesNotReturn())
3043 NoReturnCalls.push_back(CB);
3044 }
3045 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
3047 }
3048 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
3049 }
3050 }
3051
3052 bool UseCalls = (InstrumentationWithCallsThreshold >= 0 &&
3053 OperandsToInstrument.size() + IntrinToInstrument.size() >
3054 (unsigned)InstrumentationWithCallsThreshold);
3055 const DataLayout &DL = F.getDataLayout();
3056 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext());
3057
3058 // Instrument.
3059 int NumInstrumented = 0;
3060 for (auto &Operand : OperandsToInstrument) {
3061 if (!suppressInstrumentationSiteForDebug(NumInstrumented))
3062 instrumentMop(ObjSizeVis, Operand, UseCalls,
3063 F.getDataLayout(), RTCI);
3064 FunctionModified = true;
3065 }
3066 for (auto *Inst : IntrinToInstrument) {
3067 if (!suppressInstrumentationSiteForDebug(NumInstrumented))
3068 instrumentMemIntrinsic(Inst, RTCI);
3069 FunctionModified = true;
3070 }
3071
3072 FunctionStackPoisoner FSP(F, *this, RTCI);
3073 bool ChangedStack = FSP.runOnFunction();
3074
3075 // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
3076 // See e.g. https://github.com/google/sanitizers/issues/37
3077 for (auto *CI : NoReturnCalls) {
3078 IRBuilder<> IRB(CI);
3079 RTCI.createRuntimeCall(IRB, AsanHandleNoReturnFunc, {});
3080 }
3081
3082 for (auto *Inst : PointerComparisonsOrSubtracts) {
3083 instrumentPointerComparisonOrSubtraction(Inst, RTCI);
3084 FunctionModified = true;
3085 }
3086
3087 if (ChangedStack || !NoReturnCalls.empty())
3088 FunctionModified = true;
3089
3090 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
3091 << F << "\n");
3092
3093 return FunctionModified;
3094}
3095
3096// Workaround for bug 11395: we don't want to instrument stack in functions
3097// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
3098// FIXME: remove once the bug 11395 is fixed.
3099bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
3100 if (LongSize != 32) return false;
3101 CallInst *CI = dyn_cast<CallInst>(I);
3102 if (!CI || !CI->isInlineAsm()) return false;
3103 if (CI->arg_size() <= 5)
3104 return false;
3105 // We have inline assembly with quite a few arguments.
3106 return true;
3107}
3108
3109void FunctionStackPoisoner::initializeCallbacks(Module &M) {
3110 IRBuilder<> IRB(*C);
3111 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ||
3112 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3113 const char *MallocNameTemplate =
3114 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always
3117 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) {
3118 std::string Suffix = itostr(Index);
3119 AsanStackMallocFunc[Index] = M.getOrInsertFunction(
3120 MallocNameTemplate + Suffix, IntptrTy, IntptrTy);
3121 AsanStackFreeFunc[Index] =
3122 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
3123 IRB.getVoidTy(), IntptrTy, IntptrTy);
3124 }
3125 }
3126 if (ASan.UseAfterScope) {
3127 AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
3128 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
3129 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
3130 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
3131 }
3132
3133 for (size_t Val : {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0xf1, 0xf2,
3134 0xf3, 0xf5, 0xf8}) {
3135 std::ostringstream Name;
3137 Name << std::setw(2) << std::setfill('0') << std::hex << Val;
3138 AsanSetShadowFunc[Val] =
3139 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
3140 }
3141
3142 AsanAllocaPoisonFunc = M.getOrInsertFunction(
3143 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3144 AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
3145 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3146}
3147
3148void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
3149 ArrayRef<uint8_t> ShadowBytes,
3150 size_t Begin, size_t End,
3151 IRBuilder<> &IRB,
3152 Value *ShadowBase) {
3153 if (Begin >= End)
3154 return;
3155
3156 const size_t LargestStoreSizeInBytes =
3157 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
3158
3159 const bool IsLittleEndian = F.getDataLayout().isLittleEndian();
3160
3161 // Poison given range in shadow using larges store size with out leading and
3162 // trailing zeros in ShadowMask. Zeros never change, so they need neither
3163 // poisoning nor up-poisoning. Still we don't mind if some of them get into a
3164 // middle of a store.
3165 for (size_t i = Begin; i < End;) {
3166 if (!ShadowMask[i]) {
3167 assert(!ShadowBytes[i]);
3168 ++i;
3169 continue;
3170 }
3171
3172 size_t StoreSizeInBytes = LargestStoreSizeInBytes;
3173 // Fit store size into the range.
3174 while (StoreSizeInBytes > End - i)
3175 StoreSizeInBytes /= 2;
3176
3177 // Minimize store size by trimming trailing zeros.
3178 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
3179 while (j <= StoreSizeInBytes / 2)
3180 StoreSizeInBytes /= 2;
3181 }
3182
3183 uint64_t Val = 0;
3184 for (size_t j = 0; j < StoreSizeInBytes; j++) {
3185 if (IsLittleEndian)
3186 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
3187 else
3188 Val = (Val << 8) | ShadowBytes[i + j];
3189 }
3190
3191 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
3192 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
3195 Align(1));
3196
3197 i += StoreSizeInBytes;
3198 }
3199}
3200
3201void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3202 ArrayRef<uint8_t> ShadowBytes,
3203 IRBuilder<> &IRB, Value *ShadowBase) {
3204 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
3205}
3206
3207void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3208 ArrayRef<uint8_t> ShadowBytes,
3209 size_t Begin, size_t End,
3210 IRBuilder<> &IRB, Value *ShadowBase) {
3211 assert(ShadowMask.size() == ShadowBytes.size());
3212 size_t Done = Begin;
3213 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
3214 if (!ShadowMask[i]) {
3215 assert(!ShadowBytes[i]);
3216 continue;
3217 }
3218 uint8_t Val = ShadowBytes[i];
3219 if (!AsanSetShadowFunc[Val])
3220 continue;
3221
3222 // Skip same values.
3223 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
3224 }
3225
3226 if (j - i >= ASan.MaxInlinePoisoningSize) {
3227 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
3228 RTCI.createRuntimeCall(
3229 IRB, AsanSetShadowFunc[Val],
3230 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
3231 ConstantInt::get(IntptrTy, j - i)});
3232 Done = j;
3233 }
3234 }
3235
3236 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
3237}
3238
3239// Fake stack allocator (asan_fake_stack.h) has 11 size classes
3240// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
3241static int StackMallocSizeClass(uint64_t LocalStackSize) {
3242 assert(LocalStackSize <= kMaxStackMallocSize);
3243 uint64_t MaxSize = kMinStackMallocSize;
3244 for (int i = 0;; i++, MaxSize *= 2)
3245 if (LocalStackSize <= MaxSize) return i;
3246 llvm_unreachable("impossible LocalStackSize");
3247}
3248
3249void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
3250 Instruction *CopyInsertPoint = &F.front().front();
3251 if (CopyInsertPoint == ASan.LocalDynamicShadow) {
3252 // Insert after the dynamic shadow location is determined
3253 CopyInsertPoint = CopyInsertPoint->getNextNode();
3254 assert(CopyInsertPoint);
3255 }
3256 IRBuilder<> IRB(CopyInsertPoint);
3257 const DataLayout &DL = F.getDataLayout();
3258 for (Argument &Arg : F.args()) {
3259 if (Arg.hasByValAttr()) {
3260 Type *Ty = Arg.getParamByValType();
3261 const Align Alignment =
3262 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
3263
3264 AllocaInst *AI = IRB.CreateAlloca(
3265 Ty, nullptr,
3266 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
3267 ".byval");
3268 AI->setAlignment(Alignment);
3269 Arg.replaceAllUsesWith(AI);
3270
3271 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3272 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
3273 }
3274 }
3275}
3276
3277PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3278 Value *ValueIfTrue,
3279 Instruction *ThenTerm,
3280 Value *ValueIfFalse) {
3281 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3282 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3283 PHI->addIncoming(ValueIfFalse, CondBlock);
3284 BasicBlock *ThenBlock = ThenTerm->getParent();
3285 PHI->addIncoming(ValueIfTrue, ThenBlock);
3286 return PHI;
3287}
3288
3289Value *FunctionStackPoisoner::createAllocaForLayout(
3290 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3291 AllocaInst *Alloca;
3292 if (Dynamic) {
3293 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3294 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3295 "MyAlloca");
3296 } else {
3297 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3298 nullptr, "MyAlloca");
3299 assert(Alloca->isStaticAlloca());
3300 }
3301 assert((ClRealignStack & (ClRealignStack - 1)) == 0);
3302 uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack));
3303 Alloca->setAlignment(Align(FrameAlignment));
3304 return IRB.CreatePointerCast(Alloca, IntptrTy);
3305}
3306
3307void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3308 BasicBlock &FirstBB = *F.begin();
3309 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3310 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3311 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3312 DynamicAllocaLayout->setAlignment(Align(32));
3313}
3314
3315void FunctionStackPoisoner::processDynamicAllocas() {
3316 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
3317 assert(DynamicAllocaPoisonCallVec.empty());
3318 return;
3319 }
3320
3321 // Insert poison calls for lifetime intrinsics for dynamic allocas.
3322 for (const auto &APC : DynamicAllocaPoisonCallVec) {
3323 assert(APC.InsBefore);
3324 assert(APC.AI);
3325 assert(ASan.isInterestingAlloca(*APC.AI));
3326 assert(!APC.AI->isStaticAlloca());
3327
3328 IRBuilder<> IRB(APC.InsBefore);
3329 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3330 // Dynamic allocas will be unpoisoned unconditionally below in
3331 // unpoisonDynamicAllocas.
3332 // Flag that we need unpoison static allocas.
3333 }
3334
3335 // Handle dynamic allocas.
3336 createDynamicAllocasInitStorage();
3337 for (auto &AI : DynamicAllocaVec)
3338 handleDynamicAllocaCall(AI);
3339 unpoisonDynamicAllocas();
3340}
3341
3342/// Collect instructions in the entry block after \p InsBefore which initialize
3343/// permanent storage for a function argument. These instructions must remain in
3344/// the entry block so that uninitialized values do not appear in backtraces. An
3345/// added benefit is that this conserves spill slots. This does not move stores
3346/// before instrumented / "interesting" allocas.
3348 AddressSanitizer &ASan, Instruction &InsBefore,
3349 SmallVectorImpl<Instruction *> &InitInsts) {
3350 Instruction *Start = InsBefore.getNextNonDebugInstruction();
3351 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3352 // Argument initialization looks like:
3353 // 1) store <Argument>, <Alloca> OR
3354 // 2) <CastArgument> = cast <Argument> to ...
3355 // store <CastArgument> to <Alloca>
3356 // Do not consider any other kind of instruction.
3357 //
3358 // Note: This covers all known cases, but may not be exhaustive. An
3359 // alternative to pattern-matching stores is to DFS over all Argument uses:
3360 // this might be more general, but is probably much more complicated.
3361 if (isa<AllocaInst>(It) || isa<CastInst>(It))
3362 continue;
3363 if (auto *Store = dyn_cast<StoreInst>(It)) {
3364 // The store destination must be an alloca that isn't interesting for
3365 // ASan to instrument. These are moved up before InsBefore, and they're
3366 // not interesting because allocas for arguments can be mem2reg'd.
3367 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3368 if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3369 continue;
3370
3371 Value *Val = Store->getValueOperand();
3372 bool IsDirectArgInit = isa<Argument>(Val);
3373 bool IsArgInitViaCast =
3374 isa<CastInst>(Val) &&
3375 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3376 // Check that the cast appears directly before the store. Otherwise
3377 // moving the cast before InsBefore may break the IR.
3378 Val == It->getPrevNonDebugInstruction();
3379 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3380 if (!IsArgInit)
3381 continue;
3382
3383 if (IsArgInitViaCast)
3384 InitInsts.push_back(cast<Instruction>(Val));
3385 InitInsts.push_back(Store);
3386 continue;
3387 }
3388
3389 // Do not reorder past unknown instructions: argument initialization should
3390 // only involve casts and stores.
3391 return;
3392 }
3393}
3394
3395void FunctionStackPoisoner::processStaticAllocas() {
3396 if (AllocaVec.empty()) {
3397 assert(StaticAllocaPoisonCallVec.empty());
3398 return;
3399 }
3400
3401 int StackMallocIdx = -1;
3402 DebugLoc EntryDebugLocation;
3403 if (auto SP = F.getSubprogram())
3404 EntryDebugLocation =
3405 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
3406
3407 Instruction *InsBefore = AllocaVec[0];
3408 IRBuilder<> IRB(InsBefore);
3409
3410 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3411 // debug info is broken, because only entry-block allocas are treated as
3412 // regular stack slots.
3413 auto InsBeforeB = InsBefore->getParent();
3414 assert(InsBeforeB == &F.getEntryBlock());
3415 for (auto *AI : StaticAllocasToMoveUp)
3416 if (AI->getParent() == InsBeforeB)
3417 AI->moveBefore(InsBefore);
3418
3419 // Move stores of arguments into entry-block allocas as well. This prevents
3420 // extra stack slots from being generated (to house the argument values until
3421 // they can be stored into the allocas). This also prevents uninitialized
3422 // values from being shown in backtraces.
3423 SmallVector<Instruction *, 8> ArgInitInsts;
3424 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3425 for (Instruction *ArgInitInst : ArgInitInsts)
3426 ArgInitInst->moveBefore(InsBefore);
3427
3428 // If we have a call to llvm.localescape, keep it in the entry block.
3429 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3430
3432 SVD.reserve(AllocaVec.size());
3433 for (AllocaInst *AI : AllocaVec) {
3435 ASan.getAllocaSizeInBytes(*AI),
3436 0,
3437 AI->getAlign().value(),
3438 AI,
3439 0,
3440 0};
3441 SVD.push_back(D);
3442 }
3443
3444 // Minimal header size (left redzone) is 4 pointers,
3445 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3446 uint64_t Granularity = 1ULL << Mapping.Scale;
3447 uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity);
3448 const ASanStackFrameLayout &L =
3449 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3450
3451 // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3453 for (auto &Desc : SVD)
3454 AllocaToSVDMap[Desc.AI] = &Desc;
3455
3456 // Update SVD with information from lifetime intrinsics.
3457 for (const auto &APC : StaticAllocaPoisonCallVec) {
3458 assert(APC.InsBefore);
3459 assert(APC.AI);
3460 assert(ASan.isInterestingAlloca(*APC.AI));
3461 assert(APC.AI->isStaticAlloca());
3462
3463 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3464 Desc.LifetimeSize = Desc.Size;
3465 if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3466 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3467 if (LifetimeLoc->getFile() == FnLoc->getFile())
3468 if (unsigned Line = LifetimeLoc->getLine())
3469 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3470 }
3471 }
3472 }
3473
3474 auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3475 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3476 uint64_t LocalStackSize = L.FrameSize;
3477 bool DoStackMalloc =
3478 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never &&
3479 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize;
3480 bool DoDynamicAlloca = ClDynamicAllocaStack;
3481 // Don't do dynamic alloca or stack malloc if:
3482 // 1) There is inline asm: too often it makes assumptions on which registers
3483 // are available.
3484 // 2) There is a returns_twice call (typically setjmp), which is
3485 // optimization-hostile, and doesn't play well with introduced indirect
3486 // register-relative calculation of local variable addresses.
3487 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
3488 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
3489
3490 Value *StaticAlloca =
3491 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3492
3493 Value *FakeStack;
3494 Value *LocalStackBase;
3495 Value *LocalStackBaseAlloca;
3496 uint8_t DIExprFlags = DIExpression::ApplyOffset;
3497
3498 if (DoStackMalloc) {
3499 LocalStackBaseAlloca =
3500 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3501 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3502 // void *FakeStack = __asan_option_detect_stack_use_after_return
3503 // ? __asan_stack_malloc_N(LocalStackSize)
3504 // : nullptr;
3505 // void *LocalStackBase = (FakeStack) ? FakeStack :
3506 // alloca(LocalStackSize);
3507 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3509 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3510 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3512 Instruction *Term =
3513 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3514 IRBuilder<> IRBIf(Term);
3515 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3516 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3517 Value *FakeStackValue =
3518 RTCI.createRuntimeCall(IRBIf, AsanStackMallocFunc[StackMallocIdx],
3519 ConstantInt::get(IntptrTy, LocalStackSize));
3520 IRB.SetInsertPoint(InsBefore);
3521 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3522 ConstantInt::get(IntptrTy, 0));
3523 } else {
3524 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
3525 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
3526 // void *LocalStackBase = (FakeStack) ? FakeStack :
3527 // alloca(LocalStackSize);
3528 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3529 FakeStack =
3530 RTCI.createRuntimeCall(IRB, AsanStackMallocFunc[StackMallocIdx],
3531 ConstantInt::get(IntptrTy, LocalStackSize));
3532 }
3533 Value *NoFakeStack =
3534 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3535 Instruction *Term =
3536 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3537 IRBuilder<> IRBIf(Term);
3538 Value *AllocaValue =
3539 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3540
3541 IRB.SetInsertPoint(InsBefore);
3542 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3543 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3544 DIExprFlags |= DIExpression::DerefBefore;
3545 } else {
3546 // void *FakeStack = nullptr;
3547 // void *LocalStackBase = alloca(LocalStackSize);
3548 FakeStack = ConstantInt::get(IntptrTy, 0);
3549 LocalStackBase =
3550 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3551 LocalStackBaseAlloca = LocalStackBase;
3552 }
3553
3554 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3555 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3556 // later passes and can result in dropped variable coverage in debug info.
3557 Value *LocalStackBaseAllocaPtr =
3558 isa<PtrToIntInst>(LocalStackBaseAlloca)
3559 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3560 : LocalStackBaseAlloca;
3561 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
3562 "Variable descriptions relative to ASan stack base will be dropped");
3563
3564 // Replace Alloca instructions with base+offset.
3565 for (const auto &Desc : SVD) {
3566 AllocaInst *AI = Desc.AI;
3567 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3568 Desc.Offset);
3569 Value *NewAllocaPtr = IRB.CreateIntToPtr(
3570 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3571 AI->getType());
3572 AI->replaceAllUsesWith(NewAllocaPtr);
3573 }
3574
3575 // The left-most redzone has enough space for at least 4 pointers.
3576 // Write the Magic value to redzone[0].
3577 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3578 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3579 BasePlus0);
3580 // Write the frame description constant to redzone[1].
3581 Value *BasePlus1 = IRB.CreateIntToPtr(
3582 IRB.CreateAdd(LocalStackBase,
3583 ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3584 IntptrPtrTy);
3585 GlobalVariable *StackDescriptionGlobal =
3586 createPrivateGlobalForString(*F.getParent(), DescriptionString,
3587 /*AllowMerging*/ true, genName("stack"));
3588 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3589 IRB.CreateStore(Description, BasePlus1);
3590 // Write the PC to redzone[2].
3591 Value *BasePlus2 = IRB.CreateIntToPtr(
3592 IRB.CreateAdd(LocalStackBase,
3593 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3594 IntptrPtrTy);
3595 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3596
3597 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3598
3599 // Poison the stack red zones at the entry.
3600 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3601 // As mask we must use most poisoned case: red zones and after scope.
3602 // As bytes we can use either the same or just red zones only.
3603 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3604
3605 if (!StaticAllocaPoisonCallVec.empty()) {
3606 const auto &ShadowInScope = GetShadowBytes(SVD, L);
3607
3608 // Poison static allocas near lifetime intrinsics.
3609 for (const auto &APC : StaticAllocaPoisonCallVec) {
3610 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3611 assert(Desc.Offset % L.Granularity == 0);
3612 size_t Begin = Desc.Offset / L.Granularity;
3613 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3614
3615 IRBuilder<> IRB(APC.InsBefore);
3616 copyToShadow(ShadowAfterScope,
3617 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3618 IRB, ShadowBase);
3619 }
3620 }
3621
3622 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3623 SmallVector<uint8_t, 64> ShadowAfterReturn;
3624
3625 // (Un)poison the stack before all ret instructions.
3626 for (Instruction *Ret : RetVec) {
3627 IRBuilder<> IRBRet(Ret);
3628 // Mark the current frame as retired.
3629 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3630 BasePlus0);
3631 if (DoStackMalloc) {
3632 assert(StackMallocIdx >= 0);
3633 // if FakeStack != 0 // LocalStackBase == FakeStack
3634 // // In use-after-return mode, poison the whole stack frame.
3635 // if StackMallocIdx <= 4
3636 // // For small sizes inline the whole thing:
3637 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3638 // **SavedFlagPtr(FakeStack) = 0
3639 // else
3640 // __asan_stack_free_N(FakeStack, LocalStackSize)
3641 // else
3642 // <This is not a fake stack; unpoison the redzones>
3643 Value *Cmp =
3644 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3645 Instruction *ThenTerm, *ElseTerm;
3646 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3647
3648 IRBuilder<> IRBPoison(ThenTerm);
3649 if (ASan.MaxInlinePoisoningSize != 0 && StackMallocIdx <= 4) {
3650 int ClassSize = kMinStackMallocSize << StackMallocIdx;
3651 ShadowAfterReturn.resize(ClassSize / L.Granularity,
3653 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3654 ShadowBase);
3655 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3656 FakeStack,
3657 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3658 Value *SavedFlagPtr = IRBPoison.CreateLoad(
3659 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3660 IRBPoison.CreateStore(
3661 Constant::getNullValue(IRBPoison.getInt8Ty()),
3662 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getPtrTy()));
3663 } else {
3664 // For larger frames call __asan_stack_free_*.
3665 RTCI.createRuntimeCall(
3666 IRBPoison, AsanStackFreeFunc[StackMallocIdx],
3667 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3668 }
3669
3670 IRBuilder<> IRBElse(ElseTerm);
3671 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3672 } else {
3673 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3674 }
3675 }
3676
3677 // We are done. Remove the old unused alloca instructions.
3678 for (auto *AI : AllocaVec)
3679 AI->eraseFromParent();
3680}
3681
3682void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3683 IRBuilder<> &IRB, bool DoPoison) {
3684 // For now just insert the call to ASan runtime.
3685 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3686 Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3687 RTCI.createRuntimeCall(
3688 IRB, DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3689 {AddrArg, SizeArg});
3690}
3691
3692// Handling llvm.lifetime intrinsics for a given %alloca:
3693// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3694// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3695// invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3696// could be poisoned by previous llvm.lifetime.end instruction, as the
3697// variable may go in and out of scope several times, e.g. in loops).
3698// (3) if we poisoned at least one %alloca in a function,
3699// unpoison the whole stack frame at function exit.
3700void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3701 IRBuilder<> IRB(AI);
3702
3703 const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign());
3704 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3705
3706 Value *Zero = Constant::getNullValue(IntptrTy);
3707 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3708 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3709
3710 // Since we need to extend alloca with additional memory to locate
3711 // redzones, and OldSize is number of allocated blocks with
3712 // ElementSize size, get allocated memory size in bytes by
3713 // OldSize * ElementSize.
3714 const unsigned ElementSize =
3715 F.getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3716 Value *OldSize =
3717 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3718 ConstantInt::get(IntptrTy, ElementSize));
3719
3720 // PartialSize = OldSize % 32
3721 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3722
3723 // Misalign = kAllocaRzSize - PartialSize;
3724 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3725
3726 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3727 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3728 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3729
3730 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3731 // Alignment is added to locate left redzone, PartialPadding for possible
3732 // partial redzone and kAllocaRzSize for right redzone respectively.
3733 Value *AdditionalChunkSize = IRB.CreateAdd(
3734 ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize),
3735 PartialPadding);
3736
3737 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3738
3739 // Insert new alloca with new NewSize and Alignment params.
3740 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3741 NewAlloca->setAlignment(Alignment);
3742
3743 // NewAddress = Address + Alignment
3744 Value *NewAddress =
3745 IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3746 ConstantInt::get(IntptrTy, Alignment.value()));
3747
3748 // Insert __asan_alloca_poison call for new created alloca.
3749 RTCI.createRuntimeCall(IRB, AsanAllocaPoisonFunc, {NewAddress, OldSize});
3750
3751 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3752 // for unpoisoning stuff.
3753 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3754
3755 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3756
3757 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3758 AI->replaceAllUsesWith(NewAddressPtr);
3759
3760 // We are done. Erase old alloca from parent.
3761 AI->eraseFromParent();
3762}
3763
3764// isSafeAccess returns true if Addr is always inbounds with respect to its
3765// base object. For example, it is a field access or an array access with
3766// constant inbounds index.
3767bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3768 Value *Addr, TypeSize TypeStoreSize) const {
3769 if (TypeStoreSize.isScalable())
3770 // TODO: We can use vscale_range to convert a scalable value to an
3771 // upper bound on the access size.
3772 return false;
3773
3774 SizeOffsetAPInt SizeOffset = ObjSizeVis.compute(Addr);
3775 if (!SizeOffset.bothKnown())
3776 return false;
3777
3778 uint64_t Size = SizeOffset.Size.getZExtValue();
3779 int64_t Offset = SizeOffset.Offset.getSExtValue();
3780
3781 // Three checks are required to ensure safety:
3782 // . Offset >= 0 (since the offset is given from the base ptr)
3783 // . Size >= Offset (unsigned)
3784 // . Size - Offset >= NeededSize (unsigned)
3785 return Offset >= 0 && Size >= uint64_t(Offset) &&
3786 Size - uint64_t(Offset) >= TypeStoreSize / 8;
3787}
@ Poison
static cl::opt< bool > ClUseStackSafety("stack-tagging-use-stack-safety", cl::Hidden, cl::init(true), cl::desc("Use Stack Safety analysis results"))
Rewrite undef for PHI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static void findStoresToUninstrumentedArgAllocas(AddressSanitizer &ASan, Instruction &InsBefore, SmallVectorImpl< Instruction * > &InitInsts)
Collect instructions in the entry block after InsBefore which initialize permanent storage for a func...
static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, Instruction *InsertBefore, Value *Addr, MaybeAlign Alignment, unsigned Granularity, TypeSize TypeStoreSize, bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp, RuntimeCallInserter &RTCI)
static const uint64_t kDefaultShadowScale
const char kAMDGPUUnreachableName[]
constexpr size_t kAccessSizeIndexMask
static cl::opt< int > ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), cl::Hidden, cl::init(-1))
static cl::opt< bool > ClUsePrivateAlias("asan-use-private-alias", cl::desc("Use private aliases for global variables"), cl::Hidden, cl::init(true))
static const uint64_t kPS_ShadowOffset64
static const uint64_t kFreeBSD_ShadowOffset32
constexpr size_t kIsWriteShift
static const uint64_t kSmallX86_64ShadowOffsetAlignMask
static bool isInterestingPointerSubtraction(Instruction *I)
const char kAMDGPUAddressSharedName[]
const char kAsanStackFreeNameTemplate[]
constexpr size_t kCompileKernelMask
static cl::opt< bool > ClForceDynamicShadow("asan-force-dynamic-shadow", cl::desc("Load shadow address into a local variable for each function"), cl::Hidden, cl::init(false))
const char kAsanOptionDetectUseAfterReturn[]
static cl::opt< std::string > ClMemoryAccessCallbackPrefix("asan-memory-access-callback-prefix", cl::desc("Prefix for memory access callbacks"), cl::Hidden, cl::init("__asan_"))
static const uint64_t kRISCV64_ShadowOffset64
static cl::opt< bool > ClInsertVersionCheck("asan-guard-against-version-mismatch", cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden, cl::init(true))
const char kAsanSetShadowPrefix[]
static cl::opt< AsanDtorKind > ClOverrideDestructorKind("asan-destructor-kind", cl::desc("Sets the ASan destructor kind. The default is to use the value " "provided to the pass constructor"), cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), clEnumValN(AsanDtorKind::Global, "global", "Use global destructors")), cl::init(AsanDtorKind::Invalid), cl::Hidden)
static Twine genName(StringRef suffix)
static cl::opt< bool > ClInstrumentWrites("asan-instrument-writes", cl::desc("instrument write instructions"), cl::Hidden, cl::init(true))
const char kAsanPtrCmp[]
static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple)
const char kAsanStackMallocNameTemplate[]
static cl::opt< bool > ClInstrumentByval("asan-instrument-byval", cl::desc("instrument byval call arguments"), cl::Hidden, cl::init(true))
const char kAsanInitName[]
static cl::opt< bool > ClGlobals("asan-globals", cl::desc("Handle global objects"), cl::Hidden, cl::init(true))
static cl::opt< bool > ClRedzoneByvalArgs("asan-redzone-byval-args", cl::desc("Create redzones for byval " "arguments (extra copy " "required)"), cl::Hidden, cl::init(true))
static const uint64_t kWindowsShadowOffset64
static const uint64_t kEmscriptenShadowOffset
const char kAsanGenPrefix[]
constexpr size_t kIsWriteMask
static uint64_t getRedzoneSizeForScale(int MappingScale)
static const uint64_t kDefaultShadowOffset64
static cl::opt< bool > ClOptimizeCallbacks("asan-optimize-callbacks", cl::desc("Optimize callbacks"), cl::Hidden, cl::init(false))
const char kAsanUnregisterGlobalsName[]
static const uint64_t kAsanCtorAndDtorPriority
const char kAsanUnpoisonGlobalsName[]
static cl::opt< bool > ClWithIfuncSuppressRemat("asan-with-ifunc-suppress-remat", cl::desc("Suppress rematerialization of dynamic shadow address by passing " "it through inline asm in prologue."), cl::Hidden, cl::init(true))
static cl::opt< int > ClDebugStack("asan-debug-stack", cl::desc("debug stack"), cl::Hidden, cl::init(0))
const char kAsanUnregisterElfGlobalsName[]
static bool isUnsupportedAMDGPUAddrspace(Value *Addr)
const char kAsanRegisterImageGlobalsName[]
static cl::opt< bool > ClOpt("asan-opt", cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true))
static const uint64_t kAllocaRzSize
const char kODRGenPrefix[]
static const uint64_t kSystemZ_ShadowOffset64
static const uint64_t kDefaultShadowOffset32
const char kAsanShadowMemoryDynamicAddress[]
static cl::opt< bool > ClUseOdrIndicator("asan-use-odr-indicator", cl::desc("Use odr indicators to improve ODR reporting"), cl::Hidden, cl::init(true))
static bool GlobalWasGeneratedByCompiler(GlobalVariable *G)
Check if G has been created by a trusted compiler pass.
const char kAsanStackMallocAlwaysNameTemplate[]
static cl::opt< bool > ClInvalidPointerCmp("asan-detect-invalid-pointer-cmp", cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, cl::init(false))
static const uint64_t kAsanEmscriptenCtorAndDtorPriority
static cl::opt< int > ClInstrumentationWithCallsThreshold("asan-instrumentation-with-call-threshold", cl::desc("If the function being instrumented contains more than " "this number of memory accesses, use callbacks instead of " "inline checks (-1 means never use callbacks)."), cl::Hidden, cl::init(7000))
static cl::opt< int > ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), cl::Hidden, cl::init(-1))
static cl::opt< bool > ClInvalidPointerSub("asan-detect-invalid-pointer-sub", cl::desc("Instrument - operations with pointer operands"), cl::Hidden, cl::init(false))
static const uint64_t kFreeBSD_ShadowOffset64
static cl::opt< uint32_t > ClForceExperiment("asan-force-experiment", cl::desc("Force optimization experiment (for testing)"), cl::Hidden, cl::init(0))
const char kSanCovGenPrefix[]
static const uint64_t kFreeBSDKasan_ShadowOffset64
const char kAsanModuleDtorName[]
static const uint64_t kDynamicShadowSentinel
static bool isInterestingPointerComparison(Instruction *I)
static cl::opt< bool > ClStack("asan-stack", cl::desc("Handle stack memory"), cl::Hidden, cl::init(true))
static const uint64_t kMIPS64_ShadowOffset64
static const uint64_t kLinuxKasan_ShadowOffset64
static int StackMallocSizeClass(uint64_t LocalStackSize)
static cl::opt< uint32_t > ClMaxInlinePoisoningSize("asan-max-inline-poisoning-size", cl::desc("Inline shadow poisoning for blocks up to the given size in bytes."), cl::Hidden, cl::init(64))
static cl::opt< bool > ClInstrumentAtomics("asan-instrument-atomics", cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, cl::init(true))
static cl::opt< bool > ClUseAfterScope("asan-use-after-scope", cl::desc("Check stack-use-after-scope"), cl::Hidden, cl::init(false))
constexpr size_t kAccessSizeIndexShift
static cl::opt< int > ClMappingScale("asan-mapping-scale", cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0))
const char kAsanPoisonStackMemoryName[]
static cl::opt< bool > ClEnableKasan("asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), cl::Hidden, cl::init(false))
static cl::opt< std::string > ClDebugFunc("asan-debug-func", cl::Hidden, cl::desc("Debug func"))
static cl::opt< bool > ClUseGlobalsGC("asan-globals-live-support", cl::desc("Use linker features to support dead " "code stripping of globals"), cl::Hidden, cl::init(true))
static const size_t kNumberOfAccessSizes
const char kAsanUnpoisonStackMemoryName[]
static const uint64_t kLoongArch64_ShadowOffset64
const char kAsanRegisterGlobalsName[]
static cl::opt< bool > ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", cl::desc("instrument dynamic allocas"), cl::Hidden, cl::init(true))
const char kAsanModuleCtorName[]
const char kAsanGlobalsRegisteredFlagName[]
static const size_t kMaxStackMallocSize
static cl::opt< bool > ClRecover("asan-recover", cl::desc("Enable recovery mode (continue-after-error)."), cl::Hidden, cl::init(false))
static cl::opt< bool > ClOptSameTemp("asan-opt-same-temp", cl::desc("Instrument the same temp just once"), cl::Hidden, cl::init(true))
static cl::opt< bool > ClDynamicAllocaStack("asan-stack-dynamic-alloca", cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, cl::init(true))
static cl::opt< bool > ClOptStack("asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), cl::Hidden, cl::init(false))
static const uint64_t kMIPS_ShadowOffsetN32
const char kAsanUnregisterImageGlobalsName[]
static cl::opt< AsanDetectStackUseAfterReturnMode > ClUseAfterReturn("asan-use-after-return", cl::desc("Sets the mode of detection for stack-use-after-return."), cl::values(clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", "Never detect stack use after return."), clEnumValN(AsanDetectStackUseAfterReturnMode::Runtime, "runtime", "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", "Always detect stack use after return.")), cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime))
static cl::opt< bool > ClOptGlobals("asan-opt-globals", cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true))
static const uintptr_t kCurrentStackFrameMagic
static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, bool IsKasan)
static const uint64_t kPPC64_ShadowOffset64
static cl::opt< AsanCtorKind > ClConstructorKind("asan-constructor-kind", cl::desc("Sets the ASan constructor kind"), cl::values(clEnumValN(AsanCtorKind::None, "none", "No constructors"), clEnumValN(AsanCtorKind::Global, "global", "Use global constructors")), cl::init(AsanCtorKind::Global), cl::Hidden)
static const int kMaxAsanStackMallocSizeClass
static const uint64_t kMIPS32_ShadowOffset32
static cl::opt< bool > ClAlwaysSlowPath("asan-always-slow-path", cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, cl::init(false))
static const uint64_t kNetBSD_ShadowOffset32
static const uint64_t kFreeBSDAArch64_ShadowOffset64
static const uint64_t kSmallX86_64ShadowOffsetBase
static cl::opt< bool > ClInitializers("asan-initialization-order", cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(true))
static const uint64_t kNetBSD_ShadowOffset64
const char kAsanPtrSub[]
static cl::opt< unsigned > ClRealignStack("asan-realign-stack", cl::desc("Realign stack to the value of this flag (power of two)"), cl::Hidden, cl::init(32))
static const uint64_t kWindowsShadowOffset32
static cl::opt< bool > ClInstrumentReads("asan-instrument-reads", cl::desc("instrument read instructions"), cl::Hidden, cl::init(true))
static size_t TypeStoreSizeToSizeIndex(uint32_t TypeSize)
const char kAsanAllocaPoison[]
constexpr size_t kCompileKernelShift
static cl::opt< bool > ClWithIfunc("asan-with-ifunc", cl::desc("Access dynamic shadow through an ifunc global on " "platforms that support this"), cl::Hidden, cl::init(true))
static cl::opt< bool > ClKasanMemIntrinCallbackPrefix("asan-kernel-mem-intrinsic-prefix", cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden, cl::init(false))
const char kAsanVersionCheckNamePrefix[]
const char kAMDGPUAddressPrivateName[]
static const uint64_t kNetBSDKasan_ShadowOffset64
const char kAMDGPUBallotName[]
const char kAsanRegisterElfGlobalsName[]
static cl::opt< uint64_t > ClMappingOffset("asan-mapping-offset", cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden, cl::init(0))
const char kAsanReportErrorTemplate[]
static cl::opt< bool > ClWithComdat("asan-with-comdat", cl::desc("Place ASan constructors in comdat sections"), cl::Hidden, cl::init(true))
static cl::opt< bool > ClSkipPromotableAllocas("asan-skip-promotable-allocas", cl::desc("Do not instrument promotable allocas"), cl::Hidden, cl::init(true))
static cl::opt< int > ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb", cl::init(10000), cl::desc("maximal number of instructions to instrument in any given BB"), cl::Hidden)
static const uintptr_t kRetiredStackFrameMagic
static cl::opt< bool > ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(true), cl::Hidden, cl::desc("Use Stack Safety analysis results"), cl::Optional)
const char kAsanPoisonGlobalsName[]
const char kAsanHandleNoReturnName[]
static const size_t kMinStackMallocSize
static cl::opt< int > ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, cl::init(0))
const char kAsanAllocasUnpoison[]
static const uint64_t kAArch64_ShadowOffset64
static cl::opt< bool > ClInvalidPointerPairs("asan-detect-invalid-pointer-pair", cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, cl::init(false))
This file contains the simple types necessary to represent the attributes associated with functions a...
static bool isPointerOperand(Value *I, User *U)
static const Function * getParent(const Value *V)
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:686
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
uint64_t Addr
std::string Name
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
static bool runOnFunction(Function &F, bool PostInlining)
This is the interface for a simple mod/ref and alias analysis over globals.
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static LVOptions Options
Definition: LVOptions.cpp:25
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
This file contains the declarations for metadata subclasses.
uint64_t IntrinsicInst * II
FunctionAnalysisManager FAM
ModuleAnalysisManager MAM
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
#define OP(OPC)
Definition: Instruction.h:45
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
This file contains some functions that are useful when dealing with strings.
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:39
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1520
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1542
AddressSanitizerPass(const AddressSanitizerOptions &Options, bool UseGlobalGC=true, bool UseOdrIndicator=true, AsanDtorKind DestructorKind=AsanDtorKind::Global, AsanCtorKind ConstructorKind=AsanCtorKind::Global)
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
an instruction to allocate memory on the stack
Definition: Instructions.h:63
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
Definition: Instructions.h:149
bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Definition: Instructions.h:124
PointerType * getType() const
Overload to return most specific pointer type.
Definition: Instructions.h:99
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
Definition: Instructions.h:117
bool isUsedWithInAlloca() const
Return true if this alloca is used as an inalloca argument to a call.
Definition: Instructions.h:139
std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
void setAlignment(Align Align)
Definition: Instructions.h:128
const Value * getArraySize() const
Get the number of elements allocated.
Definition: Instructions.h:95
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:410
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
An instruction that atomically checks whether a specified value is in a memory location,...
Definition: Instructions.h:501
an instruction that atomically reads a memory location, combines it with another value,...
Definition: Instructions.h:704
AttributeList addParamAttribute(LLVMContext &C, unsigned ArgNo, Attribute::AttrKind Kind) const
Add an argument attribute to the list.
Definition: Attributes.h:628
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:448
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:416
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:212
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:219
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
Definition: BasicBlock.cpp:292
Conditional or Unconditional Branch instruction.
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1112
bool isInlineAsm() const
Check if this call is an inline asm statement.
Definition: InstrTypes.h:1408
static CallBase * addOperandBundle(CallBase *CB, uint32_t ID, OperandBundleDef OB, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle OB added.
bool doesNotReturn() const
Determine if the call cannot return.
Definition: InstrTypes.h:1918
unsigned arg_size() const
Definition: InstrTypes.h:1284
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
@ Largest
The linker will choose the largest COMDAT.
Definition: Comdat.h:38
@ SameSize
The data referenced by the COMDAT must be the same size.
Definition: Comdat.h:40
@ Any
The linker may choose any COMDAT.
Definition: Comdat.h:36
@ NoDeduplicate
No deduplication is performed.
Definition: Comdat.h:39
@ ExactMatch
The data referenced by the COMDAT must be the same.
Definition: Comdat.h:37
ConstantArray - Constant Array Declarations.
Definition: Constants.h:427
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1312
static Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2307
static Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
Definition: Constants.cpp:2253
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition: Constants.h:1267
static bool isValueValidForType(Type *Ty, uint64_t V)
This static method returns true if the type Ty is big enough to represent the value V.
Definition: Constants.cpp:1597
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
Definition: Constants.cpp:1826
static Constant * get(StructType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1378
This is an important base class in LLVM.
Definition: Constant.h:42
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:435
Debug location.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
A debug info location.
Definition: DebugLoc.h:33
DILocation * get() const
Get the underlying DILocation.
Definition: DebugLoc.cpp:20
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Definition: DerivedTypes.h:170
static FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
const BasicBlock & front() const
Definition: Function.h:860
static Function * createWithDefaultAttr(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Creates a function with some attributes recorded in llvm.module.flags and the LLVMContext applied.
Definition: Function.cpp:390
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition: Function.h:905
Constant * getPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.cpp:1048
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition: Function.cpp:369
const Constant * getAliasee() const
Definition: GlobalAlias.h:86
static GlobalAlias * create(Type *Ty, unsigned AddressSpace, LinkageTypes Linkage, const Twine &Name, Constant *Aliasee, Module *Parent)
If a parent module is specified, the alias is automatically inserted into the end of the specified mo...
Definition: Globals.cpp:557
void setAlignment(Align Align)
Sets the alignment attribute of the GlobalObject.
Definition: Globals.cpp:143
void copyMetadata(const GlobalObject *Src, unsigned Offset)
Copy metadata from Src, adjusting offsets by Offset.
Definition: Metadata.cpp:1799
void setComdat(Comdat *C)
Definition: Globals.cpp:212
void setSection(StringRef S)
Change the section for this global.
Definition: Globals.cpp:273
VisibilityTypes getVisibility() const
Definition: GlobalValue.h:249
void setUnnamedAddr(UnnamedAddr Val)
Definition: GlobalValue.h:232
bool hasLocalLinkage() const
Definition: GlobalValue.h:529
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
Definition: GlobalValue.h:568
ThreadLocalMode getThreadLocalMode() const
Definition: GlobalValue.h:272
@ HiddenVisibility
The GV is hidden.
Definition: GlobalValue.h:68
void setVisibility(VisibilityTypes V)
Definition: GlobalValue.h:255
LinkageTypes
An enumeration for the kinds of linkage for global values.
Definition: GlobalValue.h:51
@ PrivateLinkage
Like Internal, but omit from symbol table.
Definition: GlobalValue.h:60
@ CommonLinkage
Tentative definitions.
Definition: GlobalValue.h:62
@ InternalLinkage
Rename collisions when linking (static functions).
Definition: GlobalValue.h:59
@ AvailableExternallyLinkage
Available for inspection, not emission.
Definition: GlobalValue.h:53
@ ExternalWeakLinkage
ExternalWeak linkage description.
Definition: GlobalValue.h:61
DLLStorageClassTypes getDLLStorageClass() const
Definition: GlobalValue.h:276
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
void copyAttributesFrom(const GlobalVariable *Src)
copyAttributesFrom - copy all additional attributes (those not needed to create a GlobalVariable) fro...
Definition: Globals.cpp:521
Analysis pass providing a never-invalidated alias analysis result.
This instruction compares its operands according to the predicate given to the constructor.
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:113
AllocaInst * CreateAlloca(Type *Ty, unsigned AddrSpace, Value *ArraySize=nullptr, const Twine &Name="")
Definition: IRBuilder.h:1781
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Definition: IRBuilder.h:530
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2499
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name)
Definition: IRBuilder.h:1815
Value * CreatePointerCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2199
Value * CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2298
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.cpp:1053
BasicBlock::iterator GetInsertPoint() const
Definition: IRBuilder.h:194
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2147
Value * CreateTypeSize(Type *DstType, TypeSize Size)
Create an expression which evaluates to the number of units in Size at runtime.
Definition: IRBuilder.cpp:103
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1480
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:545
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition: IRBuilder.h:1987
BasicBlock * GetInsertBlock() const
Definition: IRBuilder.h:193
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Definition: IRBuilder.h:550
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2274
Value * CreateGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition: IRBuilder.h:1874
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:900
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:505
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Definition: IRBuilder.h:2435
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1757
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2270
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1387
ConstantInt * getIntN(unsigned N, uint64_t C)
Get a constant N-bit value, zero extended or truncated from a 64-bit value.
Definition: IRBuilder.h:516
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Definition: IRBuilder.h:1798
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1518
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Definition: IRBuilder.h:1811
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1370
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2142
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
Definition: IRBuilder.h:2588
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2449
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1540
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Definition: IRBuilder.h:2225
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:199
Type * getVoidTy()
Fetch the type representing void.
Definition: IRBuilder.h:583
StoreInst * CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align, bool isVolatile=false)
Definition: IRBuilder.h:1834
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
Definition: IRBuilder.h:535
CallInst * CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src, MaybeAlign SrcAlign, uint64_t Size, bool isVolatile=false, MDNode *TBAATag=nullptr, MDNode *TBAAStructTag=nullptr, MDNode *ScopeTag=nullptr, MDNode *NoAliasTag=nullptr)
Create and insert a memcpy between the specified pointers.
Definition: IRBuilder.h:677
Value * CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2157
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1404
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2705
static InlineAsm * get(FunctionType *Ty, StringRef AsmString, StringRef Constraints, bool hasSideEffects, bool isAlignStack=false, AsmDialect asmDialect=AD_ATT, bool canThrow=false)
InlineAsm::get - Return the specified uniqued inline asm string.
Definition: InlineAsm.cpp:43
An analysis over an "outer" IR unit that provides access to an analysis manager over an "inner" IR un...
Definition: PassManager.h:567
Base class for instruction visitors.
Definition: InstVisitor.h:78
RetTy visitCallBase(CallBase &I)
Definition: InstVisitor.h:270
RetTy visitCleanupReturnInst(CleanupReturnInst &I)
Definition: InstVisitor.h:247
RetTy visitIntrinsicInst(IntrinsicInst &I)
Definition: InstVisitor.h:222
void visit(Iterator Start, Iterator End)
Definition: InstVisitor.h:87
RetTy visitReturnInst(ReturnInst &I)
Definition: InstVisitor.h:229
RetTy visitAllocaInst(AllocaInst &I)
Definition: InstVisitor.h:168
RetTy visitResumeInst(ResumeInst &I)
Definition: InstVisitor.h:241
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:475
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
Definition: Instruction.h:368
bool isEHPad() const
Return true if the instruction is a variety of EH-block.
Definition: Instruction.h:833
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:94
BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
const Instruction * getNextNonDebugInstruction(bool SkipPseudoOp=false) const
Return a pointer to the next non-debug instruction in the same basic block as 'this',...
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:472
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Definition: Instruction.cpp:76
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:311
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
An instruction for reading from memory.
Definition: Instructions.h:176
static Error ParseSectionSpecifier(StringRef Spec, StringRef &Segment, StringRef &Section, unsigned &TAA, bool &TAAParsed, unsigned &StubSize)
Parse the section specifier indicated by "Spec".
MDNode * createUnlikelyBranchWeights()
Return metadata containing two branch weights, with significant bias towards false destination.
Definition: MDBuilder.cpp:47
Metadata node.
Definition: Metadata.h:1073
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1549
This is the common base class for memset/memcpy/memmove.
Root of the metadata hierarchy.
Definition: Metadata.h:62
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Evaluate the size and offset of an object pointed to by a Value* statically.
SizeOffsetAPInt compute(Value *V)
A container for an operand bundle being viewed as a set of values rather than a set of uses.
Definition: InstrTypes.h:1065
Pass interface - Implemented by all 'passes'.
Definition: Pass.h:94
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Definition: DerivedTypes.h:686
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition: Analysis.h:114
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
void abandon()
Mark an analysis as abandoned.
Definition: Analysis.h:164
Resume the propagation of an exception.
Return a value (possibly void), from a function.
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, InsertPosition InsertBefore=nullptr)
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:452
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:937
void reserve(size_type N)
Definition: SmallVector.h:663
void resize(size_type N)
Definition: SmallVector.h:638
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
This pass performs the global (interprocedural) stack safety analysis (new pass manager).
bool stackAccessIsSafe(const Instruction &I) const
bool isSafe(const AllocaInst &AI) const
An instruction for storing to memory.
Definition: Instructions.h:292
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition: StringRef.h:265
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:147
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition: StringRef.h:144
Class to represent struct types.
Definition: DerivedTypes.h:218
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:406
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
AttributeList getAttrList(LLVMContext *C, ArrayRef< unsigned > ArgNos, bool Signed, bool Ret=false, AttributeList AL=AttributeList()) const
TinyPtrVector - This class is specialized for cases where there are normally 0 or 1 element in a vect...
Definition: TinyPtrVector.h:29
EltTy front() const
bool empty() const
unsigned size() const
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
bool isAndroidVersionLT(unsigned Major) const
Definition: Triple.h:799
bool isThumb() const
Tests whether the target is Thumb (little and big endian).
Definition: Triple.h:887
bool isDriverKit() const
Is this an Apple DriverKit triple.
Definition: Triple.h:575
bool isOSNetBSD() const
Definition: Triple.h:603
bool isAndroid() const
Tests whether the target is Android.
Definition: Triple.h:797
bool isABIN32() const
Definition: Triple.h:1074
bool isMIPS64() const
Tests whether the target is MIPS 64-bit (little and big endian).
Definition: Triple.h:980
@ aarch64_be
Definition: Triple.h:52
ArchType getArch() const
Get the parsed architecture type of this triple.
Definition: Triple.h:395
bool isLoongArch64() const
Tests whether the target is 64-bit LoongArch.
Definition: Triple.h:969
bool isMIPS32() const
Tests whether the target is MIPS 32-bit (little and big endian).
Definition: Triple.h:975
bool isOSWindows() const
Tests whether the OS is Windows.
Definition: Triple.h:652
@ DXContainer
Definition: Triple.h:311
@ UnknownObjectFormat
Definition: Triple.h:308
bool isARM() const
Tests whether the target is ARM (little and big endian).
Definition: Triple.h:892
bool isOSLinux() const
Tests whether the OS is Linux.
Definition: Triple.h:706
bool isAMDGPU() const
Definition: Triple.h:882
bool isMacOSX() const
Is this a Mac OS X triple.
Definition: Triple.h:544
bool isOSFreeBSD() const
Definition: Triple.h:611
bool isOSEmscripten() const
Tests whether the OS is Emscripten.
Definition: Triple.h:726
bool isWatchOS() const
Is this an Apple watchOS triple.
Definition: Triple.h:563
bool isiOS() const
Is this an iOS triple.
Definition: Triple.h:553
bool isPS() const
Tests whether the target is the PS4 or PS5 platform.
Definition: Triple.h:794
bool isOSFuchsia() const
Definition: Triple.h:615
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
static Type * getVoidTy(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:310
static IntegerType * getInt32Ty(LLVMContext &C)
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
op_range operands()
Definition: User.h:288
Value * getOperand(unsigned i) const
Definition: User.h:228
static ValueAsMetadata * get(Value *V)
Definition: Metadata.cpp:501
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:202
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:353
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
void getInterestingMemoryOperands(Module &M, Instruction *I, SmallVectorImpl< InterestingMemoryOperand > &Interesting)
Get all the memory operands from the instruction that needs to be instrumented.
void instrumentAddress(Module &M, IRBuilder<> &IRB, Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, Align Alignment, TypeSize TypeStoreSize, bool IsWrite, Value *SizeArgument, bool UseCalls, bool Recover, int AsanScale, int AsanOffset)
Instrument the memory operand Addr.
uint64_t getRedzoneSizeForGlobal(int AsanScale, uint64_t SizeInBytes)
Given SizeInBytes of the Value to be instrunmented, Returns the redzone size corresponding to it.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:125
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ S_CSTRING_LITERALS
S_CSTRING_LITERALS - Section with literal C strings.
Definition: MachO.h:131
@ OB
OB - OneByte - Set if this instruction has a one byte opcode.
Definition: X86BaseInfo.h:732
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:711
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
uint64_t getAllocaSizeInBytes(const AllocaInst &AI)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
@ Offset
Definition: DWP.cpp:480
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
SmallVector< uint8_t, 64 > GetShadowBytesAfterScope(const SmallVectorImpl< ASanStackVariableDescription > &Vars, const ASanStackFrameLayout &Layout)
GlobalVariable * createPrivateGlobalForString(Module &M, StringRef Str, bool AllowMerging, Twine NamePrefix="")
AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
@ Done
Definition: Threading.h:61
Function * createSanitizerCtor(Module &M, StringRef CtorName)
Creates sanitizer constructor function.
AsanDetectStackUseAfterReturnMode
Mode of ASan detect stack use after return.
@ Always
Always detect stack use after return.
@ Never
Never detect stack use after return.
@ Runtime
Detect stack use after return if not disabled runtime with (ASAN_OPTIONS=detect_stack_use_after_retur...
DenseMap< BasicBlock *, ColorVector > colorEHFunclets(Function &F)
If an EH funclet personality is in use (see isFuncletEHPersonality), this will recompute which blocks...
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
Op::Description Desc
bool isAllocaPromotable(const AllocaInst *AI)
Return true if this alloca is legal for promotion.
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
SmallString< 64 > ComputeASanStackFrameDescription(const SmallVectorImpl< ASanStackVariableDescription > &Vars)
SmallVector< uint8_t, 64 > GetShadowBytes(const SmallVectorImpl< ASanStackVariableDescription > &Vars, const ASanStackFrameLayout &Layout)
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition: bit.h:215
FunctionCallee declareSanitizerInitFunction(Module &M, StringRef InitName, ArrayRef< Type * > InitArgTypes, bool Weak=false)
std::string getUniqueModuleId(Module *M)
Produce a unique identifier for this module by taking the MD5 sum of the names of the module's strong...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:293
std::pair< Function *, FunctionCallee > createSanitizerCtorAndInitFunctions(Module &M, StringRef CtorName, StringRef InitName, ArrayRef< Type * > InitArgTypes, ArrayRef< Value * > InitArgs, StringRef VersionCheckName=StringRef(), bool Weak=false)
Creates sanitizer constructor function, and calls sanitizer's init function from it.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
void SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, Instruction **ThenTerm, Instruction **ElseTerm, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr)
SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen, but also creates the ElseBlock...
void SplitBlockAndInsertForEachLane(ElementCount EC, Type *IndexTy, Instruction *InsertBefore, std::function< void(IRBuilderBase &, Value *)> Func)
Utility function for performing a given action on each lane of a vector with EC elements.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
AsanDtorKind
Types of ASan module destructors supported.
@ None
Do not emit any destructors for ASan.
ASanStackFrameLayout ComputeASanStackFrameLayout(SmallVectorImpl< ASanStackVariableDescription > &Vars, uint64_t Granularity, uint64_t MinHeaderSize)
void cantFail(Error Err, const char *Msg=nullptr)
Report a fatal error if Err is a failure value.
Definition: Error.h:756
void appendToCompilerUsed(Module &M, ArrayRef< GlobalValue * > Values)
Adds global values to the llvm.compiler.used list.
static const int kAsanStackUseAfterReturnMagic
void setGlobalVariableLargeSection(const Triple &TargetTriple, GlobalVariable &GV)
@ Dynamic
Denotes mode unknown at compile time.
void appendToGlobalCtors(Module &M, Function *F, int Priority, Constant *Data=nullptr)
Append F to the list of global ctors of module M with the given Priority.
Definition: ModuleUtils.cpp:73
Align assumeAligned(uint64_t Value)
Treats the value 0 as a 1, so Align is always at least 1.
Definition: Alignment.h:111
iterator_range< df_iterator< T > > depth_first(const T &G)
Instruction * SplitBlockAndInsertIfThen(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ThenBlock=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
AsanCtorKind
Types of ASan module constructors supported.
void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI, const TargetLibraryInfo *TLI)
Given a CallInst, check if it calls a string function known to CodeGen, and mark it with NoBuiltin if...
Definition: Local.cpp:4199
void appendToUsed(Module &M, ArrayRef< GlobalValue * > Values)
Adds global values to the llvm.used list.
void appendToGlobalDtors(Module &M, Function *F, int Priority, Constant *Data=nullptr)
Same as appendToGlobalCtors(), but for global dtors.
Definition: ModuleUtils.cpp:77
bool checkIfAlreadyInstrumented(Module &M, StringRef Flag)
Check if module has flag attached, if not add the flag.
void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, bool IsKasan, uint64_t *ShadowBase, int *MappingScale, bool *OrShadowOffset)
std::string demangle(std::string_view MangledName)
Attempt to demangle a string using different demangling schemes.
Definition: Demangle.cpp:20
bool replaceDbgDeclare(Value *Address, Value *NewAddress, DIBuilder &Builder, uint8_t DIExprFlags, int Offset)
Replaces llvm.dbg.declare instruction when the address it describes is replaced with a new value.
Definition: Local.cpp:2204
#define N
ASanAccessInfo(int32_t Packed)
AsanDetectStackUseAfterReturnMode UseAfterReturn
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85
Description of the encoding of one expression Op.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
Definition: Alignment.h:141
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition: PassManager.h:69
SizeOffsetAPInt - Used by ObjectSizeOffsetVisitor, which works with APInts.
bool bothKnown() const