LLVM  14.0.0git
InstCombineShifts.cpp
Go to the documentation of this file.
1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21 
22 #define DEBUG_TYPE "instcombine"
23 
25  Value *ShAmt1) {
26  // We have two shift amounts from two different shifts. The types of those
27  // shift amounts may not match. If that's the case let's bailout now..
28  if (ShAmt0->getType() != ShAmt1->getType())
29  return false;
30 
31  // As input, we have the following pattern:
32  // Sh0 (Sh1 X, Q), K
33  // We want to rewrite that as:
34  // Sh x, (Q+K) iff (Q+K) u< bitwidth(x)
35  // While we know that originally (Q+K) would not overflow
36  // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
37  // shift amounts. so it may now overflow in smaller bitwidth.
38  // To ensure that does not happen, we need to ensure that the total maximal
39  // shift amount is still representable in that smaller bit width.
40  unsigned MaximalPossibleTotalShiftAmount =
41  (Sh0->getType()->getScalarSizeInBits() - 1) +
42  (Sh1->getType()->getScalarSizeInBits() - 1);
43  APInt MaximalRepresentableShiftAmount =
45  return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
46 }
47 
48 // Given pattern:
49 // (x shiftopcode Q) shiftopcode K
50 // we should rewrite it as
51 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and
52 //
53 // This is valid for any shift, but they must be identical, and we must be
54 // careful in case we have (zext(Q)+zext(K)) and look past extensions,
55 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
56 //
57 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
58 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
60  BinaryOperator *Sh0, const SimplifyQuery &SQ,
61  bool AnalyzeForSignBitExtraction) {
62  // Look for a shift of some instruction, ignore zext of shift amount if any.
63  Instruction *Sh0Op0;
64  Value *ShAmt0;
65  if (!match(Sh0,
66  m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
67  return nullptr;
68 
69  // If there is a truncation between the two shifts, we must make note of it
70  // and look through it. The truncation imposes additional constraints on the
71  // transform.
72  Instruction *Sh1;
73  Value *Trunc = nullptr;
74  match(Sh0Op0,
76  m_Instruction(Sh1)));
77 
78  // Inner shift: (x shiftopcode ShAmt1)
79  // Like with other shift, ignore zext of shift amount if any.
80  Value *X, *ShAmt1;
81  if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
82  return nullptr;
83 
84  // Verify that it would be safe to try to add those two shift amounts.
85  if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
86  return nullptr;
87 
88  // We are only looking for signbit extraction if we have two right shifts.
89  bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
90  match(Sh1, m_Shr(m_Value(), m_Value()));
91  // ... and if it's not two right-shifts, we know the answer already.
92  if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
93  return nullptr;
94 
95  // The shift opcodes must be identical, unless we are just checking whether
96  // this pattern can be interpreted as a sign-bit-extraction.
97  Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
98  bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
99  if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
100  return nullptr;
101 
102  // If we saw truncation, we'll need to produce extra instruction,
103  // and for that one of the operands of the shift must be one-use,
104  // unless of course we don't actually plan to produce any instructions here.
105  if (Trunc && !AnalyzeForSignBitExtraction &&
106  !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
107  return nullptr;
108 
109  // Can we fold (ShAmt0+ShAmt1) ?
110  auto *NewShAmt = dyn_cast_or_null<Constant>(
111  SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
112  SQ.getWithInstruction(Sh0)));
113  if (!NewShAmt)
114  return nullptr; // Did not simplify.
115  unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
116  unsigned XBitWidth = X->getType()->getScalarSizeInBits();
117  // Is the new shift amount smaller than the bit width of inner/new shift?
118  if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
119  APInt(NewShAmtBitWidth, XBitWidth))))
120  return nullptr; // FIXME: could perform constant-folding.
121 
122  // If there was a truncation, and we have a right-shift, we can only fold if
123  // we are left with the original sign bit. Likewise, if we were just checking
124  // that this is a sighbit extraction, this is the place to check it.
125  // FIXME: zero shift amount is also legal here, but we can't *easily* check
126  // more than one predicate so it's not really worth it.
127  if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
128  // If it's not a sign bit extraction, then we're done.
129  if (!match(NewShAmt,
130  m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
131  APInt(NewShAmtBitWidth, XBitWidth - 1))))
132  return nullptr;
133  // If it is, and that was the question, return the base value.
134  if (AnalyzeForSignBitExtraction)
135  return X;
136  }
137 
138  assert(IdenticalShOpcodes && "Should not get here with different shifts.");
139 
140  // All good, we can do this fold.
141  NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
142 
143  BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
144 
145  // The flags can only be propagated if there wasn't a trunc.
146  if (!Trunc) {
147  // If the pattern did not involve trunc, and both of the original shifts
148  // had the same flag set, preserve the flag.
149  if (ShiftOpcode == Instruction::BinaryOps::Shl) {
150  NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
151  Sh1->hasNoUnsignedWrap());
152  NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
153  Sh1->hasNoSignedWrap());
154  } else {
155  NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
156  }
157  }
158 
159  Instruction *Ret = NewShift;
160  if (Trunc) {
161  Builder.Insert(NewShift);
162  Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
163  }
164 
165  return Ret;
166 }
167 
168 // If we have some pattern that leaves only some low bits set, and then performs
169 // left-shift of those bits, if none of the bits that are left after the final
170 // shift are modified by the mask, we can omit the mask.
171 //
172 // There are many variants to this pattern:
173 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
174 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
175 // c) (x & (-1 >> MaskShAmt)) << ShiftShAmt
176 // d) (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt
177 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
178 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
179 // All these patterns can be simplified to just:
180 // x << ShiftShAmt
181 // iff:
182 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
183 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
184 static Instruction *
186  const SimplifyQuery &Q,
188  assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
189  "The input must be 'shl'!");
190 
191  Value *Masked, *ShiftShAmt;
192  match(OuterShift,
193  m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
194 
195  // *If* there is a truncation between an outer shift and a possibly-mask,
196  // then said truncation *must* be one-use, else we can't perform the fold.
197  Value *Trunc;
198  if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
199  !Trunc->hasOneUse())
200  return nullptr;
201 
202  Type *NarrowestTy = OuterShift->getType();
203  Type *WidestTy = Masked->getType();
204  bool HadTrunc = WidestTy != NarrowestTy;
205 
206  // The mask must be computed in a type twice as wide to ensure
207  // that no bits are lost if the sum-of-shifts is wider than the base type.
208  Type *ExtendedTy = WidestTy->getExtendedType();
209 
210  Value *MaskShAmt;
211 
212  // ((1 << MaskShAmt) - 1)
213  auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
214  // (~(-1 << maskNbits))
215  auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
216  // (-1 >> MaskShAmt)
217  auto MaskC = m_Shr(m_AllOnes(), m_Value(MaskShAmt));
218  // ((-1 << MaskShAmt) >> MaskShAmt)
219  auto MaskD =
220  m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
221 
222  Value *X;
223  Constant *NewMask;
224 
225  if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
226  // Peek through an optional zext of the shift amount.
227  match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
228 
229  // Verify that it would be safe to try to add those two shift amounts.
230  if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
231  MaskShAmt))
232  return nullptr;
233 
234  // Can we simplify (MaskShAmt+ShiftShAmt) ?
235  auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
236  MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
237  if (!SumOfShAmts)
238  return nullptr; // Did not simplify.
239  // In this pattern SumOfShAmts correlates with the number of low bits
240  // that shall remain in the root value (OuterShift).
241 
242  // An extend of an undef value becomes zero because the high bits are never
243  // completely unknown. Replace the `undef` shift amounts with final
244  // shift bitwidth to ensure that the value remains undef when creating the
245  // subsequent shift op.
246  SumOfShAmts = Constant::replaceUndefsWith(
247  SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
248  ExtendedTy->getScalarSizeInBits()));
249  auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
250  // And compute the mask as usual: ~(-1 << (SumOfShAmts))
251  auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
252  auto *ExtendedInvertedMask =
253  ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
254  NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
255  } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
256  match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
257  m_Deferred(MaskShAmt)))) {
258  // Peek through an optional zext of the shift amount.
259  match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
260 
261  // Verify that it would be safe to try to add those two shift amounts.
262  if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
263  MaskShAmt))
264  return nullptr;
265 
266  // Can we simplify (ShiftShAmt-MaskShAmt) ?
267  auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
268  ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
269  if (!ShAmtsDiff)
270  return nullptr; // Did not simplify.
271  // In this pattern ShAmtsDiff correlates with the number of high bits that
272  // shall be unset in the root value (OuterShift).
273 
274  // An extend of an undef value becomes zero because the high bits are never
275  // completely unknown. Replace the `undef` shift amounts with negated
276  // bitwidth of innermost shift to ensure that the value remains undef when
277  // creating the subsequent shift op.
278  unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
279  ShAmtsDiff = Constant::replaceUndefsWith(
280  ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
281  -WidestTyBitWidth));
282  auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
283  ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
284  WidestTyBitWidth,
285  /*isSigned=*/false),
286  ShAmtsDiff),
287  ExtendedTy);
288  // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
289  auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
290  NewMask =
291  ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
292  } else
293  return nullptr; // Don't know anything about this pattern.
294 
295  NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
296 
297  // Does this mask has any unset bits? If not then we can just not apply it.
298  bool NeedMask = !match(NewMask, m_AllOnes());
299 
300  // If we need to apply a mask, there are several more restrictions we have.
301  if (NeedMask) {
302  // The old masking instruction must go away.
303  if (!Masked->hasOneUse())
304  return nullptr;
305  // The original "masking" instruction must not have been`ashr`.
306  if (match(Masked, m_AShr(m_Value(), m_Value())))
307  return nullptr;
308  }
309 
310  // If we need to apply truncation, let's do it first, since we can.
311  // We have already ensured that the old truncation will go away.
312  if (HadTrunc)
313  X = Builder.CreateTrunc(X, NarrowestTy);
314 
315  // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
316  // We didn't change the Type of this outermost shift, so we can just do it.
317  auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
318  OuterShift->getOperand(1));
319  if (!NeedMask)
320  return NewShift;
321 
322  Builder.Insert(NewShift);
323  return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
324 }
325 
326 /// If we have a shift-by-constant of a bitwise logic op that itself has a
327 /// shift-by-constant operand with identical opcode, we may be able to convert
328 /// that into 2 independent shifts followed by the logic op. This eliminates a
329 /// a use of an intermediate value (reduces dependency chain).
332  assert(I.isShift() && "Expected a shift as input");
333  auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
334  if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
335  return nullptr;
336 
337  Constant *C0, *C1;
338  if (!match(I.getOperand(1), m_Constant(C1)))
339  return nullptr;
340 
341  Instruction::BinaryOps ShiftOpcode = I.getOpcode();
342  Type *Ty = I.getType();
343 
344  // Find a matching one-use shift by constant. The fold is not valid if the sum
345  // of the shift values equals or exceeds bitwidth.
346  // TODO: Remove the one-use check if the other logic operand (Y) is constant.
347  Value *X, *Y;
348  auto matchFirstShift = [&](Value *V) {
349  BinaryOperator *BO;
351  return match(V, m_BinOp(BO)) && BO->getOpcode() == ShiftOpcode &&
352  match(V, m_OneUse(m_Shift(m_Value(X), m_Constant(C0)))) &&
355  };
356 
357  // Logic ops are commutative, so check each operand for a match.
358  if (matchFirstShift(LogicInst->getOperand(0)))
359  Y = LogicInst->getOperand(1);
360  else if (matchFirstShift(LogicInst->getOperand(1)))
361  Y = LogicInst->getOperand(0);
362  else
363  return nullptr;
364 
365  // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
366  Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
367  Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
368  Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
369  return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
370 }
371 
373  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
374  assert(Op0->getType() == Op1->getType());
375 
376  // If the shift amount is a one-use `sext`, we can demote it to `zext`.
377  Value *Y;
378  if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
379  Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
380  return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
381  }
382 
383  // See if we can fold away this shift.
384  if (SimplifyDemandedInstructionBits(I))
385  return &I;
386 
387  // Try to fold constant and into select arguments.
388  if (isa<Constant>(Op0))
389  if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
390  if (Instruction *R = FoldOpIntoSelect(I, SI))
391  return R;
392 
393  if (Constant *CUI = dyn_cast<Constant>(Op1))
394  if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
395  return Res;
396 
397  if (auto *NewShift = cast_or_null<Instruction>(
398  reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
399  return NewShift;
400 
401  // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
402  // iff A and C2 are both positive.
403  Value *A;
404  Constant *C;
405  if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
406  if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
407  isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
408  return BinaryOperator::Create(
409  I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
410 
411  // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
412  // Because shifts by negative values (which could occur if A were negative)
413  // are undefined.
414  if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
415  match(C, m_Power2())) {
416  // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
417  // demand the sign bit (and many others) here??
419  Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
420  return replaceOperand(I, 1, Rem);
421  }
422 
424  return Logic;
425 
426  return nullptr;
427 }
428 
429 /// Return true if we can simplify two logical (either left or right) shifts
430 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
431 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
432  Instruction *InnerShift,
433  InstCombinerImpl &IC, Instruction *CxtI) {
434  assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
435 
436  // We need constant scalar or constant splat shifts.
437  const APInt *InnerShiftConst;
438  if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
439  return false;
440 
441  // Two logical shifts in the same direction:
442  // shl (shl X, C1), C2 --> shl X, C1 + C2
443  // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
444  bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
445  if (IsInnerShl == IsOuterShl)
446  return true;
447 
448  // Equal shift amounts in opposite directions become bitwise 'and':
449  // lshr (shl X, C), C --> and X, C'
450  // shl (lshr X, C), C --> and X, C'
451  if (*InnerShiftConst == OuterShAmt)
452  return true;
453 
454  // If the 2nd shift is bigger than the 1st, we can fold:
455  // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
456  // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
457  // but it isn't profitable unless we know the and'd out bits are already zero.
458  // Also, check that the inner shift is valid (less than the type width) or
459  // we'll crash trying to produce the bit mask for the 'and'.
460  unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
461  if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
462  unsigned InnerShAmt = InnerShiftConst->getZExtValue();
463  unsigned MaskShift =
464  IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
465  APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
466  if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
467  return true;
468  }
469 
470  return false;
471 }
472 
473 /// See if we can compute the specified value, but shifted logically to the left
474 /// or right by some number of bits. This should return true if the expression
475 /// can be computed for the same cost as the current expression tree. This is
476 /// used to eliminate extraneous shifting from things like:
477 /// %C = shl i128 %A, 64
478 /// %D = shl i128 %B, 96
479 /// %E = or i128 %C, %D
480 /// %F = lshr i128 %E, 64
481 /// where the client will ask if E can be computed shifted right by 64-bits. If
482 /// this succeeds, getShiftedValue() will be called to produce the value.
483 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
484  InstCombinerImpl &IC, Instruction *CxtI) {
485  // We can always evaluate constants shifted.
486  if (isa<Constant>(V))
487  return true;
488 
489  Instruction *I = dyn_cast<Instruction>(V);
490  if (!I) return false;
491 
492  // We can't mutate something that has multiple uses: doing so would
493  // require duplicating the instruction in general, which isn't profitable.
494  if (!I->hasOneUse()) return false;
495 
496  switch (I->getOpcode()) {
497  default: return false;
498  case Instruction::And:
499  case Instruction::Or:
500  case Instruction::Xor:
501  // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
502  return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
503  canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
504 
505  case Instruction::Shl:
506  case Instruction::LShr:
507  return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
508 
509  case Instruction::Select: {
510  SelectInst *SI = cast<SelectInst>(I);
511  Value *TrueVal = SI->getTrueValue();
512  Value *FalseVal = SI->getFalseValue();
513  return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
514  canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
515  }
516  case Instruction::PHI: {
517  // We can change a phi if we can change all operands. Note that we never
518  // get into trouble with cyclic PHIs here because we only consider
519  // instructions with a single use.
520  PHINode *PN = cast<PHINode>(I);
521  for (Value *IncValue : PN->incoming_values())
522  if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
523  return false;
524  return true;
525  }
526  }
527 }
528 
529 /// Fold OuterShift (InnerShift X, C1), C2.
530 /// See canEvaluateShiftedShift() for the constraints on these instructions.
531 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
532  bool IsOuterShl,
534  bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
535  Type *ShType = InnerShift->getType();
536  unsigned TypeWidth = ShType->getScalarSizeInBits();
537 
538  // We only accept shifts-by-a-constant in canEvaluateShifted().
539  const APInt *C1;
540  match(InnerShift->getOperand(1), m_APInt(C1));
541  unsigned InnerShAmt = C1->getZExtValue();
542 
543  // Change the shift amount and clear the appropriate IR flags.
544  auto NewInnerShift = [&](unsigned ShAmt) {
545  InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
546  if (IsInnerShl) {
547  InnerShift->setHasNoUnsignedWrap(false);
548  InnerShift->setHasNoSignedWrap(false);
549  } else {
550  InnerShift->setIsExact(false);
551  }
552  return InnerShift;
553  };
554 
555  // Two logical shifts in the same direction:
556  // shl (shl X, C1), C2 --> shl X, C1 + C2
557  // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
558  if (IsInnerShl == IsOuterShl) {
559  // If this is an oversized composite shift, then unsigned shifts get 0.
560  if (InnerShAmt + OuterShAmt >= TypeWidth)
561  return Constant::getNullValue(ShType);
562 
563  return NewInnerShift(InnerShAmt + OuterShAmt);
564  }
565 
566  // Equal shift amounts in opposite directions become bitwise 'and':
567  // lshr (shl X, C), C --> and X, C'
568  // shl (lshr X, C), C --> and X, C'
569  if (InnerShAmt == OuterShAmt) {
570  APInt Mask = IsInnerShl
571  ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
572  : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
573  Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
574  ConstantInt::get(ShType, Mask));
575  if (auto *AndI = dyn_cast<Instruction>(And)) {
576  AndI->moveBefore(InnerShift);
577  AndI->takeName(InnerShift);
578  }
579  return And;
580  }
581 
582  assert(InnerShAmt > OuterShAmt &&
583  "Unexpected opposite direction logical shift pair");
584 
585  // In general, we would need an 'and' for this transform, but
586  // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
587  // lshr (shl X, C1), C2 --> shl X, C1 - C2
588  // shl (lshr X, C1), C2 --> lshr X, C1 - C2
589  return NewInnerShift(InnerShAmt - OuterShAmt);
590 }
591 
592 /// When canEvaluateShifted() returns true for an expression, this function
593 /// inserts the new computation that produces the shifted value.
594 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
595  InstCombinerImpl &IC, const DataLayout &DL) {
596  // We can always evaluate constants shifted.
597  if (Constant *C = dyn_cast<Constant>(V)) {
598  if (isLeftShift)
599  return IC.Builder.CreateShl(C, NumBits);
600  else
601  return IC.Builder.CreateLShr(C, NumBits);
602  }
603 
604  Instruction *I = cast<Instruction>(V);
605  IC.addToWorklist(I);
606 
607  switch (I->getOpcode()) {
608  default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
609  case Instruction::And:
610  case Instruction::Or:
611  case Instruction::Xor:
612  // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
613  I->setOperand(
614  0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
615  I->setOperand(
616  1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
617  return I;
618 
619  case Instruction::Shl:
620  case Instruction::LShr:
621  return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
622  IC.Builder);
623 
624  case Instruction::Select:
625  I->setOperand(
626  1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
627  I->setOperand(
628  2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
629  return I;
630  case Instruction::PHI: {
631  // We can change a phi if we can change all operands. Note that we never
632  // get into trouble with cyclic PHIs here because we only consider
633  // instructions with a single use.
634  PHINode *PN = cast<PHINode>(I);
635  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
637  isLeftShift, IC, DL));
638  return PN;
639  }
640  }
641 }
642 
643 // If this is a bitwise operator or add with a constant RHS we might be able
644 // to pull it through a shift.
646  BinaryOperator *BO) {
647  switch (BO->getOpcode()) {
648  default:
649  return false; // Do not perform transform!
650  case Instruction::Add:
651  return Shift.getOpcode() == Instruction::Shl;
652  case Instruction::Or:
653  case Instruction::And:
654  return true;
655  case Instruction::Xor:
656  // Do not change a 'not' of logical shift because that would create a normal
657  // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
658  return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
659  }
660 }
661 
663  BinaryOperator &I) {
664  bool isLeftShift = I.getOpcode() == Instruction::Shl;
665 
666  const APInt *Op1C;
667  if (!match(Op1, m_APInt(Op1C)))
668  return nullptr;
669 
670  // See if we can propagate this shift into the input, this covers the trivial
671  // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
672  if (I.getOpcode() != Instruction::AShr &&
673  canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
674  LLVM_DEBUG(
675  dbgs() << "ICE: GetShiftedValue propagating shift through expression"
676  " to eliminate shift:\n IN: "
677  << *Op0 << "\n SH: " << I << "\n");
678 
679  return replaceInstUsesWith(
680  I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
681  }
682 
683  // See if we can simplify any instructions used by the instruction whose sole
684  // purpose is to compute bits we don't care about.
685  Type *Ty = I.getType();
686  unsigned TypeBits = Ty->getScalarSizeInBits();
687  assert(!Op1C->uge(TypeBits) &&
688  "Shift over the type width should have been removed already");
689 
690  if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
691  return FoldedShift;
692 
693  if (!Op0->hasOneUse())
694  return nullptr;
695 
696  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
697  // If 'shift2' is an ashr, we would have to get the sign bit into a funny
698  // place. Don't try to do this transformation in this case. Also, we
699  // require that the input operand is a non-poison shift-by-constant so that we
700  // have confidence that the shifts will get folded together. We could do this
701  // xform in more cases, but it is unlikely to be profitable.
702  Instruction *TrOp;
703  const APInt *TrShiftAmt;
704  if (I.isLogicalShift() && match(Op0, m_Trunc(m_Instruction(TrOp))) &&
705  match(TrOp, m_OneUse(m_Shift(m_Value(), m_APInt(TrShiftAmt)))) &&
706  TrShiftAmt->ult(TrOp->getType()->getScalarSizeInBits())) {
707  Type *SrcTy = TrOp->getType();
708 
709  // Okay, we'll do this xform. Make the shift of shift.
710  Constant *ShAmt = ConstantExpr::getZExt(Op1, SrcTy);
711  // (shift2 (shift1 & 0x00FF), c2)
712  Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());
713 
714  // For logical shifts, the truncation has the effect of making the high
715  // part of the register be zeros. Emulate this by inserting an AND to
716  // clear the top bits as needed. This 'and' will usually be zapped by
717  // other xforms later if dead.
718  unsigned SrcSize = SrcTy->getScalarSizeInBits();
719  Constant *MaskV =
720  ConstantInt::get(SrcTy, APInt::getLowBitsSet(SrcSize, TypeBits));
721 
722  // The mask we constructed says what the trunc would do if occurring
723  // between the shifts. We want to know the effect *after* the second
724  // shift. We know that it is a logical shift by a constant, so adjust the
725  // mask as appropriate.
726  MaskV = ConstantExpr::get(I.getOpcode(), MaskV, ShAmt);
727  // shift1 & 0x00FF
728  Value *And = Builder.CreateAnd(NSh, MaskV, Op0->getName());
729  // Return the value truncated to the interesting size.
730  return new TruncInst(And, Ty);
731  }
732 
733  if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
734  // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
735  Value *V1;
736  const APInt *CC;
737  switch (Op0BO->getOpcode()) {
738  default:
739  break;
740  case Instruction::Add:
741  case Instruction::And:
742  case Instruction::Or:
743  case Instruction::Xor: {
744  // These operators commute.
745  // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
746  if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
747  match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))) {
748  Value *YS = // (Y << C)
749  Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
750  // (X + (Y << C))
751  Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
752  Op0BO->getOperand(1)->getName());
753  unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
754  APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
756  return BinaryOperator::CreateAnd(X, Mask);
757  }
758 
759  // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
760  Value *Op0BOOp1 = Op0BO->getOperand(1);
761  if (isLeftShift && Op0BOOp1->hasOneUse() &&
762  match(Op0BOOp1, m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
763  m_APInt(CC)))) {
764  Value *YS = // (Y << C)
765  Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
766  // X & (CC << C)
767  Value *XM = Builder.CreateAnd(
768  V1, ConstantExpr::getShl(ConstantInt::get(Ty, *CC), Op1),
769  V1->getName() + ".mask");
770  return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
771  }
773  }
774 
775  case Instruction::Sub: {
776  // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
777  if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
778  match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))) {
779  Value *YS = // (Y << C)
780  Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
781  // (X + (Y << C))
782  Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
783  Op0BO->getOperand(0)->getName());
784  unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
785  APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
787  return BinaryOperator::CreateAnd(X, Mask);
788  }
789 
790  // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
791  if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
792  match(Op0BO->getOperand(0),
793  m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
794  m_APInt(CC)))) {
795  Value *YS = // (Y << C)
796  Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
797  // X & (CC << C)
798  Value *XM = Builder.CreateAnd(
799  V1, ConstantExpr::getShl(ConstantInt::get(Ty, *CC), Op1),
800  V1->getName() + ".mask");
801  return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
802  }
803 
804  break;
805  }
806  }
807 
808  // If the operand is a bitwise operator with a constant RHS, and the
809  // shift is the only use, we can pull it out of the shift.
810  const APInt *Op0C;
811  if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
812  if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
813  Constant *NewRHS = ConstantExpr::get(
814  I.getOpcode(), cast<Constant>(Op0BO->getOperand(1)), Op1);
815 
816  Value *NewShift =
817  Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
818  NewShift->takeName(Op0BO);
819 
820  return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS);
821  }
822  }
823 
824  // If the operand is a subtract with a constant LHS, and the shift
825  // is the only use, we can pull it out of the shift.
826  // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
827  if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
828  match(Op0BO->getOperand(0), m_APInt(Op0C))) {
829  Constant *NewRHS = ConstantExpr::get(
830  I.getOpcode(), cast<Constant>(Op0BO->getOperand(0)), Op1);
831 
832  Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
833  NewShift->takeName(Op0BO);
834 
835  return BinaryOperator::CreateSub(NewRHS, NewShift);
836  }
837  }
838 
839  // If we have a select that conditionally executes some binary operator,
840  // see if we can pull it the select and operator through the shift.
841  //
842  // For example, turning:
843  // shl (select C, (add X, C1), X), C2
844  // Into:
845  // Y = shl X, C2
846  // select C, (add Y, C1 << C2), Y
847  Value *Cond;
848  BinaryOperator *TBO;
849  Value *FalseVal;
850  if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
851  m_Value(FalseVal)))) {
852  const APInt *C;
853  if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
854  match(TBO->getOperand(1), m_APInt(C)) &&
856  Constant *NewRHS = ConstantExpr::get(
857  I.getOpcode(), cast<Constant>(TBO->getOperand(1)), Op1);
858 
859  Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
860  Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS);
861  return SelectInst::Create(Cond, NewOp, NewShift);
862  }
863  }
864 
865  BinaryOperator *FBO;
866  Value *TrueVal;
868  m_OneUse(m_BinOp(FBO))))) {
869  const APInt *C;
870  if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
871  match(FBO->getOperand(1), m_APInt(C)) &&
873  Constant *NewRHS = ConstantExpr::get(
874  I.getOpcode(), cast<Constant>(FBO->getOperand(1)), Op1);
875 
876  Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
877  Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS);
878  return SelectInst::Create(Cond, NewShift, NewOp);
879  }
880  }
881 
882  return nullptr;
883 }
884 
886  const SimplifyQuery Q = SQ.getWithInstruction(&I);
887 
888  if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
889  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
890  return replaceInstUsesWith(I, V);
891 
892  if (Instruction *X = foldVectorBinop(I))
893  return X;
894 
895  if (Instruction *V = commonShiftTransforms(I))
896  return V;
897 
899  return V;
900 
901  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
902  Type *Ty = I.getType();
903  unsigned BitWidth = Ty->getScalarSizeInBits();
904 
905  const APInt *ShAmtAPInt;
906  if (match(Op1, m_APInt(ShAmtAPInt))) {
907  unsigned ShAmt = ShAmtAPInt->getZExtValue();
908 
909  // shl (zext X), ShAmt --> zext (shl X, ShAmt)
910  // This is only valid if X would have zeros shifted out.
911  Value *X;
912  if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
913  unsigned SrcWidth = X->getType()->getScalarSizeInBits();
914  if (ShAmt < SrcWidth &&
915  MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
916  return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
917  }
918 
919  // (X >> C) << C --> X & (-1 << C)
920  if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
922  return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
923  }
924 
925  const APInt *ShOp1;
926  if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1)))) &&
927  ShOp1->ult(BitWidth)) {
928  unsigned ShrAmt = ShOp1->getZExtValue();
929  if (ShrAmt < ShAmt) {
930  // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
931  Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
932  auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
933  NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
934  NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
935  return NewShl;
936  }
937  if (ShrAmt > ShAmt) {
938  // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
939  Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
940  auto *NewShr = BinaryOperator::Create(
941  cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
942  NewShr->setIsExact(true);
943  return NewShr;
944  }
945  }
946 
947  if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(ShOp1)))) &&
948  ShOp1->ult(BitWidth)) {
949  unsigned ShrAmt = ShOp1->getZExtValue();
950  if (ShrAmt < ShAmt) {
951  // If C1 < C2: (X >>? C1) << C2 --> X << (C2 - C1) & (-1 << C2)
952  Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
953  auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
954  NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
955  NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
956  Builder.Insert(NewShl);
958  return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
959  }
960  if (ShrAmt > ShAmt) {
961  // If C1 > C2: (X >>? C1) << C2 --> X >>? (C1 - C2) & (-1 << C2)
962  Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
963  auto *OldShr = cast<BinaryOperator>(Op0);
964  auto *NewShr =
965  BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
966  NewShr->setIsExact(OldShr->isExact());
967  Builder.Insert(NewShr);
969  return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
970  }
971  }
972 
973  if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
974  unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
975  // Oversized shifts are simplified to zero in InstSimplify.
976  if (AmtSum < BitWidth)
977  // (X << C1) << C2 --> X << (C1 + C2)
978  return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
979  }
980 
981  // If the shifted-out value is known-zero, then this is a NUW shift.
982  if (!I.hasNoUnsignedWrap() &&
983  MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
984  I.setHasNoUnsignedWrap();
985  return &I;
986  }
987 
988  // If the shifted-out value is all signbits, then this is a NSW shift.
989  if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
990  I.setHasNoSignedWrap();
991  return &I;
992  }
993  }
994 
995  // Transform (x >> y) << y to x & (-1 << y)
996  // Valid for any type of right-shift.
997  Value *X;
998  if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
999  Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1000  Value *Mask = Builder.CreateShl(AllOnes, Op1);
1001  return BinaryOperator::CreateAnd(Mask, X);
1002  }
1003 
1004  Constant *C1;
1005  if (match(Op1, m_Constant(C1))) {
1006  Constant *C2;
1007  Value *X;
1008  // (C2 << X) << C1 --> (C2 << C1) << X
1009  if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
1010  return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
1011 
1012  // (X * C2) << C1 --> X * (C2 << C1)
1013  if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
1015 
1016  // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
1017  if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1018  auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
1019  return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1020  }
1021  }
1022 
1023  // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
1024  if (match(Op0, m_One()) &&
1025  match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
1026  return BinaryOperator::CreateLShr(
1028 
1029  return nullptr;
1030 }
1031 
1033  if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1034  SQ.getWithInstruction(&I)))
1035  return replaceInstUsesWith(I, V);
1036 
1037  if (Instruction *X = foldVectorBinop(I))
1038  return X;
1039 
1040  if (Instruction *R = commonShiftTransforms(I))
1041  return R;
1042 
1043  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1044  Type *Ty = I.getType();
1045  const APInt *C;
1046  if (match(Op1, m_APInt(C))) {
1047  unsigned ShAmtC = C->getZExtValue();
1048  unsigned BitWidth = Ty->getScalarSizeInBits();
1049  auto *II = dyn_cast<IntrinsicInst>(Op0);
1050  if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC &&
1051  (II->getIntrinsicID() == Intrinsic::ctlz ||
1052  II->getIntrinsicID() == Intrinsic::cttz ||
1053  II->getIntrinsicID() == Intrinsic::ctpop)) {
1054  // ctlz.i32(x)>>5 --> zext(x == 0)
1055  // cttz.i32(x)>>5 --> zext(x == 0)
1056  // ctpop.i32(x)>>5 --> zext(x == -1)
1057  bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1058  Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1059  Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1060  return new ZExtInst(Cmp, Ty);
1061  }
1062 
1063  Value *X;
1064  const APInt *C1;
1065  if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
1066  if (C1->ult(ShAmtC)) {
1067  unsigned ShlAmtC = C1->getZExtValue();
1068  Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1069  if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1070  // (X <<nuw C1) >>u C --> X >>u (C - C1)
1071  auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1072  NewLShr->setIsExact(I.isExact());
1073  return NewLShr;
1074  }
1075  // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C)
1076  Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1078  return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1079  }
1080  if (C1->ugt(ShAmtC)) {
1081  unsigned ShlAmtC = C1->getZExtValue();
1082  Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1083  if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1084  // (X <<nuw C1) >>u C --> X <<nuw (C1 - C)
1085  auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1086  NewShl->setHasNoUnsignedWrap(true);
1087  return NewShl;
1088  }
1089  // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C)
1090  Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1092  return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1093  }
1094  assert(*C1 == ShAmtC);
1095  // (X << C) >>u C --> X & (-1 >>u C)
1097  return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1098  }
1099 
1100  if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1101  (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1102  assert(ShAmtC < X->getType()->getScalarSizeInBits() &&
1103  "Big shift not simplified to zero?");
1104  // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1105  Value *NewLShr = Builder.CreateLShr(X, ShAmtC);
1106  return new ZExtInst(NewLShr, Ty);
1107  }
1108 
1109  if (match(Op0, m_SExt(m_Value(X))) &&
1110  (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1111  // Are we moving the sign bit to the low bit and widening with high zeros?
1112  unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1113  if (ShAmtC == BitWidth - 1) {
1114  // lshr (sext i1 X to iN), N-1 --> zext X to iN
1115  if (SrcTyBitWidth == 1)
1116  return new ZExtInst(X, Ty);
1117 
1118  // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1119  if (Op0->hasOneUse()) {
1120  Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1121  return new ZExtInst(NewLShr, Ty);
1122  }
1123  }
1124 
1125  // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1126  if (ShAmtC == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
1127  // The new shift amount can't be more than the narrow source type.
1128  unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1129  Value *AShr = Builder.CreateAShr(X, NewShAmt);
1130  return new ZExtInst(AShr, Ty);
1131  }
1132  }
1133 
1134  Value *Y;
1135  if (ShAmtC == BitWidth - 1) {
1136  // lshr i32 or(X,-X), 31 --> zext (X != 0)
1137  if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1138  return new ZExtInst(Builder.CreateIsNotNull(X), Ty);
1139 
1140  // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
1141  if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1142  return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1143 
1144  // Check if a number is negative and odd:
1145  // lshr i32 (srem X, 2), 31 --> and (X >> 31), X
1146  if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) {
1147  Value *Signbit = Builder.CreateLShr(X, ShAmtC);
1148  return BinaryOperator::CreateAnd(Signbit, X);
1149  }
1150  }
1151 
1152  // (X >>u C1) >>u C --> X >>u (C1 + C)
1153  if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) {
1154  // Oversized shifts are simplified to zero in InstSimplify.
1155  unsigned AmtSum = ShAmtC + C1->getZExtValue();
1156  if (AmtSum < BitWidth)
1157  return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1158  }
1159 
1160  // If the first shift covers the number of bits truncated and the combined
1161  // shift fits in the source width:
1162  // (trunc (X >>u C1)) >>u C --> trunc (X >>u (C1 + C))
1163  if (match(Op0, m_OneUse(m_Trunc(m_LShr(m_Value(X), m_APInt(C1)))))) {
1164  unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1165  unsigned AmtSum = ShAmtC + C1->getZExtValue();
1166  if (C1->uge(SrcWidth - BitWidth) && AmtSum < SrcWidth) {
1167  Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift");
1168  return new TruncInst(SumShift, Ty);
1169  }
1170  }
1171 
1172  // Look for a "splat" mul pattern - it replicates bits across each half of
1173  // a value, so a right shift is just a mask of the low bits:
1174  // lshr i32 (mul nuw X, Pow2+1), 16 --> and X, Pow2-1
1175  // TODO: Generalize to allow more than just half-width shifts?
1176  const APInt *MulC;
1177  if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC))) &&
1178  ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
1179  MulC->logBase2() == ShAmtC)
1180  return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
1181 
1182  // If the shifted-out value is known-zero, then this is an exact shift.
1183  if (!I.isExact() &&
1184  MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) {
1185  I.setIsExact();
1186  return &I;
1187  }
1188  }
1189 
1190  // Transform (x << y) >> y to x & (-1 >> y)
1191  Value *X;
1192  if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1193  Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1194  Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1195  return BinaryOperator::CreateAnd(Mask, X);
1196  }
1197 
1198  return nullptr;
1199 }
1200 
1201 Instruction *
1203  BinaryOperator &OldAShr) {
1204  assert(OldAShr.getOpcode() == Instruction::AShr &&
1205  "Must be called with arithmetic right-shift instruction only.");
1206 
1207  // Check that constant C is a splat of the element-wise bitwidth of V.
1208  auto BitWidthSplat = [](Constant *C, Value *V) {
1209  return match(
1210  C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1211  APInt(C->getType()->getScalarSizeInBits(),
1212  V->getType()->getScalarSizeInBits())));
1213  };
1214 
1215  // It should look like variable-length sign-extension on the outside:
1216  // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1217  Value *NBits;
1218  Instruction *MaybeTrunc;
1219  Constant *C1, *C2;
1220  if (!match(&OldAShr,
1221  m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1223  m_ZExtOrSelf(m_Value(NBits))))),
1225  m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1226  !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1227  return nullptr;
1228 
1229  // There may or may not be a truncation after outer two shifts.
1230  Instruction *HighBitExtract;
1231  match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1232  bool HadTrunc = MaybeTrunc != HighBitExtract;
1233 
1234  // And finally, the innermost part of the pattern must be a right-shift.
1235  Value *X, *NumLowBitsToSkip;
1236  if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1237  return nullptr;
1238 
1239  // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1240  Constant *C0;
1241  if (!match(NumLowBitsToSkip,
1242  m_ZExtOrSelf(
1243  m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1244  !BitWidthSplat(C0, HighBitExtract))
1245  return nullptr;
1246 
1247  // Since the NBits is identical for all shifts, if the outermost and
1248  // innermost shifts are identical, then outermost shifts are redundant.
1249  // If we had truncation, do keep it though.
1250  if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1251  return replaceInstUsesWith(OldAShr, MaybeTrunc);
1252 
1253  // Else, if there was a truncation, then we need to ensure that one
1254  // instruction will go away.
1255  if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1256  return nullptr;
1257 
1258  // Finally, bypass two innermost shifts, and perform the outermost shift on
1259  // the operands of the innermost shift.
1260  Instruction *NewAShr =
1261  BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1262  NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1263  if (!HadTrunc)
1264  return NewAShr;
1265 
1266  Builder.Insert(NewAShr);
1267  return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1268 }
1269 
1271  if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1272  SQ.getWithInstruction(&I)))
1273  return replaceInstUsesWith(I, V);
1274 
1275  if (Instruction *X = foldVectorBinop(I))
1276  return X;
1277 
1278  if (Instruction *R = commonShiftTransforms(I))
1279  return R;
1280 
1281  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1282  Type *Ty = I.getType();
1283  unsigned BitWidth = Ty->getScalarSizeInBits();
1284  const APInt *ShAmtAPInt;
1285  if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1286  unsigned ShAmt = ShAmtAPInt->getZExtValue();
1287 
1288  // If the shift amount equals the difference in width of the destination
1289  // and source scalar types:
1290  // ashr (shl (zext X), C), C --> sext X
1291  Value *X;
1292  if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1293  ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1294  return new SExtInst(X, Ty);
1295 
1296  // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1297  // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1298  const APInt *ShOp1;
1299  if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1300  ShOp1->ult(BitWidth)) {
1301  unsigned ShlAmt = ShOp1->getZExtValue();
1302  if (ShlAmt < ShAmt) {
1303  // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1304  Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1305  auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1306  NewAShr->setIsExact(I.isExact());
1307  return NewAShr;
1308  }
1309  if (ShlAmt > ShAmt) {
1310  // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1311  Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1312  auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1313  NewShl->setHasNoSignedWrap(true);
1314  return NewShl;
1315  }
1316  }
1317 
1318  if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1319  ShOp1->ult(BitWidth)) {
1320  unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1321  // Oversized arithmetic shifts replicate the sign bit.
1322  AmtSum = std::min(AmtSum, BitWidth - 1);
1323  // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1324  return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1325  }
1326 
1327  if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1328  (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1329  // ashr (sext X), C --> sext (ashr X, C')
1330  Type *SrcTy = X->getType();
1331  ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1332  Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1333  return new SExtInst(NewSh, Ty);
1334  }
1335 
1336  if (ShAmt == BitWidth - 1) {
1337  // ashr i32 or(X,-X), 31 --> sext (X != 0)
1338  if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1339  return new SExtInst(Builder.CreateIsNotNull(X), Ty);
1340 
1341  // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
1342  Value *Y;
1343  if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1344  return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1345  }
1346 
1347  // If the shifted-out value is known-zero, then this is an exact shift.
1348  if (!I.isExact() &&
1349  MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1350  I.setIsExact();
1351  return &I;
1352  }
1353  }
1354 
1355  // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)`
1356  // as the pattern to splat the lowest bit.
1357  // FIXME: iff X is already masked, we don't need the one-use check.
1358  Value *X;
1359  if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) &&
1360  match(Op0, m_OneUse(m_Shl(m_Value(X),
1362  Constant *Mask = ConstantInt::get(Ty, 1);
1363  // Retain the knowledge about the ignored lanes.
1365  Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)),
1366  cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1367  X = Builder.CreateAnd(X, Mask);
1368  return BinaryOperator::CreateNeg(X);
1369  }
1370 
1371  if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1372  return R;
1373 
1374  // See if we can turn a signed shr into an unsigned shr.
1376  return BinaryOperator::CreateLShr(Op0, Op1);
1377 
1378  // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1
1379  if (match(Op0, m_OneUse(m_Not(m_Value(X))))) {
1380  // Note that we must drop 'exact'-ness of the shift!
1381  // Note that we can't keep undef's in -1 vector constant!
1382  auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not");
1383  return BinaryOperator::CreateNot(NewAShr);
1384  }
1385 
1386  return nullptr;
1387 }
i
i
Definition: README.txt:29
llvm
---------------------— PointerInfo ------------------------------------—
Definition: AllocatorList.h:23
llvm::PatternMatch::m_TruncOrSelf
match_combine_or< CastClass_match< OpTy, Instruction::Trunc >, OpTy > m_TruncOrSelf(const OpTy &Op)
Definition: PatternMatch.h:1627
llvm::isKnownNonNegative
bool isKnownNonNegative(const Value *V, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Returns true if the give value is known to be non-negative.
Definition: ValueTracking.cpp:312
llvm::SimplifySubInst
Value * SimplifySubInst(Value *LHS, Value *RHS, bool isNSW, bool isNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
Definition: InstructionSimplify.cpp:870
llvm::ConstantExpr::getNot
static Constant * getNot(Constant *C)
Definition: Constants.cpp:2659
llvm::MaskedValueIsZero
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if 'V & Mask' is known to be zero.
Definition: ValueTracking.cpp:356
llvm::PHINode::incoming_values
op_range incoming_values()
Definition: Instructions.h:2719
llvm::DataLayout
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:112
llvm::ConstantExpr::getZExtOrBitCast
static Constant * getZExtOrBitCast(Constant *C, Type *Ty)
Definition: Constants.cpp:2002
llvm::Value::hasOneUse
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:435
InstCombiner.h
IntrinsicInst.h
llvm::SimplifyQuery
Definition: InstructionSimplify.h:94
canTryToConstantAddTwoShiftAmounts
bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, Value *ShAmt1)
Definition: InstCombineShifts.cpp:24
llvm::ConstantExpr::getZExt
static Constant * getZExt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2098
llvm::InstCombinerImpl::FoldShiftByConstant
Instruction * FoldShiftByConstant(Value *Op0, Constant *Op1, BinaryOperator &I)
Definition: InstCombineShifts.cpp:662
llvm::BinaryOperator::CreateNot
static BinaryOperator * CreateNot(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
Definition: Instructions.cpp:2730
llvm::PatternMatch::m_LShr
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1147
C1
instcombine should handle this C2 when C1
Definition: README.txt:263
canShiftBinOpWithConstantRHS
static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, BinaryOperator *BO)
Definition: InstCombineShifts.cpp:645
llvm::InstCombiner::Builder
BuilderTy & Builder
Definition: InstCombiner.h:56
llvm::PatternMatch::m_Add
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1008
llvm::PatternMatch::m_CombineOr
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:210
llvm::IRBuilder< TargetFolder, IRBuilderCallbackInserter >
llvm::CastInst::Create
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Definition: Instructions.cpp:3076
llvm::Instruction::hasNoUnsignedWrap
bool hasNoUnsignedWrap() const
Determine whether the no unsigned wrap flag is set.
Definition: Instruction.cpp:136
Shift
bool Shift
Definition: README.txt:468
llvm::Type
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
llvm::tgtok::Bits
@ Bits
Definition: TGLexer.h:50
llvm::InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts
Value * reassociateShiftAmtsOfTwoSameDirectionShifts(BinaryOperator *Sh0, const SimplifyQuery &SQ, bool AnalyzeForSignBitExtraction=false)
Definition: InstCombineShifts.cpp:59
canEvaluateShiftedShift
static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, Instruction *InnerShift, InstCombinerImpl &IC, Instruction *CxtI)
Return true if we can simplify two logical (either left or right) shifts that have constant shift amo...
Definition: InstCombineShifts.cpp:431
llvm::APInt::ugt
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition: APInt.h:1107
llvm::Instruction::setHasNoUnsignedWrap
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
Definition: Instruction.cpp:124
llvm::PatternMatch::m_BinOp
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:84
llvm::PatternMatch::m_AShr
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1153
llvm::ComputeNumSignBits
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return the number of times the sign bit of the register is replicated into the other bits.
Definition: ValueTracking.cpp:380
llvm::InstCombiner::addToWorklist
void addToWorklist(Instruction *I)
Definition: InstCombiner.h:364
llvm::tgtok::FalseVal
@ FalseVal
Definition: TGLexer.h:61
llvm::MipsISD::Ret
@ Ret
Definition: MipsISelLowering.h:116
llvm::isPowerOf2_32
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:491
llvm::PatternMatch::m_c_And
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
Definition: PatternMatch.h:2242
llvm::BinaryOperator::CreateNeg
NUW NUW NUW NUW Exact static Exact BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
Definition: Instructions.cpp:2690
llvm::PatternMatch::m_Not
BinaryOp_match< ValTy, cst_pred_ty< is_all_ones >, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
Definition: PatternMatch.h:2280
llvm::Instruction::setIsExact
void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
Definition: Instruction.cpp:132
llvm::BitmaskEnumDetail::Mask
std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:80
llvm::PHINode::setIncomingValue
void setIncomingValue(unsigned i, Value *V)
Definition: Instructions.h:2732
ConstantFolding.h
llvm::PatternMatch::m_Deferred
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
Definition: PatternMatch.h:820
LLVM_DEBUG
#define LLVM_DEBUG(X)
Definition: Debug.h:101
llvm::PatternMatch::m_OneUse
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:67
llvm::dbgs
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
llvm::ConstantExpr::getSub
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2676
llvm::PatternMatch::m_APInt
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
Definition: PatternMatch.h:270
llvm::PatternMatch::m_c_BinOp
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
Definition: PatternMatch.h:2213
llvm::APInt::uge
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1145
llvm::Intrinsic::getType
FunctionType * getType(LLVMContext &Context, ID id, ArrayRef< Type * > Tys=None)
Return the function type for an intrinsic.
Definition: Function.cpp:1335
llvm::Instruction::getOpcode
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:160
llvm::SelectInst::Create
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr, Instruction *MDFrom=nullptr)
Definition: Instructions.h:1769
llvm::InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract
Instruction * foldVariableSignZeroExtensionOfVariableHighBitExtract(BinaryOperator &OldAShr)
Definition: InstCombineShifts.cpp:1202
llvm::SimplifyShlInst
Value * SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, const SimplifyQuery &Q)
Given operands for a Shl, fold the result or return null.
Definition: InstructionSimplify.cpp:1381
llvm::RecurKind::And
@ And
Bitwise or logical AND of integers.
hasNoUnsignedWrap
static bool hasNoUnsignedWrap(BinaryOperator &I)
Definition: InstructionCombining.cpp:281
InstCombineInternal.h
llvm::PatternMatch::m_Select
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
Definition: PatternMatch.h:1472
llvm::PatternMatch::match
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
llvm::PHINode::getIncomingValue
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
Definition: Instructions.h:2729
getScalarSizeInBits
static unsigned getScalarSizeInBits(Type *Ty)
Definition: SystemZTargetTransformInfo.cpp:367
llvm::Instruction::setHasNoSignedWrap
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
Definition: Instruction.cpp:128
llvm::PatternMatch::m_Exact
Exact_match< T > m_Exact(const T &SubPattern)
Definition: PatternMatch.h:1361
llvm::PatternMatch::m_SpecificIntAllowUndef
specific_intval< true > m_SpecificIntAllowUndef(APInt V)
Definition: PatternMatch.h:893
C
(vector float) vec_cmpeq(*A, *B) C
Definition: README_ALTIVEC.txt:86
Y
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
getOpcode
static Optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:199
llvm::APInt::getAllOnes
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:216
llvm::APInt::getLimitedValue
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition: APInt.h:449
llvm::Type::isVectorTy
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:237
llvm::PatternMatch::m_Instruction
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:748
llvm::SimplifyAShrInst
Value * SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, const SimplifyQuery &Q)
Given operands for a AShr, fold the result or return nulll.
Definition: InstructionSimplify.cpp:1450
llvm::PatternMatch::m_ZExt
CastClass_match< OpTy, Instruction::ZExt > m_ZExt(const OpTy &Op)
Matches ZExt.
Definition: PatternMatch.h:1639
llvm::Log2_32
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:596
llvm::Constant::getAllOnesValue
static Constant * getAllOnesValue(Type *Ty)
Definition: Constants.cpp:405
llvm::BinaryOperator::getOpcode
BinaryOps getOpcode() const
Definition: InstrTypes.h:393
llvm::Instruction
Definition: Instruction.h:45
llvm::Type::getScalarSizeInBits
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition: Type.cpp:153
llvm::PatternMatch::m_c_Or
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
Definition: PatternMatch.h:2249
llvm::APInt::getZExtValue
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1453
llvm::APInt::getHighBitsSet
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition: APInt.h:281
llvm::InstCombinerImpl
Definition: InstCombineInternal.h:61
llvm::ConstantInt::get
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:900
llvm::PatternMatch::m_NSWSub
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1194
PatternMatch.h
llvm::CastInst::CreateTruncOrBitCast
static CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
Definition: Instructions.cpp:3152
llvm::PatternMatch::m_Shift
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
Definition: PatternMatch.h:1306
llvm::PHINode::getNumIncomingValues
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Definition: Instructions.h:2725
X
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
llvm::PatternMatch::m_One
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:513
llvm::PatternMatch::m_Power2
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:544
llvm::PatternMatch::m_Xor
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1135
llvm::Type::getExtendedType
Type * getExtendedType() const
Given scalar/vector integer type, returns a type with elements twice as wide as in the original type.
Definition: DerivedTypes.h:711
llvm::Type::isIntegerTy
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:201
llvm::PatternMatch::m_Shr
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
Definition: PatternMatch.h:1313
llvm::PatternMatch::m_ZExtOrSelf
match_combine_or< CastClass_match< OpTy, Instruction::ZExt >, OpTy > m_ZExtOrSelf(const OpTy &Op)
Definition: PatternMatch.h:1645
llvm::ConstantExpr::getTrunc
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2070
llvm::InstCombinerImpl::visitShl
Instruction * visitShl(BinaryOperator &I)
Definition: InstCombineShifts.cpp:885
llvm::Constant
This is an important base class in LLVM.
Definition: Constant.h:41
llvm::Instruction::isLogicalShift
bool isLogicalShift() const
Return true if this is a logical shift left or a logical shift right.
Definition: Instruction.h:205
llvm::Constant::replaceUndefsWith
static Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
Definition: Constants.cpp:768
llvm::TruncInst
This class represents a truncation of integer types.
Definition: Instructions.h:4755
llvm::APInt::logBase2
unsigned logBase2() const
Definition: APInt.h:1636
llvm::PatternMatch::m_AllOnes
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:445
llvm::numbers::e
constexpr double e
Definition: MathExtras.h:57
llvm::ConstantExpr::get
static Constant * get(unsigned Opcode, Constant *C1, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a unary operator constant expression, folding if possible.
Definition: Constants.cpp:2242
I
#define I(x, y, z)
Definition: MD5.cpp:59
getShiftedValue
static Value * getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, InstCombinerImpl &IC, const DataLayout &DL)
When canEvaluateShifted() returns true for an expression, this function inserts the new computation t...
Definition: InstCombineShifts.cpp:594
llvm::ConstantExpr::getShl
static Constant * getShl(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2741
llvm::PatternMatch::m_And
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1123
llvm::PatternMatch::m_SRem
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1111
assert
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
llvm::PatternMatch::m_Sub
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1020
SI
StandardInstrumentations SI(Debug, VerifyEach)
llvm::SelectInst
This class represents the LLVM 'select' instruction.
Definition: Instructions.h:1738
llvm::SimplifyQuery::getWithInstruction
SimplifyQuery getWithInstruction(Instruction *I) const
Definition: InstructionSimplify.h:121
llvm::PatternMatch::m_Constant
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:142
Builder
assume Assume Builder
Definition: AssumeBundleBuilder.cpp:651
llvm::PatternMatch::m_Value
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:76
llvm::ZExtInst
This class represents zero extension of integer types.
Definition: Instructions.h:4794
llvm::APInt
Class for arbitrary precision integers.
Definition: APInt.h:75
llvm::User::setOperand
void setOperand(unsigned i, Value *Val)
Definition: User.h:174
llvm::PatternMatch::m_SExt
CastClass_match< OpTy, Instruction::SExt > m_SExt(const OpTy &Op)
Matches SExt.
Definition: PatternMatch.h:1633
llvm::InstCombinerImpl::visitLShr
Instruction * visitLShr(BinaryOperator &I)
Definition: InstCombineShifts.cpp:1032
llvm::PatternMatch::m_SpecificInt
specific_intval< false > m_SpecificInt(APInt V)
Match a specific integer value or vector with all elements equal to the value.
Definition: PatternMatch.h:885
llvm::PatternMatch::m_CombineAnd
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
Definition: PatternMatch.h:216
llvm::PatternMatch::m_NUWMul
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1235
llvm::SimplifyLShrInst
Value * SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, const SimplifyQuery &Q)
Given operands for a LShr, fold the result or return null.
Definition: InstructionSimplify.cpp:1419
llvm::BinaryOperator
Definition: InstrTypes.h:189
llvm::min
Expected< ExpressionValue > min(const ExpressionValue &Lhs, const ExpressionValue &Rhs)
Definition: FileCheck.cpp:357
llvm::PatternMatch::m_SpecificInt_ICMP
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
Definition: PatternMatch.h:626
Cond
SmallVector< MachineOperand, 4 > Cond
Definition: BasicBlockSections.cpp:179
llvm::CmpInst::ICMP_ULT
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:745
llvm_unreachable
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Definition: ErrorHandling.h:136
llvm::Value::getType
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
DL
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Definition: AArch64SLSHardening.cpp:76
llvm::Instruction::isExact
bool isExact() const
Determine whether the exact flag is set.
Definition: Instruction.cpp:186
foldShiftedShift
static Value * foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, bool IsOuterShl, InstCombiner::BuilderTy &Builder)
Fold OuterShift (InnerShift X, C1), C2.
Definition: InstCombineShifts.cpp:531
llvm::APInt::ult
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1037
llvm::SExtInst
This class represents a sign extension of integer types.
Definition: Instructions.h:4833
LLVM_FALLTHROUGH
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
Definition: Compiler.h:273
llvm::Value::getName
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
llvm::InstCombinerImpl::visitAShr
Instruction * visitAShr(BinaryOperator &I)
Definition: InstCombineShifts.cpp:1270
llvm::MCID::Select
@ Select
Definition: MCInstrDesc.h:162
foldShiftOfShiftedLogic
static Instruction * foldShiftOfShiftedLogic(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
If we have a shift-by-constant of a bitwise logic op that itself has a shift-by-constant operand with...
Definition: InstCombineShifts.cpp:330
llvm::Constant::getNullValue
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:348
llvm::InstCombinerImpl::commonShiftTransforms
Instruction * commonShiftTransforms(BinaryOperator &I)
Definition: InstCombineShifts.cpp:372
llvm::ConstantExpr::getAdd
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2665
llvm::ConstantInt::getSigned
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition: Constants.cpp:914
llvm::BitWidth
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:147
llvm::PatternMatch::m_NSWShl
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1210
dropRedundantMaskingOfLeftShiftInput
static Instruction * dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, const SimplifyQuery &Q, InstCombiner::BuilderTy &Builder)
Definition: InstCombineShifts.cpp:185
llvm::ConstantExpr::getLShr
static Constant * getLShr(Constant *C1, Constant *C2, bool isExact=false)
Definition: Constants.cpp:2748
llvm::MCID::Add
@ Add
Definition: MCInstrDesc.h:183
llvm::Constant::mergeUndefsWith
static Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
Definition: Constants.cpp:792
llvm::Instruction::BinaryOps
BinaryOps
Definition: Instruction.h:785
llvm::APInt::getSignMask
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition: APInt.h:211
llvm::PatternMatch::m_Specific
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:802
llvm::IRBuilderBase::CreateLShr
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1322
llvm::Instruction::hasNoSignedWrap
bool hasNoSignedWrap() const
Determine whether the no signed wrap flag is set.
Definition: Instruction.cpp:140
CreateMul
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, Instruction *InsertBefore, Value *FlagsOp)
Definition: Reassociate.cpp:246
llvm::IRBuilderBase::CreateShl
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1301
canEvaluateShifted
static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, InstCombinerImpl &IC, Instruction *CxtI)
See if we can compute the specified value, but shifted logically to the left or right by some number ...
Definition: InstCombineShifts.cpp:483
InstructionSimplify.h
llvm::PHINode
Definition: Instructions.h:2633
Threshold
static cl::opt< unsigned > Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), cl::init(100), cl::Hidden)
llvm::Instruction::copyIRFlags
void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
Definition: Instruction.cpp:289
llvm::PatternMatch::m_Neg
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
Definition: PatternMatch.h:2264
llvm::APInt::getLowBitsSet
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition: APInt.h:291
llvm::Value::takeName
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:382
llvm::User::getOperand
Value * getOperand(unsigned i) const
Definition: User.h:169
llvm::PatternMatch::m_Trunc
CastClass_match< OpTy, Instruction::Trunc > m_Trunc(const OpTy &Op)
Matches Trunc.
Definition: PatternMatch.h:1621
llvm::BinaryOperator::Create
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
Definition: Instructions.cpp:2674
llvm::SimplifyAddInst
Value * SimplifyAddInst(Value *LHS, Value *RHS, bool isNSW, bool isNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
Definition: InstructionSimplify.cpp:682
llvm::tgtok::TrueVal
@ TrueVal
Definition: TGLexer.h:61
llvm::Value
LLVM Value Representation.
Definition: Value.h:75
llvm::PatternMatch::m_Shl
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1141
llvm::InstCombinerImpl::MaskedValueIsZero
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth=0, const Instruction *CxtI=nullptr) const
Definition: InstCombineInternal.h:477
llvm::PatternMatch::m_Mul
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1075