21#define DEBUG_TYPE "instcombine"
39 unsigned MaximalPossibleTotalShiftAmount =
42 APInt MaximalRepresentableShiftAmount =
44 return MaximalRepresentableShiftAmount.
uge(MaximalPossibleTotalShiftAmount);
60 bool AnalyzeForSignBitExtraction) {
72 Value *Trunc =
nullptr;
91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
104 if (Trunc && !AnalyzeForSignBitExtraction &&
111 SQ.getWithInstruction(Sh0)));
114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
115 unsigned XBitWidth =
X->getType()->getScalarSizeInBits();
118 APInt(NewShAmtBitWidth, XBitWidth))))
126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
130 APInt(NewShAmtBitWidth, XBitWidth - 1))))
133 if (AnalyzeForSignBitExtraction)
137 assert(IdenticalShOpcodes &&
"Should not get here with different shifts.");
139 if (NewShAmt->getType() !=
X->getType()) {
141 X->getType(),
SQ.DL);
153 if (ShiftOpcode == Instruction::BinaryOps::Shl) {
193 "The input must be 'shl'!");
208 bool HadTrunc = WidestTy != NarrowestTy;
240 MaskShAmt, ShiftShAmt,
false,
false, Q));
251 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
254 Instruction::ZExt, SumOfShAmts, ExtendedTy, Q.
DL);
255 if (!ExtendedSumOfShAmts)
261 Instruction::Shl, ExtendedAllOnes, ExtendedSumOfShAmts, Q.
DL);
262 if (!ExtendedInvertedMask)
279 ShiftShAmt, MaskShAmt,
false,
false, Q));
293 -(
int)WidestTyBitWidth));
301 if (!ExtendedNumHighBitsToClear)
307 ExtendedNumHighBitsToClear, Q.
DL);
331 X = Builder.CreateTrunc(
X, NarrowestTy);
340 Builder.Insert(NewShift);
351 assert(
I.isShift() &&
"Expected a shift as input");
354 (!BinInst->isBitwiseLogicOp() &&
355 BinInst->getOpcode() != Instruction::Add &&
356 BinInst->getOpcode() != Instruction::Sub) ||
357 !BinInst->hasOneUse())
366 if ((BinInst->getOpcode() == Instruction::Add ||
367 BinInst->getOpcode() == Instruction::Sub) &&
368 ShiftOpcode != Instruction::Shl)
371 Type *Ty =
I.getType();
376 auto matchFirstShift = [&](
Value *V,
Value *W) {
377 unsigned Size = Ty->getScalarSizeInBits();
388 bool FirstShiftIsOp1 =
false;
389 if (matchFirstShift(BinInst->getOperand(0), BinInst->getOperand(1)))
390 Y = BinInst->getOperand(1);
391 else if (matchFirstShift(BinInst->getOperand(1), BinInst->getOperand(0))) {
392 Y = BinInst->getOperand(0);
393 FirstShiftIsOp1 = BinInst->getOpcode() == Instruction::Sub;
399 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode,
X, ShiftSumC);
400 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode,
Y, C1);
401 Value *Op1 = FirstShiftIsOp1 ? NewShift2 : NewShift1;
402 Value *Op2 = FirstShiftIsOp1 ? NewShift1 : NewShift2;
410 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
412 Type *Ty =
I.getType();
448 if (
I.getOpcode() == Instruction::Shl) {
457 unsigned BitWidth = Ty->getScalarSizeInBits();
467 assert(!
AC->isZero() &&
"Expected simplify of shifted zero");
468 unsigned PosOffset = (-*AddC).getZExtValue();
470 auto isSuitableForPreShift = [PosOffset, &
I,
AC]() {
471 switch (
I.getOpcode()) {
474 case Instruction::Shl:
475 return (
I.hasNoSignedWrap() ||
I.hasNoUnsignedWrap()) &&
476 AC->eq(
AC->lshr(PosOffset).shl(PosOffset));
477 case Instruction::LShr:
478 return I.isExact() &&
AC->eq(
AC->shl(PosOffset).lshr(PosOffset));
479 case Instruction::AShr:
480 return I.isExact() &&
AC->eq(
AC->shl(PosOffset).ashr(PosOffset));
483 if (isSuitableForPreShift()) {
484 Constant *NewC = ConstantInt::get(Ty,
I.getOpcode() == Instruction::Shl
485 ?
AC->lshr(PosOffset)
486 :
AC->shl(PosOffset));
489 if (
I.getOpcode() == Instruction::Shl) {
517 if ((
I.getOpcode() == Instruction::LShr ||
518 I.getOpcode() == Instruction::AShr) &&
542 const APInt *InnerShiftConst;
549 bool IsInnerShl = InnerShift->
getOpcode() == Instruction::Shl;
550 if (IsInnerShl == IsOuterShl)
556 if (*InnerShiftConst == OuterShAmt)
566 if (InnerShiftConst->
ugt(OuterShAmt) && InnerShiftConst->
ult(TypeWidth)) {
569 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
595 if (!
I)
return false;
599 if (!
I->hasOneUse())
return false;
601 switch (
I->getOpcode()) {
602 default:
return false;
603 case Instruction::And:
604 case Instruction::Or:
605 case Instruction::Xor:
610 case Instruction::Shl:
611 case Instruction::LShr:
614 case Instruction::Select: {
616 Value *TrueVal =
SI->getTrueValue();
617 Value *FalseVal =
SI->getFalseValue();
621 case Instruction::PHI: {
631 case Instruction::Mul: {
632 const APInt *MulConst;
634 return !IsLeftShift &&
match(
I->getOperand(1),
m_APInt(MulConst)) &&
645 bool IsInnerShl = InnerShift->
getOpcode() == Instruction::Shl;
655 auto NewInnerShift = [&](
unsigned ShAmt) {
656 InnerShift->
setOperand(1, ConstantInt::get(ShType, ShAmt));
669 if (IsInnerShl == IsOuterShl) {
671 if (InnerShAmt + OuterShAmt >= TypeWidth)
674 return NewInnerShift(InnerShAmt + OuterShAmt);
680 if (InnerShAmt == OuterShAmt) {
681 APInt Mask = IsInnerShl
685 ConstantInt::get(ShType, Mask));
688 AndI->takeName(InnerShift);
693 assert(InnerShAmt > OuterShAmt &&
694 "Unexpected opposite direction logical shift pair");
700 return NewInnerShift(InnerShAmt - OuterShAmt);
718 switch (
I->getOpcode()) {
720 case Instruction::And:
721 case Instruction::Or:
722 case Instruction::Xor:
730 case Instruction::Shl:
731 case Instruction::LShr:
735 case Instruction::Select:
741 case Instruction::PHI: {
748 isLeftShift, IC,
DL));
751 case Instruction::Mul: {
752 assert(!isLeftShift &&
"Unexpected shift direction!");
755 unsigned TypeWidth =
I->getType()->getScalarSizeInBits();
757 auto *
And = BinaryOperator::CreateAnd(Neg,
758 ConstantInt::get(
I->getType(), Mask));
772 case Instruction::Add:
773 return Shift.
getOpcode() == Instruction::Shl;
774 case Instruction::Or:
775 case Instruction::And:
777 case Instruction::Xor:
790 bool IsLeftShift =
I.getOpcode() == Instruction::Shl;
793 I.getOpcode(),
Builder.CreateBinOp(
I.getOpcode(), C2, C1),
X);
796 R->setHasNoUnsignedWrap(
I.hasNoUnsignedWrap() &&
800 R->setIsExact(
I.isExact() && BO0->
isExact());
804 Type *Ty =
I.getType();
805 unsigned TypeBits = Ty->getScalarSizeInBits();
813 Constant *NegDivC = ConstantInt::get(Ty, -(*DivC));
817 auto ExtOpcode = (
I.getOpcode() == Instruction::AShr) ? Instruction::SExt
827 "Shift over the type width should have been removed already");
831 if (
I.getOpcode() != Instruction::AShr &&
834 dbgs() <<
"ICE: GetShiftedValue propagating shift through expression"
835 " to eliminate shift:\n IN: "
836 << *Op0 <<
"\n SH: " <<
I <<
"\n");
855 Builder.CreateBinOp(
I.getOpcode(), Op0BO->getOperand(1), C1);
858 Builder.CreateBinOp(
I.getOpcode(), Op0BO->getOperand(0), C1);
886 Value *NewShift =
Builder.CreateBinOp(
I.getOpcode(), FalseVal, C1);
903 Value *NewShift =
Builder.CreateBinOp(
I.getOpcode(), TrueVal, C1);
924 assert(
I.getOpcode() == Instruction::LShr);
927 Value *ShiftAmt =
I.getOperand(1);
928 Type *Ty =
I.getType();
930 if (Ty->getScalarSizeInBits() < 3)
933 const APInt *ShAmtAPInt =
nullptr;
934 Value *
X =
nullptr, *
Y =
nullptr;
945 if (
X->getType()->getScalarSizeInBits() != ShAmt ||
946 Y->getType()->getScalarSizeInBits() != ShAmt)
950 if (!
Add->hasOneUse()) {
964 Builder.SetInsertPoint(AddInst);
968 Builder.CreateICmpULT(NarrowAdd,
X,
"add.narrowed.overflow");
973 if (!
Add->hasOneUse()) {
979 return new ZExtInst(Overflow, Ty);
984 assert(
I.isShift() &&
"Expected a shift as input");
986 if (
I.getOpcode() == Instruction::Shl) {
987 if (
I.hasNoUnsignedWrap() &&
I.hasNoSignedWrap())
1016 if (
I.getOpcode() == Instruction::Shl) {
1019 I.setHasNoUnsignedWrap();
1023 if (!
I.hasNoSignedWrap()) {
1027 I.setHasNoSignedWrap();
1046 I.hasNoSignedWrap(),
I.hasNoUnsignedWrap(), Q))
1058 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1059 Type *Ty =
I.getType();
1060 unsigned BitWidth = Ty->getScalarSizeInBits();
1064 unsigned ShAmtC =
C->getZExtValue();
1070 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
1071 if (ShAmtC < SrcWidth &&
1079 return BinaryOperator::CreateAnd(
X, ConstantInt::get(Ty, Mask));
1086 if (ShrAmt < ShAmtC) {
1088 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
1089 auto *NewShl = BinaryOperator::CreateShl(
X, ShiftDiff);
1090 NewShl->setHasNoUnsignedWrap(
1091 I.hasNoUnsignedWrap() ||
1094 I.hasNoSignedWrap()));
1095 NewShl->setHasNoSignedWrap(
I.hasNoSignedWrap());
1098 if (ShrAmt > ShAmtC) {
1100 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
1103 NewShr->setIsExact(
true);
1111 if (ShrAmt < ShAmtC) {
1113 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
1114 auto *NewShl = BinaryOperator::CreateShl(
X, ShiftDiff);
1115 NewShl->setHasNoUnsignedWrap(
1116 I.hasNoUnsignedWrap() ||
1119 I.hasNoSignedWrap()));
1120 NewShl->setHasNoSignedWrap(
I.hasNoSignedWrap());
1123 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1125 if (ShrAmt > ShAmtC) {
1127 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
1131 NewShr->setIsExact(OldShr->isExact());
1134 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
1144 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
1145 Constant *ShiftDiffC = ConstantInt::get(
X->getType(), ShDiff);
1146 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->
getOpcode() : Instruction::Shl;
1152 Value *NewShift =
Builder.CreateBinOp(ShiftOpc,
X, ShiftDiffC,
"sh.diff");
1153 Value *Trunc =
Builder.CreateTrunc(NewShift, Ty,
"tr.sh.diff");
1155 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
1161 switch (BinOpcode) {
1164 case Instruction::Add:
1165 case Instruction::And:
1166 case Instruction::Or:
1167 case Instruction::Xor:
1168 case Instruction::Sub:
1176 isSuitableBinOpcode(Op0BO->
getOpcode())) {
1197 unsigned Op1Val =
C->getLimitedValue(
BitWidth);
1199 Constant *Mask = ConstantInt::get(Ty, Bits);
1200 return BinaryOperator::CreateAnd(
B, Mask);
1211 X->getName() +
".mask");
1214 Disjoint && Disjoint->isDisjoint())
1224 return BinaryOperator::CreateSub(NewLHS, NewShift);
1237 return BinaryOperator::CreateAnd(Mask,
X);
1243 return BinaryOperator::CreateShl(
AllOnes, Op1);
1252 return BinaryOperator::CreateMul(
X,
Builder.CreateShl(C2, C1));
1256 auto *NewC =
Builder.CreateShl(ConstantInt::get(Ty, 1), C1);
1257 return createSelectInstWithUnknownProfile(
X, NewC,
1265 return BinaryOperator::CreateLShr(
1273 return BinaryOperator::CreateAnd(NegX,
X);
1282 SQ.getWithInstruction(&
I)))
1291 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1292 Type *Ty =
I.getType();
1295 unsigned BitWidth = Ty->getScalarSizeInBits();
1308 auto *NewSub = BinaryOperator::CreateNUWSub(
X, NewLshr);
1309 NewSub->setHasNoSignedWrap(
1318 return BinaryOperator::CreateAnd(
X,
Y);
1325 auto *NewSub = BinaryOperator::CreateNUWSub(NewLshr,
Y);
1326 NewSub->setHasNoSignedWrap(
1332 switch (BinOpcode) {
1335 case Instruction::Add:
1336 case Instruction::And:
1337 case Instruction::Or:
1338 case Instruction::Xor:
1349 if (isSuitableBinOpcode(Op0OB->
getOpcode())) {
1351 !OBO || OBO->hasNoUnsignedWrap()) {
1353 Y, Op1,
"",
I.isExact() && Op0OB->
getOpcode() != Instruction::And);
1356 NewBinOp->setHasNoUnsignedWrap(
true);
1357 NewBinOp->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1360 Disjoint->isDisjoint());
1368 unsigned ShAmtC =
C->getZExtValue();
1371 (
II->getIntrinsicID() == Intrinsic::ctlz ||
1372 II->getIntrinsicID() == Intrinsic::cttz ||
1373 II->getIntrinsicID() == Intrinsic::ctpop)) {
1377 bool IsPop =
II->getIntrinsicID() == Intrinsic::ctpop;
1385 if (C1->
ult(ShAmtC)) {
1387 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1390 auto *NewLShr = BinaryOperator::CreateLShr(
X, ShiftDiff);
1391 NewLShr->setIsExact(
I.isExact());
1396 Value *NewLShr =
Builder.CreateLShr(
X, ShiftDiff,
"",
I.isExact());
1398 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1400 }
else if (C1->
ugt(ShAmtC)) {
1402 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1405 auto *NewShl = BinaryOperator::CreateShl(
X, ShiftDiff);
1406 NewShl->setHasNoUnsignedWrap(
true);
1407 NewShl->setHasNoSignedWrap(ShAmtC > 0);
1414 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1420 return BinaryOperator::CreateAnd(
X, ConstantInt::get(Ty, Mask));
1432 unsigned Op1Val =
C->getLimitedValue(
BitWidth);
1434 Constant *Mask = ConstantInt::get(Ty, Bits);
1435 return BinaryOperator::CreateAnd(NewAdd, Mask);
1439 (!Ty->isIntegerTy() || shouldChangeType(Ty,
X->getType()))) {
1441 "Big shift not simplified to zero?");
1448 unsigned SrcTyBitWidth =
X->getType()->getScalarSizeInBits();
1450 if (SrcTyBitWidth == 1) {
1451 auto *NewC = ConstantInt::get(
1456 if ((!Ty->isIntegerTy() || shouldChangeType(Ty,
X->getType())) &&
1466 if (ShAmtC ==
BitWidth - SrcTyBitWidth) {
1468 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1488 return BinaryOperator::CreateAnd(Signbit,
X);
1500 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
1508 if (AmtSum < SrcWidth &&
1510 Value *SumShift =
Builder.CreateLShr(
X, AmtSum,
"sum.shift");
1511 Value *Trunc =
Builder.CreateTrunc(SumShift, Ty,
I.getName());
1516 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
1522 if (
BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1532 auto *NewAdd = BinaryOperator::CreateNUWAdd(
1533 X,
Builder.CreateLShr(
X, ConstantInt::get(Ty, ShAmtC),
"",
1535 NewAdd->setHasNoSignedWrap(
1548 if (MulC->
eq(NewMulC.
shl(ShAmtC))) {
1550 BinaryOperator::CreateNUWMul(
X, ConstantInt::get(Ty, NewMulC));
1552 "lshr X, 0 should be handled by simplifyLShrInst.");
1553 NewMul->setHasNoSignedWrap(
true);
1561 if (
BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1563 return BinaryOperator::CreateNSWAdd(
1564 X,
Builder.CreateLShr(
X, ConstantInt::get(Ty, ShAmtC),
"",
1574 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
1575 unsigned WidthDiff =
BitWidth - SrcWidth;
1576 if (SrcWidth % 16 == 0) {
1577 Value *NarrowSwap =
Builder.CreateUnaryIntrinsic(Intrinsic::bswap,
X);
1578 if (ShAmtC >= WidthDiff) {
1580 Value *NewShift =
Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff);
1585 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC);
1586 return BinaryOperator::CreateShl(NewZExt, ShiftDiff);
1593 Value *BoolX, *BoolY;
1598 (
X->hasOneUse() ||
Y->hasOneUse() || Op0->
hasOneUse())) {
1612 return BinaryOperator::CreateAnd(Mask,
X);
1618 return BinaryOperator::CreateLShr(
AllOnes, Op1);
1625 Value *Shl0_Op0, *Shl0_Op1, *Shl1_Op1;
1634 if (HasNUW || HasNSW) {
1636 Shl0_Op1,
"", HasNUW, HasNSW);
1637 return BinaryOperator::CreateLShr(NewShl, Shl1_Op1);
1647 "Must be called with arithmetic right-shift instruction only.");
1653 APInt(
C->getType()->getScalarSizeInBits(),
1654 V->getType()->getScalarSizeInBits())));
1662 if (!
match(&OldAShr,
1668 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1674 bool HadTrunc = MaybeTrunc != HighBitExtract;
1677 Value *
X, *NumLowBitsToSkip;
1683 if (!
match(NumLowBitsToSkip,
1686 !BitWidthSplat(C0, HighBitExtract))
1714 SQ.getWithInstruction(&
I)))
1723 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1724 Type *Ty =
I.getType();
1725 unsigned BitWidth = Ty->getScalarSizeInBits();
1726 const APInt *ShAmtAPInt;
1735 ShAmt ==
BitWidth -
X->getType()->getScalarSizeInBits())
1744 if (ShlAmt < ShAmt) {
1746 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1747 auto *NewAShr = BinaryOperator::CreateAShr(
X, ShiftDiff);
1748 NewAShr->setIsExact(
I.isExact());
1751 if (ShlAmt > ShAmt) {
1753 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1755 NewShl->setHasNoSignedWrap(
true);
1764 AmtSum = std::min(AmtSum,
BitWidth - 1);
1766 return BinaryOperator::CreateAShr(
X, ConstantInt::get(Ty, AmtSum));
1770 (Ty->isVectorTy() || shouldChangeType(Ty,
X->getType()))) {
1772 Type *SrcTy =
X->getType();
1773 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1774 Value *NewSh =
Builder.CreateAShr(
X, ConstantInt::get(SrcTy, ShAmt));
1796 (
BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1801 auto *NewAdd = BinaryOperator::CreateNSWAdd(
1803 Builder.CreateAShr(
X, ConstantInt::get(Ty, ShAmt),
"",
I.isExact()));
1804 NewAdd->setHasNoUnsignedWrap(
1821 Constant *Mask = ConstantInt::get(Ty, 1);
1835 Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file provides internal interfaces used to implement the InstCombine.
static Value * foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, bool IsOuterShl, InstCombiner::BuilderTy &Builder)
Fold OuterShift (InnerShift X, C1), C2.
static bool setShiftFlags(BinaryOperator &I, const SimplifyQuery &Q)
static Instruction * dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, const SimplifyQuery &Q, InstCombiner::BuilderTy &Builder)
static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, InstCombinerImpl &IC, Instruction *CxtI)
See if we can compute the specified value, but shifted logically to the left or right by some number ...
bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, Value *ShAmt1)
static Instruction * foldShiftOfShiftedBinOp(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
If we have a shift-by-constant of a bin op (bitwise logic op or add/sub w/ shl) that itself has a shi...
static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, Instruction *InnerShift, InstCombinerImpl &IC, Instruction *CxtI)
Return true if we can simplify two logical (either left or right) shifts that have constant shift amo...
static Value * getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, InstCombinerImpl &IC, const DataLayout &DL)
When canEvaluateShifted() returns true for an expression, this function inserts the new computation t...
static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, BinaryOperator *BO)
This file provides the interface for the instcombine pass implementation.
static bool hasNoSignedWrap(BinaryOperator &I)
static bool hasNoUnsignedWrap(BinaryOperator &I)
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
static const MCExpr * MaskShift(const MCExpr *Val, uint32_t Mask, uint32_t Shift, MCContext &Ctx)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
bool isNegative() const
Determine sign of this APInt.
bool eq(const APInt &RHS) const
Equality comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned logBase2() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
APInt shl(unsigned shiftAmt) const
Left-shift function.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static LLVM_ABI CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLE
signed less or equal
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
This is an important base class in LLVM.
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Instruction * visitLShr(BinaryOperator &I)
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
Value * reassociateShiftAmtsOfTwoSameDirectionShifts(BinaryOperator *Sh0, const SimplifyQuery &SQ, bool AnalyzeForSignBitExtraction=false)
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * visitAShr(BinaryOperator &I)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitShl(BinaryOperator &I)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * foldVariableSignZeroExtensionOfVariableHighBitExtract(BinaryOperator &OldAShr)
Instruction * commonShiftTransforms(BinaryOperator &I)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Instruction * FoldShiftByConstant(Value *Op0, Constant *Op1, BinaryOperator &I)
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
void addToWorklist(Instruction *I)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
bool isLogicalShift() const
Return true if this is a logical shift left or a logical shift right.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
op_range incoming_values()
void setIncomingValue(unsigned i, Value *V)
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
LLVM_ABI Type * getExtendedType() const
Given scalar/vector integer type, returns a type with elements twice as wide as in the original type.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
This class represents zero extension of integer types.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Value * simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a AShr, fold the result or return nulll.
FunctionAddr VTableAddr Value
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
auto cast_or_null(const Y &Val)
LLVM_ABI Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
auto dyn_cast_or_null(const Y &Val)
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI Value * simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Shl, fold the result or return null.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI Value * simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a LShr, fold the result or return null.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.