19using namespace PatternMatch;
21#define DEBUG_TYPE "instcombine"
39 unsigned MaximalPossibleTotalShiftAmount =
42 APInt MaximalRepresentableShiftAmount =
44 return MaximalRepresentableShiftAmount.
uge(MaximalPossibleTotalShiftAmount);
60 bool AnalyzeForSignBitExtraction) {
72 Value *Trunc =
nullptr;
91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
104 if (Trunc && !AnalyzeForSignBitExtraction &&
109 auto *NewShAmt = dyn_cast_or_null<Constant>(
114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
115 unsigned XBitWidth =
X->getType()->getScalarSizeInBits();
118 APInt(NewShAmtBitWidth, XBitWidth))))
126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
130 APInt(NewShAmtBitWidth, XBitWidth - 1))))
133 if (AnalyzeForSignBitExtraction)
137 assert(IdenticalShOpcodes &&
"Should not get here with different shifts.");
139 if (NewShAmt->getType() !=
X->getType()) {
141 X->getType(),
SQ.
DL);
153 if (ShiftOpcode == Instruction::BinaryOps::Shl) {
193 "The input must be 'shl'!");
208 bool HadTrunc = WidestTy != NarrowestTy;
240 MaskShAmt, ShiftShAmt,
false,
false, Q));
251 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
254 Instruction::ZExt, SumOfShAmts, ExtendedTy, Q.
DL);
255 if (!ExtendedSumOfShAmts)
261 Instruction::Shl, ExtendedAllOnes, ExtendedSumOfShAmts, Q.
DL);
262 if (!ExtendedInvertedMask)
279 ShiftShAmt, MaskShAmt,
false,
false, Q));
291 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
300 if (!ExtendedNumHighBitsToClear)
306 ExtendedNumHighBitsToClear, Q.
DL);
350 assert(
I.isShift() &&
"Expected a shift as input");
351 auto *BinInst = dyn_cast<BinaryOperator>(
I.getOperand(0));
353 (!BinInst->isBitwiseLogicOp() &&
354 BinInst->getOpcode() != Instruction::Add &&
355 BinInst->getOpcode() != Instruction::Sub) ||
356 !BinInst->hasOneUse())
365 if ((BinInst->getOpcode() == Instruction::Add ||
366 BinInst->getOpcode() == Instruction::Sub) &&
367 ShiftOpcode != Instruction::Shl)
370 Type *Ty =
I.getType();
375 auto matchFirstShift = [&](
Value *V,
Value *W) {
387 bool FirstShiftIsOp1 =
false;
388 if (matchFirstShift(BinInst->getOperand(0), BinInst->getOperand(1)))
389 Y = BinInst->getOperand(1);
390 else if (matchFirstShift(BinInst->getOperand(1), BinInst->getOperand(0))) {
391 Y = BinInst->getOperand(0);
392 FirstShiftIsOp1 = BinInst->getOpcode() == Instruction::Sub;
400 Value *Op1 = FirstShiftIsOp1 ? NewShift2 : NewShift1;
401 Value *Op2 = FirstShiftIsOp1 ? NewShift1 : NewShift2;
409 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
411 Type *Ty =
I.getType();
425 if (isa<Constant>(Op0))
426 if (
SelectInst *SI = dyn_cast<SelectInst>(Op1))
430 if (
Constant *CUI = dyn_cast<Constant>(Op1))
434 if (
auto *NewShift = cast_or_null<Instruction>(
446 if (
I.getOpcode() == Instruction::Shl) {
465 assert(!
AC->isZero() &&
"Expected simplify of shifted zero");
466 unsigned PosOffset = (-*AddC).getZExtValue();
468 auto isSuitableForPreShift = [PosOffset, &
I,
AC]() {
469 switch (
I.getOpcode()) {
472 case Instruction::Shl:
473 return (
I.hasNoSignedWrap() ||
I.hasNoUnsignedWrap()) &&
474 AC->eq(
AC->lshr(PosOffset).shl(PosOffset));
475 case Instruction::LShr:
476 return I.isExact() &&
AC->eq(
AC->shl(PosOffset).lshr(PosOffset));
477 case Instruction::AShr:
478 return I.isExact() &&
AC->eq(
AC->shl(PosOffset).ashr(PosOffset));
481 if (isSuitableForPreShift()) {
482 Constant *NewC = ConstantInt::get(Ty,
I.getOpcode() == Instruction::Shl
483 ?
AC->lshr(PosOffset)
484 :
AC->shl(PosOffset));
487 if (
I.getOpcode() == Instruction::Shl) {
525 const APInt *InnerShiftConst;
532 bool IsInnerShl = InnerShift->
getOpcode() == Instruction::Shl;
533 if (IsInnerShl == IsOuterShl)
539 if (*InnerShiftConst == OuterShAmt)
549 if (InnerShiftConst->
ugt(OuterShAmt) && InnerShiftConst->
ult(TypeWidth)) {
552 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
578 if (!
I)
return false;
582 if (!
I->hasOneUse())
return false;
584 switch (
I->getOpcode()) {
585 default:
return false;
586 case Instruction::And:
587 case Instruction::Or:
588 case Instruction::Xor:
593 case Instruction::Shl:
594 case Instruction::LShr:
597 case Instruction::Select: {
599 Value *TrueVal = SI->getTrueValue();
600 Value *FalseVal = SI->getFalseValue();
604 case Instruction::PHI: {
614 case Instruction::Mul: {
615 const APInt *MulConst;
617 return !IsLeftShift &&
match(
I->getOperand(1),
m_APInt(MulConst)) &&
628 bool IsInnerShl = InnerShift->
getOpcode() == Instruction::Shl;
638 auto NewInnerShift = [&](
unsigned ShAmt) {
639 InnerShift->
setOperand(1, ConstantInt::get(ShType, ShAmt));
652 if (IsInnerShl == IsOuterShl) {
654 if (InnerShAmt + OuterShAmt >= TypeWidth)
657 return NewInnerShift(InnerShAmt + OuterShAmt);
663 if (InnerShAmt == OuterShAmt) {
664 APInt Mask = IsInnerShl
668 ConstantInt::get(ShType, Mask));
669 if (
auto *AndI = dyn_cast<Instruction>(
And)) {
670 AndI->moveBefore(InnerShift);
676 assert(InnerShAmt > OuterShAmt &&
677 "Unexpected opposite direction logical shift pair");
683 return NewInnerShift(InnerShAmt - OuterShAmt);
691 if (
Constant *
C = dyn_cast<Constant>(V)) {
701 switch (
I->getOpcode()) {
703 case Instruction::And:
704 case Instruction::Or:
705 case Instruction::Xor:
713 case Instruction::Shl:
714 case Instruction::LShr:
718 case Instruction::Select:
724 case Instruction::PHI: {
731 isLeftShift, IC,
DL));
734 case Instruction::Mul: {
735 assert(!isLeftShift &&
"Unexpected shift direction!");
738 unsigned TypeWidth =
I->getType()->getScalarSizeInBits();
740 auto *
And = BinaryOperator::CreateAnd(Neg,
741 ConstantInt::get(
I->getType(), Mask));
755 case Instruction::Add:
756 return Shift.
getOpcode() == Instruction::Shl;
757 case Instruction::Or:
758 case Instruction::And:
760 case Instruction::Xor:
773 bool IsLeftShift =
I.getOpcode() == Instruction::Shl;
779 R->setHasNoUnsignedWrap(
I.hasNoUnsignedWrap() &&
783 R->setIsExact(
I.isExact() && BO0->
isExact());
787 Type *Ty =
I.getType();
796 Constant *NegDivC = ConstantInt::get(Ty, -(*DivC));
800 auto ExtOpcode = (
I.getOpcode() == Instruction::AShr) ? Instruction::SExt
810 "Shift over the type width should have been removed already");
814 if (
I.getOpcode() != Instruction::AShr &&
817 dbgs() <<
"ICE: GetShiftedValue propagating shift through expression"
818 " to eliminate shift:\n IN: "
819 << *Op0 <<
"\n SH: " <<
I <<
"\n");
831 if (
auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
863 if (!isa<Constant>(FalseVal) && TBO->
getOperand(0) == FalseVal &&
880 if (!isa<Constant>(TrueVal) && FBO->
getOperand(0) == TrueVal &&
907 assert(
I.getOpcode() == Instruction::LShr);
910 Value *ShiftAmt =
I.getOperand(1);
911 Type *Ty =
I.getType();
916 const APInt *ShAmtAPInt =
nullptr;
917 Value *
X =
nullptr, *
Y =
nullptr;
928 if (
X->getType()->getScalarSizeInBits() != ShAmt ||
929 Y->getType()->getScalarSizeInBits() != ShAmt)
933 if (!
Add->hasOneUse()) {
938 TruncInst *Trunc = dyn_cast<TruncInst>(U);
956 if (!
Add->hasOneUse()) {
967 assert(
I.isShift() &&
"Expected a shift as input");
969 if (
I.getOpcode() == Instruction::Shl) {
970 if (
I.hasNoUnsignedWrap() &&
I.hasNoSignedWrap())
991 bool Changed =
false;
993 if (
I.getOpcode() == Instruction::Shl) {
996 I.setHasNoUnsignedWrap();
1000 if (!
I.hasNoSignedWrap()) {
1004 I.setHasNoSignedWrap();
1014 I.setIsExact(Changed);
1023 I.hasNoSignedWrap(),
I.hasNoUnsignedWrap(), Q))
1035 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1036 Type *Ty =
I.getType();
1041 unsigned ShAmtC =
C->getZExtValue();
1047 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
1048 if (ShAmtC < SrcWidth &&
1056 return BinaryOperator::CreateAnd(
X, ConstantInt::get(Ty, Mask));
1063 if (ShrAmt < ShAmtC) {
1065 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
1066 auto *NewShl = BinaryOperator::CreateShl(
X, ShiftDiff);
1067 NewShl->setHasNoUnsignedWrap(
1068 I.hasNoUnsignedWrap() ||
1070 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr &&
1071 I.hasNoSignedWrap()));
1072 NewShl->setHasNoSignedWrap(
I.hasNoSignedWrap());
1075 if (ShrAmt > ShAmtC) {
1077 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
1079 cast<BinaryOperator>(Op0)->
getOpcode(),
X, ShiftDiff);
1080 NewShr->setIsExact(
true);
1088 if (ShrAmt < ShAmtC) {
1090 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
1091 auto *NewShl = BinaryOperator::CreateShl(
X, ShiftDiff);
1092 NewShl->setHasNoUnsignedWrap(
1093 I.hasNoUnsignedWrap() ||
1095 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr &&
1096 I.hasNoSignedWrap()));
1097 NewShl->setHasNoSignedWrap(
I.hasNoSignedWrap());
1100 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1102 if (ShrAmt > ShAmtC) {
1104 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
1105 auto *OldShr = cast<BinaryOperator>(Op0);
1108 NewShr->setIsExact(OldShr->isExact());
1111 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
1121 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
1122 Constant *ShiftDiffC = ConstantInt::get(
X->getType(), ShDiff);
1123 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->
getOpcode() : Instruction::Shl;
1132 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
1138 switch (BinOpcode) {
1141 case Instruction::Add:
1142 case Instruction::And:
1143 case Instruction::Or:
1144 case Instruction::Xor:
1145 case Instruction::Sub:
1153 isSuitableBinOpcode(Op0BO->
getOpcode())) {
1174 unsigned Op1Val =
C->getLimitedValue(
BitWidth);
1176 Constant *Mask = ConstantInt::get(Ty, Bits);
1177 return BinaryOperator::CreateAnd(
B, Mask);
1188 X->getName() +
".mask");
1190 if (
auto *Disjoint = dyn_cast<PossiblyDisjointInst>(Op0BO);
1191 Disjoint && Disjoint->isDisjoint())
1192 cast<PossiblyDisjointInst>(NewOp)->setIsDisjoint(
true);
1201 return BinaryOperator::CreateSub(NewLHS, NewShift);
1214 return BinaryOperator::CreateAnd(Mask,
X);
1220 return BinaryOperator::CreateShl(
AllOnes, Op1);
1241 return BinaryOperator::CreateLShr(
1249 return BinaryOperator::CreateAnd(NegX,
X);
1267 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1268 Type *Ty =
I.getType();
1284 auto *NewSub = BinaryOperator::CreateNUWSub(
X, NewLshr);
1285 NewSub->setHasNoSignedWrap(
1294 return BinaryOperator::CreateAnd(
X,
Y);
1301 auto *NewSub = BinaryOperator::CreateNUWSub(NewLshr,
Y);
1302 NewSub->setHasNoSignedWrap(
1308 switch (BinOpcode) {
1311 case Instruction::Add:
1312 case Instruction::And:
1313 case Instruction::Or:
1314 case Instruction::Xor:
1325 if (isSuitableBinOpcode(Op0OB->
getOpcode())) {
1326 if (
auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op0);
1327 !OBO || OBO->hasNoUnsignedWrap()) {
1329 Y, Op1,
"",
I.isExact() && Op0OB->
getOpcode() != Instruction::And);
1332 NewBinOp->setHasNoUnsignedWrap(
true);
1333 NewBinOp->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1334 }
else if (
auto *Disjoint = dyn_cast<PossiblyDisjointInst>(Op0)) {
1335 cast<PossiblyDisjointInst>(NewBinOp)->setIsDisjoint(
1336 Disjoint->isDisjoint());
1344 unsigned ShAmtC =
C->getZExtValue();
1345 auto *
II = dyn_cast<IntrinsicInst>(Op0);
1347 (
II->getIntrinsicID() == Intrinsic::ctlz ||
1348 II->getIntrinsicID() == Intrinsic::cttz ||
1349 II->getIntrinsicID() == Intrinsic::ctpop)) {
1353 bool IsPop =
II->getIntrinsicID() == Intrinsic::ctpop;
1361 if (C1->
ult(ShAmtC)) {
1363 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1366 auto *NewLShr = BinaryOperator::CreateLShr(
X, ShiftDiff);
1367 NewLShr->setIsExact(
I.isExact());
1374 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1376 }
else if (C1->
ugt(ShAmtC)) {
1378 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1381 auto *NewShl = BinaryOperator::CreateShl(
X, ShiftDiff);
1382 NewShl->setHasNoUnsignedWrap(
true);
1383 NewShl->setHasNoSignedWrap(ShAmtC > 0);
1390 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1396 return BinaryOperator::CreateAnd(
X, ConstantInt::get(Ty, Mask));
1408 unsigned Op1Val =
C->getLimitedValue(
BitWidth);
1410 Constant *Mask = ConstantInt::get(Ty, Bits);
1411 return BinaryOperator::CreateAnd(NewAdd, Mask);
1415 (!Ty->
isIntegerTy() || shouldChangeType(Ty,
X->getType()))) {
1417 "Big shift not simplified to zero?");
1424 unsigned SrcTyBitWidth =
X->getType()->getScalarSizeInBits();
1426 if (SrcTyBitWidth == 1) {
1427 auto *NewC = ConstantInt::get(
1432 if ((!Ty->
isIntegerTy() || shouldChangeType(Ty,
X->getType())) &&
1442 if (ShAmtC ==
BitWidth - SrcTyBitWidth) {
1444 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1464 return BinaryOperator::CreateAnd(Signbit,
X);
1471 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
1479 if (AmtSum < SrcWidth &&
1487 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
1493 if (
BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1503 auto *NewAdd = BinaryOperator::CreateNUWAdd(
1506 NewAdd->setHasNoSignedWrap(
1519 if (MulC->
eq(NewMulC.
shl(ShAmtC))) {
1521 BinaryOperator::CreateNUWMul(
X, ConstantInt::get(Ty, NewMulC));
1523 "lshr X, 0 should be handled by simplifyLShrInst.");
1524 NewMul->setHasNoSignedWrap(
true);
1532 if (
BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1534 return BinaryOperator::CreateNSWAdd(
1545 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
1546 unsigned WidthDiff =
BitWidth - SrcWidth;
1547 if (SrcWidth % 16 == 0) {
1549 if (ShAmtC >= WidthDiff) {
1556 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC);
1557 return BinaryOperator::CreateShl(NewZExt, ShiftDiff);
1564 Value *BoolX, *BoolY;
1569 (
X->hasOneUse() ||
Y->hasOneUse() || Op0->
hasOneUse())) {
1583 return BinaryOperator::CreateAnd(Mask,
X);
1589 return BinaryOperator::CreateLShr(
AllOnes, Op1);
1602 "Must be called with arithmetic right-shift instruction only.");
1608 APInt(
C->getType()->getScalarSizeInBits(),
1609 V->getType()->getScalarSizeInBits())));
1617 if (!
match(&OldAShr,
1623 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1629 bool HadTrunc = MaybeTrunc != HighBitExtract;
1632 Value *
X, *NumLowBitsToSkip;
1638 if (!
match(NumLowBitsToSkip,
1641 !BitWidthSplat(C0, HighBitExtract))
1678 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1679 Type *Ty =
I.getType();
1681 const APInt *ShAmtAPInt;
1690 ShAmt ==
BitWidth -
X->getType()->getScalarSizeInBits())
1699 if (ShlAmt < ShAmt) {
1701 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1702 auto *NewAShr = BinaryOperator::CreateAShr(
X, ShiftDiff);
1703 NewAShr->setIsExact(
I.isExact());
1706 if (ShlAmt > ShAmt) {
1708 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1710 NewShl->setHasNoSignedWrap(
true);
1719 AmtSum = std::min(AmtSum,
BitWidth - 1);
1721 return BinaryOperator::CreateAShr(
X, ConstantInt::get(Ty, AmtSum));
1725 (Ty->
isVectorTy() || shouldChangeType(Ty,
X->getType()))) {
1727 Type *SrcTy =
X->getType();
1746 (
BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1751 auto *NewAdd = BinaryOperator::CreateNSWAdd(
1754 NewAdd->setHasNoUnsignedWrap(
1771 Constant *Mask = ConstantInt::get(Ty, 1);
1775 cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1785 Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1);
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This file provides internal interfaces used to implement the InstCombine.
static Value * foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, bool IsOuterShl, InstCombiner::BuilderTy &Builder)
Fold OuterShift (InnerShift X, C1), C2.
static bool setShiftFlags(BinaryOperator &I, const SimplifyQuery &Q)
static Instruction * dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, const SimplifyQuery &Q, InstCombiner::BuilderTy &Builder)
static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, InstCombinerImpl &IC, Instruction *CxtI)
See if we can compute the specified value, but shifted logically to the left or right by some number ...
bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, Value *ShAmt1)
static Instruction * foldShiftOfShiftedBinOp(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
If we have a shift-by-constant of a bin op (bitwise logic op or add/sub w/ shl) that itself has a shi...
static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, Instruction *InnerShift, InstCombinerImpl &IC, Instruction *CxtI)
Return true if we can simplify two logical (either left or right) shifts that have constant shift amo...
static Value * getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, InstCombinerImpl &IC, const DataLayout &DL)
When canEvaluateShifted() returns true for an expression, this function inserts the new computation t...
static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, BinaryOperator *BO)
This file provides the interface for the instcombine pass implementation.
static bool hasNoSignedWrap(BinaryOperator &I)
static bool hasNoUnsignedWrap(BinaryOperator &I)
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static const MCExpr * MaskShift(const MCExpr *Val, uint32_t Mask, uint32_t Shift, MCContext &Ctx)
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
bool isNegative() const
Determine sign of this APInt.
bool eq(const APInt &RHS) const
Equality comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned logBase2() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
APInt shl(unsigned shiftAmt) const
Left-shift function.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
static BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLE
signed less or equal
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getNot(Constant *C)
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
This is an important base class in LLVM.
static Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
static Constant * getAllOnesValue(Type *Ty)
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateIsNotNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg > -1.
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * visitLShr(BinaryOperator &I)
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
Value * reassociateShiftAmtsOfTwoSameDirectionShifts(BinaryOperator *Sh0, const SimplifyQuery &SQ, bool AnalyzeForSignBitExtraction=false)
Instruction * visitAShr(BinaryOperator &I)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitShl(BinaryOperator &I)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * foldVariableSignZeroExtensionOfVariableHighBitExtract(BinaryOperator &OldAShr)
Instruction * commonShiftTransforms(BinaryOperator &I)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Instruction * FoldShiftByConstant(Value *Op0, Constant *Op1, BinaryOperator &I)
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
void addToWorklist(Instruction *I)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Instruction *CxtI) const
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth=0, const Instruction *CxtI=nullptr) const
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
bool isLogicalShift() const
Return true if this is a logical shift left or a logical shift right.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
op_range incoming_values()
void setIncomingValue(unsigned i, Value *V)
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Type * getExtendedType() const
Given scalar/vector integer type, returns a type with elements twice as wide as in the original type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
This class represents zero extension of integer types.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
OneUse_match< T > m_OneUse(const T &SubPattern)
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
match_combine_and< class_match< Constant >, match_unless< constantexpr_match > > m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
This is an optimization pass for GlobalISel generic memory operations.
Value * simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a AShr, fold the result or return nulll.
Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Value * simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Shl, fold the result or return null.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Value * simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a LShr, fold the result or return null.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
@ And
Bitwise or logical AND of integers.
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
constexpr unsigned BitWidth
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return the number of times the sign bit of the register is replicated into the other bits.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
SimplifyQuery getWithInstruction(const Instruction *I) const