LLVM  9.0.0svn
BitcodeReader.cpp
Go to the documentation of this file.
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorOr.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
91  "print-summary-global-ids", cl::init(false), cl::Hidden,
92  cl::desc(
93  "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104  return make_error<StringError>(
106 }
107 
108 /// Helper to read the header common to all bitcode files.
110  // Sniff for the signature.
111  if (!Stream.canSkipToPos(4) ||
112  Stream.Read(8) != 'B' ||
113  Stream.Read(8) != 'C' ||
114  Stream.Read(4) != 0x0 ||
115  Stream.Read(4) != 0xC ||
116  Stream.Read(4) != 0xE ||
117  Stream.Read(4) != 0xD)
118  return false;
119  return true;
120 }
121 
123  const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
124  const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
125 
126  if (Buffer.getBufferSize() & 3)
127  return error("Invalid bitcode signature");
128 
129  // If we have a wrapper header, parse it and ignore the non-bc file contents.
130  // The magic number is 0x0B17C0DE stored in little endian.
131  if (isBitcodeWrapper(BufPtr, BufEnd))
132  if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
133  return error("Invalid bitcode wrapper header");
134 
135  BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
136  if (!hasValidBitcodeHeader(Stream))
137  return error("Invalid bitcode signature");
138 
139  return std::move(Stream);
140 }
141 
142 /// Convert a string from a record into an std::string, return true on failure.
143 template <typename StrTy>
144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
145  StrTy &Result) {
146  if (Idx > Record.size())
147  return true;
148 
149  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
150  Result += (char)Record[i];
151  return false;
152 }
153 
154 // Strip all the TBAA attachment for the module.
155 static void stripTBAA(Module *M) {
156  for (auto &F : *M) {
157  if (F.isMaterializable())
158  continue;
159  for (auto &I : instructions(F))
160  I.setMetadata(LLVMContext::MD_tbaa, nullptr);
161  }
162 }
163 
164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
165 /// "epoch" encoded in the bitcode, and return the producer name if any.
168  return error("Invalid record");
169 
170  // Read all the records.
172 
173  std::string ProducerIdentification;
174 
175  while (true) {
176  BitstreamEntry Entry = Stream.advance();
177 
178  switch (Entry.Kind) {
179  default:
181  return error("Malformed block");
183  return ProducerIdentification;
185  // The interesting case.
186  break;
187  }
188 
189  // Read a record.
190  Record.clear();
191  unsigned BitCode = Stream.readRecord(Entry.ID, Record);
192  switch (BitCode) {
193  default: // Default behavior: reject
194  return error("Invalid value");
195  case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
196  convertToString(Record, 0, ProducerIdentification);
197  break;
198  case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
199  unsigned epoch = (unsigned)Record[0];
200  if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
201  return error(
202  Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
203  "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
204  }
205  }
206  }
207  }
208 }
209 
211  // We expect a number of well-defined blocks, though we don't necessarily
212  // need to understand them all.
213  while (true) {
214  if (Stream.AtEndOfStream())
215  return "";
216 
217  BitstreamEntry Entry = Stream.advance();
218  switch (Entry.Kind) {
221  return error("Malformed block");
222 
224  if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
225  return readIdentificationBlock(Stream);
226 
227  // Ignore other sub-blocks.
228  if (Stream.SkipBlock())
229  return error("Malformed block");
230  continue;
232  Stream.skipRecord(Entry.ID);
233  continue;
234  }
235  }
236 }
237 
240  return error("Invalid record");
241 
243  // Read all the records for this module.
244 
245  while (true) {
246  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
247 
248  switch (Entry.Kind) {
249  case BitstreamEntry::SubBlock: // Handled for us already.
251  return error("Malformed block");
253  return false;
255  // The interesting case.
256  break;
257  }
258 
259  // Read a record.
260  switch (Stream.readRecord(Entry.ID, Record)) {
261  default:
262  break; // Default behavior, ignore unknown content.
263  case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
264  std::string S;
265  if (convertToString(Record, 0, S))
266  return error("Invalid record");
267  // Check for the i386 and other (x86_64, ARM) conventions
268  if (S.find("__DATA,__objc_catlist") != std::string::npos ||
269  S.find("__OBJC,__category") != std::string::npos)
270  return true;
271  break;
272  }
273  }
274  Record.clear();
275  }
276  llvm_unreachable("Exit infinite loop");
277 }
278 
280  // We expect a number of well-defined blocks, though we don't necessarily
281  // need to understand them all.
282  while (true) {
283  BitstreamEntry Entry = Stream.advance();
284 
285  switch (Entry.Kind) {
287  return error("Malformed block");
289  return false;
290 
292  if (Entry.ID == bitc::MODULE_BLOCK_ID)
293  return hasObjCCategoryInModule(Stream);
294 
295  // Ignore other sub-blocks.
296  if (Stream.SkipBlock())
297  return error("Malformed block");
298  continue;
299 
301  Stream.skipRecord(Entry.ID);
302  continue;
303  }
304  }
305 }
306 
309  return error("Invalid record");
310 
312 
313  std::string Triple;
314 
315  // Read all the records for this module.
316  while (true) {
317  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
318 
319  switch (Entry.Kind) {
320  case BitstreamEntry::SubBlock: // Handled for us already.
322  return error("Malformed block");
324  return Triple;
326  // The interesting case.
327  break;
328  }
329 
330  // Read a record.
331  switch (Stream.readRecord(Entry.ID, Record)) {
332  default: break; // Default behavior, ignore unknown content.
333  case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
334  std::string S;
335  if (convertToString(Record, 0, S))
336  return error("Invalid record");
337  Triple = S;
338  break;
339  }
340  }
341  Record.clear();
342  }
343  llvm_unreachable("Exit infinite loop");
344 }
345 
347  // We expect a number of well-defined blocks, though we don't necessarily
348  // need to understand them all.
349  while (true) {
350  BitstreamEntry Entry = Stream.advance();
351 
352  switch (Entry.Kind) {
354  return error("Malformed block");
356  return "";
357 
359  if (Entry.ID == bitc::MODULE_BLOCK_ID)
360  return readModuleTriple(Stream);
361 
362  // Ignore other sub-blocks.
363  if (Stream.SkipBlock())
364  return error("Malformed block");
365  continue;
366 
368  Stream.skipRecord(Entry.ID);
369  continue;
370  }
371  }
372 }
373 
374 namespace {
375 
376 class BitcodeReaderBase {
377 protected:
378  BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
379  : Stream(std::move(Stream)), Strtab(Strtab) {
380  this->Stream.setBlockInfo(&BlockInfo);
381  }
382 
383  BitstreamBlockInfo BlockInfo;
384  BitstreamCursor Stream;
385  StringRef Strtab;
386 
387  /// In version 2 of the bitcode we store names of global values and comdats in
388  /// a string table rather than in the VST.
389  bool UseStrtab = false;
390 
391  Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
392 
393  /// If this module uses a string table, pop the reference to the string table
394  /// and return the referenced string and the rest of the record. Otherwise
395  /// just return the record itself.
396  std::pair<StringRef, ArrayRef<uint64_t>>
397  readNameFromStrtab(ArrayRef<uint64_t> Record);
398 
399  bool readBlockInfo();
400 
401  // Contains an arbitrary and optional string identifying the bitcode producer
402  std::string ProducerIdentification;
403 
404  Error error(const Twine &Message);
405 };
406 
407 } // end anonymous namespace
408 
409 Error BitcodeReaderBase::error(const Twine &Message) {
410  std::string FullMsg = Message.str();
411  if (!ProducerIdentification.empty())
412  FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
413  LLVM_VERSION_STRING "')";
414  return ::error(FullMsg);
415 }
416 
418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
419  if (Record.empty())
420  return error("Invalid record");
421  unsigned ModuleVersion = Record[0];
422  if (ModuleVersion > 2)
423  return error("Invalid value");
424  UseStrtab = ModuleVersion >= 2;
425  return ModuleVersion;
426 }
427 
428 std::pair<StringRef, ArrayRef<uint64_t>>
429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
430  if (!UseStrtab)
431  return {"", Record};
432  // Invalid reference. Let the caller complain about the record being empty.
433  if (Record[0] + Record[1] > Strtab.size())
434  return {"", {}};
435  return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
436 }
437 
438 namespace {
439 
440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
442  Module *TheModule = nullptr;
443  // Next offset to start scanning for lazy parsing of function bodies.
444  uint64_t NextUnreadBit = 0;
445  // Last function offset found in the VST.
446  uint64_t LastFunctionBlockBit = 0;
447  bool SeenValueSymbolTable = false;
448  uint64_t VSTOffset = 0;
449 
450  std::vector<std::string> SectionTable;
451  std::vector<std::string> GCTable;
452 
453  std::vector<Type*> TypeList;
454  BitcodeReaderValueList ValueList;
455  Optional<MetadataLoader> MDLoader;
456  std::vector<Comdat *> ComdatList;
457  SmallVector<Instruction *, 64> InstructionList;
458 
459  std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
460  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
461  std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
462  std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
463  std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
464 
465  /// The set of attributes by index. Index zero in the file is for null, and
466  /// is thus not represented here. As such all indices are off by one.
467  std::vector<AttributeList> MAttributes;
468 
469  /// The set of attribute groups.
470  std::map<unsigned, AttributeList> MAttributeGroups;
471 
472  /// While parsing a function body, this is a list of the basic blocks for the
473  /// function.
474  std::vector<BasicBlock*> FunctionBBs;
475 
476  // When reading the module header, this list is populated with functions that
477  // have bodies later in the file.
478  std::vector<Function*> FunctionsWithBodies;
479 
480  // When intrinsic functions are encountered which require upgrading they are
481  // stored here with their replacement function.
482  using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
483  UpdatedIntrinsicMap UpgradedIntrinsics;
484  // Intrinsics which were remangled because of types rename
485  UpdatedIntrinsicMap RemangledIntrinsics;
486 
487  // Several operations happen after the module header has been read, but
488  // before function bodies are processed. This keeps track of whether
489  // we've done this yet.
490  bool SeenFirstFunctionBody = false;
491 
492  /// When function bodies are initially scanned, this map contains info about
493  /// where to find deferred function body in the stream.
494  DenseMap<Function*, uint64_t> DeferredFunctionInfo;
495 
496  /// When Metadata block is initially scanned when parsing the module, we may
497  /// choose to defer parsing of the metadata. This vector contains info about
498  /// which Metadata blocks are deferred.
499  std::vector<uint64_t> DeferredMetadataInfo;
500 
501  /// These are basic blocks forward-referenced by block addresses. They are
502  /// inserted lazily into functions when they're loaded. The basic block ID is
503  /// its index into the vector.
505  std::deque<Function *> BasicBlockFwdRefQueue;
506 
507  /// Indicates that we are using a new encoding for instruction operands where
508  /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509  /// instruction number, for a more compact encoding. Some instruction
510  /// operands are not relative to the instruction ID: basic block numbers, and
511  /// types. Once the old style function blocks have been phased out, we would
512  /// not need this flag.
513  bool UseRelativeIDs = false;
514 
515  /// True if all functions will be materialized, negating the need to process
516  /// (e.g.) blockaddress forward references.
517  bool WillMaterializeAllForwardRefs = false;
518 
519  bool StripDebugInfo = false;
520  TBAAVerifier TBAAVerifyHelper;
521 
522  std::vector<std::string> BundleTags;
524 
525 public:
526  BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
527  StringRef ProducerIdentification, LLVMContext &Context);
528 
529  Error materializeForwardReferencedFunctions();
530 
531  Error materialize(GlobalValue *GV) override;
532  Error materializeModule() override;
533  std::vector<StructType *> getIdentifiedStructTypes() const override;
534 
535  /// Main interface to parsing a bitcode buffer.
536  /// \returns true if an error occurred.
537  Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
538  bool IsImporting = false);
539 
540  static uint64_t decodeSignRotatedValue(uint64_t V);
541 
542  /// Materialize any deferred Metadata block.
543  Error materializeMetadata() override;
544 
545  void setStripDebugInfo() override;
546 
547 private:
548  std::vector<StructType *> IdentifiedStructTypes;
549  StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
550  StructType *createIdentifiedStructType(LLVMContext &Context);
551 
552  Type *getTypeByID(unsigned ID);
553 
554  Value *getFnValueByID(unsigned ID, Type *Ty) {
555  if (Ty && Ty->isMetadataTy())
556  return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
557  return ValueList.getValueFwdRef(ID, Ty);
558  }
559 
560  Metadata *getFnMetadataByID(unsigned ID) {
561  return MDLoader->getMetadataFwdRefOrLoad(ID);
562  }
563 
564  BasicBlock *getBasicBlock(unsigned ID) const {
565  if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
566  return FunctionBBs[ID];
567  }
568 
569  AttributeList getAttributes(unsigned i) const {
570  if (i-1 < MAttributes.size())
571  return MAttributes[i-1];
572  return AttributeList();
573  }
574 
575  /// Read a value/type pair out of the specified record from slot 'Slot'.
576  /// Increment Slot past the number of slots used in the record. Return true on
577  /// failure.
578  bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
579  unsigned InstNum, Value *&ResVal) {
580  if (Slot == Record.size()) return true;
581  unsigned ValNo = (unsigned)Record[Slot++];
582  // Adjust the ValNo, if it was encoded relative to the InstNum.
583  if (UseRelativeIDs)
584  ValNo = InstNum - ValNo;
585  if (ValNo < InstNum) {
586  // If this is not a forward reference, just return the value we already
587  // have.
588  ResVal = getFnValueByID(ValNo, nullptr);
589  return ResVal == nullptr;
590  }
591  if (Slot == Record.size())
592  return true;
593 
594  unsigned TypeNo = (unsigned)Record[Slot++];
595  ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
596  return ResVal == nullptr;
597  }
598 
599  /// Read a value out of the specified record from slot 'Slot'. Increment Slot
600  /// past the number of slots used by the value in the record. Return true if
601  /// there is an error.
602  bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
603  unsigned InstNum, Type *Ty, Value *&ResVal) {
604  if (getValue(Record, Slot, InstNum, Ty, ResVal))
605  return true;
606  // All values currently take a single record slot.
607  ++Slot;
608  return false;
609  }
610 
611  /// Like popValue, but does not increment the Slot number.
612  bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
613  unsigned InstNum, Type *Ty, Value *&ResVal) {
614  ResVal = getValue(Record, Slot, InstNum, Ty);
615  return ResVal == nullptr;
616  }
617 
618  /// Version of getValue that returns ResVal directly, or 0 if there is an
619  /// error.
620  Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
621  unsigned InstNum, Type *Ty) {
622  if (Slot == Record.size()) return nullptr;
623  unsigned ValNo = (unsigned)Record[Slot];
624  // Adjust the ValNo, if it was encoded relative to the InstNum.
625  if (UseRelativeIDs)
626  ValNo = InstNum - ValNo;
627  return getFnValueByID(ValNo, Ty);
628  }
629 
630  /// Like getValue, but decodes signed VBRs.
631  Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
632  unsigned InstNum, Type *Ty) {
633  if (Slot == Record.size()) return nullptr;
634  unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
635  // Adjust the ValNo, if it was encoded relative to the InstNum.
636  if (UseRelativeIDs)
637  ValNo = InstNum - ValNo;
638  return getFnValueByID(ValNo, Ty);
639  }
640 
641  /// Converts alignment exponent (i.e. power of two (or zero)) to the
642  /// corresponding alignment to use. If alignment is too large, returns
643  /// a corresponding error code.
644  Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
645  Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
646  Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
647 
648  Error parseComdatRecord(ArrayRef<uint64_t> Record);
649  Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
650  Error parseFunctionRecord(ArrayRef<uint64_t> Record);
651  Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
652  ArrayRef<uint64_t> Record);
653 
654  Error parseAttributeBlock();
655  Error parseAttributeGroupBlock();
656  Error parseTypeTable();
657  Error parseTypeTableBody();
658  Error parseOperandBundleTags();
659  Error parseSyncScopeNames();
660 
661  Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
662  unsigned NameIndex, Triple &TT);
663  void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
664  ArrayRef<uint64_t> Record);
665  Error parseValueSymbolTable(uint64_t Offset = 0);
666  Error parseGlobalValueSymbolTable();
667  Error parseConstants();
668  Error rememberAndSkipFunctionBodies();
669  Error rememberAndSkipFunctionBody();
670  /// Save the positions of the Metadata blocks and skip parsing the blocks.
671  Error rememberAndSkipMetadata();
672  Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
673  Error parseFunctionBody(Function *F);
674  Error globalCleanup();
675  Error resolveGlobalAndIndirectSymbolInits();
676  Error parseUseLists();
677  Error findFunctionInStream(
678  Function *F,
679  DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
680 
681  SyncScope::ID getDecodedSyncScopeID(unsigned Val);
682 };
683 
684 /// Class to manage reading and parsing function summary index bitcode
685 /// files/sections.
686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
687  /// The module index built during parsing.
688  ModuleSummaryIndex &TheIndex;
689 
690  /// Indicates whether we have encountered a global value summary section
691  /// yet during parsing.
692  bool SeenGlobalValSummary = false;
693 
694  /// Indicates whether we have already parsed the VST, used for error checking.
695  bool SeenValueSymbolTable = false;
696 
697  /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
698  /// Used to enable on-demand parsing of the VST.
699  uint64_t VSTOffset = 0;
700 
701  // Map to save ValueId to ValueInfo association that was recorded in the
702  // ValueSymbolTable. It is used after the VST is parsed to convert
703  // call graph edges read from the function summary from referencing
704  // callees by their ValueId to using the ValueInfo instead, which is how
705  // they are recorded in the summary index being built.
706  // We save a GUID which refers to the same global as the ValueInfo, but
707  // ignoring the linkage, i.e. for values other than local linkage they are
708  // identical.
710  ValueIdToValueInfoMap;
711 
712  /// Map populated during module path string table parsing, from the
713  /// module ID to a string reference owned by the index's module
714  /// path string table, used to correlate with combined index
715  /// summary records.
716  DenseMap<uint64_t, StringRef> ModuleIdMap;
717 
718  /// Original source file name recorded in a bitcode record.
719  std::string SourceFileName;
720 
721  /// The string identifier given to this module by the client, normally the
722  /// path to the bitcode file.
723  StringRef ModulePath;
724 
725  /// For per-module summary indexes, the unique numerical identifier given to
726  /// this module by the client.
727  unsigned ModuleId;
728 
729 public:
730  ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
731  ModuleSummaryIndex &TheIndex,
732  StringRef ModulePath, unsigned ModuleId);
733 
734  Error parseModule();
735 
736 private:
737  void setValueGUID(uint64_t ValueID, StringRef ValueName,
739  StringRef SourceFileName);
740  Error parseValueSymbolTable(
741  uint64_t Offset,
742  DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
743  std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
744  std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
745  bool IsOldProfileFormat,
746  bool HasProfile,
747  bool HasRelBF);
748  Error parseEntireSummary(unsigned ID);
749  Error parseModuleStringTable();
750 
751  std::pair<ValueInfo, GlobalValue::GUID>
752  getValueInfoFromValueId(unsigned ValueId);
753 
754  void addThisModule();
755  ModuleSummaryIndex::ModuleInfo *getThisModule();
756 };
757 
758 } // end anonymous namespace
759 
761  Error Err) {
762  if (Err) {
763  std::error_code EC;
764  handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
765  EC = EIB.convertToErrorCode();
766  Ctx.emitError(EIB.message());
767  });
768  return EC;
769  }
770  return std::error_code();
771 }
772 
773 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
774  StringRef ProducerIdentification,
776  : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
777  ValueList(Context) {
778  this->ProducerIdentification = ProducerIdentification;
779 }
780 
781 Error BitcodeReader::materializeForwardReferencedFunctions() {
782  if (WillMaterializeAllForwardRefs)
783  return Error::success();
784 
785  // Prevent recursion.
786  WillMaterializeAllForwardRefs = true;
787 
788  while (!BasicBlockFwdRefQueue.empty()) {
789  Function *F = BasicBlockFwdRefQueue.front();
790  BasicBlockFwdRefQueue.pop_front();
791  assert(F && "Expected valid function");
792  if (!BasicBlockFwdRefs.count(F))
793  // Already materialized.
794  continue;
795 
796  // Check for a function that isn't materializable to prevent an infinite
797  // loop. When parsing a blockaddress stored in a global variable, there
798  // isn't a trivial way to check if a function will have a body without a
799  // linear search through FunctionsWithBodies, so just check it here.
800  if (!F->isMaterializable())
801  return error("Never resolved function from blockaddress");
802 
803  // Try to materialize F.
804  if (Error Err = materialize(F))
805  return Err;
806  }
807  assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
808 
809  // Reset state.
810  WillMaterializeAllForwardRefs = false;
811  return Error::success();
812 }
813 
814 //===----------------------------------------------------------------------===//
815 // Helper functions to implement forward reference resolution, etc.
816 //===----------------------------------------------------------------------===//
817 
818 static bool hasImplicitComdat(size_t Val) {
819  switch (Val) {
820  default:
821  return false;
822  case 1: // Old WeakAnyLinkage
823  case 4: // Old LinkOnceAnyLinkage
824  case 10: // Old WeakODRLinkage
825  case 11: // Old LinkOnceODRLinkage
826  return true;
827  }
828 }
829 
831  switch (Val) {
832  default: // Map unknown/new linkages to external
833  case 0:
835  case 2:
837  case 3:
839  case 5:
840  return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
841  case 6:
842  return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
843  case 7:
845  case 8:
847  case 9:
849  case 12:
851  case 13:
852  return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
853  case 14:
854  return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
855  case 15:
856  return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
857  case 1: // Old value with implicit comdat.
858  case 16:
860  case 10: // Old value with implicit comdat.
861  case 17:
863  case 4: // Old value with implicit comdat.
864  case 18:
866  case 11: // Old value with implicit comdat.
867  case 19:
869  }
870 }
871 
872 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
874  Flags.ReadNone = RawFlags & 0x1;
875  Flags.ReadOnly = (RawFlags >> 1) & 0x1;
876  Flags.NoRecurse = (RawFlags >> 2) & 0x1;
877  Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
878  Flags.NoInline = (RawFlags >> 4) & 0x1;
879  return Flags;
880 }
881 
882 /// Decode the flags for GlobalValue in the summary.
884  uint64_t Version) {
885  // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
886  // like getDecodedLinkage() above. Any future change to the linkage enum and
887  // to getDecodedLinkage() will need to be taken into account here as above.
888  auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
889  RawFlags = RawFlags >> 4;
890  bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
891  // The Live flag wasn't introduced until version 3. For dead stripping
892  // to work correctly on earlier versions, we must conservatively treat all
893  // values as live.
894  bool Live = (RawFlags & 0x2) || Version < 3;
895  bool Local = (RawFlags & 0x4);
896 
897  return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
898 }
899 
900 // Decode the flags for GlobalVariable in the summary
902  return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false);
903 }
904 
906  switch (Val) {
907  default: // Map unknown visibilities to default.
908  case 0: return GlobalValue::DefaultVisibility;
909  case 1: return GlobalValue::HiddenVisibility;
910  case 2: return GlobalValue::ProtectedVisibility;
911  }
912 }
913 
916  switch (Val) {
917  default: // Map unknown values to default.
918  case 0: return GlobalValue::DefaultStorageClass;
919  case 1: return GlobalValue::DLLImportStorageClass;
920  case 2: return GlobalValue::DLLExportStorageClass;
921  }
922 }
923 
924 static bool getDecodedDSOLocal(unsigned Val) {
925  switch(Val) {
926  default: // Map unknown values to preemptable.
927  case 0: return false;
928  case 1: return true;
929  }
930 }
931 
933  switch (Val) {
934  case 0: return GlobalVariable::NotThreadLocal;
935  default: // Map unknown non-zero value to general dynamic.
939  case 4: return GlobalVariable::LocalExecTLSModel;
940  }
941 }
942 
944  switch (Val) {
945  default: // Map unknown to UnnamedAddr::None.
946  case 0: return GlobalVariable::UnnamedAddr::None;
948  case 2: return GlobalVariable::UnnamedAddr::Local;
949  }
950 }
951 
952 static int getDecodedCastOpcode(unsigned Val) {
953  switch (Val) {
954  default: return -1;
955  case bitc::CAST_TRUNC : return Instruction::Trunc;
956  case bitc::CAST_ZEXT : return Instruction::ZExt;
957  case bitc::CAST_SEXT : return Instruction::SExt;
958  case bitc::CAST_FPTOUI : return Instruction::FPToUI;
959  case bitc::CAST_FPTOSI : return Instruction::FPToSI;
960  case bitc::CAST_UITOFP : return Instruction::UIToFP;
961  case bitc::CAST_SITOFP : return Instruction::SIToFP;
962  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
963  case bitc::CAST_FPEXT : return Instruction::FPExt;
964  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
965  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
966  case bitc::CAST_BITCAST : return Instruction::BitCast;
967  case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
968  }
969 }
970 
971 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
972  bool IsFP = Ty->isFPOrFPVectorTy();
973  // UnOps are only valid for int/fp or vector of int/fp types
974  if (!IsFP && !Ty->isIntOrIntVectorTy())
975  return -1;
976 
977  switch (Val) {
978  default:
979  return -1;
980  case bitc::UNOP_NEG:
981  return IsFP ? Instruction::FNeg : -1;
982  }
983 }
984 
985 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
986  bool IsFP = Ty->isFPOrFPVectorTy();
987  // BinOps are only valid for int/fp or vector of int/fp types
988  if (!IsFP && !Ty->isIntOrIntVectorTy())
989  return -1;
990 
991  switch (Val) {
992  default:
993  return -1;
994  case bitc::BINOP_ADD:
995  return IsFP ? Instruction::FAdd : Instruction::Add;
996  case bitc::BINOP_SUB:
997  return IsFP ? Instruction::FSub : Instruction::Sub;
998  case bitc::BINOP_MUL:
999  return IsFP ? Instruction::FMul : Instruction::Mul;
1000  case bitc::BINOP_UDIV:
1001  return IsFP ? -1 : Instruction::UDiv;
1002  case bitc::BINOP_SDIV:
1003  return IsFP ? Instruction::FDiv : Instruction::SDiv;
1004  case bitc::BINOP_UREM:
1005  return IsFP ? -1 : Instruction::URem;
1006  case bitc::BINOP_SREM:
1007  return IsFP ? Instruction::FRem : Instruction::SRem;
1008  case bitc::BINOP_SHL:
1009  return IsFP ? -1 : Instruction::Shl;
1010  case bitc::BINOP_LSHR:
1011  return IsFP ? -1 : Instruction::LShr;
1012  case bitc::BINOP_ASHR:
1013  return IsFP ? -1 : Instruction::AShr;
1014  case bitc::BINOP_AND:
1015  return IsFP ? -1 : Instruction::And;
1016  case bitc::BINOP_OR:
1017  return IsFP ? -1 : Instruction::Or;
1018  case bitc::BINOP_XOR:
1019  return IsFP ? -1 : Instruction::Xor;
1020  }
1021 }
1022 
1024  switch (Val) {
1025  default: return AtomicRMWInst::BAD_BINOP;
1026  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1027  case bitc::RMW_ADD: return AtomicRMWInst::Add;
1028  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1029  case bitc::RMW_AND: return AtomicRMWInst::And;
1030  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1031  case bitc::RMW_OR: return AtomicRMWInst::Or;
1032  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1033  case bitc::RMW_MAX: return AtomicRMWInst::Max;
1034  case bitc::RMW_MIN: return AtomicRMWInst::Min;
1035  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1036  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1037  case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1038  case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1039  }
1040 }
1041 
1042 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1043  switch (Val) {
1050  default: // Map unknown orderings to sequentially-consistent.
1052  }
1053 }
1054 
1056  switch (Val) {
1057  default: // Map unknown selection kinds to any.
1059  return Comdat::Any;
1061  return Comdat::ExactMatch;
1063  return Comdat::Largest;
1065  return Comdat::NoDuplicates;
1067  return Comdat::SameSize;
1068  }
1069 }
1070 
1072  FastMathFlags FMF;
1073  if (0 != (Val & bitc::UnsafeAlgebra))
1074  FMF.setFast();
1075  if (0 != (Val & bitc::AllowReassoc))
1076  FMF.setAllowReassoc();
1077  if (0 != (Val & bitc::NoNaNs))
1078  FMF.setNoNaNs();
1079  if (0 != (Val & bitc::NoInfs))
1080  FMF.setNoInfs();
1081  if (0 != (Val & bitc::NoSignedZeros))
1082  FMF.setNoSignedZeros();
1083  if (0 != (Val & bitc::AllowReciprocal))
1084  FMF.setAllowReciprocal();
1085  if (0 != (Val & bitc::AllowContract))
1086  FMF.setAllowContract(true);
1087  if (0 != (Val & bitc::ApproxFunc))
1088  FMF.setApproxFunc();
1089  return FMF;
1090 }
1091 
1092 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1093  switch (Val) {
1096  }
1097 }
1098 
1099 Type *BitcodeReader::getTypeByID(unsigned ID) {
1100  // The type table size is always specified correctly.
1101  if (ID >= TypeList.size())
1102  return nullptr;
1103 
1104  if (Type *Ty = TypeList[ID])
1105  return Ty;
1106 
1107  // If we have a forward reference, the only possible case is when it is to a
1108  // named struct. Just create a placeholder for now.
1109  return TypeList[ID] = createIdentifiedStructType(Context);
1110 }
1111 
1112 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1113  StringRef Name) {
1114  auto *Ret = StructType::create(Context, Name);
1115  IdentifiedStructTypes.push_back(Ret);
1116  return Ret;
1117 }
1118 
1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1120  auto *Ret = StructType::create(Context);
1121  IdentifiedStructTypes.push_back(Ret);
1122  return Ret;
1123 }
1124 
1125 //===----------------------------------------------------------------------===//
1126 // Functions for parsing blocks from the bitcode file
1127 //===----------------------------------------------------------------------===//
1128 
1130  switch (Val) {
1132  llvm_unreachable("Synthetic enumerators which should never get here");
1133 
1134  case Attribute::None: return 0;
1135  case Attribute::ZExt: return 1 << 0;
1136  case Attribute::SExt: return 1 << 1;
1137  case Attribute::NoReturn: return 1 << 2;
1138  case Attribute::InReg: return 1 << 3;
1139  case Attribute::StructRet: return 1 << 4;
1140  case Attribute::NoUnwind: return 1 << 5;
1141  case Attribute::NoAlias: return 1 << 6;
1142  case Attribute::ByVal: return 1 << 7;
1143  case Attribute::Nest: return 1 << 8;
1144  case Attribute::ReadNone: return 1 << 9;
1145  case Attribute::ReadOnly: return 1 << 10;
1146  case Attribute::NoInline: return 1 << 11;
1147  case Attribute::AlwaysInline: return 1 << 12;
1148  case Attribute::OptimizeForSize: return 1 << 13;
1149  case Attribute::StackProtect: return 1 << 14;
1150  case Attribute::StackProtectReq: return 1 << 15;
1151  case Attribute::Alignment: return 31 << 16;
1152  case Attribute::NoCapture: return 1 << 21;
1153  case Attribute::NoRedZone: return 1 << 22;
1154  case Attribute::NoImplicitFloat: return 1 << 23;
1155  case Attribute::Naked: return 1 << 24;
1156  case Attribute::InlineHint: return 1 << 25;
1157  case Attribute::StackAlignment: return 7 << 26;
1158  case Attribute::ReturnsTwice: return 1 << 29;
1159  case Attribute::UWTable: return 1 << 30;
1160  case Attribute::NonLazyBind: return 1U << 31;
1161  case Attribute::SanitizeAddress: return 1ULL << 32;
1162  case Attribute::MinSize: return 1ULL << 33;
1163  case Attribute::NoDuplicate: return 1ULL << 34;
1164  case Attribute::StackProtectStrong: return 1ULL << 35;
1165  case Attribute::SanitizeThread: return 1ULL << 36;
1166  case Attribute::SanitizeMemory: return 1ULL << 37;
1167  case Attribute::NoBuiltin: return 1ULL << 38;
1168  case Attribute::Returned: return 1ULL << 39;
1169  case Attribute::Cold: return 1ULL << 40;
1170  case Attribute::Builtin: return 1ULL << 41;
1171  case Attribute::OptimizeNone: return 1ULL << 42;
1172  case Attribute::InAlloca: return 1ULL << 43;
1173  case Attribute::NonNull: return 1ULL << 44;
1174  case Attribute::JumpTable: return 1ULL << 45;
1175  case Attribute::Convergent: return 1ULL << 46;
1176  case Attribute::SafeStack: return 1ULL << 47;
1177  case Attribute::NoRecurse: return 1ULL << 48;
1178  case Attribute::InaccessibleMemOnly: return 1ULL << 49;
1179  case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1180  case Attribute::SwiftSelf: return 1ULL << 51;
1181  case Attribute::SwiftError: return 1ULL << 52;
1182  case Attribute::WriteOnly: return 1ULL << 53;
1183  case Attribute::Speculatable: return 1ULL << 54;
1184  case Attribute::StrictFP: return 1ULL << 55;
1185  case Attribute::SanitizeHWAddress: return 1ULL << 56;
1186  case Attribute::NoCfCheck: return 1ULL << 57;
1187  case Attribute::OptForFuzzing: return 1ULL << 58;
1188  case Attribute::ShadowCallStack: return 1ULL << 59;
1189  case Attribute::SpeculativeLoadHardening:
1190  return 1ULL << 60;
1191  case Attribute::Dereferenceable:
1192  llvm_unreachable("dereferenceable attribute not supported in raw format");
1193  break;
1194  case Attribute::DereferenceableOrNull:
1195  llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1196  "format");
1197  break;
1198  case Attribute::ArgMemOnly:
1199  llvm_unreachable("argmemonly attribute not supported in raw format");
1200  break;
1201  case Attribute::AllocSize:
1202  llvm_unreachable("allocsize not supported in raw format");
1203  break;
1204  }
1205  llvm_unreachable("Unsupported attribute type");
1206 }
1207 
1208 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1209  if (!Val) return;
1210 
1212  I = Attribute::AttrKind(I + 1)) {
1213  if (I == Attribute::Dereferenceable ||
1214  I == Attribute::DereferenceableOrNull ||
1215  I == Attribute::ArgMemOnly ||
1216  I == Attribute::AllocSize)
1217  continue;
1218  if (uint64_t A = (Val & getRawAttributeMask(I))) {
1219  if (I == Attribute::Alignment)
1220  B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1221  else if (I == Attribute::StackAlignment)
1222  B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1223  else
1224  B.addAttribute(I);
1225  }
1226  }
1227 }
1228 
1229 /// This fills an AttrBuilder object with the LLVM attributes that have
1230 /// been decoded from the given integer. This function must stay in sync with
1231 /// 'encodeLLVMAttributesForBitcode'.
1233  uint64_t EncodedAttrs) {
1234  // FIXME: Remove in 4.0.
1235 
1236  // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1237  // the bits above 31 down by 11 bits.
1238  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1239  assert((!Alignment || isPowerOf2_32(Alignment)) &&
1240  "Alignment must be a power of two.");
1241 
1242  if (Alignment)
1243  B.addAlignmentAttr(Alignment);
1244  addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1245  (EncodedAttrs & 0xffff));
1246 }
1247 
1248 Error BitcodeReader::parseAttributeBlock() {
1250  return error("Invalid record");
1251 
1252  if (!MAttributes.empty())
1253  return error("Invalid multiple blocks");
1254 
1256 
1258 
1259  // Read all the records.
1260  while (true) {
1261  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1262 
1263  switch (Entry.Kind) {
1264  case BitstreamEntry::SubBlock: // Handled for us already.
1265  case BitstreamEntry::Error:
1266  return error("Malformed block");
1268  return Error::success();
1270  // The interesting case.
1271  break;
1272  }
1273 
1274  // Read a record.
1275  Record.clear();
1276  switch (Stream.readRecord(Entry.ID, Record)) {
1277  default: // Default behavior: ignore.
1278  break;
1279  case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1280  // FIXME: Remove in 4.0.
1281  if (Record.size() & 1)
1282  return error("Invalid record");
1283 
1284  for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1285  AttrBuilder B;
1286  decodeLLVMAttributesForBitcode(B, Record[i+1]);
1287  Attrs.push_back(AttributeList::get(Context, Record[i], B));
1288  }
1289 
1290  MAttributes.push_back(AttributeList::get(Context, Attrs));
1291  Attrs.clear();
1292  break;
1293  case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1294  for (unsigned i = 0, e = Record.size(); i != e; ++i)
1295  Attrs.push_back(MAttributeGroups[Record[i]]);
1296 
1297  MAttributes.push_back(AttributeList::get(Context, Attrs));
1298  Attrs.clear();
1299  break;
1300  }
1301  }
1302 }
1303 
1304 // Returns Attribute::None on unrecognized codes.
1305 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1306  switch (Code) {
1307  default:
1308  return Attribute::None;
1310  return Attribute::Alignment;
1312  return Attribute::AlwaysInline;
1314  return Attribute::ArgMemOnly;
1316  return Attribute::Builtin;
1318  return Attribute::ByVal;
1320  return Attribute::InAlloca;
1321  case bitc::ATTR_KIND_COLD:
1322  return Attribute::Cold;
1324  return Attribute::Convergent;
1326  return Attribute::InaccessibleMemOnly;
1328  return Attribute::InaccessibleMemOrArgMemOnly;
1330  return Attribute::InlineHint;
1332  return Attribute::InReg;
1334  return Attribute::JumpTable;
1336  return Attribute::MinSize;
1337  case bitc::ATTR_KIND_NAKED:
1338  return Attribute::Naked;
1339  case bitc::ATTR_KIND_NEST:
1340  return Attribute::Nest;
1342  return Attribute::NoAlias;
1344  return Attribute::NoBuiltin;
1346  return Attribute::NoCapture;
1348  return Attribute::NoDuplicate;
1350  return Attribute::NoImplicitFloat;
1352  return Attribute::NoInline;
1354  return Attribute::NoRecurse;
1356  return Attribute::NonLazyBind;
1358  return Attribute::NonNull;
1360  return Attribute::Dereferenceable;
1362  return Attribute::DereferenceableOrNull;
1364  return Attribute::AllocSize;
1366  return Attribute::NoRedZone;
1368  return Attribute::NoReturn;
1370  return Attribute::NoCfCheck;
1372  return Attribute::NoUnwind;
1374  return Attribute::OptForFuzzing;
1376  return Attribute::OptimizeForSize;
1378  return Attribute::OptimizeNone;
1380  return Attribute::ReadNone;
1382  return Attribute::ReadOnly;
1384  return Attribute::Returned;
1386  return Attribute::ReturnsTwice;
1387  case bitc::ATTR_KIND_S_EXT:
1388  return Attribute::SExt;
1390  return Attribute::Speculatable;
1392  return Attribute::StackAlignment;
1394  return Attribute::StackProtect;
1396  return Attribute::StackProtectReq;
1398  return Attribute::StackProtectStrong;
1400  return Attribute::SafeStack;
1402  return Attribute::ShadowCallStack;
1404  return Attribute::StrictFP;
1406  return Attribute::StructRet;
1408  return Attribute::SanitizeAddress;
1410  return Attribute::SanitizeHWAddress;
1412  return Attribute::SanitizeThread;
1414  return Attribute::SanitizeMemory;
1416  return Attribute::SpeculativeLoadHardening;
1418  return Attribute::SwiftError;
1420  return Attribute::SwiftSelf;
1422  return Attribute::UWTable;
1424  return Attribute::WriteOnly;
1425  case bitc::ATTR_KIND_Z_EXT:
1426  return Attribute::ZExt;
1427  }
1428 }
1429 
1430 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1431  unsigned &Alignment) {
1432  // Note: Alignment in bitcode files is incremented by 1, so that zero
1433  // can be used for default alignment.
1434  if (Exponent > Value::MaxAlignmentExponent + 1)
1435  return error("Invalid alignment value");
1436  Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1437  return Error::success();
1438 }
1439 
1441  *Kind = getAttrFromCode(Code);
1442  if (*Kind == Attribute::None)
1443  return error("Unknown attribute kind (" + Twine(Code) + ")");
1444  return Error::success();
1445 }
1446 
1447 Error BitcodeReader::parseAttributeGroupBlock() {
1449  return error("Invalid record");
1450 
1451  if (!MAttributeGroups.empty())
1452  return error("Invalid multiple blocks");
1453 
1455 
1456  // Read all the records.
1457  while (true) {
1458  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1459 
1460  switch (Entry.Kind) {
1461  case BitstreamEntry::SubBlock: // Handled for us already.
1462  case BitstreamEntry::Error:
1463  return error("Malformed block");
1465  return Error::success();
1467  // The interesting case.
1468  break;
1469  }
1470 
1471  // Read a record.
1472  Record.clear();
1473  switch (Stream.readRecord(Entry.ID, Record)) {
1474  default: // Default behavior: ignore.
1475  break;
1476  case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1477  if (Record.size() < 3)
1478  return error("Invalid record");
1479 
1480  uint64_t GrpID = Record[0];
1481  uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1482 
1483  AttrBuilder B;
1484  for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1485  if (Record[i] == 0) { // Enum attribute
1487  if (Error Err = parseAttrKind(Record[++i], &Kind))
1488  return Err;
1489 
1490  B.addAttribute(Kind);
1491  } else if (Record[i] == 1) { // Integer attribute
1493  if (Error Err = parseAttrKind(Record[++i], &Kind))
1494  return Err;
1495  if (Kind == Attribute::Alignment)
1496  B.addAlignmentAttr(Record[++i]);
1497  else if (Kind == Attribute::StackAlignment)
1498  B.addStackAlignmentAttr(Record[++i]);
1499  else if (Kind == Attribute::Dereferenceable)
1500  B.addDereferenceableAttr(Record[++i]);
1501  else if (Kind == Attribute::DereferenceableOrNull)
1502  B.addDereferenceableOrNullAttr(Record[++i]);
1503  else if (Kind == Attribute::AllocSize)
1504  B.addAllocSizeAttrFromRawRepr(Record[++i]);
1505  } else { // String attribute
1506  assert((Record[i] == 3 || Record[i] == 4) &&
1507  "Invalid attribute group entry");
1508  bool HasValue = (Record[i++] == 4);
1509  SmallString<64> KindStr;
1510  SmallString<64> ValStr;
1511 
1512  while (Record[i] != 0 && i != e)
1513  KindStr += Record[i++];
1514  assert(Record[i] == 0 && "Kind string not null terminated");
1515 
1516  if (HasValue) {
1517  // Has a value associated with it.
1518  ++i; // Skip the '0' that terminates the "kind" string.
1519  while (Record[i] != 0 && i != e)
1520  ValStr += Record[i++];
1521  assert(Record[i] == 0 && "Value string not null terminated");
1522  }
1523 
1524  B.addAttribute(KindStr.str(), ValStr.str());
1525  }
1526  }
1527 
1528  MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1529  break;
1530  }
1531  }
1532  }
1533 }
1534 
1535 Error BitcodeReader::parseTypeTable() {
1537  return error("Invalid record");
1538 
1539  return parseTypeTableBody();
1540 }
1541 
1542 Error BitcodeReader::parseTypeTableBody() {
1543  if (!TypeList.empty())
1544  return error("Invalid multiple blocks");
1545 
1547  unsigned NumRecords = 0;
1548 
1550 
1551  // Read all the records for this type table.
1552  while (true) {
1553  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1554 
1555  switch (Entry.Kind) {
1556  case BitstreamEntry::SubBlock: // Handled for us already.
1557  case BitstreamEntry::Error:
1558  return error("Malformed block");
1560  if (NumRecords != TypeList.size())
1561  return error("Malformed block");
1562  return Error::success();
1564  // The interesting case.
1565  break;
1566  }
1567 
1568  // Read a record.
1569  Record.clear();
1570  Type *ResultTy = nullptr;
1571  switch (Stream.readRecord(Entry.ID, Record)) {
1572  default:
1573  return error("Invalid value");
1574  case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1575  // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1576  // type list. This allows us to reserve space.
1577  if (Record.size() < 1)
1578  return error("Invalid record");
1579  TypeList.resize(Record[0]);
1580  continue;
1581  case bitc::TYPE_CODE_VOID: // VOID
1582  ResultTy = Type::getVoidTy(Context);
1583  break;
1584  case bitc::TYPE_CODE_HALF: // HALF
1585  ResultTy = Type::getHalfTy(Context);
1586  break;
1587  case bitc::TYPE_CODE_FLOAT: // FLOAT
1588  ResultTy = Type::getFloatTy(Context);
1589  break;
1590  case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1591  ResultTy = Type::getDoubleTy(Context);
1592  break;
1593  case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1594  ResultTy = Type::getX86_FP80Ty(Context);
1595  break;
1596  case bitc::TYPE_CODE_FP128: // FP128
1597  ResultTy = Type::getFP128Ty(Context);
1598  break;
1599  case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1600  ResultTy = Type::getPPC_FP128Ty(Context);
1601  break;
1602  case bitc::TYPE_CODE_LABEL: // LABEL
1603  ResultTy = Type::getLabelTy(Context);
1604  break;
1605  case bitc::TYPE_CODE_METADATA: // METADATA
1606  ResultTy = Type::getMetadataTy(Context);
1607  break;
1608  case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1609  ResultTy = Type::getX86_MMXTy(Context);
1610  break;
1611  case bitc::TYPE_CODE_TOKEN: // TOKEN
1612  ResultTy = Type::getTokenTy(Context);
1613  break;
1614  case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1615  if (Record.size() < 1)
1616  return error("Invalid record");
1617 
1618  uint64_t NumBits = Record[0];
1619  if (NumBits < IntegerType::MIN_INT_BITS ||
1620  NumBits > IntegerType::MAX_INT_BITS)
1621  return error("Bitwidth for integer type out of range");
1622  ResultTy = IntegerType::get(Context, NumBits);
1623  break;
1624  }
1625  case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1626  // [pointee type, address space]
1627  if (Record.size() < 1)
1628  return error("Invalid record");
1629  unsigned AddressSpace = 0;
1630  if (Record.size() == 2)
1631  AddressSpace = Record[1];
1632  ResultTy = getTypeByID(Record[0]);
1633  if (!ResultTy ||
1635  return error("Invalid type");
1636  ResultTy = PointerType::get(ResultTy, AddressSpace);
1637  break;
1638  }
1640  // FIXME: attrid is dead, remove it in LLVM 4.0
1641  // FUNCTION: [vararg, attrid, retty, paramty x N]
1642  if (Record.size() < 3)
1643  return error("Invalid record");
1644  SmallVector<Type*, 8> ArgTys;
1645  for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1646  if (Type *T = getTypeByID(Record[i]))
1647  ArgTys.push_back(T);
1648  else
1649  break;
1650  }
1651 
1652  ResultTy = getTypeByID(Record[2]);
1653  if (!ResultTy || ArgTys.size() < Record.size()-3)
1654  return error("Invalid type");
1655 
1656  ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1657  break;
1658  }
1659  case bitc::TYPE_CODE_FUNCTION: {
1660  // FUNCTION: [vararg, retty, paramty x N]
1661  if (Record.size() < 2)
1662  return error("Invalid record");
1663  SmallVector<Type*, 8> ArgTys;
1664  for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1665  if (Type *T = getTypeByID(Record[i])) {
1667  return error("Invalid function argument type");
1668  ArgTys.push_back(T);
1669  }
1670  else
1671  break;
1672  }
1673 
1674  ResultTy = getTypeByID(Record[1]);
1675  if (!ResultTy || ArgTys.size() < Record.size()-2)
1676  return error("Invalid type");
1677 
1678  ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1679  break;
1680  }
1681  case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1682  if (Record.size() < 1)
1683  return error("Invalid record");
1684  SmallVector<Type*, 8> EltTys;
1685  for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1686  if (Type *T = getTypeByID(Record[i]))
1687  EltTys.push_back(T);
1688  else
1689  break;
1690  }
1691  if (EltTys.size() != Record.size()-1)
1692  return error("Invalid type");
1693  ResultTy = StructType::get(Context, EltTys, Record[0]);
1694  break;
1695  }
1696  case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1697  if (convertToString(Record, 0, TypeName))
1698  return error("Invalid record");
1699  continue;
1700 
1701  case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1702  if (Record.size() < 1)
1703  return error("Invalid record");
1704 
1705  if (NumRecords >= TypeList.size())
1706  return error("Invalid TYPE table");
1707 
1708  // Check to see if this was forward referenced, if so fill in the temp.
1709  StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1710  if (Res) {
1711  Res->setName(TypeName);
1712  TypeList[NumRecords] = nullptr;
1713  } else // Otherwise, create a new struct.
1714  Res = createIdentifiedStructType(Context, TypeName);
1715  TypeName.clear();
1716 
1717  SmallVector<Type*, 8> EltTys;
1718  for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1719  if (Type *T = getTypeByID(Record[i]))
1720  EltTys.push_back(T);
1721  else
1722  break;
1723  }
1724  if (EltTys.size() != Record.size()-1)
1725  return error("Invalid record");
1726  Res->setBody(EltTys, Record[0]);
1727  ResultTy = Res;
1728  break;
1729  }
1730  case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1731  if (Record.size() != 1)
1732  return error("Invalid record");
1733 
1734  if (NumRecords >= TypeList.size())
1735  return error("Invalid TYPE table");
1736 
1737  // Check to see if this was forward referenced, if so fill in the temp.
1738  StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1739  if (Res) {
1740  Res->setName(TypeName);
1741  TypeList[NumRecords] = nullptr;
1742  } else // Otherwise, create a new struct with no body.
1743  Res = createIdentifiedStructType(Context, TypeName);
1744  TypeName.clear();
1745  ResultTy = Res;
1746  break;
1747  }
1748  case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1749  if (Record.size() < 2)
1750  return error("Invalid record");
1751  ResultTy = getTypeByID(Record[1]);
1752  if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1753  return error("Invalid type");
1754  ResultTy = ArrayType::get(ResultTy, Record[0]);
1755  break;
1756  case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
1757  if (Record.size() < 2)
1758  return error("Invalid record");
1759  if (Record[0] == 0)
1760  return error("Invalid vector length");
1761  ResultTy = getTypeByID(Record[1]);
1762  if (!ResultTy || !StructType::isValidElementType(ResultTy))
1763  return error("Invalid type");
1764  ResultTy = VectorType::get(ResultTy, Record[0]);
1765  break;
1766  }
1767 
1768  if (NumRecords >= TypeList.size())
1769  return error("Invalid TYPE table");
1770  if (TypeList[NumRecords])
1771  return error(
1772  "Invalid TYPE table: Only named structs can be forward referenced");
1773  assert(ResultTy && "Didn't read a type?");
1774  TypeList[NumRecords++] = ResultTy;
1775  }
1776 }
1777 
1778 Error BitcodeReader::parseOperandBundleTags() {
1780  return error("Invalid record");
1781 
1782  if (!BundleTags.empty())
1783  return error("Invalid multiple blocks");
1784 
1786 
1787  while (true) {
1788  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1789 
1790  switch (Entry.Kind) {
1791  case BitstreamEntry::SubBlock: // Handled for us already.
1792  case BitstreamEntry::Error:
1793  return error("Malformed block");
1795  return Error::success();
1797  // The interesting case.
1798  break;
1799  }
1800 
1801  // Tags are implicitly mapped to integers by their order.
1802 
1803  if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1804  return error("Invalid record");
1805 
1806  // OPERAND_BUNDLE_TAG: [strchr x N]
1807  BundleTags.emplace_back();
1808  if (convertToString(Record, 0, BundleTags.back()))
1809  return error("Invalid record");
1810  Record.clear();
1811  }
1812 }
1813 
1814 Error BitcodeReader::parseSyncScopeNames() {
1816  return error("Invalid record");
1817 
1818  if (!SSIDs.empty())
1819  return error("Invalid multiple synchronization scope names blocks");
1820 
1822  while (true) {
1823  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1824  switch (Entry.Kind) {
1825  case BitstreamEntry::SubBlock: // Handled for us already.
1826  case BitstreamEntry::Error:
1827  return error("Malformed block");
1829  if (SSIDs.empty())
1830  return error("Invalid empty synchronization scope names block");
1831  return Error::success();
1833  // The interesting case.
1834  break;
1835  }
1836 
1837  // Synchronization scope names are implicitly mapped to synchronization
1838  // scope IDs by their order.
1839 
1840  if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1841  return error("Invalid record");
1842 
1843  SmallString<16> SSN;
1844  if (convertToString(Record, 0, SSN))
1845  return error("Invalid record");
1846 
1847  SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1848  Record.clear();
1849  }
1850 }
1851 
1852 /// Associate a value with its name from the given index in the provided record.
1853 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1854  unsigned NameIndex, Triple &TT) {
1856  if (convertToString(Record, NameIndex, ValueName))
1857  return error("Invalid record");
1858  unsigned ValueID = Record[0];
1859  if (ValueID >= ValueList.size() || !ValueList[ValueID])
1860  return error("Invalid record");
1861  Value *V = ValueList[ValueID];
1862 
1863  StringRef NameStr(ValueName.data(), ValueName.size());
1864  if (NameStr.find_first_of(0) != StringRef::npos)
1865  return error("Invalid value name");
1866  V->setName(NameStr);
1867  auto *GO = dyn_cast<GlobalObject>(V);
1868  if (GO) {
1869  if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1870  if (TT.supportsCOMDAT())
1871  GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1872  else
1873  GO->setComdat(nullptr);
1874  }
1875  }
1876  return V;
1877 }
1878 
1879 /// Helper to note and return the current location, and jump to the given
1880 /// offset.
1881 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1882  BitstreamCursor &Stream) {
1883  // Save the current parsing location so we can jump back at the end
1884  // of the VST read.
1885  uint64_t CurrentBit = Stream.GetCurrentBitNo();
1886  Stream.JumpToBit(Offset * 32);
1887 #ifndef NDEBUG
1888  // Do some checking if we are in debug mode.
1889  BitstreamEntry Entry = Stream.advance();
1892 #else
1893  // In NDEBUG mode ignore the output so we don't get an unused variable
1894  // warning.
1895  Stream.advance();
1896 #endif
1897  return CurrentBit;
1898 }
1899 
1900 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1901  Function *F,
1902  ArrayRef<uint64_t> Record) {
1903  // Note that we subtract 1 here because the offset is relative to one word
1904  // before the start of the identification or module block, which was
1905  // historically always the start of the regular bitcode header.
1906  uint64_t FuncWordOffset = Record[1] - 1;
1907  uint64_t FuncBitOffset = FuncWordOffset * 32;
1908  DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1909  // Set the LastFunctionBlockBit to point to the last function block.
1910  // Later when parsing is resumed after function materialization,
1911  // we can simply skip that last function block.
1912  if (FuncBitOffset > LastFunctionBlockBit)
1913  LastFunctionBlockBit = FuncBitOffset;
1914 }
1915 
1916 /// Read a new-style GlobalValue symbol table.
1917 Error BitcodeReader::parseGlobalValueSymbolTable() {
1918  unsigned FuncBitcodeOffsetDelta =
1920 
1922  return error("Invalid record");
1923 
1925  while (true) {
1926  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1927 
1928  switch (Entry.Kind) {
1930  case BitstreamEntry::Error:
1931  return error("Malformed block");
1933  return Error::success();
1935  break;
1936  }
1937 
1938  Record.clear();
1939  switch (Stream.readRecord(Entry.ID, Record)) {
1940  case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1941  setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1942  cast<Function>(ValueList[Record[0]]), Record);
1943  break;
1944  }
1945  }
1946 }
1947 
1948 /// Parse the value symbol table at either the current parsing location or
1949 /// at the given bit offset if provided.
1950 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1951  uint64_t CurrentBit;
1952  // Pass in the Offset to distinguish between calling for the module-level
1953  // VST (where we want to jump to the VST offset) and the function-level
1954  // VST (where we don't).
1955  if (Offset > 0) {
1956  CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1957  // If this module uses a string table, read this as a module-level VST.
1958  if (UseStrtab) {
1959  if (Error Err = parseGlobalValueSymbolTable())
1960  return Err;
1961  Stream.JumpToBit(CurrentBit);
1962  return Error::success();
1963  }
1964  // Otherwise, the VST will be in a similar format to a function-level VST,
1965  // and will contain symbol names.
1966  }
1967 
1968  // Compute the delta between the bitcode indices in the VST (the word offset
1969  // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1970  // expected by the lazy reader. The reader's EnterSubBlock expects to have
1971  // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1972  // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1973  // just before entering the VST subblock because: 1) the EnterSubBlock
1974  // changes the AbbrevID width; 2) the VST block is nested within the same
1975  // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1976  // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1977  // jump to the FUNCTION_BLOCK using this offset later, we don't want
1978  // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1979  unsigned FuncBitcodeOffsetDelta =
1981 
1983  return error("Invalid record");
1984 
1986 
1987  Triple TT(TheModule->getTargetTriple());
1988 
1989  // Read all the records for this value table.
1991 
1992  while (true) {
1993  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1994 
1995  switch (Entry.Kind) {
1996  case BitstreamEntry::SubBlock: // Handled for us already.
1997  case BitstreamEntry::Error:
1998  return error("Malformed block");
2000  if (Offset > 0)
2001  Stream.JumpToBit(CurrentBit);
2002  return Error::success();
2004  // The interesting case.
2005  break;
2006  }
2007 
2008  // Read a record.
2009  Record.clear();
2010  switch (Stream.readRecord(Entry.ID, Record)) {
2011  default: // Default behavior: unknown type.
2012  break;
2013  case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
2014  Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2015  if (Error Err = ValOrErr.takeError())
2016  return Err;
2017  ValOrErr.get();
2018  break;
2019  }
2020  case bitc::VST_CODE_FNENTRY: {
2021  // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2022  Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2023  if (Error Err = ValOrErr.takeError())
2024  return Err;
2025  Value *V = ValOrErr.get();
2026 
2027  // Ignore function offsets emitted for aliases of functions in older
2028  // versions of LLVM.
2029  if (auto *F = dyn_cast<Function>(V))
2030  setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2031  break;
2032  }
2033  case bitc::VST_CODE_BBENTRY: {
2034  if (convertToString(Record, 1, ValueName))
2035  return error("Invalid record");
2036  BasicBlock *BB = getBasicBlock(Record[0]);
2037  if (!BB)
2038  return error("Invalid record");
2039 
2040  BB->setName(StringRef(ValueName.data(), ValueName.size()));
2041  ValueName.clear();
2042  break;
2043  }
2044  }
2045  }
2046 }
2047 
2048 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2049 /// encoding.
2050 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2051  if ((V & 1) == 0)
2052  return V >> 1;
2053  if (V != 1)
2054  return -(V >> 1);
2055  // There is no such thing as -0 with integers. "-0" really means MININT.
2056  return 1ULL << 63;
2057 }
2058 
2059 /// Resolve all of the initializers for global values and aliases that we can.
2060 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2061  std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2062  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2063  IndirectSymbolInitWorklist;
2064  std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2065  std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2066  std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2067 
2068  GlobalInitWorklist.swap(GlobalInits);
2069  IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2070  FunctionPrefixWorklist.swap(FunctionPrefixes);
2071  FunctionPrologueWorklist.swap(FunctionPrologues);
2072  FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2073 
2074  while (!GlobalInitWorklist.empty()) {
2075  unsigned ValID = GlobalInitWorklist.back().second;
2076  if (ValID >= ValueList.size()) {
2077  // Not ready to resolve this yet, it requires something later in the file.
2078  GlobalInits.push_back(GlobalInitWorklist.back());
2079  } else {
2080  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2081  GlobalInitWorklist.back().first->setInitializer(C);
2082  else
2083  return error("Expected a constant");
2084  }
2085  GlobalInitWorklist.pop_back();
2086  }
2087 
2088  while (!IndirectSymbolInitWorklist.empty()) {
2089  unsigned ValID = IndirectSymbolInitWorklist.back().second;
2090  if (ValID >= ValueList.size()) {
2091  IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2092  } else {
2093  Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2094  if (!C)
2095  return error("Expected a constant");
2096  GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2097  if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2098  return error("Alias and aliasee types don't match");
2099  GIS->setIndirectSymbol(C);
2100  }
2101  IndirectSymbolInitWorklist.pop_back();
2102  }
2103 
2104  while (!FunctionPrefixWorklist.empty()) {
2105  unsigned ValID = FunctionPrefixWorklist.back().second;
2106  if (ValID >= ValueList.size()) {
2107  FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2108  } else {
2109  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2110  FunctionPrefixWorklist.back().first->setPrefixData(C);
2111  else
2112  return error("Expected a constant");
2113  }
2114  FunctionPrefixWorklist.pop_back();
2115  }
2116 
2117  while (!FunctionPrologueWorklist.empty()) {
2118  unsigned ValID = FunctionPrologueWorklist.back().second;
2119  if (ValID >= ValueList.size()) {
2120  FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2121  } else {
2122  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2123  FunctionPrologueWorklist.back().first->setPrologueData(C);
2124  else
2125  return error("Expected a constant");
2126  }
2127  FunctionPrologueWorklist.pop_back();
2128  }
2129 
2130  while (!FunctionPersonalityFnWorklist.empty()) {
2131  unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2132  if (ValID >= ValueList.size()) {
2133  FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2134  } else {
2135  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2136  FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2137  else
2138  return error("Expected a constant");
2139  }
2140  FunctionPersonalityFnWorklist.pop_back();
2141  }
2142 
2143  return Error::success();
2144 }
2145 
2146 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2147  SmallVector<uint64_t, 8> Words(Vals.size());
2148  transform(Vals, Words.begin(),
2149  BitcodeReader::decodeSignRotatedValue);
2150 
2151  return APInt(TypeBits, Words);
2152 }
2153 
2154 Error BitcodeReader::parseConstants() {
2156  return error("Invalid record");
2157 
2159 
2160  // Read all the records for this value table.
2161  Type *CurTy = Type::getInt32Ty(Context);
2162  unsigned NextCstNo = ValueList.size();
2163 
2164  while (true) {
2165  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2166 
2167  switch (Entry.Kind) {
2168  case BitstreamEntry::SubBlock: // Handled for us already.
2169  case BitstreamEntry::Error:
2170  return error("Malformed block");
2172  if (NextCstNo != ValueList.size())
2173  return error("Invalid constant reference");
2174 
2175  // Once all the constants have been read, go through and resolve forward
2176  // references.
2177  ValueList.resolveConstantForwardRefs();
2178  return Error::success();
2180  // The interesting case.
2181  break;
2182  }
2183 
2184  // Read a record.
2185  Record.clear();
2186  Type *VoidType = Type::getVoidTy(Context);
2187  Value *V = nullptr;
2188  unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2189  switch (BitCode) {
2190  default: // Default behavior: unknown constant
2191  case bitc::CST_CODE_UNDEF: // UNDEF
2192  V = UndefValue::get(CurTy);
2193  break;
2194  case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2195  if (Record.empty())
2196  return error("Invalid record");
2197  if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2198  return error("Invalid record");
2199  if (TypeList[Record[0]] == VoidType)
2200  return error("Invalid constant type");
2201  CurTy = TypeList[Record[0]];
2202  continue; // Skip the ValueList manipulation.
2203  case bitc::CST_CODE_NULL: // NULL
2204  V = Constant::getNullValue(CurTy);
2205  break;
2206  case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2207  if (!CurTy->isIntegerTy() || Record.empty())
2208  return error("Invalid record");
2209  V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2210  break;
2211  case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2212  if (!CurTy->isIntegerTy() || Record.empty())
2213  return error("Invalid record");
2214 
2215  APInt VInt =
2216  readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2217  V = ConstantInt::get(Context, VInt);
2218 
2219  break;
2220  }
2221  case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2222  if (Record.empty())
2223  return error("Invalid record");
2224  if (CurTy->isHalfTy())
2225  V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2226  APInt(16, (uint16_t)Record[0])));
2227  else if (CurTy->isFloatTy())
2229  APInt(32, (uint32_t)Record[0])));
2230  else if (CurTy->isDoubleTy())
2232  APInt(64, Record[0])));
2233  else if (CurTy->isX86_FP80Ty()) {
2234  // Bits are not stored the same way as a normal i80 APInt, compensate.
2235  uint64_t Rearrange[2];
2236  Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2237  Rearrange[1] = Record[0] >> 48;
2239  APInt(80, Rearrange)));
2240  } else if (CurTy->isFP128Ty())
2241  V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2242  APInt(128, Record)));
2243  else if (CurTy->isPPC_FP128Ty())
2245  APInt(128, Record)));
2246  else
2247  V = UndefValue::get(CurTy);
2248  break;
2249  }
2250 
2251  case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2252  if (Record.empty())
2253  return error("Invalid record");
2254 
2255  unsigned Size = Record.size();
2257 
2258  if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2259  for (unsigned i = 0; i != Size; ++i)
2260  Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2261  STy->getElementType(i)));
2262  V = ConstantStruct::get(STy, Elts);
2263  } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2264  Type *EltTy = ATy->getElementType();
2265  for (unsigned i = 0; i != Size; ++i)
2266  Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2267  V = ConstantArray::get(ATy, Elts);
2268  } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2269  Type *EltTy = VTy->getElementType();
2270  for (unsigned i = 0; i != Size; ++i)
2271  Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2272  V = ConstantVector::get(Elts);
2273  } else {
2274  V = UndefValue::get(CurTy);
2275  }
2276  break;
2277  }
2278  case bitc::CST_CODE_STRING: // STRING: [values]
2279  case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2280  if (Record.empty())
2281  return error("Invalid record");
2282 
2283  SmallString<16> Elts(Record.begin(), Record.end());
2284  V = ConstantDataArray::getString(Context, Elts,
2285  BitCode == bitc::CST_CODE_CSTRING);
2286  break;
2287  }
2288  case bitc::CST_CODE_DATA: {// DATA: [n x value]
2289  if (Record.empty())
2290  return error("Invalid record");
2291 
2292  Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2293  if (EltTy->isIntegerTy(8)) {
2294  SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2295  if (isa<VectorType>(CurTy))
2296  V = ConstantDataVector::get(Context, Elts);
2297  else
2298  V = ConstantDataArray::get(Context, Elts);
2299  } else if (EltTy->isIntegerTy(16)) {
2300  SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2301  if (isa<VectorType>(CurTy))
2302  V = ConstantDataVector::get(Context, Elts);
2303  else
2304  V = ConstantDataArray::get(Context, Elts);
2305  } else if (EltTy->isIntegerTy(32)) {
2306  SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2307  if (isa<VectorType>(CurTy))
2308  V = ConstantDataVector::get(Context, Elts);
2309  else
2310  V = ConstantDataArray::get(Context, Elts);
2311  } else if (EltTy->isIntegerTy(64)) {
2312  SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2313  if (isa<VectorType>(CurTy))
2314  V = ConstantDataVector::get(Context, Elts);
2315  else
2316  V = ConstantDataArray::get(Context, Elts);
2317  } else if (EltTy->isHalfTy()) {
2318  SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2319  if (isa<VectorType>(CurTy))
2320  V = ConstantDataVector::getFP(Context, Elts);
2321  else
2322  V = ConstantDataArray::getFP(Context, Elts);
2323  } else if (EltTy->isFloatTy()) {
2324  SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2325  if (isa<VectorType>(CurTy))
2326  V = ConstantDataVector::getFP(Context, Elts);
2327  else
2328  V = ConstantDataArray::getFP(Context, Elts);
2329  } else if (EltTy->isDoubleTy()) {
2330  SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2331  if (isa<VectorType>(CurTy))
2332  V = ConstantDataVector::getFP(Context, Elts);
2333  else
2334  V = ConstantDataArray::getFP(Context, Elts);
2335  } else {
2336  return error("Invalid type for value");
2337  }
2338  break;
2339  }
2340  case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
2341  if (Record.size() < 2)
2342  return error("Invalid record");
2343  int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2344  if (Opc < 0) {
2345  V = UndefValue::get(CurTy); // Unknown unop.
2346  } else {
2347  Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2348  unsigned Flags = 0;
2349  V = ConstantExpr::get(Opc, LHS, Flags);
2350  }
2351  break;
2352  }
2353  case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2354  if (Record.size() < 3)
2355  return error("Invalid record");
2356  int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2357  if (Opc < 0) {
2358  V = UndefValue::get(CurTy); // Unknown binop.
2359  } else {
2360  Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2361  Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2362  unsigned Flags = 0;
2363  if (Record.size() >= 4) {
2364  if (Opc == Instruction::Add ||
2365  Opc == Instruction::Sub ||
2366  Opc == Instruction::Mul ||
2367  Opc == Instruction::Shl) {
2368  if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2370  if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2372  } else if (Opc == Instruction::SDiv ||
2373  Opc == Instruction::UDiv ||
2374  Opc == Instruction::LShr ||
2375  Opc == Instruction::AShr) {
2376  if (Record[3] & (1 << bitc::PEO_EXACT))
2377  Flags |= SDivOperator::IsExact;
2378  }
2379  }
2380  V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2381  }
2382  break;
2383  }
2384  case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2385  if (Record.size() < 3)
2386  return error("Invalid record");
2387  int Opc = getDecodedCastOpcode(Record[0]);
2388  if (Opc < 0) {
2389  V = UndefValue::get(CurTy); // Unknown cast.
2390  } else {
2391  Type *OpTy = getTypeByID(Record[1]);
2392  if (!OpTy)
2393  return error("Invalid record");
2394  Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2395  V = UpgradeBitCastExpr(Opc, Op, CurTy);
2396  if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2397  }
2398  break;
2399  }
2400  case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2401  case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2402  case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2403  // operands]
2404  unsigned OpNum = 0;
2405  Type *PointeeType = nullptr;
2407  Record.size() % 2)
2408  PointeeType = getTypeByID(Record[OpNum++]);
2409 
2410  bool InBounds = false;
2411  Optional<unsigned> InRangeIndex;
2413  uint64_t Op = Record[OpNum++];
2414  InBounds = Op & 1;
2415  InRangeIndex = Op >> 1;
2416  } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2417  InBounds = true;
2418 
2420  while (OpNum != Record.size()) {
2421  Type *ElTy = getTypeByID(Record[OpNum++]);
2422  if (!ElTy)
2423  return error("Invalid record");
2424  Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2425  }
2426 
2427  if (PointeeType &&
2428  PointeeType !=
2429  cast<PointerType>(Elts[0]->getType()->getScalarType())
2430  ->getElementType())
2431  return error("Explicit gep operator type does not match pointee type "
2432  "of pointer operand");
2433 
2434  if (Elts.size() < 1)
2435  return error("Invalid gep with no operands");
2436 
2437  ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2438  V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2439  InBounds, InRangeIndex);
2440  break;
2441  }
2442  case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2443  if (Record.size() < 3)
2444  return error("Invalid record");
2445 
2446  Type *SelectorTy = Type::getInt1Ty(Context);
2447 
2448  // The selector might be an i1 or an <n x i1>
2449  // Get the type from the ValueList before getting a forward ref.
2450  if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2451  if (Value *V = ValueList[Record[0]])
2452  if (SelectorTy != V->getType())
2453  SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2454 
2455  V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2456  SelectorTy),
2457  ValueList.getConstantFwdRef(Record[1],CurTy),
2458  ValueList.getConstantFwdRef(Record[2],CurTy));
2459  break;
2460  }
2462  : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2463  if (Record.size() < 3)
2464  return error("Invalid record");
2465  VectorType *OpTy =
2466  dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2467  if (!OpTy)
2468  return error("Invalid record");
2469  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2470  Constant *Op1 = nullptr;
2471  if (Record.size() == 4) {
2472  Type *IdxTy = getTypeByID(Record[2]);
2473  if (!IdxTy)
2474  return error("Invalid record");
2475  Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2476  } else // TODO: Remove with llvm 4.0
2477  Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2478  if (!Op1)
2479  return error("Invalid record");
2480  V = ConstantExpr::getExtractElement(Op0, Op1);
2481  break;
2482  }
2484  : { // CE_INSERTELT: [opval, opval, opty, opval]
2485  VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2486  if (Record.size() < 3 || !OpTy)
2487  return error("Invalid record");
2488  Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2489  Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2490  OpTy->getElementType());
2491  Constant *Op2 = nullptr;
2492  if (Record.size() == 4) {
2493  Type *IdxTy = getTypeByID(Record[2]);
2494  if (!IdxTy)
2495  return error("Invalid record");
2496  Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2497  } else // TODO: Remove with llvm 4.0
2498  Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2499  if (!Op2)
2500  return error("Invalid record");
2501  V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2502  break;
2503  }
2504  case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2505  VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2506  if (Record.size() < 3 || !OpTy)
2507  return error("Invalid record");
2508  Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2509  Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2510  Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2511  OpTy->getNumElements());
2512  Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2513  V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2514  break;
2515  }
2516  case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2517  VectorType *RTy = dyn_cast<VectorType>(CurTy);
2518  VectorType *OpTy =
2519  dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2520  if (Record.size() < 4 || !RTy || !OpTy)
2521  return error("Invalid record");
2522  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2523  Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2524  Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2525  RTy->getNumElements());
2526  Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2527  V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2528  break;
2529  }
2530  case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2531  if (Record.size() < 4)
2532  return error("Invalid record");
2533  Type *OpTy = getTypeByID(Record[0]);
2534  if (!OpTy)
2535  return error("Invalid record");
2536  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2537  Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2538 
2539  if (OpTy->isFPOrFPVectorTy())
2540  V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2541  else
2542  V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2543  break;
2544  }
2545  // This maintains backward compatibility, pre-asm dialect keywords.
2546  // FIXME: Remove with the 4.0 release.
2548  if (Record.size() < 2)
2549  return error("Invalid record");
2550  std::string AsmStr, ConstrStr;
2551  bool HasSideEffects = Record[0] & 1;
2552  bool IsAlignStack = Record[0] >> 1;
2553  unsigned AsmStrSize = Record[1];
2554  if (2+AsmStrSize >= Record.size())
2555  return error("Invalid record");
2556  unsigned ConstStrSize = Record[2+AsmStrSize];
2557  if (3+AsmStrSize+ConstStrSize > Record.size())
2558  return error("Invalid record");
2559 
2560  for (unsigned i = 0; i != AsmStrSize; ++i)
2561  AsmStr += (char)Record[2+i];
2562  for (unsigned i = 0; i != ConstStrSize; ++i)
2563  ConstrStr += (char)Record[3+AsmStrSize+i];
2564  PointerType *PTy = cast<PointerType>(CurTy);
2565  UpgradeInlineAsmString(&AsmStr);
2566  V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2567  AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2568  break;
2569  }
2570  // This version adds support for the asm dialect keywords (e.g.,
2571  // inteldialect).
2572  case bitc::CST_CODE_INLINEASM: {
2573  if (Record.size() < 2)
2574  return error("Invalid record");
2575  std::string AsmStr, ConstrStr;
2576  bool HasSideEffects = Record[0] & 1;
2577  bool IsAlignStack = (Record[0] >> 1) & 1;
2578  unsigned AsmDialect = Record[0] >> 2;
2579  unsigned AsmStrSize = Record[1];
2580  if (2+AsmStrSize >= Record.size())
2581  return error("Invalid record");
2582  unsigned ConstStrSize = Record[2+AsmStrSize];
2583  if (3+AsmStrSize+ConstStrSize > Record.size())
2584  return error("Invalid record");
2585 
2586  for (unsigned i = 0; i != AsmStrSize; ++i)
2587  AsmStr += (char)Record[2+i];
2588  for (unsigned i = 0; i != ConstStrSize; ++i)
2589  ConstrStr += (char)Record[3+AsmStrSize+i];
2590  PointerType *PTy = cast<PointerType>(CurTy);
2591  UpgradeInlineAsmString(&AsmStr);
2592  V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2593  AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2594  InlineAsm::AsmDialect(AsmDialect));
2595  break;
2596  }
2598  if (Record.size() < 3)
2599  return error("Invalid record");
2600  Type *FnTy = getTypeByID(Record[0]);
2601  if (!FnTy)
2602  return error("Invalid record");
2603  Function *Fn =
2604  dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2605  if (!Fn)
2606  return error("Invalid record");
2607 
2608  // If the function is already parsed we can insert the block address right
2609  // away.
2610  BasicBlock *BB;
2611  unsigned BBID = Record[2];
2612  if (!BBID)
2613  // Invalid reference to entry block.
2614  return error("Invalid ID");
2615  if (!Fn->empty()) {
2616  Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2617  for (size_t I = 0, E = BBID; I != E; ++I) {
2618  if (BBI == BBE)
2619  return error("Invalid ID");
2620  ++BBI;
2621  }
2622  BB = &*BBI;
2623  } else {
2624  // Otherwise insert a placeholder and remember it so it can be inserted
2625  // when the function is parsed.
2626  auto &FwdBBs = BasicBlockFwdRefs[Fn];
2627  if (FwdBBs.empty())
2628  BasicBlockFwdRefQueue.push_back(Fn);
2629  if (FwdBBs.size() < BBID + 1)
2630  FwdBBs.resize(BBID + 1);
2631  if (!FwdBBs[BBID])
2632  FwdBBs[BBID] = BasicBlock::Create(Context);
2633  BB = FwdBBs[BBID];
2634  }
2635  V = BlockAddress::get(Fn, BB);
2636  break;
2637  }
2638  }
2639 
2640  ValueList.assignValue(V, NextCstNo);
2641  ++NextCstNo;
2642  }
2643 }
2644 
2645 Error BitcodeReader::parseUseLists() {
2647  return error("Invalid record");
2648 
2649  // Read all the records.
2651 
2652  while (true) {
2653  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2654 
2655  switch (Entry.Kind) {
2656  case BitstreamEntry::SubBlock: // Handled for us already.
2657  case BitstreamEntry::Error:
2658  return error("Malformed block");
2660  return Error::success();
2662  // The interesting case.
2663  break;
2664  }
2665 
2666  // Read a use list record.
2667  Record.clear();
2668  bool IsBB = false;
2669  switch (Stream.readRecord(Entry.ID, Record)) {
2670  default: // Default behavior: unknown type.
2671  break;
2672  case bitc::USELIST_CODE_BB:
2673  IsBB = true;
2676  unsigned RecordLength = Record.size();
2677  if (RecordLength < 3)
2678  // Records should have at least an ID and two indexes.
2679  return error("Invalid record");
2680  unsigned ID = Record.back();
2681  Record.pop_back();
2682 
2683  Value *V;
2684  if (IsBB) {
2685  assert(ID < FunctionBBs.size() && "Basic block not found");
2686  V = FunctionBBs[ID];
2687  } else
2688  V = ValueList[ID];
2689  unsigned NumUses = 0;
2691  for (const Use &U : V->materialized_uses()) {
2692  if (++NumUses > Record.size())
2693  break;
2694  Order[&U] = Record[NumUses - 1];
2695  }
2696  if (Order.size() != Record.size() || NumUses > Record.size())
2697  // Mismatches can happen if the functions are being materialized lazily
2698  // (out-of-order), or a value has been upgraded.
2699  break;
2700 
2701  V->sortUseList([&](const Use &L, const Use &R) {
2702  return Order.lookup(&L) < Order.lookup(&R);
2703  });
2704  break;
2705  }
2706  }
2707  }
2708 }
2709 
2710 /// When we see the block for metadata, remember where it is and then skip it.
2711 /// This lets us lazily deserialize the metadata.
2712 Error BitcodeReader::rememberAndSkipMetadata() {
2713  // Save the current stream state.
2714  uint64_t CurBit = Stream.GetCurrentBitNo();
2715  DeferredMetadataInfo.push_back(CurBit);
2716 
2717  // Skip over the block for now.
2718  if (Stream.SkipBlock())
2719  return error("Invalid record");
2720  return Error::success();
2721 }
2722 
2723 Error BitcodeReader::materializeMetadata() {
2724  for (uint64_t BitPos : DeferredMetadataInfo) {
2725  // Move the bit stream to the saved position.
2726  Stream.JumpToBit(BitPos);
2727  if (Error Err = MDLoader->parseModuleMetadata())
2728  return Err;
2729  }
2730 
2731  // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2732  // metadata.
2733  if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2734  NamedMDNode *LinkerOpts =
2735  TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2736  for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2737  LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2738  }
2739 
2740  DeferredMetadataInfo.clear();
2741  return Error::success();
2742 }
2743 
2744 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2745 
2746 /// When we see the block for a function body, remember where it is and then
2747 /// skip it. This lets us lazily deserialize the functions.
2748 Error BitcodeReader::rememberAndSkipFunctionBody() {
2749  // Get the function we are talking about.
2750  if (FunctionsWithBodies.empty())
2751  return error("Insufficient function protos");
2752 
2753  Function *Fn = FunctionsWithBodies.back();
2754  FunctionsWithBodies.pop_back();
2755 
2756  // Save the current stream state.
2757  uint64_t CurBit = Stream.GetCurrentBitNo();
2758  assert(
2759  (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2760  "Mismatch between VST and scanned function offsets");
2761  DeferredFunctionInfo[Fn] = CurBit;
2762 
2763  // Skip over the function block for now.
2764  if (Stream.SkipBlock())
2765  return error("Invalid record");
2766  return Error::success();
2767 }
2768 
2769 Error BitcodeReader::globalCleanup() {
2770  // Patch the initializers for globals and aliases up.
2771  if (Error Err = resolveGlobalAndIndirectSymbolInits())
2772  return Err;
2773  if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2774  return error("Malformed global initializer set");
2775 
2776  // Look for intrinsic functions which need to be upgraded at some point
2777  for (Function &F : *TheModule) {
2778  MDLoader->upgradeDebugIntrinsics(F);
2779  Function *NewFn;
2780  if (UpgradeIntrinsicFunction(&F, NewFn))
2781  UpgradedIntrinsics[&F] = NewFn;
2782  else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2783  // Some types could be renamed during loading if several modules are
2784  // loaded in the same LLVMContext (LTO scenario). In this case we should
2785  // remangle intrinsics names as well.
2786  RemangledIntrinsics[&F] = Remangled.getValue();
2787  }
2788 
2789  // Look for global variables which need to be renamed.
2790  for (GlobalVariable &GV : TheModule->globals())
2791  UpgradeGlobalVariable(&GV);
2792 
2793  // Force deallocation of memory for these vectors to favor the client that
2794  // want lazy deserialization.
2795  std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2796  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2797  IndirectSymbolInits);
2798  return Error::success();
2799 }
2800 
2801 /// Support for lazy parsing of function bodies. This is required if we
2802 /// either have an old bitcode file without a VST forward declaration record,
2803 /// or if we have an anonymous function being materialized, since anonymous
2804 /// functions do not have a name and are therefore not in the VST.
2805 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2806  Stream.JumpToBit(NextUnreadBit);
2807 
2808  if (Stream.AtEndOfStream())
2809  return error("Could not find function in stream");
2810 
2811  if (!SeenFirstFunctionBody)
2812  return error("Trying to materialize functions before seeing function blocks");
2813 
2814  // An old bitcode file with the symbol table at the end would have
2815  // finished the parse greedily.
2816  assert(SeenValueSymbolTable);
2817 
2819 
2820  while (true) {
2821  BitstreamEntry Entry = Stream.advance();
2822  switch (Entry.Kind) {
2823  default:
2824  return error("Expect SubBlock");
2826  switch (Entry.ID) {
2827  default:
2828  return error("Expect function block");
2830  if (Error Err = rememberAndSkipFunctionBody())
2831  return Err;
2832  NextUnreadBit = Stream.GetCurrentBitNo();
2833  return Error::success();
2834  }
2835  }
2836  }
2837 }
2838 
2839 bool BitcodeReaderBase::readBlockInfo() {
2840  Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2841  if (!NewBlockInfo)
2842  return true;
2843  BlockInfo = std::move(*NewBlockInfo);
2844  return false;
2845 }
2846 
2847 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2848  // v1: [selection_kind, name]
2849  // v2: [strtab_offset, strtab_size, selection_kind]
2850  StringRef Name;
2851  std::tie(Name, Record) = readNameFromStrtab(Record);
2852 
2853  if (Record.empty())
2854  return error("Invalid record");
2856  std::string OldFormatName;
2857  if (!UseStrtab) {
2858  if (Record.size() < 2)
2859  return error("Invalid record");
2860  unsigned ComdatNameSize = Record[1];
2861  OldFormatName.reserve(ComdatNameSize);
2862  for (unsigned i = 0; i != ComdatNameSize; ++i)
2863  OldFormatName += (char)Record[2 + i];
2864  Name = OldFormatName;
2865  }
2866  Comdat *C = TheModule->getOrInsertComdat(Name);
2867  C->setSelectionKind(SK);
2868  ComdatList.push_back(C);
2869  return Error::success();
2870 }
2871 
2872 static void inferDSOLocal(GlobalValue *GV) {
2873  // infer dso_local from linkage and visibility if it is not encoded.
2874  if (GV->hasLocalLinkage() ||
2875  (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
2876  GV->setDSOLocal(true);
2877 }
2878 
2879 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2880  // v1: [pointer type, isconst, initid, linkage, alignment, section,
2881  // visibility, threadlocal, unnamed_addr, externally_initialized,
2882  // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
2883  // v2: [strtab_offset, strtab_size, v1]
2884  StringRef Name;
2885  std::tie(Name, Record) = readNameFromStrtab(Record);
2886 
2887  if (Record.size() < 6)
2888  return error("Invalid record");
2889  Type *Ty = getTypeByID(Record[0]);
2890  if (!Ty)
2891  return error("Invalid record");
2892  bool isConstant = Record[1] & 1;
2893  bool explicitType = Record[1] & 2;
2894  unsigned AddressSpace;
2895  if (explicitType) {
2896  AddressSpace = Record[1] >> 2;
2897  } else {
2898  if (!Ty->isPointerTy())
2899  return error("Invalid type for value");
2900  AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2901  Ty = cast<PointerType>(Ty)->getElementType();
2902  }
2903 
2904  uint64_t RawLinkage = Record[3];
2905  GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2906  unsigned Alignment;
2907  if (Error Err = parseAlignmentValue(Record[4], Alignment))
2908  return Err;
2909  std::string Section;
2910  if (Record[5]) {
2911  if (Record[5] - 1 >= SectionTable.size())
2912  return error("Invalid ID");
2913  Section = SectionTable[Record[5] - 1];
2914  }
2916  // Local linkage must have default visibility.
2917  if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2918  // FIXME: Change to an error if non-default in 4.0.
2919  Visibility = getDecodedVisibility(Record[6]);
2920 
2922  if (Record.size() > 7)
2923  TLM = getDecodedThreadLocalMode(Record[7]);
2924 
2926  if (Record.size() > 8)
2927  UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2928 
2929  bool ExternallyInitialized = false;
2930  if (Record.size() > 9)
2931  ExternallyInitialized = Record[9];
2932 
2933  GlobalVariable *NewGV =
2934  new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2935  nullptr, TLM, AddressSpace, ExternallyInitialized);
2936  NewGV->setAlignment(Alignment);
2937  if (!Section.empty())
2938  NewGV->setSection(Section);
2939  NewGV->setVisibility(Visibility);
2940  NewGV->setUnnamedAddr(UnnamedAddr);
2941 
2942  if (Record.size() > 10)
2943  NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2944  else
2945  upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2946 
2947  ValueList.push_back(NewGV);
2948 
2949  // Remember which value to use for the global initializer.
2950  if (unsigned InitID = Record[2])
2951  GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2952 
2953  if (Record.size() > 11) {
2954  if (unsigned ComdatID = Record[11]) {
2955  if (ComdatID > ComdatList.size())
2956  return error("Invalid global variable comdat ID");
2957  NewGV->setComdat(ComdatList[ComdatID - 1]);
2958  }
2959  } else if (hasImplicitComdat(RawLinkage)) {
2960  NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2961  }
2962 
2963  if (Record.size() > 12) {
2964  auto AS = getAttributes(Record[12]).getFnAttributes();
2965  NewGV->setAttributes(AS);
2966  }
2967 
2968  if (Record.size() > 13) {
2969  NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
2970  }
2971  inferDSOLocal(NewGV);
2972 
2973  return Error::success();
2974 }
2975 
2976 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2977  // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2978  // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2979  // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
2980  // v2: [strtab_offset, strtab_size, v1]
2981  StringRef Name;
2982  std::tie(Name, Record) = readNameFromStrtab(Record);
2983 
2984  if (Record.size() < 8)
2985  return error("Invalid record");
2986  Type *Ty = getTypeByID(Record[0]);
2987  if (!Ty)
2988  return error("Invalid record");
2989  if (auto *PTy = dyn_cast<PointerType>(Ty))
2990  Ty = PTy->getElementType();
2991  auto *FTy = dyn_cast<FunctionType>(Ty);
2992  if (!FTy)
2993  return error("Invalid type for value");
2994  auto CC = static_cast<CallingConv::ID>(Record[1]);
2995  if (CC & ~CallingConv::MaxID)
2996  return error("Invalid calling convention ID");
2997 
2998  unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
2999  if (Record.size() > 16)
3000  AddrSpace = Record[16];
3001 
3003  AddrSpace, Name, TheModule);
3004 
3005  Func->setCallingConv(CC);
3006  bool isProto = Record[2];
3007  uint64_t RawLinkage = Record[3];
3008  Func->setLinkage(getDecodedLinkage(RawLinkage));
3009  Func->setAttributes(getAttributes(Record[4]));
3010 
3011  unsigned Alignment;
3012  if (Error Err = parseAlignmentValue(Record[5], Alignment))
3013  return Err;
3014  Func->setAlignment(Alignment);
3015  if (Record[6]) {
3016  if (Record[6] - 1 >= SectionTable.size())
3017  return error("Invalid ID");
3018  Func->setSection(SectionTable[Record[6] - 1]);
3019  }
3020  // Local linkage must have default visibility.
3021  if (!Func->hasLocalLinkage())
3022  // FIXME: Change to an error if non-default in 4.0.
3023  Func->setVisibility(getDecodedVisibility(Record[7]));
3024  if (Record.size() > 8 && Record[8]) {
3025  if (Record[8] - 1 >= GCTable.size())
3026  return error("Invalid ID");
3027  Func->setGC(GCTable[Record[8] - 1]);
3028  }
3030  if (Record.size() > 9)
3031  UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3032  Func->setUnnamedAddr(UnnamedAddr);
3033  if (Record.size() > 10 && Record[10] != 0)
3034  FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3035 
3036  if (Record.size() > 11)
3037  Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3038  else
3039  upgradeDLLImportExportLinkage(Func, RawLinkage);
3040 
3041  if (Record.size() > 12) {
3042  if (unsigned ComdatID = Record[12]) {
3043  if (ComdatID > ComdatList.size())
3044  return error("Invalid function comdat ID");
3045  Func->setComdat(ComdatList[ComdatID - 1]);
3046  }
3047  } else if (hasImplicitComdat(RawLinkage)) {
3048  Func->setComdat(reinterpret_cast<Comdat *>(1));
3049  }
3050 
3051  if (Record.size() > 13 && Record[13] != 0)
3052  FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3053 
3054  if (Record.size() > 14 && Record[14] != 0)
3055  FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3056 
3057  if (Record.size() > 15) {
3058  Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3059  }
3060  inferDSOLocal(Func);
3061 
3062  ValueList.push_back(Func);
3063 
3064  // If this is a function with a body, remember the prototype we are
3065  // creating now, so that we can match up the body with them later.
3066  if (!isProto) {
3067  Func->setIsMaterializable(true);
3068  FunctionsWithBodies.push_back(Func);
3069  DeferredFunctionInfo[Func] = 0;
3070  }
3071  return Error::success();
3072 }
3073 
3074 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3075  unsigned BitCode, ArrayRef<uint64_t> Record) {
3076  // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3077  // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3078  // dllstorageclass, threadlocal, unnamed_addr,
3079  // preemption specifier] (name in VST)
3080  // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3081  // visibility, dllstorageclass, threadlocal, unnamed_addr,
3082  // preemption specifier] (name in VST)
3083  // v2: [strtab_offset, strtab_size, v1]
3084  StringRef Name;
3085  std::tie(Name, Record) = readNameFromStrtab(Record);
3086 
3087  bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3088  if (Record.size() < (3 + (unsigned)NewRecord))
3089  return error("Invalid record");
3090  unsigned OpNum = 0;
3091  Type *Ty = getTypeByID(Record[OpNum++]);
3092  if (!Ty)
3093  return error("Invalid record");
3094 
3095  unsigned AddrSpace;
3096  if (!NewRecord) {
3097  auto *PTy = dyn_cast<PointerType>(Ty);
3098  if (!PTy)
3099  return error("Invalid type for value");
3100  Ty = PTy->getElementType();
3101  AddrSpace = PTy->getAddressSpace();
3102  } else {
3103  AddrSpace = Record[OpNum++];
3104  }
3105 
3106  auto Val = Record[OpNum++];
3107  auto Linkage = Record[OpNum++];
3108  GlobalIndirectSymbol *NewGA;
3109  if (BitCode == bitc::MODULE_CODE_ALIAS ||
3110  BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3111  NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3112  TheModule);
3113  else
3114  NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3115  nullptr, TheModule);
3116  // Old bitcode files didn't have visibility field.
3117  // Local linkage must have default visibility.
3118  if (OpNum != Record.size()) {
3119  auto VisInd = OpNum++;
3120  if (!NewGA->hasLocalLinkage())
3121  // FIXME: Change to an error if non-default in 4.0.
3122  NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3123  }
3124  if (BitCode == bitc::MODULE_CODE_ALIAS ||
3125  BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3126  if (OpNum != Record.size())
3127  NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3128  else
3129  upgradeDLLImportExportLinkage(NewGA, Linkage);
3130  if (OpNum != Record.size())
3131  NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3132  if (OpNum != Record.size())
3133  NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3134  }
3135  if (OpNum != Record.size())
3136  NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3137  inferDSOLocal(NewGA);
3138 
3139  ValueList.push_back(NewGA);
3140  IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3141  return Error::success();
3142 }
3143 
3144 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3145  bool ShouldLazyLoadMetadata) {
3146  if (ResumeBit)
3147  Stream.JumpToBit(ResumeBit);
3148  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3149  return error("Invalid record");
3150 
3152 
3153  // Read all the records for this module.
3154  while (true) {
3155  BitstreamEntry Entry = Stream.advance();
3156 
3157  switch (Entry.Kind) {
3158  case BitstreamEntry::Error:
3159  return error("Malformed block");
3161  return globalCleanup();
3162 
3164  switch (Entry.ID) {
3165  default: // Skip unknown content.
3166  if (Stream.SkipBlock())
3167  return error("Invalid record");
3168  break;
3170  if (readBlockInfo())
3171  return error("Malformed block");
3172  break;
3174  if (Error Err = parseAttributeBlock())
3175  return Err;
3176  break;
3178  if (Error Err = parseAttributeGroupBlock())
3179  return Err;
3180  break;
3182  if (Error Err = parseTypeTable())
3183  return Err;
3184  break;
3186  if (!SeenValueSymbolTable) {
3187  // Either this is an old form VST without function index and an
3188  // associated VST forward declaration record (which would have caused
3189  // the VST to be jumped to and parsed before it was encountered
3190  // normally in the stream), or there were no function blocks to
3191  // trigger an earlier parsing of the VST.
3192  assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3193  if (Error Err = parseValueSymbolTable())
3194  return Err;
3195  SeenValueSymbolTable = true;
3196  } else {
3197  // We must have had a VST forward declaration record, which caused
3198  // the parser to jump to and parse the VST earlier.
3199  assert(VSTOffset > 0);
3200  if (Stream.SkipBlock())
3201  return error("Invalid record");
3202  }
3203  break;
3205  if (Error Err = parseConstants())
3206  return Err;
3207  if (Error Err = resolveGlobalAndIndirectSymbolInits())
3208  return Err;
3209  break;
3211  if (ShouldLazyLoadMetadata) {
3212  if (Error Err = rememberAndSkipMetadata())
3213  return Err;
3214  break;
3215  }
3216  assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3217  if (Error Err = MDLoader->parseModuleMetadata())
3218  return Err;
3219  break;
3221  if (Error Err = MDLoader->parseMetadataKinds())
3222  return Err;
3223  break;
3225  // If this is the first function body we've seen, reverse the
3226  // FunctionsWithBodies list.
3227  if (!SeenFirstFunctionBody) {
3228  std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3229  if (Error Err = globalCleanup())
3230  return Err;
3231  SeenFirstFunctionBody = true;
3232  }
3233 
3234  if (VSTOffset > 0) {
3235  // If we have a VST forward declaration record, make sure we
3236  // parse the VST now if we haven't already. It is needed to
3237  // set up the DeferredFunctionInfo vector for lazy reading.
3238  if (!SeenValueSymbolTable) {
3239  if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3240  return Err;
3241  SeenValueSymbolTable = true;
3242  // Fall through so that we record the NextUnreadBit below.
3243  // This is necessary in case we have an anonymous function that
3244  // is later materialized. Since it will not have a VST entry we
3245  // need to fall back to the lazy parse to find its offset.
3246  } else {
3247  // If we have a VST forward declaration record, but have already
3248  // parsed the VST (just above, when the first function body was
3249  // encountered here), then we are resuming the parse after
3250  // materializing functions. The ResumeBit points to the
3251  // start of the last function block recorded in the
3252  // DeferredFunctionInfo map. Skip it.
3253  if (Stream.SkipBlock())
3254  return error("Invalid record");
3255  continue;
3256  }
3257  }
3258 
3259  // Support older bitcode files that did not have the function
3260  // index in the VST, nor a VST forward declaration record, as
3261  // well as anonymous functions that do not have VST entries.
3262  // Build the DeferredFunctionInfo vector on the fly.
3263  if (Error Err = rememberAndSkipFunctionBody())
3264  return Err;
3265 
3266  // Suspend parsing when we reach the function bodies. Subsequent
3267  // materialization calls will resume it when necessary. If the bitcode
3268  // file is old, the symbol table will be at the end instead and will not
3269  // have been seen yet. In this case, just finish the parse now.
3270  if (SeenValueSymbolTable) {
3271  NextUnreadBit = Stream.GetCurrentBitNo();
3272  // After the VST has been parsed, we need to make sure intrinsic name
3273  // are auto-upgraded.
3274  return globalCleanup();
3275  }
3276  break;
3278  if (Error Err = parseUseLists())
3279  return Err;
3280  break;
3282  if (Error Err = parseOperandBundleTags())
3283  return Err;
3284  break;
3286  if (Error Err = parseSyncScopeNames())
3287  return Err;
3288  break;
3289  }
3290  continue;
3291 
3293  // The interesting case.
3294  break;
3295  }
3296 
3297  // Read a record.
3298  auto BitCode = Stream.readRecord(Entry.ID, Record);
3299  switch (BitCode) {
3300  default: break; // Default behavior, ignore unknown content.
3302  Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3303  if (!VersionOrErr)
3304  return VersionOrErr.takeError();
3305  UseRelativeIDs = *VersionOrErr >= 1;
3306  break;
3307  }
3308  case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3309  std::string S;
3310  if (convertToString(Record, 0, S))
3311  return error("Invalid record");
3312  TheModule->setTargetTriple(S);
3313  break;
3314  }
3315  case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3316  std::string S;
3317  if (convertToString(Record, 0, S))
3318  return error("Invalid record");
3319  TheModule->setDataLayout(S);
3320  break;
3321  }
3322  case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3323  std::string S;
3324  if (convertToString(Record, 0, S))
3325  return error("Invalid record");
3326  TheModule->setModuleInlineAsm(S);
3327  break;
3328  }
3329  case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3330  // FIXME: Remove in 4.0.
3331  std::string S;
3332  if (convertToString(Record, 0, S))
3333  return error("Invalid record");
3334  // Ignore value.
3335  break;
3336  }
3337  case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3338  std::string S;
3339  if (convertToString(Record, 0, S))
3340  return error("Invalid record");
3341  SectionTable.push_back(S);
3342  break;
3343  }
3344  case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
3345  std::string S;
3346  if (convertToString(Record, 0, S))
3347  return error("Invalid record");
3348  GCTable.push_back(S);
3349  break;
3350  }
3352  if (Error Err = parseComdatRecord(Record))
3353  return Err;
3354  break;
3356  if (Error Err = parseGlobalVarRecord(Record))
3357  return Err;
3358  break;
3360  if (Error Err = parseFunctionRecord(Record))
3361  return Err;
3362  break;
3366  if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3367  return Err;
3368  break;
3369  /// MODULE_CODE_VSTOFFSET: [offset]
3371  if (Record.size() < 1)
3372  return error("Invalid record");
3373  // Note that we subtract 1 here because the offset is relative to one word
3374  // before the start of the identification or module block, which was
3375  // historically always the start of the regular bitcode header.
3376  VSTOffset = Record[0] - 1;
3377  break;
3378  /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3381  if (convertToString(Record, 0, ValueName))
3382  return error("Invalid record");
3383  TheModule->setSourceFileName(ValueName);
3384  break;
3385  }
3386  Record.clear();
3387  }
3388 }
3389 
3390 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3391  bool IsImporting) {
3392  TheModule = M;
3393  MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3394  [&](unsigned ID) { return getTypeByID(ID); });
3395  return parseModule(0, ShouldLazyLoadMetadata);
3396 }
3397 
3398 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3399  if (!isa<PointerType>(PtrType))
3400  return error("Load/Store operand is not a pointer type");
3401  Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3402 
3403  if (ValType && ValType != ElemType)
3404  return error("Explicit load/store type does not match pointee "
3405  "type of pointer operand");
3407  return error("Cannot load/store from pointer");
3408  return Error::success();
3409 }
3410 
3411 /// Lazily parse the specified function body block.
3412 Error BitcodeReader::parseFunctionBody(Function *F) {
3414  return error("Invalid record");
3415 
3416  // Unexpected unresolved metadata when parsing function.
3417  if (MDLoader->hasFwdRefs())
3418  return error("Invalid function metadata: incoming forward references");
3419 
3420  InstructionList.clear();
3421  unsigned ModuleValueListSize = ValueList.size();
3422  unsigned ModuleMDLoaderSize = MDLoader->size();
3423 
3424  // Add all the function arguments to the value table.
3425  for (Argument &I : F->args())
3426  ValueList.push_back(&I);
3427 
3428  unsigned NextValueNo = ValueList.size();
3429  BasicBlock *CurBB = nullptr;
3430  unsigned CurBBNo = 0;
3431 
3432  DebugLoc LastLoc;
3433  auto getLastInstruction = [&]() -> Instruction * {
3434  if (CurBB && !CurBB->empty())
3435  return &CurBB->back();
3436  else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3437  !FunctionBBs[CurBBNo - 1]->empty())
3438  return &FunctionBBs[CurBBNo - 1]->back();
3439  return nullptr;
3440  };
3441 
3442  std::vector<OperandBundleDef> OperandBundles;
3443 
3444  // Read all the records.
3446 
3447  while (true) {
3448  BitstreamEntry Entry = Stream.advance();
3449 
3450  switch (Entry.Kind) {
3451  case BitstreamEntry::Error:
3452  return error("Malformed block");
3454  goto OutOfRecordLoop;
3455 
3457  switch (Entry.ID) {
3458  default: // Skip unknown content.
3459  if (Stream.SkipBlock())
3460  return error("Invalid record");
3461  break;
3463  if (Error Err = parseConstants())
3464  return Err;
3465  NextValueNo = ValueList.size();
3466  break;
3468  if (Error Err = parseValueSymbolTable())
3469  return Err;
3470  break;
3472  if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3473  return Err;
3474  break;
3476  assert(DeferredMetadataInfo.empty() &&
3477  "Must read all module-level metadata before function-level");
3478  if (Error Err = MDLoader->parseFunctionMetadata())
3479  return Err;
3480  break;
3482  if (Error Err = parseUseLists())
3483  return Err;
3484  break;
3485  }
3486  continue;
3487 
3489  // The interesting case.
3490  break;
3491  }
3492 
3493  // Read a record.
3494  Record.clear();
3495  Instruction *I = nullptr;
3496  unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3497  switch (BitCode) {
3498  default: // Default behavior: reject
3499  return error("Invalid value");
3500  case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
3501  if (Record.size() < 1 || Record[0] == 0)
3502  return error("Invalid record");
3503  // Create all the basic blocks for the function.
3504  FunctionBBs.resize(Record[0]);
3505 
3506  // See if anything took the address of blocks in this function.
3507  auto BBFRI = BasicBlockFwdRefs.find(F);
3508  if (BBFRI == BasicBlockFwdRefs.end()) {
3509  for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3510  FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3511  } else {
3512  auto &BBRefs = BBFRI->second;
3513  // Check for invalid basic block references.
3514  if (BBRefs.size() > FunctionBBs.size())
3515  return error("Invalid ID");
3516  assert(!BBRefs.empty() && "Unexpected empty array");
3517  assert(!BBRefs.front() && "Invalid reference to entry block");
3518  for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3519  ++I)
3520  if (I < RE && BBRefs[I]) {
3521  BBRefs[I]->insertInto(F);
3522  FunctionBBs[I] = BBRefs[I];
3523  } else {
3524  FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3525  }
3526 
3527  // Erase from the table.
3528  BasicBlockFwdRefs.erase(BBFRI);
3529  }
3530 
3531  CurBB = FunctionBBs[0];
3532  continue;
3533  }
3534 
3535  case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
3536  // This record indicates that the last instruction is at the same
3537  // location as the previous instruction with a location.
3538  I = getLastInstruction();
3539 
3540  if (!I)
3541  return error("Invalid record");
3542  I->setDebugLoc(LastLoc);
3543  I = nullptr;
3544  continue;
3545 
3546  case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
3547  I = getLastInstruction();
3548  if (!I || Record.size() < 4)
3549  return error("Invalid record");
3550 
3551  unsigned Line = Record[0], Col = Record[1];
3552  unsigned ScopeID = Record[2], IAID = Record[3];
3553  bool isImplicitCode = Record.size() == 5 && Record[4];
3554 
3555  MDNode *Scope = nullptr, *IA = nullptr;
3556  if (ScopeID) {
3557  Scope = dyn_cast_or_null<MDNode>(
3558  MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3559  if (!Scope)
3560  return error("Invalid record");
3561  }
3562  if (IAID) {
3563  IA = dyn_cast_or_null<MDNode>(
3564  MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3565  if (!IA)
3566  return error("Invalid record");
3567  }
3568  LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3569  I->setDebugLoc(LastLoc);
3570  I = nullptr;
3571  continue;
3572  }
3573  case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
3574  unsigned OpNum = 0;
3575  Value *LHS;
3576  if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3577  OpNum+1 > Record.size())
3578  return error("Invalid record");
3579 
3580  int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3581  if (Opc == -1)
3582  return error("Invalid record");
3584  InstructionList.push_back(I);
3585  if (OpNum < Record.size()) {
3586  if (isa<FPMathOperator>(I)) {
3587  FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3588  if (FMF.any())
3589  I->setFastMathFlags(FMF);
3590  }
3591  }
3592  break;
3593  }
3594  case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
3595  unsigned OpNum = 0;
3596  Value *LHS, *RHS;
3597  if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3598  popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3599  OpNum+1 > Record.size())
3600  return error("Invalid record");
3601 
3602  int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3603  if (Opc == -1)
3604  return error("Invalid record");
3605  I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3606  InstructionList.push_back(I);
3607  if (OpNum < Record.size()) {
3608  if (Opc == Instruction::Add ||
3609  Opc == Instruction::Sub ||
3610  Opc == Instruction::Mul ||
3611  Opc == Instruction::Shl) {
3612  if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3613  cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3614  if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3615  cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3616  } else if (Opc == Instruction::SDiv ||
3617  Opc == Instruction::UDiv ||
3618  Opc == Instruction::LShr ||
3619  Opc == Instruction::AShr) {
3620  if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3621  cast<BinaryOperator>(I)->setIsExact(true);
3622  } else if (isa<FPMathOperator>(I)) {
3623  FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3624  if (FMF.any())
3625  I->setFastMathFlags(FMF);
3626  }
3627 
3628  }
3629  break;
3630  }
3631  case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
3632  unsigned OpNum = 0;
3633  Value *Op;
3634  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3635  OpNum+2 != Record.size())
3636  return error("Invalid record");
3637 
3638  Type *ResTy = getTypeByID(Record[OpNum]);
3639  int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3640  if (Opc == -1 || !ResTy)
3641  return error("Invalid record");
3642  Instruction *Temp = nullptr;
3643  if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3644  if (Temp) {
3645  InstructionList.push_back(Temp);
3646  CurBB->getInstList().push_back(Temp);
3647  }
3648  } else {
3649  auto CastOp = (Instruction::CastOps)Opc;
3650  if (!CastInst::castIsValid(CastOp, Op, ResTy))
3651  return error("Invalid cast");
3652  I = CastInst::Create(CastOp, Op, ResTy);
3653  }
3654  InstructionList.push_back(I);
3655  break;
3656  }
3659  case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3660  unsigned OpNum = 0;
3661 
3662  Type *Ty;
3663  bool InBounds;
3664 
3665  if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3666  InBounds = Record[OpNum++];
3667  Ty = getTypeByID(Record[OpNum++]);
3668  } else {
3669  InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3670  Ty = nullptr;
3671  }
3672 
3673  Value *BasePtr;
3674  if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3675  return error("Invalid record");
3676 
3677  if (!Ty)
3678  Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3679  ->getElementType();
3680  else if (Ty !=
3681  cast<PointerType>(BasePtr->getType()->getScalarType())
3682  ->getElementType())
3683  return error(
3684  "Explicit gep type does not match pointee type of pointer operand");
3685 
3686  SmallVector<Value*, 16> GEPIdx;
3687  while (OpNum != Record.size()) {
3688  Value *Op;
3689  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3690  return error("Invalid record");
3691  GEPIdx.push_back(Op);
3692  }
3693 
3694  I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3695 
3696  InstructionList.push_back(I);
3697  if (InBounds)
3698  cast<GetElementPtrInst>(I)->setIsInBounds(true);
3699  break;
3700  }
3701 
3703  // EXTRACTVAL: [opty, opval, n x indices]
3704  unsigned OpNum = 0;
3705  Value *Agg;
3706  if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3707  return error("Invalid record");
3708 
3709  unsigned RecSize = Record.size();
3710  if (OpNum == RecSize)
3711  return error("EXTRACTVAL: Invalid instruction with 0 indices");
3712 
3713  SmallVector<unsigned, 4> EXTRACTVALIdx;
3714  Type *CurTy = Agg->getType();
3715  for (; OpNum != RecSize; ++OpNum) {
3716  bool IsArray = CurTy->isArrayTy();
3717  bool IsStruct = CurTy->isStructTy();
3718  uint64_t Index = Record[OpNum];
3719 
3720  if (!IsStruct && !IsArray)
3721  return error("EXTRACTVAL: Invalid type");
3722  if ((unsigned)Index != Index)
3723  return error("Invalid value");
3724  if (IsStruct && Index >= CurTy->getStructNumElements())
3725  return error("EXTRACTVAL: Invalid struct index");
3726  if (IsArray && Index >= CurTy->getArrayNumElements())
3727  return error("EXTRACTVAL: Invalid array index");
3728  EXTRACTVALIdx.push_back((unsigned)Index);
3729 
3730  if (IsStruct)
3731  CurTy = CurTy->getStructElementType(Index);
3732  else
3733  CurTy = CurTy->getArrayElementType();
3734  }
3735 
3736  I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3737  InstructionList.push_back(I);
3738  break;
3739  }
3740 
3742  // INSERTVAL: [opty, opval, opty, opval, n x indices]
3743  unsigned OpNum = 0;
3744  Value *Agg;
3745  if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3746  return error("Invalid record");
3747  Value *Val;
3748  if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3749  return error("Invalid record");
3750 
3751  unsigned RecSize = Record.size();
3752  if (OpNum == RecSize)
3753  return error("INSERTVAL: Invalid instruction with 0 indices");
3754 
3755  SmallVector<unsigned, 4> INSERTVALIdx;
3756  Type *CurTy = Agg->getType();
3757  for (; OpNum != RecSize; ++OpNum) {
3758  bool IsArray = CurTy->isArrayTy();
3759  bool IsStruct = CurTy->isStructTy();
3760  uint64_t Index = Record[OpNum];
3761 
3762  if (!IsStruct && !IsArray)
3763  return error("INSERTVAL: Invalid type");
3764  if ((unsigned)Index != Index)
3765  return error("Invalid value");
3766  if (IsStruct && Index >= CurTy->getStructNumElements())
3767  return error("INSERTVAL: Invalid struct index");
3768  if (IsArray && Index >= CurTy->getArrayNumElements())
3769  return error("INSERTVAL: Invalid array index");
3770 
3771  INSERTVALIdx.push_back((unsigned)Index);
3772  if (IsStruct)
3773  CurTy = CurTy->getStructElementType(Index);
3774  else
3775  CurTy = CurTy->getArrayElementType();
3776  }
3777 
3778  if (CurTy != Val->getType())
3779  return error("Inserted value type doesn't match aggregate type");
3780 
3781  I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3782  InstructionList.push_back(I);
3783  break;
3784  }
3785 
3786  case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3787  // obsolete form of select
3788  // handles select i1 ... in old bitcode
3789  unsigned OpNum = 0;
3790  Value *TrueVal, *FalseVal, *Cond;
3791  if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3792  popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3793  popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3794  return error("Invalid record");
3795 
3796  I = SelectInst::Create(Cond, TrueVal, FalseVal);
3797  InstructionList.push_back(I);
3798  break;
3799  }
3800 
3801  case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3802  // new form of select
3803  // handles select i1 or select [N x i1]
3804  unsigned OpNum = 0;
3805  Value *TrueVal, *FalseVal, *Cond;
3806  if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3807  popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3808  getValueTypePair(Record, OpNum, NextValueNo, Cond))
3809  return error("Invalid record");
3810 
3811  // select condition can be either i1 or [N x i1]
3812  if (VectorType* vector_type =
3813  dyn_cast<VectorType>(Cond->getType())) {
3814  // expect <n x i1>
3815  if (vector_type->getElementType() != Type::getInt1Ty(Context))
3816  return error("Invalid type for value");
3817  } else {
3818  // expect i1
3819  if (Cond->getType() != Type::getInt1Ty(Context))
3820  return error("Invalid type for value");
3821  }
3822 
3823  I = SelectInst::Create(Cond, TrueVal, FalseVal);
3824  InstructionList.push_back(I);
3825  break;
3826  }
3827 
3828  case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3829  unsigned OpNum = 0;
3830  Value *Vec, *Idx;
3831  if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3832  getValueTypePair(Record, OpNum, NextValueNo, Idx))
3833  return error("Invalid record");
3834  if (!Vec->getType()->isVectorTy())
3835  return error("Invalid type for value");
3836  I = ExtractElementInst::Create(Vec, Idx);
3837  InstructionList.push_back(I);
3838  break;
3839  }
3840 
3841  case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3842  unsigned OpNum = 0;
3843  Value *Vec, *Elt, *Idx;
3844  if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3845  return error("Invalid record");
3846  if (!Vec->getType()->isVectorTy())
3847  return error("Invalid type for value");
3848  if (popValue(Record, OpNum, NextValueNo,
3849  cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3850  getValueTypePair(Record, OpNum, NextValueNo, Idx))
3851  return error("Invalid record");
3852  I = InsertElementInst::Create(Vec, Elt, Idx);
3853  InstructionList.push_back(I);
3854  break;
3855  }
3856 
3857  case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3858  unsigned OpNum = 0;
3859  Value *Vec1, *Vec2, *Mask;
3860  if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3861  popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3862  return error("Invalid record");
3863 
3864  if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3865  return error("Invalid record");
3866  if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3867  return error("Invalid type for value");
3868  I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3869  InstructionList.push_back(I);
3870  break;
3871  }
3872 
3873  case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
3874  // Old form of ICmp/FCmp returning bool
3875  // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3876  // both legal on vectors but had different behaviour.
3877  case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3878  // FCmp/ICmp returning bool or vector of bool
3879 
3880  unsigned OpNum = 0;
3881  Value *LHS, *RHS;
3882  if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3883  popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3884  return error("Invalid record");
3885 
3886  unsigned PredVal = Record[OpNum];
3887  bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3888  FastMathFlags FMF;
3889  if (IsFP && Record.size() > OpNum+1)
3890  FMF = getDecodedFastMathFlags(Record[++OpNum]);
3891 
3892  if (OpNum+1 != Record.size())
3893  return error("Invalid record");
3894 
3895  if (LHS->getType()->isFPOrFPVectorTy())
3896  I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3897  else
3898  I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3899 
3900  if (FMF.any())
3901  I->setFastMathFlags(FMF);
3902  InstructionList.push_back(I);
3903  break;
3904  }
3905 
3906  case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3907  {
3908  unsigned Size = Record.size();
3909  if (Size == 0) {
3910  I = ReturnInst::Create(Context);
3911  InstructionList.push_back(I);
3912  break;
3913  }
3914 
3915  unsigned OpNum = 0;
3916  Value *Op = nullptr;
3917  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3918  return error("Invalid record");
3919  if (OpNum != Record.size())
3920  return error("Invalid record");
3921 
3922  I = ReturnInst::Create(Context, Op);
3923  InstructionList.push_back(I);
3924  break;
3925  }
3926  case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3927  if (Record.size() != 1 && Record.size() != 3)
3928  return error("Invalid record");
3929  BasicBlock *TrueDest = getBasicBlock(Record[0]);
3930  if (!TrueDest)
3931  return error("Invalid record");
3932 
3933  if (Record.size() == 1) {
3934  I = BranchInst::Create(TrueDest);
3935  InstructionList.push_back(I);
3936  }
3937  else {
3938  BasicBlock *FalseDest = getBasicBlock(Record[1]);
3939  Value *Cond = getValue(Record, 2, NextValueNo,
3940  Type::getInt1Ty(Context));
3941  if (!FalseDest || !Cond)
3942  return error("Invalid record");
3943  I = BranchInst::Create(TrueDest, FalseDest, Cond);
3944  InstructionList.push_back(I);
3945  }
3946  break;
3947  }
3948  case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3949  if (Record.size() != 1 && Record.size() != 2)
3950  return error("Invalid record");
3951  unsigned Idx = 0;
3952  Value *CleanupPad =
3953  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3954  if (!CleanupPad)
3955  return error("Invalid record");
3956  BasicBlock *UnwindDest = nullptr;
3957  if (Record.size() == 2) {
3958  UnwindDest = getBasicBlock(Record[Idx++]);
3959  if (!UnwindDest)
3960  return error("Invalid record");
3961  }
3962 
3963  I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3964  InstructionList.push_back(I);
3965  break;
3966  }
3967  case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3968  if (Record.size() != 2)
3969  return error("Invalid record");
3970  unsigned Idx = 0;
3971  Value *CatchPad =
3972  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3973  if (!CatchPad)
3974  return error("Invalid record");
3975  BasicBlock *BB = getBasicBlock(Record[Idx++]);
3976  if (!BB)
3977  return error("Invalid record");
3978 
3979  I = CatchReturnInst::Create(CatchPad, BB);
3980  InstructionList.push_back(I);
3981  break;
3982  }
3983  case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3984  // We must have, at minimum, the outer scope and the number of arguments.
3985  if (Record.size() < 2)
3986  return error("Invalid record");
3987 
3988  unsigned Idx = 0;
3989 
3990  Value *ParentPad =
3991  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3992 
3993  unsigned NumHandlers = Record[Idx++];
3994 
3996  for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3997  BasicBlock *BB = getBasicBlock(Record[Idx++]);
3998  if (!BB)
3999  return error("Invalid record");
4000  Handlers.push_back(BB);
4001  }
4002 
4003  BasicBlock *UnwindDest = nullptr;
4004  if (Idx + 1 == Record.size()) {
4005  UnwindDest = getBasicBlock(Record[Idx++]);
4006  if (!UnwindDest)
4007  return error("Invalid record");
4008  }
4009 
4010  if (Record.size() != Idx)
4011  return error("Invalid record");
4012 
4013  auto *CatchSwitch =
4014  CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4015  for (BasicBlock *Handler : Handlers)
4016  CatchSwitch->addHandler(Handler);
4017  I = CatchSwitch;
4018  InstructionList.push_back(I);
4019  break;
4020  }
4022  case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4023  // We must have, at minimum, the outer scope and the number of arguments.
4024  if (Record.size() < 2)
4025  return error("Invalid record");
4026 
4027  unsigned Idx = 0;
4028 
4029  Value *ParentPad =
4030  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4031 
4032  unsigned NumArgOperands = Record[Idx++];
4033 
4035  for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4036  Value *Val;
4037  if (getValueTypePair(Record, Idx, NextValueNo, Val))
4038  return error("Invalid record");
4039  Args.push_back(Val);
4040  }
4041 
4042  if (Record.size() != Idx)
4043  return error("Invalid record");
4044 
4045  if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4046  I = CleanupPadInst::Create(ParentPad, Args);
4047  else
4048  I = CatchPadInst::Create(ParentPad, Args);
4049  InstructionList.push_back(I);
4050  break;
4051  }
4052  case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4053  // Check magic
4054  if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4055  // "New" SwitchInst format with case ranges. The changes to write this
4056  // format were reverted but we still recognize bitcode that uses it.
4057  // Hopefully someday we will have support for case ranges and can use
4058  // this format again.
4059 
4060  Type *OpTy = getTypeByID(Record[1]);
4061  unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4062 
4063  Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4064  BasicBlock *Default = getBasicBlock(Record[3]);
4065  if (!OpTy || !Cond || !Default)
4066  return error("Invalid record");
4067 
4068  unsigned NumCases = Record[4];
4069 
4070  SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4071  InstructionList.push_back(SI);
4072 
4073  unsigned CurIdx = 5;
4074  for (unsigned i = 0; i != NumCases; ++i) {
4076  unsigned NumItems = Record[CurIdx++];
4077  for (unsigned ci = 0; ci != NumItems; ++ci) {
4078  bool isSingleNumber = Record[CurIdx++];
4079 
4080  APInt Low;
4081  unsigned ActiveWords = 1;
4082  if (ValueBitWidth > 64)
4083  ActiveWords = Record[CurIdx++];
4084  Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4085  ValueBitWidth);
4086  CurIdx += ActiveWords;
4087 
4088  if (!isSingleNumber) {
4089  ActiveWords = 1;
4090  if (ValueBitWidth > 64)
4091  ActiveWords = Record[CurIdx++];
4093  makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4094  CurIdx += ActiveWords;
4095 
4096  // FIXME: It is not clear whether values in the range should be
4097  // compared as signed or unsigned values. The partially
4098  // implemented changes that used this format in the past used
4099  // unsigned comparisons.
4100  for ( ; Low.ule(High); ++Low)
4101  CaseVals.push_back(ConstantInt::get(Context, Low));
4102  } else
4103  CaseVals.push_back(ConstantInt::get(Context, Low));
4104  }
4105  BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4106  for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4107  cve = CaseVals.end(); cvi != cve; ++cvi)
4108  SI->addCase(*cvi, DestBB);
4109  }
4110  I = SI;
4111  break;
4112  }
4113 
4114  // Old SwitchInst format without case ranges.
4115 
4116  if (Record.size() < 3 || (Record.size() & 1) == 0)
4117  return error("Invalid record");
4118  Type *OpTy = getTypeByID(Record[0]);
4119  Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4120  BasicBlock *Default = getBasicBlock(Record[2]);
4121  if (!OpTy || !Cond || !Default)
4122  return error("Invalid record");
4123  unsigned NumCases = (Record.size()-3)/2;
4124  SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4125  InstructionList.push_back(SI);
4126  for (unsigned i = 0, e = NumCases; i != e; ++i) {
4127  ConstantInt *CaseVal =
4128  dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4129  BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4130  if (!CaseVal || !DestBB) {
4131  delete SI;
4132  return error("Invalid record");
4133  }
4134  SI->addCase(CaseVal, DestBB);
4135  }
4136  I = SI;
4137  break;
4138  }
4139  case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4140  if (Record.size() < 2)
4141  return error("Invalid record");
4142  Type *OpTy = getTypeByID(Record[0]);
4143  Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4144  if (!OpTy || !Address)
4145  return error("Invalid record");
4146  unsigned NumDests = Record.size()-2;
4147  IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4148  InstructionList.push_back(IBI);
4149  for (unsigned i = 0, e = NumDests; i != e; ++i) {
4150  if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4151  IBI->addDestination(DestBB);
4152  } else {
4153  delete IBI;
4154  return error("Invalid record");
4155  }
4156  }
4157  I = IBI;
4158  break;
4159  }
4160 
4162  // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4163  if (Record.size() < 4)
4164  return error("Invalid record");
4165  unsigned OpNum = 0;
4166  AttributeList PAL = getAttributes(Record[OpNum++]);
4167  unsigned CCInfo = Record[OpNum++];
4168  BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4169  BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4170 
4171  FunctionType *FTy = nullptr;
4172  if (CCInfo >> 13 & 1 &&
4173  !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4174  return error("Explicit invoke type is not a function type");
4175 
4176  Value *Callee;
4177  if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4178  return error("Invalid record");
4179 
4180  PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4181  if (!CalleeTy)
4182  return error("Callee is not a pointer");
4183  if (!FTy) {
4184  FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4185  if (!FTy)
4186  return error("Callee is not of pointer to function type");
4187  } else if (CalleeTy->getElementType() != FTy)
4188  return error("Explicit invoke type does not match pointee type of "
4189  "callee operand");
4190  if (Record.size() < FTy->getNumParams() + OpNum)
4191  return error("Insufficient operands to call");
4192 
4194  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4195  Ops.push_back(getValue(Record, OpNum, NextValueNo,
4196  FTy->getParamType(i)));
4197  if (!Ops.back())
4198  return error("Invalid record");
4199  }
4200 
4201  if (!FTy->isVarArg()) {
4202  if (Record.size() != OpNum)
4203  return error("Invalid record");
4204  } else {
4205  // Read type/value pairs for varargs params.
4206  while (OpNum != Record.size()) {
4207  Value *Op;
4208  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4209  return error("Invalid record");
4210  Ops.push_back(Op);
4211  }
4212  }
4213 
4214  I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4215  OperandBundles.clear();
4216  InstructionList.push_back(I);
4217  cast<InvokeInst>(I)->setCallingConv(
4218  static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4219  cast<InvokeInst>(I)->setAttributes(PAL);
4220  break;
4221  }
4222  case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4223  unsigned Idx = 0;
4224  Value *Val = nullptr;
4225  if (getValueTypePair(Record, Idx, NextValueNo, Val))
4226  return error("Invalid record");
4227  I = ResumeInst::Create(Val);
4228  InstructionList.push_back(I);
4229  break;
4230  }
4231  case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4232  I = new UnreachableInst(Context);
4233  InstructionList.push_back(I);
4234  break;
4235  case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4236  if (Record.size() < 1 || ((Record.size()-1)&1))
4237  return error("Invalid record");
4238  Type *Ty = getTypeByID(Record[0]);
4239  if (!Ty)
4240  return error("Invalid record");
4241 
4242  PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4243  InstructionList.push_back(PN);
4244 
4245  for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4246  Value *V;
4247  // With the new function encoding, it is possible that operands have
4248  // negative IDs (for forward references). Use a signed VBR
4249  // representation to keep the encoding small.
4250  if (UseRelativeIDs)
4251  V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4252  else
4253  V = getValue(Record, 1+i, NextValueNo, Ty);
4254  BasicBlock *BB = getBasicBlock(Record[2+i]);
4255  if (!V || !BB)
4256  return error("Invalid record");
4257  PN->addIncoming(V, BB);
4258  }
4259  I = PN;
4260  break;
4261  }
4262 
4265  // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4266  unsigned Idx = 0;
4267  if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4268  if (Record.size() < 3)
4269  return error("Invalid record");
4270  } else {
4272  if (Record.size() < 4)
4273  return error("Invalid record");
4274  }
4275  Type *Ty = getTypeByID(Record[Idx++]);
4276  if (!Ty)
4277  return error("Invalid record");
4278  if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4279  Value *PersFn = nullptr;
4280  if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4281  return error("Invalid record");
4282 
4283  if (!F->hasPersonalityFn())
4284  F->setPersonalityFn(cast<Constant>(PersFn));
4285  else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4286  return error("Personality function mismatch");
4287  }
4288 
4289  bool IsCleanup = !!Record[Idx++];
4290  unsigned NumClauses = Record[Idx++];
4291  LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4292  LP->setCleanup(IsCleanup);
4293  for (unsigned J = 0; J != NumClauses; ++J) {
4295  LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4296  Value *Val;
4297 
4298  if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4299  delete LP;
4300  return error("Invalid record");
4301  }
4302 
4303  assert((CT != LandingPadInst::Catch ||
4304  !isa<ArrayType>(Val->getType())) &&
4305  "Catch clause has a invalid type!");
4306  assert((CT != LandingPadInst::Filter ||
4307  isa<ArrayType>(Val->getType())) &&
4308  "Filter clause has invalid type!");
4309  LP->addClause(cast<Constant>(Val));
4310  }
4311 
4312  I = LP;
4313  InstructionList.push_back(I);
4314  break;
4315  }
4316 
4317  case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4318  if (Record.size() != 4)
4319  return error("Invalid record");
4320  uint64_t AlignRecord = Record[3];
4321  const uint64_t InAllocaMask = uint64_t(1) << 5;
4322  const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4323  const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4324  const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4325  SwiftErrorMask;
4326  bool InAlloca = AlignRecord & InAllocaMask;
4327  bool SwiftError = AlignRecord & SwiftErrorMask;
4328  Type *Ty = getTypeByID(Record[0]);
4329  if ((AlignRecord & ExplicitTypeMask) == 0) {
4330  auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4331  if (!PTy)
4332  return error("Old-style alloca with a non-pointer type");
4333  Ty = PTy->getElementType();
4334  }
4335  Type *OpTy = getTypeByID(Record[1]);
4336  Value *Size = getFnValueByID(Record[2], OpTy);
4337  unsigned Align;
4338  if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4339  return Err;
4340  }
4341  if (!Ty || !Size)
4342  return error("Invalid record");
4343 
4344  // FIXME: Make this an optional field.
4345  const DataLayout &DL = TheModule->getDataLayout();
4346  unsigned AS = DL.getAllocaAddrSpace();
4347 
4348  AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4349  AI->setUsedWithInAlloca(InAlloca);
4350  AI->setSwiftError(SwiftError);
4351  I = AI;
4352  InstructionList.push_back(I);
4353  break;
4354  }
4355  case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4356  unsigned OpNum = 0;
4357  Value *Op;
4358  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4359  (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4360  return error("Invalid record");
4361 
4362  Type *Ty = nullptr;
4363  if (OpNum + 3 == Record.size())
4364  Ty = getTypeByID(Record[OpNum++]);
4365  if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4366  return Err;
4367  if (!Ty)
4368  Ty = cast<PointerType>(Op->getType())->getElementType();
4369 
4370  unsigned Align;
4371  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4372  return Err;
4373  I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4374 
4375  InstructionList.push_back(I);
4376  break;
4377  }
4379  // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4380  unsigned OpNum = 0;
4381  Value *Op;
4382  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4383  (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4384  return error("Invalid record");
4385 
4386  Type *Ty = nullptr;
4387  if (OpNum + 5 == Record.size())
4388  Ty = getTypeByID(Record[OpNum++]);
4389  if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4390  return Err;
4391  if (!Ty)
4392  Ty = cast<PointerType>(Op->getType())->getElementType();
4393 
4394  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4395  if (Ordering == AtomicOrdering::NotAtomic ||
4396  Ordering == AtomicOrdering::Release ||
4397  Ordering == AtomicOrdering::AcquireRelease)
4398  return error("Invalid record");
4399  if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4400  return error("Invalid record");
4401  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4402 
4403  unsigned Align;
4404  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4405  return Err;
4406  I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID);
4407 
4408  InstructionList.push_back(I);
4409  break;
4410  }
4412  case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4413  unsigned OpNum = 0;
4414  Value *Val, *Ptr;
4415  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4416  (BitCode == bitc::FUNC_CODE_INST_STORE
4417  ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4418  : popValue(Record, OpNum, NextValueNo,
4419  cast<PointerType>(Ptr->getType())->getElementType(),
4420  Val)) ||
4421  OpNum + 2 != Record.size())
4422  return error("Invalid record");
4423 
4424  if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4425  return Err;
4426  unsigned Align;
4427  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4428  return Err;
4429  I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4430  InstructionList.push_back(I);
4431  break;
4432  }
4435  // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4436  unsigned OpNum = 0;
4437  Value *Val, *Ptr;
4438  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4439  !isa<PointerType>(Ptr->getType()) ||
4441  ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4442  : popValue(Record, OpNum, NextValueNo,
4443  cast<PointerType>(Ptr->getType())->getElementType(),
4444  Val)) ||
4445  OpNum + 4 != Record.size())
4446  return error("Invalid record");
4447 
4448  if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4449  return Err;
4450  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4451  if (Ordering == AtomicOrdering::NotAtomic ||
4452  Ordering == AtomicOrdering::Acquire ||
4453  Ordering == AtomicOrdering::AcquireRelease)
4454  return error("Invalid record");
4455  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4456  if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4457  return error("Invalid record");
4458 
4459  unsigned Align;
4460  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4461  return Err;
4462  I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4463  InstructionList.push_back(I);
4464  break;
4465  }
4468  // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4469  // failureordering?, isweak?]
4470  unsigned OpNum = 0;
4471  Value *Ptr, *Cmp, *New;
4472  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4473  (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4474  ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4475  : popValue(Record, OpNum, NextValueNo,
4476  cast<PointerType>(Ptr->getType())->getElementType(),
4477  Cmp)) ||
4478  popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4479  Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4480  return error("Invalid record");
4481  AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4482  if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4483  SuccessOrdering == AtomicOrdering::Unordered)
4484  return error("Invalid record");
4485  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4486 
4487  if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4488  return Err;
4489  AtomicOrdering FailureOrdering;
4490  if (Record.size() < 7)
4491  FailureOrdering =
4493  else
4494  FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4495 
4496  I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4497  SSID);
4498  cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4499 
4500  if (Record.size() < 8) {
4501  // Before weak cmpxchgs existed, the instruction simply returned the
4502  // value loaded from memory, so bitcode files from that era will be
4503  // expecting the first component of a modern cmpxchg.
4504  CurBB->getInstList().push_back(I);
4505  I = ExtractValueInst::Create(I, 0);
4506  } else {
4507  cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4508  }
4509 
4510  InstructionList.push_back(I);
4511  break;
4512  }
4514  // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4515  unsigned OpNum = 0;
4516  Value *Ptr, *Val;
4517  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4518  !isa<PointerType>(Ptr->getType()) ||
4519  popValue(Record, OpNum, NextValueNo,
4520  cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4521  OpNum+4 != Record.size())
4522  return error("Invalid record");
4524  if (Operation < AtomicRMWInst::FIRST_BINOP ||
4525  Operation > AtomicRMWInst::LAST_BINOP)
4526  return error("Invalid record");
4527  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4528  if (Ordering == AtomicOrdering::NotAtomic ||
4529  Ordering == AtomicOrdering::Unordered)
4530  return error("Invalid record");
4531  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4532  I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4533  cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4534  InstructionList.push_back(I);
4535  break;
4536  }
4537  case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4538  if (2 != Record.size())
4539  return error("Invalid record");
4540  AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4541  if (Ordering == AtomicOrdering::NotAtomic ||
4542  Ordering == AtomicOrdering::Unordered ||
4543  Ordering == AtomicOrdering::Monotonic)
4544  return error("Invalid record");
4545  SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4546  I = new FenceInst(Context, Ordering, SSID);
4547  InstructionList.push_back(I);
4548  break;
4549  }
4551  // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4552  if (Record.size() < 3)
4553  return error("Invalid record");
4554 
4555  unsigned OpNum = 0;
4556  AttributeList PAL = getAttributes(Record[OpNum++]);
4557  unsigned CCInfo = Record[OpNum++];
4558 
4559  FastMathFlags FMF;
4560  if ((CCInfo >> bitc::CALL_FMF) & 1) {
4561  FMF = getDecodedFastMathFlags(Record[OpNum++]);
4562  if (!FMF.any())
4563  return error("Fast math flags indicator set for call with no FMF");
4564  }
4565 
4566  FunctionType *FTy = nullptr;
4567  if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4568  !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4569  return error("Explicit call type is not a function type");
4570 
4571  Value *Callee;
4572  if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4573  return error("Invalid record");
4574 
4575  PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4576  if (!OpTy)
4577  return error("Callee is not a pointer type");
4578  if (!FTy) {
4579  FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4580  if (!FTy)
4581  return error("Callee is not of pointer to function type");
4582  } else if (OpTy->getElementType() != FTy)
4583  return error("Explicit call type does not match pointee type of "
4584  "callee operand");
4585  if (Record.size() < FTy->getNumParams() + OpNum)
4586  return error("Insufficient operands to call");
4587 
4589  // Read the fixed params.
4590  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4591  if (FTy->getParamType(i)->isLabelTy())
4592  Args.push_back(getBasicBlock(Record[OpNum]));
4593  else
4594  Args.push_back(getValue(Record, OpNum, NextValueNo,
4595  FTy->getParamType(i)));
4596  if (!Args.back())
4597  return error("Invalid record");
4598  }
4599 
4600  // Read type/value pairs for varargs params.
4601  if (!FTy->isVarArg()) {
4602  if (OpNum != Record.size())
4603  return error("Invalid record");
4604  } else {
4605  while (OpNum != Record.size()) {
4606  Value *Op;
4607  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4608  return error("Invalid record");
4609  Args.push_back(Op);
4610  }
4611  }
4612 
4613  I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4614  OperandBundles.clear();
4615  InstructionList.push_back(I);
4616  cast<CallInst>(I)->setCallingConv(
4617  static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4619  if (CCInfo & 1 << bitc::CALL_TAIL)
4620  TCK = CallInst::TCK_Tail;
4621  if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4622  TCK = CallInst::TCK_MustTail;
4623  if (CCInfo & (1 << bitc::CALL_NOTAIL))
4624  TCK = CallInst::TCK_NoTail;
4625  cast<CallInst>(I)->setTailCallKind(TCK);
4626  cast<CallInst>(I)->setAttributes(PAL);
4627  if (FMF.any()) {
4628  if (!isa<FPMathOperator>(I))
4629  return error("Fast-math-flags specified for call without "
4630  "floating-point scalar or vector return type");
4631  I->setFastMathFlags(FMF);
4632  }
4633  break;
4634  }
4635  case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4636  if (Record.size() < 3)
4637  return error("Invalid record");
4638  Type *OpTy = getTypeByID(Record[0]);
4639  Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4640  Type *ResTy = getTypeByID(Record[2]);
4641  if (!OpTy || !Op || !ResTy)
4642  return error("Invalid record");
4643  I = new VAArgInst(Op, ResTy);
4644  InstructionList.push_back(I);
4645  break;
4646  }
4647 
4649  // A call or an invoke can be optionally prefixed with some variable
4650  // number of operand bundle blocks. These blocks are read into
4651  // OperandBundles and consumed at the next call or invoke instruction.
4652 
4653  if (Record.size() < 1 || Record[0] >= BundleTags.size())
4654  return error("Invalid record");
4655 
4656  std::vector<Value *> Inputs;
4657 
4658  unsigned OpNum = 1;
4659  while (OpNum != Record.size()) {
4660  Value *Op;
4661  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4662  return error("Invalid record");
4663  Inputs.push_back(Op);
4664  }
4665 
4666  OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4667  continue;
4668  }
4669  }
4670 
4671  // Add instruction to end of current BB. If there is no current BB, reject
4672  // this file.
4673  if (!CurBB) {
4674  I->deleteValue();
4675  return error("Invalid instruction with no BB");
4676  }
4677  if (!OperandBundles.empty()) {
4678  I->deleteValue();
4679  return error("Operand bundles found with no consumer");
4680  }
4681  CurBB->getInstList().push_back(I);
4682 
4683  // If this was a terminator instruction, move to the next block.
4684  if (I->isTerminator()) {
4685  ++CurBBNo;
4686  CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4687  }
4688 
4689  // Non-void values get registered in the value table for future use.
4690  if (I && !I->getType()->isVoidTy())
4691  ValueList.assignValue(I, NextValueNo++);
4692  }
4693 
4694 OutOfRecordLoop:
4695 
4696  if (!OperandBundles.empty())
4697  return error("Operand bundles found with no consumer");
4698 
4699  // Check the function list for unresolved values.
4700  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4701  if (!A->getParent()) {
4702  // We found at least one unresolved value. Nuke them all to avoid leaks.
4703  for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4704  if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4705  A->replaceAllUsesWith(UndefValue::get(A->getType()));
4706  delete A;
4707  }
4708  }
4709  return error("Never resolved value found in function");
4710  }
4711  }
4712 
4713  // Unexpected unresolved metadata about to be dropped.
4714  if (MDLoader->hasFwdRefs())
4715  return error("Invalid function metadata: outgoing forward refs");
4716 
4717  // Trim the value list down to the size it was before we parsed this function.
4718  ValueList.shrinkTo(ModuleValueListSize);
4719  MDLoader->shrinkTo(ModuleMDLoaderSize);
4720  std::vector<BasicBlock*>().swap(FunctionBBs);
4721  return Error::success();
4722 }
4723 
4724 /// Find the function body in the bitcode stream
4725 Error BitcodeReader::findFunctionInStream(
4726  Function *F,
4727  DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4728  while (DeferredFunctionInfoIterator->second == 0) {
4729  // This is the fallback handling for the old format bitcode that
4730  // didn't contain the function index in the VST, or when we have
4731  // an anonymous function which would not have a VST entry.
4732  // Assert that we have one of those two cases.
4733  assert(VSTOffset == 0 || !F->hasName());
4734  // Parse the next body in the stream and set its position in the
4735  // DeferredFunctionInfo map.
4736  if (Error Err = rememberAndSkipFunctionBodies())
4737  return Err;
4738  }
4739  return Error::success();
4740 }
4741 
4742 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4743  if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4744  return SyncScope::ID(Val);
4745  if (Val >= SSIDs.size())
4746  return SyncScope::System; // Map unknown synchronization scopes to system.
4747  return SSIDs[Val];
4748 }
4749 
4750 //===----------------------------------------------------------------------===//
4751 // GVMaterializer implementation
4752 //===----------------------------------------------------------------------===//
4753 
4754 Error BitcodeReader::materialize(GlobalValue *GV) {
4755  Function *F = dyn_cast<Function>(GV);
4756  // If it's not a function or is already material, ignore the request.
4757  if (!F || !F->isMaterializable())
4758  return Error::success();
4759 
4760  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4761  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4762  // If its position is recorded as 0, its body is somewhere in the stream
4763  // but we haven't seen it yet.
4764  if (DFII->second == 0)
4765  if (Error Err = findFunctionInStream(F, DFII))
4766  return Err;
4767 
4768  // Materialize metadata before parsing any function bodies.
4769  if (Error Err = materializeMetadata())
4770  return Err;
4771 
4772  // Move the bit stream to the saved position of the deferred function body.
4773  Stream.JumpToBit(DFII->second);
4774 
4775  if (Error Err = parseFunctionBody(F))
4776  return Err;
4777  F->setIsMaterializable(false);
4778 
4779  if (StripDebugInfo)
4780  stripDebugInfo(*F);
4781 
4782  // Upgrade any old intrinsic calls in the function.
4783  for (auto &I : UpgradedIntrinsics) {
4784  for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4785  UI != UE;) {
4786  User *U = *UI;
4787  ++UI;
4788  if (CallInst *CI = dyn_cast<CallInst>(U))
4789  UpgradeIntrinsicCall(CI, I.second);
4790  }
4791  }
4792 
4793  // Update calls to the remangled intrinsics
4794  for (auto &I : RemangledIntrinsics)
4795  for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4796  UI != UE;)
4797  // Don't expect any other users than call sites
4798  CallSite(*UI++).setCalledFunction(I.second);
4799 
4800  // Finish fn->subprogram upgrade for materialized functions.
4801  if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4802  F->setSubprogram(SP);
4803 
4804  // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4805  if (!MDLoader->isStrippingTBAA()) {
4806  for (auto &I : instructions(F)) {
4807  MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4808  if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4809  continue;
4810  MDLoader->setStripTBAA(true);
4811  stripTBAA(F->getParent());
4812  }
4813  }
4814 
4815  // Bring in any functions that this function forward-referenced via
4816  // blockaddresses.
4817  return materializeForwardReferencedFunctions();
4818 }
4819 
4820 Error BitcodeReader::materializeModule() {
4821  if (Error Err = materializeMetadata())
4822  return Err;
4823 
4824  // Promise to materialize all forward references.
4825  WillMaterializeAllForwardRefs = true;
4826 
4827  // Iterate over the module, deserializing any functions that are still on
4828  // disk.
4829  for (Function &F : *TheModule) {
4830  if (Error Err = materialize(&F))
4831  return Err;
4832  }
4833  // At this point, if there are any function bodies, parse the rest of
4834  // the bits in the module past the last function block we have recorded
4835  // through either lazy scanning or the VST.
4836  if (LastFunctionBlockBit || NextUnreadBit)
4837  if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4838  ? LastFunctionBlockBit
4839  : NextUnreadBit))
4840  return Err;
4841 
4842  // Check that all block address forward references got resolved (as we
4843  // promised above).
4844  if (!BasicBlockFwdRefs.empty())
4845  return error("Never resolved function from blockaddress");
4846 
4847  // Upgrade any intrinsic calls that slipped through (should not happen!) and
4848  // delete the old functions to clean up. We can't do this unless the entire
4849  // module is materialized because there could always be another function body
4850  // with calls to the old function.
4851  for (auto &I : UpgradedIntrinsics) {
4852  for (auto *U : I.first->users()) {
4853  if (CallInst *CI = dyn_cast<CallInst>(U))
4854  UpgradeIntrinsicCall(CI, I.second);
4855  }
4856  if (!I.first->use_empty())
4857  I.first->replaceAllUsesWith(I.second);
4858  I.first->eraseFromParent();
4859  }
4860  UpgradedIntrinsics.clear();
4861  // Do the same for remangled intrinsics
4862  for (auto &I : RemangledIntrinsics) {
4863  I.first->replaceAllUsesWith(I.second);
4864  I.first->eraseFromParent();
4865  }
4866  RemangledIntrinsics.clear();
4867 
4868  UpgradeDebugInfo(*TheModule);
4869 
4870  UpgradeModuleFlags(*TheModule);
4871 
4872  UpgradeRetainReleaseMarker(*TheModule);
4873 
4874  return Error::success();
4875 }
4876 
4877 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4878  return IdentifiedStructTypes;
4879 }
4880 
4881 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4882  BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4883  StringRef ModulePath, unsigned ModuleId)
4884  : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4885  ModulePath(ModulePath), ModuleId(ModuleId) {}
4886 
4887 void ModuleSummaryIndexBitcodeReader::addThisModule() {
4888  TheIndex.addModule(ModulePath, ModuleId);
4889 }
4890 
4892 ModuleSummaryIndexBitcodeReader::getThisModule() {
4893  return TheIndex.getModule(ModulePath);
4894 }
4895 
4896 std::pair<ValueInfo, GlobalValue::GUID>
4897 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4898  auto VGI = ValueIdToValueInfoMap[ValueId];
4899  assert(VGI.first);
4900  return VGI;
4901 }
4902 
4903 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4904  uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4905  StringRef SourceFileName) {
4906  std::string GlobalId =
4907  GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4908  auto ValueGUID = GlobalValue::getGUID(GlobalId);
4909  auto OriginalNameID = ValueGUID;
4910  if (GlobalValue::isLocalLinkage(Linkage))
4911  OriginalNameID = GlobalValue::getGUID(ValueName);
4912  if (PrintSummaryGUIDs)
4913  dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4914  << ValueName << "\n";
4915 
4916  // UseStrtab is false for legacy summary formats and value names are
4917  // created on stack. In that case we save the name in a string saver in
4918  // the index so that the value name can be recorded.
4919  ValueIdToValueInfoMap[ValueID] = std::make_pair(
4920  TheIndex.getOrInsertValueInfo(
4921  ValueGUID,
4922  UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
4923  OriginalNameID);
4924 }
4925 
4926 // Specialized value symbol table parser used when reading module index
4927 // blocks where we don't actually create global values. The parsed information
4928 // is saved in the bitcode reader for use when later parsing summaries.
4929 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4930  uint64_t Offset,
4931  DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4932  // With a strtab the VST is not required to parse the summary.
4933  if (UseStrtab)
4934  return Error::success();
4935 
4936  assert(Offset > 0 && "Expected non-zero VST offset");
4937  uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4938 
4940  return error("Invalid record");
4941 
4943 
4944  // Read all the records for this value table.
4946 
4947  while (true) {
4948  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4949 
4950  switch (Entry.Kind) {
4951  case BitstreamEntry::SubBlock: // Handled for us already.
4952  case BitstreamEntry::Error:
4953  return error("Malformed block");
4955  // Done parsing VST, jump back to wherever we came from.
4956  Stream.JumpToBit(CurrentBit);
4957  return Error::success();
4959  // The interesting case.
4960  break;
4961  }
4962 
4963  // Read a record.
4964  Record.clear();
4965  switch (Stream.readRecord(Entry.ID, Record)) {
4966  default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4967  break;
4968  case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4969  if (convertToString(Record, 1, ValueName))
4970  return error("Invalid record");
4971  unsigned ValueID = Record[0];
4972  assert(!SourceFileName.empty());
4973  auto VLI = ValueIdToLinkageMap.find(ValueID);
4974  assert(VLI != ValueIdToLinkageMap.end() &&
4975  "No linkage found for VST entry?");
4976  auto Linkage = VLI->second;
4977  setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4978  ValueName.clear();
4979  break;
4980  }
4981  case bitc::VST_CODE_FNENTRY: {
4982  // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4983  if (convertToString(Record, 2, ValueName))
4984  return error("Invalid record");
4985  unsigned ValueID = Record[0];
4986  assert(!SourceFileName.empty());
4987  auto VLI = ValueIdToLinkageMap.find(ValueID);
4988  assert(VLI != ValueIdToLinkageMap.end() &&
4989  "No linkage found for VST entry?");
4990  auto Linkage = VLI->second;
4991  setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4992  ValueName.clear();
4993  break;
4994  }
4996  // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4997  unsigned ValueID = Record[0];
4998  GlobalValue::GUID RefGUID = Record[1];
4999  // The "original name", which is the second value of the pair will be
5000  // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5001  ValueIdToValueInfoMap[ValueID] =
5002  std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5003  break;
5004  }
5005  }
5006  }
5007 }
5008 
5009 // Parse just the blocks needed for building the index out of the module.
5010 // At the end of this routine the module Index is populated with a map
5011 // from global value id to GlobalValueSummary objects.
5014  return error("Invalid record");
5015 
5018  unsigned ValueId = 0;
5019 
5020  // Read the index for this module.
5021  while (true) {
5022  BitstreamEntry Entry = Stream.advance();
5023 
5024  switch (Entry.Kind) {
5025  case BitstreamEntry::Error:
5026  return error("Malformed block");
5028  return Error::success();
5029 
5031  switch (Entry.ID) {
5032  default: // Skip unknown content.
5033  if (Stream.SkipBlock())
5034  return error("Invalid record");
5035  break;
5037  // Need to parse these to get abbrev ids (e.g. for VST)
5038  if (readBlockInfo())
5039  return error("Malformed block");
5040  break;
5042  // Should have been parsed earlier via VSTOffset, unless there
5043  // is no summary section.
5044  assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5045  !SeenGlobalValSummary) &&
5046  "Expected early VST parse via VSTOffset record");
5047  if (Stream.SkipBlock())
5048  return error("Invalid record");
5049  break;
5052  // Add the module if it is a per-module index (has a source file name).
5053  if (!SourceFileName.empty())
5054  addThisModule();
5055  assert(!SeenValueSymbolTable &&
5056  "Already read VST when parsing summary block?");
5057  // We might not have a VST if there were no values in the
5058  // summary. An empty summary block generated when we are
5059  // performing ThinLTO compiles so we don't later invoke
5060  // the regular LTO process on them.
5061  if (VSTOffset > 0) {
5062  if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5063  return Err;
5064  SeenValueSymbolTable = true;
5065  }
5066  SeenGlobalValSummary = true;
5067  if (Error Err = parseEntireSummary(Entry.ID))
5068  return Err;
5069  break;
5071  if (Error Err = parseModuleStringTable())
5072  return Err;
5073  break;
5074  }
5075  continue;
5076 
5077  case BitstreamEntry::Record: {
5078  Record.clear();
5079  auto BitCode = Stream.readRecord(Entry.ID, Record);
5080  switch (BitCode) {
5081  default:
5082  break; // Default behavior, ignore unknown content.
5084  if (Error Err = parseVersionRecord(Record).takeError())
5085  return Err;
5086  break;
5087  }
5088  /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5091  if (convertToString(Record, 0, ValueName))
5092  return error("Invalid record");
5093  SourceFileName = ValueName.c_str();
5094  break;
5095  }
5096  /// MODULE_CODE_HASH: [5*i32]
5097  case bitc::MODULE_CODE_HASH: {
5098  if (Record.size() != 5)
5099  return error("Invalid hash length " + Twine(Record.size()).str());
5100  auto &Hash = getThisModule()->second.second;
5101  int Pos = 0;
5102  for (auto &Val : Record) {
5103  assert(!(Val >> 32) && "Unexpected high bits set");
5104  Hash[Pos++] = Val;
5105  }
5106  break;
5107  }
5108  /// MODULE_CODE_VSTOFFSET: [offset]
5110  if (Record.size() < 1)
5111  return error("Invalid record");
5112  // Note that we subtract 1 here because the offset is relative to one
5113  // word before the start of the identification or module block, which
5114  // was historically always the start of the regular bitcode header.
5115  VSTOffset = Record[0] - 1;
5116  break;
5117  // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
5118  // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
5119  // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
5120  // v2: [strtab offset, strtab size, v1]
5123  case bitc::MODULE_CODE_ALIAS: {
5124  StringRef Name;
5125  ArrayRef<uint64_t> GVRecord;
5126  std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5127  if (GVRecord.size() <= 3)
5128  return error("Invalid record");
5129  uint64_t RawLinkage = GVRecord[3];
5130  GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5131  if (!UseStrtab) {
5132  ValueIdToLinkageMap[ValueId++] = Linkage;
5133  break;
5134  }
5135 
5136  setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5137  break;
5138  }
5139  }
5140  }
5141  continue;
5142  }
5143  }
5144 }
5145 
5146 std::vector<ValueInfo>
5147 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5148  std::vector<ValueInfo> Ret;
5149  Ret.reserve(Record.size());
5150  for (uint64_t RefValueId : Record)
5151  Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5152  return Ret;
5153 }
5154 
5155 std::vector<FunctionSummary::EdgeTy>
5156 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5157  bool IsOldProfileFormat,
5158  bool HasProfile, bool HasRelBF) {
5159  std::vector<FunctionSummary::EdgeTy> Ret;
5160  Ret.reserve(Record.size());
5161  for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5163  uint64_t RelBF = 0;
5164  ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5165  if (IsOldProfileFormat) {
5166  I += 1; // Skip old callsitecount field
5167  if (HasProfile)
5168  I += 1; // Skip old profilecount field
5169  } else if (HasProfile)
5170  Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5171  else if (HasRelBF)
5172  RelBF = Record[++I];
5173  Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5174  }
5175  return Ret;
5176 }
5177 
5178 static void
5181  uint64_t ArgNum = Record[Slot++];
5183  Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5184  Slot += ArgNum;
5185 
5186  B.TheKind =
5187  static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5188  B.Info = Record[Slot++];
5189  B.Byte = Record[Slot++];
5190  B.Bit = Record[Slot++];
5191 }
5192 
5194  StringRef Strtab, size_t &Slot,
5195  TypeIdSummary &TypeId) {
5196  uint64_t Id = Record[Slot++];
5197  WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5198 
5199  Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5200  Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5201  static_cast<size_t>(Record[Slot + 1])};
5202  Slot += 2;
5203 
5204  uint64_t ResByArgNum = Record[Slot++];
5205  for (uint64_t I = 0; I != ResByArgNum; ++I)
5206  parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5207 }
5208 
5210  StringRef Strtab,
5211  ModuleSummaryIndex &TheIndex) {
5212  size_t Slot = 0;
5213  TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5214  {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5215  Slot += 2;
5216 
5217  TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5218  TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5219  TypeId.TTRes.AlignLog2 = Record[Slot++];
5220  TypeId.TTRes.SizeM1 = Record[Slot++];
5221  TypeId.TTRes.BitMask = Record[Slot++];
5222  TypeId.TTRes.InlineBits = Record[Slot++];
5223 
5224  while (Slot < Record.size())
5225  parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5226 }
5227 
5228 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) {
5229  // Read-only refs are in the end of the refs list.
5230  for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo)
5231  Refs[RefNo].setReadOnly();
5232 }
5233 
5234 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5235 // objects in the index.
5236 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5237  if (Stream.EnterSubBlock(ID))
5238  return error("Invalid record");
5240 
5241  // Parse version
5242  {
5243  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5244  if (Entry.Kind != BitstreamEntry::Record)
5245  return error("Invalid Summary Block: record for version expected");
5246  if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5247  return error("Invalid Summary Block: version expected");
5248  }
5249  const uint64_t Version = Record[0];
5250  const bool IsOldProfileFormat = Version == 1;
5251  if (Version < 1 || Version > 6)
5252  return error("Invalid summary version " + Twine(Version) +
5253  ". Version should be in the range [1-6].");
5254  Record.clear();
5255 
5256  // Keep around the last seen summary to be used when we see an optional
5257  // "OriginalName" attachement.
5258  GlobalValueSummary *LastSeenSummary = nullptr;
5259  GlobalValue::GUID LastSeenGUID = 0;
5260 
5261  // We can expect to see any number of type ID information records before
5262  // each function summary records; these variables store the information
5263  // collected so far so that it can be used to create the summary object.
5264  std::vector<GlobalValue::GUID> PendingTypeTests;
5265  std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5266  PendingTypeCheckedLoadVCalls;
5267  std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5268  PendingTypeCheckedLoadConstVCalls;
5269 
5270  while (true) {
5271  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5272 
5273  switch (Entry.Kind) {
5274  case BitstreamEntry::SubBlock: // Handled for us already.
5275  case BitstreamEntry::Error:
5276  return error("Malformed block");
5278  return Error::success();
5280  // The interesting case.
5281  break;
5282  }
5283 
5284  // Read a record. The record format depends on whether this
5285  // is a per-module index or a combined index file. In the per-module
5286  // case the records contain the associated value's ID for correlation
5287  // with VST entries. In the combined index the correlation is done
5288  // via the bitcode offset of the summary records (which were saved
5289  // in the combined index VST entries). The records also contain
5290  // information used for ThinLTO renaming and importing.
5291  Record.clear();
5292  auto BitCode = Stream.readRecord(Entry.ID, Record);
5293  switch (BitCode) {
5294  default: // Default behavior: ignore.
5295  break;
5296  case bitc::FS_FLAGS: { // [flags]
5297  uint64_t Flags = Record[0];
5298  // Scan flags.
5299  assert(Flags <= 0x1f && "Unexpected bits in flag");
5300 
5301  // 1 bit: WithGlobalValueDeadStripping flag.
5302  // Set on combined index only.
5303  if (Flags & 0x1)
5305  // 1 bit: SkipModuleByDistributedBackend flag.
5306  // Set on combined index only.
5307  if (Flags & 0x2)
5309  // 1 bit: HasSyntheticEntryCounts flag.
5310  // Set on combined index only.
5311  if (Flags & 0x4)
5312  TheIndex.setHasSyntheticEntryCounts();
5313  // 1 bit: DisableSplitLTOUnit flag.
5314  // Set on per module indexes. It is up to the client to validate
5315  // the consistency of this flag across modules being linked.
5316  if (Flags & 0x8)
5317  TheIndex.setEnableSplitLTOUnit();
5318  // 1 bit: PartiallySplitLTOUnits flag.
5319  // Set on combined index only.
5320  if (Flags & 0x10)
5321  TheIndex.setPartiallySplitLTOUnits();
5322  break;
5323  }
5324  case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5325  uint64_t ValueID = Record[0];
5326  GlobalValue::GUID RefGUID = Record[1];
5327  ValueIdToValueInfoMap[ValueID] =
5328  std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5329  break;
5330  }
5331  // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5332  // numrefs x valueid, n x (valueid)]
5333  // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5334  // numrefs x valueid,
5335  // n x (valueid, hotness)]
5336  // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5337  // numrefs x valueid,
5338  // n x (valueid, relblockfreq)]
5339  case bitc::FS_PERMODULE:
5342  unsigned ValueID = Record[0];
5343  uint64_t RawFlags = Record[1];
5344  unsigned InstCount = Record[2];
5345  uint64_t RawFunFlags = 0;
5346  unsigned NumRefs = Record[3];
5347  unsigned NumImmutableRefs = 0;
5348  int RefListStartIndex = 4;
5349  if (Version >= 4) {
5350  RawFunFlags = Record[3];
5351  NumRefs = Record[4];
5352  RefListStartIndex = 5;
5353  if (Version >= 5) {
5354  NumImmutableRefs = Record[5];
5355  RefListStartIndex = 6;
5356  }
5357  }
5358 
5359  auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5360  // The module path string ref set in the summary must be owned by the
5361  // index's module string table. Since we don't have a module path
5362  // string table section in the per-module index, we create a single
5363  // module path string table entry with an empty (0) ID to take
5364  // ownership.
5365  int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5366  assert(Record.size() >= RefListStartIndex + NumRefs &&
5367  "Record size inconsistent with number of references");
5368  std::vector<ValueInfo> Refs = makeRefList(
5369  ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5370  bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5371  bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5372  std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5373  ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5374  IsOldProfileFormat, HasProfile, HasRelBF);
5375  setImmutableRefs(Refs, NumImmutableRefs);
5376  auto FS = llvm::make_unique<FunctionSummary>(
5377  Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5378  std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5379  std::move(PendingTypeTestAssumeVCalls),
5380  std::move(PendingTypeCheckedLoadVCalls),
5381  std::move(PendingTypeTestAssumeConstVCalls),
5382  std::move(PendingTypeCheckedLoadConstVCalls));
5383  PendingTypeTests.clear();
5384  PendingTypeTestAssumeVCalls.clear();
5385  PendingTypeCheckedLoadVCalls.clear();
5386  PendingTypeTestAssumeConstVCalls.clear();
5387  PendingTypeCheckedLoadConstVCalls.clear();
5388  auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5389  FS->setModulePath(getThisModule()->first());
5390  FS->setOriginalName(VIAndOriginalGUID.second);
5391  TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5392  break;
5393  }
5394  // FS_ALIAS: [valueid, flags, valueid]
5395  // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5396  // they expect all aliasee summaries to be available.
5397  case bitc::FS_ALIAS: {
5398  unsigned ValueID = Record[0];
5399  uint64_t RawFlags = Record[1];
5400  unsigned AliaseeID = Record[2];
5401  auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5402  auto AS = llvm::make_unique<AliasSummary>(Flags);
5403  // The module path string ref set in the summary must be owned by the
5404  // index's module string table. Since we don't have a module path
5405  // string table section in the per-module index, we create a single
5406  // module path string table entry with an empty (0) ID to take
5407  // ownership.
5408  AS->setModulePath(getThisModule()->first());
5409 
5410  GlobalValue::GUID AliaseeGUID =
5411  getValueInfoFromValueId(AliaseeID).first.getGUID();
5412  auto AliaseeInModule =
5413  TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5414  if (!AliaseeInModule)
5415