LLVM  7.0.0svn
BitcodeReader.cpp
Go to the documentation of this file.
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
11 #include "MetadataLoader.h"
12 #include "ValueList.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Comdat.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugInfo.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GVMaterializer.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
46 #include "llvm/IR/GlobalObject.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/InstIterator.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
64 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
70 #include "llvm/Support/ErrorOr.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <deque>
80 #include <map>
81 #include <memory>
82 #include <set>
83 #include <string>
84 #include <system_error>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
92  "print-summary-global-ids", cl::init(false), cl::Hidden,
93  cl::desc(
94  "Print the global id for each value when reading the module summary"));
95 
96 namespace {
97 
98 enum {
99  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
100 };
101 
102 } // end anonymous namespace
103 
104 static Error error(const Twine &Message) {
105  return make_error<StringError>(
107 }
108 
109 /// Helper to read the header common to all bitcode files.
111  // Sniff for the signature.
112  if (!Stream.canSkipToPos(4) ||
113  Stream.Read(8) != 'B' ||
114  Stream.Read(8) != 'C' ||
115  Stream.Read(4) != 0x0 ||
116  Stream.Read(4) != 0xC ||
117  Stream.Read(4) != 0xE ||
118  Stream.Read(4) != 0xD)
119  return false;
120  return true;
121 }
122 
124  const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
125  const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
126 
127  if (Buffer.getBufferSize() & 3)
128  return error("Invalid bitcode signature");
129 
130  // If we have a wrapper header, parse it and ignore the non-bc file contents.
131  // The magic number is 0x0B17C0DE stored in little endian.
132  if (isBitcodeWrapper(BufPtr, BufEnd))
133  if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
134  return error("Invalid bitcode wrapper header");
135 
136  BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
137  if (!hasValidBitcodeHeader(Stream))
138  return error("Invalid bitcode signature");
139 
140  return std::move(Stream);
141 }
142 
143 /// Convert a string from a record into an std::string, return true on failure.
144 template <typename StrTy>
145 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
146  StrTy &Result) {
147  if (Idx > Record.size())
148  return true;
149 
150  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
151  Result += (char)Record[i];
152  return false;
153 }
154 
155 // Strip all the TBAA attachment for the module.
156 static void stripTBAA(Module *M) {
157  for (auto &F : *M) {
158  if (F.isMaterializable())
159  continue;
160  for (auto &I : instructions(F))
161  I.setMetadata(LLVMContext::MD_tbaa, nullptr);
162  }
163 }
164 
165 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
166 /// "epoch" encoded in the bitcode, and return the producer name if any.
169  return error("Invalid record");
170 
171  // Read all the records.
173 
174  std::string ProducerIdentification;
175 
176  while (true) {
177  BitstreamEntry Entry = Stream.advance();
178 
179  switch (Entry.Kind) {
180  default:
182  return error("Malformed block");
184  return ProducerIdentification;
186  // The interesting case.
187  break;
188  }
189 
190  // Read a record.
191  Record.clear();
192  unsigned BitCode = Stream.readRecord(Entry.ID, Record);
193  switch (BitCode) {
194  default: // Default behavior: reject
195  return error("Invalid value");
196  case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
197  convertToString(Record, 0, ProducerIdentification);
198  break;
199  case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
200  unsigned epoch = (unsigned)Record[0];
201  if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
202  return error(
203  Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
204  "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
205  }
206  }
207  }
208  }
209 }
210 
212  // We expect a number of well-defined blocks, though we don't necessarily
213  // need to understand them all.
214  while (true) {
215  if (Stream.AtEndOfStream())
216  return "";
217 
218  BitstreamEntry Entry = Stream.advance();
219  switch (Entry.Kind) {
222  return error("Malformed block");
223 
225  if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
226  return readIdentificationBlock(Stream);
227 
228  // Ignore other sub-blocks.
229  if (Stream.SkipBlock())
230  return error("Malformed block");
231  continue;
233  Stream.skipRecord(Entry.ID);
234  continue;
235  }
236  }
237 }
238 
241  return error("Invalid record");
242 
244  // Read all the records for this module.
245 
246  while (true) {
247  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
248 
249  switch (Entry.Kind) {
250  case BitstreamEntry::SubBlock: // Handled for us already.
252  return error("Malformed block");
254  return false;
256  // The interesting case.
257  break;
258  }
259 
260  // Read a record.
261  switch (Stream.readRecord(Entry.ID, Record)) {
262  default:
263  break; // Default behavior, ignore unknown content.
264  case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
265  std::string S;
266  if (convertToString(Record, 0, S))
267  return error("Invalid record");
268  // Check for the i386 and other (x86_64, ARM) conventions
269  if (S.find("__DATA,__objc_catlist") != std::string::npos ||
270  S.find("__OBJC,__category") != std::string::npos)
271  return true;
272  break;
273  }
274  }
275  Record.clear();
276  }
277  llvm_unreachable("Exit infinite loop");
278 }
279 
281  // We expect a number of well-defined blocks, though we don't necessarily
282  // need to understand them all.
283  while (true) {
284  BitstreamEntry Entry = Stream.advance();
285 
286  switch (Entry.Kind) {
288  return error("Malformed block");
290  return false;
291 
293  if (Entry.ID == bitc::MODULE_BLOCK_ID)
294  return hasObjCCategoryInModule(Stream);
295 
296  // Ignore other sub-blocks.
297  if (Stream.SkipBlock())
298  return error("Malformed block");
299  continue;
300 
302  Stream.skipRecord(Entry.ID);
303  continue;
304  }
305  }
306 }
307 
310  return error("Invalid record");
311 
313 
314  std::string Triple;
315 
316  // Read all the records for this module.
317  while (true) {
318  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
319 
320  switch (Entry.Kind) {
321  case BitstreamEntry::SubBlock: // Handled for us already.
323  return error("Malformed block");
325  return Triple;
327  // The interesting case.
328  break;
329  }
330 
331  // Read a record.
332  switch (Stream.readRecord(Entry.ID, Record)) {
333  default: break; // Default behavior, ignore unknown content.
334  case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
335  std::string S;
336  if (convertToString(Record, 0, S))
337  return error("Invalid record");
338  Triple = S;
339  break;
340  }
341  }
342  Record.clear();
343  }
344  llvm_unreachable("Exit infinite loop");
345 }
346 
348  // We expect a number of well-defined blocks, though we don't necessarily
349  // need to understand them all.
350  while (true) {
351  BitstreamEntry Entry = Stream.advance();
352 
353  switch (Entry.Kind) {
355  return error("Malformed block");
357  return "";
358 
360  if (Entry.ID == bitc::MODULE_BLOCK_ID)
361  return readModuleTriple(Stream);
362 
363  // Ignore other sub-blocks.
364  if (Stream.SkipBlock())
365  return error("Malformed block");
366  continue;
367 
369  Stream.skipRecord(Entry.ID);
370  continue;
371  }
372  }
373 }
374 
375 namespace {
376 
377 class BitcodeReaderBase {
378 protected:
379  BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
380  : Stream(std::move(Stream)), Strtab(Strtab) {
381  this->Stream.setBlockInfo(&BlockInfo);
382  }
383 
384  BitstreamBlockInfo BlockInfo;
385  BitstreamCursor Stream;
386  StringRef Strtab;
387 
388  /// In version 2 of the bitcode we store names of global values and comdats in
389  /// a string table rather than in the VST.
390  bool UseStrtab = false;
391 
392  Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
393 
394  /// If this module uses a string table, pop the reference to the string table
395  /// and return the referenced string and the rest of the record. Otherwise
396  /// just return the record itself.
397  std::pair<StringRef, ArrayRef<uint64_t>>
398  readNameFromStrtab(ArrayRef<uint64_t> Record);
399 
400  bool readBlockInfo();
401 
402  // Contains an arbitrary and optional string identifying the bitcode producer
403  std::string ProducerIdentification;
404 
405  Error error(const Twine &Message);
406 };
407 
408 } // end anonymous namespace
409 
410 Error BitcodeReaderBase::error(const Twine &Message) {
411  std::string FullMsg = Message.str();
412  if (!ProducerIdentification.empty())
413  FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
414  LLVM_VERSION_STRING "')";
415  return ::error(FullMsg);
416 }
417 
419 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
420  if (Record.empty())
421  return error("Invalid record");
422  unsigned ModuleVersion = Record[0];
423  if (ModuleVersion > 2)
424  return error("Invalid value");
425  UseStrtab = ModuleVersion >= 2;
426  return ModuleVersion;
427 }
428 
429 std::pair<StringRef, ArrayRef<uint64_t>>
430 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
431  if (!UseStrtab)
432  return {"", Record};
433  // Invalid reference. Let the caller complain about the record being empty.
434  if (Record[0] + Record[1] > Strtab.size())
435  return {"", {}};
436  return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
437 }
438 
439 namespace {
440 
441 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
443  Module *TheModule = nullptr;
444  // Next offset to start scanning for lazy parsing of function bodies.
445  uint64_t NextUnreadBit = 0;
446  // Last function offset found in the VST.
447  uint64_t LastFunctionBlockBit = 0;
448  bool SeenValueSymbolTable = false;
449  uint64_t VSTOffset = 0;
450 
451  std::vector<std::string> SectionTable;
452  std::vector<std::string> GCTable;
453 
454  std::vector<Type*> TypeList;
455  BitcodeReaderValueList ValueList;
456  Optional<MetadataLoader> MDLoader;
457  std::vector<Comdat *> ComdatList;
458  SmallVector<Instruction *, 64> InstructionList;
459 
460  std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
461  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
462  std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
463  std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
464  std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
465 
466  /// The set of attributes by index. Index zero in the file is for null, and
467  /// is thus not represented here. As such all indices are off by one.
468  std::vector<AttributeList> MAttributes;
469 
470  /// The set of attribute groups.
471  std::map<unsigned, AttributeList> MAttributeGroups;
472 
473  /// While parsing a function body, this is a list of the basic blocks for the
474  /// function.
475  std::vector<BasicBlock*> FunctionBBs;
476 
477  // When reading the module header, this list is populated with functions that
478  // have bodies later in the file.
479  std::vector<Function*> FunctionsWithBodies;
480 
481  // When intrinsic functions are encountered which require upgrading they are
482  // stored here with their replacement function.
483  using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
484  UpdatedIntrinsicMap UpgradedIntrinsics;
485  // Intrinsics which were remangled because of types rename
486  UpdatedIntrinsicMap RemangledIntrinsics;
487 
488  // Several operations happen after the module header has been read, but
489  // before function bodies are processed. This keeps track of whether
490  // we've done this yet.
491  bool SeenFirstFunctionBody = false;
492 
493  /// When function bodies are initially scanned, this map contains info about
494  /// where to find deferred function body in the stream.
495  DenseMap<Function*, uint64_t> DeferredFunctionInfo;
496 
497  /// When Metadata block is initially scanned when parsing the module, we may
498  /// choose to defer parsing of the metadata. This vector contains info about
499  /// which Metadata blocks are deferred.
500  std::vector<uint64_t> DeferredMetadataInfo;
501 
502  /// These are basic blocks forward-referenced by block addresses. They are
503  /// inserted lazily into functions when they're loaded. The basic block ID is
504  /// its index into the vector.
506  std::deque<Function *> BasicBlockFwdRefQueue;
507 
508  /// Indicates that we are using a new encoding for instruction operands where
509  /// most operands in the current FUNCTION_BLOCK are encoded relative to the
510  /// instruction number, for a more compact encoding. Some instruction
511  /// operands are not relative to the instruction ID: basic block numbers, and
512  /// types. Once the old style function blocks have been phased out, we would
513  /// not need this flag.
514  bool UseRelativeIDs = false;
515 
516  /// True if all functions will be materialized, negating the need to process
517  /// (e.g.) blockaddress forward references.
518  bool WillMaterializeAllForwardRefs = false;
519 
520  bool StripDebugInfo = false;
521  TBAAVerifier TBAAVerifyHelper;
522 
523  std::vector<std::string> BundleTags;
525 
526 public:
527  BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
528  StringRef ProducerIdentification, LLVMContext &Context);
529 
530  Error materializeForwardReferencedFunctions();
531 
532  Error materialize(GlobalValue *GV) override;
533  Error materializeModule() override;
534  std::vector<StructType *> getIdentifiedStructTypes() const override;
535 
536  /// Main interface to parsing a bitcode buffer.
537  /// \returns true if an error occurred.
538  Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
539  bool IsImporting = false);
540 
541  static uint64_t decodeSignRotatedValue(uint64_t V);
542 
543  /// Materialize any deferred Metadata block.
544  Error materializeMetadata() override;
545 
546  void setStripDebugInfo() override;
547 
548 private:
549  std::vector<StructType *> IdentifiedStructTypes;
550  StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
551  StructType *createIdentifiedStructType(LLVMContext &Context);
552 
553  Type *getTypeByID(unsigned ID);
554 
555  Value *getFnValueByID(unsigned ID, Type *Ty) {
556  if (Ty && Ty->isMetadataTy())
557  return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
558  return ValueList.getValueFwdRef(ID, Ty);
559  }
560 
561  Metadata *getFnMetadataByID(unsigned ID) {
562  return MDLoader->getMetadataFwdRefOrLoad(ID);
563  }
564 
565  BasicBlock *getBasicBlock(unsigned ID) const {
566  if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
567  return FunctionBBs[ID];
568  }
569 
570  AttributeList getAttributes(unsigned i) const {
571  if (i-1 < MAttributes.size())
572  return MAttributes[i-1];
573  return AttributeList();
574  }
575 
576  /// Read a value/type pair out of the specified record from slot 'Slot'.
577  /// Increment Slot past the number of slots used in the record. Return true on
578  /// failure.
579  bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
580  unsigned InstNum, Value *&ResVal) {
581  if (Slot == Record.size()) return true;
582  unsigned ValNo = (unsigned)Record[Slot++];
583  // Adjust the ValNo, if it was encoded relative to the InstNum.
584  if (UseRelativeIDs)
585  ValNo = InstNum - ValNo;
586  if (ValNo < InstNum) {
587  // If this is not a forward reference, just return the value we already
588  // have.
589  ResVal = getFnValueByID(ValNo, nullptr);
590  return ResVal == nullptr;
591  }
592  if (Slot == Record.size())
593  return true;
594 
595  unsigned TypeNo = (unsigned)Record[Slot++];
596  ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
597  return ResVal == nullptr;
598  }
599 
600  /// Read a value out of the specified record from slot 'Slot'. Increment Slot
601  /// past the number of slots used by the value in the record. Return true if
602  /// there is an error.
603  bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
604  unsigned InstNum, Type *Ty, Value *&ResVal) {
605  if (getValue(Record, Slot, InstNum, Ty, ResVal))
606  return true;
607  // All values currently take a single record slot.
608  ++Slot;
609  return false;
610  }
611 
612  /// Like popValue, but does not increment the Slot number.
613  bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
614  unsigned InstNum, Type *Ty, Value *&ResVal) {
615  ResVal = getValue(Record, Slot, InstNum, Ty);
616  return ResVal == nullptr;
617  }
618 
619  /// Version of getValue that returns ResVal directly, or 0 if there is an
620  /// error.
621  Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
622  unsigned InstNum, Type *Ty) {
623  if (Slot == Record.size()) return nullptr;
624  unsigned ValNo = (unsigned)Record[Slot];
625  // Adjust the ValNo, if it was encoded relative to the InstNum.
626  if (UseRelativeIDs)
627  ValNo = InstNum - ValNo;
628  return getFnValueByID(ValNo, Ty);
629  }
630 
631  /// Like getValue, but decodes signed VBRs.
632  Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
633  unsigned InstNum, Type *Ty) {
634  if (Slot == Record.size()) return nullptr;
635  unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
636  // Adjust the ValNo, if it was encoded relative to the InstNum.
637  if (UseRelativeIDs)
638  ValNo = InstNum - ValNo;
639  return getFnValueByID(ValNo, Ty);
640  }
641 
642  /// Converts alignment exponent (i.e. power of two (or zero)) to the
643  /// corresponding alignment to use. If alignment is too large, returns
644  /// a corresponding error code.
645  Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
646  Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
647  Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
648 
649  Error parseComdatRecord(ArrayRef<uint64_t> Record);
650  Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
651  Error parseFunctionRecord(ArrayRef<uint64_t> Record);
652  Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
653  ArrayRef<uint64_t> Record);
654 
655  Error parseAttributeBlock();
656  Error parseAttributeGroupBlock();
657  Error parseTypeTable();
658  Error parseTypeTableBody();
659  Error parseOperandBundleTags();
660  Error parseSyncScopeNames();
661 
662  Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
663  unsigned NameIndex, Triple &TT);
664  void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
665  ArrayRef<uint64_t> Record);
666  Error parseValueSymbolTable(uint64_t Offset = 0);
667  Error parseGlobalValueSymbolTable();
668  Error parseConstants();
669  Error rememberAndSkipFunctionBodies();
670  Error rememberAndSkipFunctionBody();
671  /// Save the positions of the Metadata blocks and skip parsing the blocks.
672  Error rememberAndSkipMetadata();
673  Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
674  Error parseFunctionBody(Function *F);
675  Error globalCleanup();
676  Error resolveGlobalAndIndirectSymbolInits();
677  Error parseUseLists();
678  Error findFunctionInStream(
679  Function *F,
680  DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
681 
682  SyncScope::ID getDecodedSyncScopeID(unsigned Val);
683 };
684 
685 /// Class to manage reading and parsing function summary index bitcode
686 /// files/sections.
687 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
688  /// The module index built during parsing.
689  ModuleSummaryIndex &TheIndex;
690 
691  /// Indicates whether we have encountered a global value summary section
692  /// yet during parsing.
693  bool SeenGlobalValSummary = false;
694 
695  /// Indicates whether we have already parsed the VST, used for error checking.
696  bool SeenValueSymbolTable = false;
697 
698  /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
699  /// Used to enable on-demand parsing of the VST.
700  uint64_t VSTOffset = 0;
701 
702  // Map to save ValueId to ValueInfo association that was recorded in the
703  // ValueSymbolTable. It is used after the VST is parsed to convert
704  // call graph edges read from the function summary from referencing
705  // callees by their ValueId to using the ValueInfo instead, which is how
706  // they are recorded in the summary index being built.
707  // We save a GUID which refers to the same global as the ValueInfo, but
708  // ignoring the linkage, i.e. for values other than local linkage they are
709  // identical.
711  ValueIdToValueInfoMap;
712 
713  /// Map populated during module path string table parsing, from the
714  /// module ID to a string reference owned by the index's module
715  /// path string table, used to correlate with combined index
716  /// summary records.
717  DenseMap<uint64_t, StringRef> ModuleIdMap;
718 
719  /// Original source file name recorded in a bitcode record.
720  std::string SourceFileName;
721 
722  /// The string identifier given to this module by the client, normally the
723  /// path to the bitcode file.
724  StringRef ModulePath;
725 
726  /// For per-module summary indexes, the unique numerical identifier given to
727  /// this module by the client.
728  unsigned ModuleId;
729 
730 public:
731  ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
732  ModuleSummaryIndex &TheIndex,
733  StringRef ModulePath, unsigned ModuleId);
734 
735  Error parseModule();
736 
737 private:
738  void setValueGUID(uint64_t ValueID, StringRef ValueName,
740  StringRef SourceFileName);
741  Error parseValueSymbolTable(
742  uint64_t Offset,
743  DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
744  std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
745  std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
746  bool IsOldProfileFormat,
747  bool HasProfile,
748  bool HasRelBF);
749  Error parseEntireSummary(unsigned ID);
750  Error parseModuleStringTable();
751 
752  std::pair<ValueInfo, GlobalValue::GUID>
753  getValueInfoFromValueId(unsigned ValueId);
754 
755  void addThisModule();
756  ModuleSummaryIndex::ModuleInfo *getThisModule();
757 };
758 
759 } // end anonymous namespace
760 
762  Error Err) {
763  if (Err) {
764  std::error_code EC;
765  handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
766  EC = EIB.convertToErrorCode();
767  Ctx.emitError(EIB.message());
768  });
769  return EC;
770  }
771  return std::error_code();
772 }
773 
774 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
775  StringRef ProducerIdentification,
777  : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
778  ValueList(Context) {
779  this->ProducerIdentification = ProducerIdentification;
780 }
781 
782 Error BitcodeReader::materializeForwardReferencedFunctions() {
783  if (WillMaterializeAllForwardRefs)
784  return Error::success();
785 
786  // Prevent recursion.
787  WillMaterializeAllForwardRefs = true;
788 
789  while (!BasicBlockFwdRefQueue.empty()) {
790  Function *F = BasicBlockFwdRefQueue.front();
791  BasicBlockFwdRefQueue.pop_front();
792  assert(F && "Expected valid function");
793  if (!BasicBlockFwdRefs.count(F))
794  // Already materialized.
795  continue;
796 
797  // Check for a function that isn't materializable to prevent an infinite
798  // loop. When parsing a blockaddress stored in a global variable, there
799  // isn't a trivial way to check if a function will have a body without a
800  // linear search through FunctionsWithBodies, so just check it here.
801  if (!F->isMaterializable())
802  return error("Never resolved function from blockaddress");
803 
804  // Try to materialize F.
805  if (Error Err = materialize(F))
806  return Err;
807  }
808  assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
809 
810  // Reset state.
811  WillMaterializeAllForwardRefs = false;
812  return Error::success();
813 }
814 
815 //===----------------------------------------------------------------------===//
816 // Helper functions to implement forward reference resolution, etc.
817 //===----------------------------------------------------------------------===//
818 
819 static bool hasImplicitComdat(size_t Val) {
820  switch (Val) {
821  default:
822  return false;
823  case 1: // Old WeakAnyLinkage
824  case 4: // Old LinkOnceAnyLinkage
825  case 10: // Old WeakODRLinkage
826  case 11: // Old LinkOnceODRLinkage
827  return true;
828  }
829 }
830 
832  switch (Val) {
833  default: // Map unknown/new linkages to external
834  case 0:
836  case 2:
838  case 3:
840  case 5:
841  return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
842  case 6:
843  return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
844  case 7:
846  case 8:
848  case 9:
850  case 12:
852  case 13:
853  return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
854  case 14:
855  return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
856  case 15:
857  return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
858  case 1: // Old value with implicit comdat.
859  case 16:
861  case 10: // Old value with implicit comdat.
862  case 17:
864  case 4: // Old value with implicit comdat.
865  case 18:
867  case 11: // Old value with implicit comdat.
868  case 19:
870  }
871 }
872 
873 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
875  Flags.ReadNone = RawFlags & 0x1;
876  Flags.ReadOnly = (RawFlags >> 1) & 0x1;
877  Flags.NoRecurse = (RawFlags >> 2) & 0x1;
878  Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
879  return Flags;
880 }
881 
882 /// Decode the flags for GlobalValue in the summary.
884  uint64_t Version) {
885  // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
886  // like getDecodedLinkage() above. Any future change to the linkage enum and
887  // to getDecodedLinkage() will need to be taken into account here as above.
888  auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
889  RawFlags = RawFlags >> 4;
890  bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
891  // The Live flag wasn't introduced until version 3. For dead stripping
892  // to work correctly on earlier versions, we must conservatively treat all
893  // values as live.
894  bool Live = (RawFlags & 0x2) || Version < 3;
895  bool Local = (RawFlags & 0x4);
896 
897  return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
898 }
899 
901  switch (Val) {
902  default: // Map unknown visibilities to default.
903  case 0: return GlobalValue::DefaultVisibility;
904  case 1: return GlobalValue::HiddenVisibility;
905  case 2: return GlobalValue::ProtectedVisibility;
906  }
907 }
908 
911  switch (Val) {
912  default: // Map unknown values to default.
913  case 0: return GlobalValue::DefaultStorageClass;
914  case 1: return GlobalValue::DLLImportStorageClass;
915  case 2: return GlobalValue::DLLExportStorageClass;
916  }
917 }
918 
919 static bool getDecodedDSOLocal(unsigned Val) {
920  switch(Val) {
921  default: // Map unknown values to preemptable.
922  case 0: return false;
923  case 1: return true;
924  }
925 }
926 
928  switch (Val) {
929  case 0: return GlobalVariable::NotThreadLocal;
930  default: // Map unknown non-zero value to general dynamic.
934  case 4: return GlobalVariable::LocalExecTLSModel;
935  }
936 }
937 
939  switch (Val) {
940  default: // Map unknown to UnnamedAddr::None.
941  case 0: return GlobalVariable::UnnamedAddr::None;
943  case 2: return GlobalVariable::UnnamedAddr::Local;
944  }
945 }
946 
947 static int getDecodedCastOpcode(unsigned Val) {
948  switch (Val) {
949  default: return -1;
950  case bitc::CAST_TRUNC : return Instruction::Trunc;
951  case bitc::CAST_ZEXT : return Instruction::ZExt;
952  case bitc::CAST_SEXT : return Instruction::SExt;
953  case bitc::CAST_FPTOUI : return Instruction::FPToUI;
954  case bitc::CAST_FPTOSI : return Instruction::FPToSI;
955  case bitc::CAST_UITOFP : return Instruction::UIToFP;
956  case bitc::CAST_SITOFP : return Instruction::SIToFP;
957  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
958  case bitc::CAST_FPEXT : return Instruction::FPExt;
959  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
960  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
961  case bitc::CAST_BITCAST : return Instruction::BitCast;
962  case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
963  }
964 }
965 
966 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
967  bool IsFP = Ty->isFPOrFPVectorTy();
968  // BinOps are only valid for int/fp or vector of int/fp types
969  if (!IsFP && !Ty->isIntOrIntVectorTy())
970  return -1;
971 
972  switch (Val) {
973  default:
974  return -1;
975  case bitc::BINOP_ADD:
976  return IsFP ? Instruction::FAdd : Instruction::Add;
977  case bitc::BINOP_SUB:
978  return IsFP ? Instruction::FSub : Instruction::Sub;
979  case bitc::BINOP_MUL:
980  return IsFP ? Instruction::FMul : Instruction::Mul;
981  case bitc::BINOP_UDIV:
982  return IsFP ? -1 : Instruction::UDiv;
983  case bitc::BINOP_SDIV:
984  return IsFP ? Instruction::FDiv : Instruction::SDiv;
985  case bitc::BINOP_UREM:
986  return IsFP ? -1 : Instruction::URem;
987  case bitc::BINOP_SREM:
988  return IsFP ? Instruction::FRem : Instruction::SRem;
989  case bitc::BINOP_SHL:
990  return IsFP ? -1 : Instruction::Shl;
991  case bitc::BINOP_LSHR:
992  return IsFP ? -1 : Instruction::LShr;
993  case bitc::BINOP_ASHR:
994  return IsFP ? -1 : Instruction::AShr;
995  case bitc::BINOP_AND:
996  return IsFP ? -1 : Instruction::And;
997  case bitc::BINOP_OR:
998  return IsFP ? -1 : Instruction::Or;
999  case bitc::BINOP_XOR:
1000  return IsFP ? -1 : Instruction::Xor;
1001  }
1002 }
1003 
1005  switch (Val) {
1006  default: return AtomicRMWInst::BAD_BINOP;
1007  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1008  case bitc::RMW_ADD: return AtomicRMWInst::Add;
1009  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1010  case bitc::RMW_AND: return AtomicRMWInst::And;
1011  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1012  case bitc::RMW_OR: return AtomicRMWInst::Or;
1013  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1014  case bitc::RMW_MAX: return AtomicRMWInst::Max;
1015  case bitc::RMW_MIN: return AtomicRMWInst::Min;
1016  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1017  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1018  }
1019 }
1020 
1021 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1022  switch (Val) {
1029  default: // Map unknown orderings to sequentially-consistent.
1031  }
1032 }
1033 
1035  switch (Val) {
1036  default: // Map unknown selection kinds to any.
1038  return Comdat::Any;
1040  return Comdat::ExactMatch;
1042  return Comdat::Largest;
1044  return Comdat::NoDuplicates;
1046  return Comdat::SameSize;
1047  }
1048 }
1049 
1051  FastMathFlags FMF;
1052  if (0 != (Val & bitc::UnsafeAlgebra))
1053  FMF.setFast();
1054  if (0 != (Val & bitc::AllowReassoc))
1055  FMF.setAllowReassoc();
1056  if (0 != (Val & bitc::NoNaNs))
1057  FMF.setNoNaNs();
1058  if (0 != (Val & bitc::NoInfs))
1059  FMF.setNoInfs();
1060  if (0 != (Val & bitc::NoSignedZeros))
1061  FMF.setNoSignedZeros();
1062  if (0 != (Val & bitc::AllowReciprocal))
1063  FMF.setAllowReciprocal();
1064  if (0 != (Val & bitc::AllowContract))
1065  FMF.setAllowContract(true);
1066  if (0 != (Val & bitc::ApproxFunc))
1067  FMF.setApproxFunc();
1068  return FMF;
1069 }
1070 
1071 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1072  switch (Val) {
1075  }
1076 }
1077 
1078 Type *BitcodeReader::getTypeByID(unsigned ID) {
1079  // The type table size is always specified correctly.
1080  if (ID >= TypeList.size())
1081  return nullptr;
1082 
1083  if (Type *Ty = TypeList[ID])
1084  return Ty;
1085 
1086  // If we have a forward reference, the only possible case is when it is to a
1087  // named struct. Just create a placeholder for now.
1088  return TypeList[ID] = createIdentifiedStructType(Context);
1089 }
1090 
1091 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1092  StringRef Name) {
1093  auto *Ret = StructType::create(Context, Name);
1094  IdentifiedStructTypes.push_back(Ret);
1095  return Ret;
1096 }
1097 
1098 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1099  auto *Ret = StructType::create(Context);
1100  IdentifiedStructTypes.push_back(Ret);
1101  return Ret;
1102 }
1103 
1104 //===----------------------------------------------------------------------===//
1105 // Functions for parsing blocks from the bitcode file
1106 //===----------------------------------------------------------------------===//
1107 
1109  switch (Val) {
1111  llvm_unreachable("Synthetic enumerators which should never get here");
1112 
1113  case Attribute::None: return 0;
1114  case Attribute::ZExt: return 1 << 0;
1115  case Attribute::SExt: return 1 << 1;
1116  case Attribute::NoReturn: return 1 << 2;
1117  case Attribute::InReg: return 1 << 3;
1118  case Attribute::StructRet: return 1 << 4;
1119  case Attribute::NoUnwind: return 1 << 5;
1120  case Attribute::NoAlias: return 1 << 6;
1121  case Attribute::ByVal: return 1 << 7;
1122  case Attribute::Nest: return 1 << 8;
1123  case Attribute::ReadNone: return 1 << 9;
1124  case Attribute::ReadOnly: return 1 << 10;
1125  case Attribute::NoInline: return 1 << 11;
1126  case Attribute::AlwaysInline: return 1 << 12;
1127  case Attribute::OptimizeForSize: return 1 << 13;
1128  case Attribute::StackProtect: return 1 << 14;
1129  case Attribute::StackProtectReq: return 1 << 15;
1130  case Attribute::Alignment: return 31 << 16;
1131  case Attribute::NoCapture: return 1 << 21;
1132  case Attribute::NoRedZone: return 1 << 22;
1133  case Attribute::NoImplicitFloat: return 1 << 23;
1134  case Attribute::Naked: return 1 << 24;
1135  case Attribute::InlineHint: return 1 << 25;
1136  case Attribute::StackAlignment: return 7 << 26;
1137  case Attribute::ReturnsTwice: return 1 << 29;
1138  case Attribute::UWTable: return 1 << 30;
1139  case Attribute::NonLazyBind: return 1U << 31;
1140  case Attribute::SanitizeAddress: return 1ULL << 32;
1141  case Attribute::MinSize: return 1ULL << 33;
1142  case Attribute::NoDuplicate: return 1ULL << 34;
1143  case Attribute::StackProtectStrong: return 1ULL << 35;
1144  case Attribute::SanitizeThread: return 1ULL << 36;
1145  case Attribute::SanitizeMemory: return 1ULL << 37;
1146  case Attribute::NoBuiltin: return 1ULL << 38;
1147  case Attribute::Returned: return 1ULL << 39;
1148  case Attribute::Cold: return 1ULL << 40;
1149  case Attribute::Builtin: return 1ULL << 41;
1150  case Attribute::OptimizeNone: return 1ULL << 42;
1151  case Attribute::InAlloca: return 1ULL << 43;
1152  case Attribute::NonNull: return 1ULL << 44;
1153  case Attribute::JumpTable: return 1ULL << 45;
1154  case Attribute::Convergent: return 1ULL << 46;
1155  case Attribute::SafeStack: return 1ULL << 47;
1156  case Attribute::NoRecurse: return 1ULL << 48;
1157  case Attribute::InaccessibleMemOnly: return 1ULL << 49;
1158  case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1159  case Attribute::SwiftSelf: return 1ULL << 51;
1160  case Attribute::SwiftError: return 1ULL << 52;
1161  case Attribute::WriteOnly: return 1ULL << 53;
1162  case Attribute::Speculatable: return 1ULL << 54;
1163  case Attribute::StrictFP: return 1ULL << 55;
1164  case Attribute::SanitizeHWAddress: return 1ULL << 56;
1165  case Attribute::NoCfCheck: return 1ULL << 57;
1166  case Attribute::OptForFuzzing: return 1ULL << 58;
1167  case Attribute::ShadowCallStack: return 1ULL << 59;
1168  case Attribute::Dereferenceable:
1169  llvm_unreachable("dereferenceable attribute not supported in raw format");
1170  break;
1171  case Attribute::DereferenceableOrNull:
1172  llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1173  "format");
1174  break;
1175  case Attribute::ArgMemOnly:
1176  llvm_unreachable("argmemonly attribute not supported in raw format");
1177  break;
1178  case Attribute::AllocSize:
1179  llvm_unreachable("allocsize not supported in raw format");
1180  break;
1181  }
1182  llvm_unreachable("Unsupported attribute type");
1183 }
1184 
1185 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1186  if (!Val) return;
1187 
1189  I = Attribute::AttrKind(I + 1)) {
1190  if (I == Attribute::Dereferenceable ||
1191  I == Attribute::DereferenceableOrNull ||
1192  I == Attribute::ArgMemOnly ||
1193  I == Attribute::AllocSize)
1194  continue;
1195  if (uint64_t A = (Val & getRawAttributeMask(I))) {
1196  if (I == Attribute::Alignment)
1197  B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1198  else if (I == Attribute::StackAlignment)
1199  B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1200  else
1201  B.addAttribute(I);
1202  }
1203  }
1204 }
1205 
1206 /// This fills an AttrBuilder object with the LLVM attributes that have
1207 /// been decoded from the given integer. This function must stay in sync with
1208 /// 'encodeLLVMAttributesForBitcode'.
1210  uint64_t EncodedAttrs) {
1211  // FIXME: Remove in 4.0.
1212 
1213  // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1214  // the bits above 31 down by 11 bits.
1215  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1216  assert((!Alignment || isPowerOf2_32(Alignment)) &&
1217  "Alignment must be a power of two.");
1218 
1219  if (Alignment)
1220  B.addAlignmentAttr(Alignment);
1221  addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1222  (EncodedAttrs & 0xffff));
1223 }
1224 
1225 Error BitcodeReader::parseAttributeBlock() {
1227  return error("Invalid record");
1228 
1229  if (!MAttributes.empty())
1230  return error("Invalid multiple blocks");
1231 
1233 
1235 
1236  // Read all the records.
1237  while (true) {
1238  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1239 
1240  switch (Entry.Kind) {
1241  case BitstreamEntry::SubBlock: // Handled for us already.
1242  case BitstreamEntry::Error:
1243  return error("Malformed block");
1245  return Error::success();
1247  // The interesting case.
1248  break;
1249  }
1250 
1251  // Read a record.
1252  Record.clear();
1253  switch (Stream.readRecord(Entry.ID, Record)) {
1254  default: // Default behavior: ignore.
1255  break;
1256  case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1257  // FIXME: Remove in 4.0.
1258  if (Record.size() & 1)
1259  return error("Invalid record");
1260 
1261  for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1262  AttrBuilder B;
1263  decodeLLVMAttributesForBitcode(B, Record[i+1]);
1264  Attrs.push_back(AttributeList::get(Context, Record[i], B));
1265  }
1266 
1267  MAttributes.push_back(AttributeList::get(Context, Attrs));
1268  Attrs.clear();
1269  break;
1270  case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1271  for (unsigned i = 0, e = Record.size(); i != e; ++i)
1272  Attrs.push_back(MAttributeGroups[Record[i]]);
1273 
1274  MAttributes.push_back(AttributeList::get(Context, Attrs));
1275  Attrs.clear();
1276  break;
1277  }
1278  }
1279 }
1280 
1281 // Returns Attribute::None on unrecognized codes.
1282 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1283  switch (Code) {
1284  default:
1285  return Attribute::None;
1287  return Attribute::Alignment;
1289  return Attribute::AlwaysInline;
1291  return Attribute::ArgMemOnly;
1293  return Attribute::Builtin;
1295  return Attribute::ByVal;
1297  return Attribute::InAlloca;
1298  case bitc::ATTR_KIND_COLD:
1299  return Attribute::Cold;
1301  return Attribute::Convergent;
1303  return Attribute::InaccessibleMemOnly;
1305  return Attribute::InaccessibleMemOrArgMemOnly;
1307  return Attribute::InlineHint;
1309  return Attribute::InReg;
1311  return Attribute::JumpTable;
1313  return Attribute::MinSize;
1314  case bitc::ATTR_KIND_NAKED:
1315  return Attribute::Naked;
1316  case bitc::ATTR_KIND_NEST:
1317  return Attribute::Nest;
1319  return Attribute::NoAlias;
1321  return Attribute::NoBuiltin;
1323  return Attribute::NoCapture;
1325  return Attribute::NoDuplicate;
1327  return Attribute::NoImplicitFloat;
1329  return Attribute::NoInline;
1331  return Attribute::NoRecurse;
1333  return Attribute::NonLazyBind;
1335  return Attribute::NonNull;
1337  return Attribute::Dereferenceable;
1339  return Attribute::DereferenceableOrNull;
1341  return Attribute::AllocSize;
1343  return Attribute::NoRedZone;
1345  return Attribute::NoReturn;
1347  return Attribute::NoCfCheck;
1349  return Attribute::NoUnwind;
1351  return Attribute::OptForFuzzing;
1353  return Attribute::OptimizeForSize;
1355  return Attribute::OptimizeNone;
1357  return Attribute::ReadNone;
1359  return Attribute::ReadOnly;
1361  return Attribute::Returned;
1363  return Attribute::ReturnsTwice;
1364  case bitc::ATTR_KIND_S_EXT:
1365  return Attribute::SExt;
1367  return Attribute::Speculatable;
1369  return Attribute::StackAlignment;
1371  return Attribute::StackProtect;
1373  return Attribute::StackProtectReq;
1375  return Attribute::StackProtectStrong;
1377  return Attribute::SafeStack;
1379  return Attribute::ShadowCallStack;
1381  return Attribute::StrictFP;
1383  return Attribute::StructRet;
1385  return Attribute::SanitizeAddress;
1387  return Attribute::SanitizeHWAddress;
1389  return Attribute::SanitizeThread;
1391  return Attribute::SanitizeMemory;
1393  return Attribute::SwiftError;
1395  return Attribute::SwiftSelf;
1397  return Attribute::UWTable;
1399  return Attribute::WriteOnly;
1400  case bitc::ATTR_KIND_Z_EXT:
1401  return Attribute::ZExt;
1402  }
1403 }
1404 
1405 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1406  unsigned &Alignment) {
1407  // Note: Alignment in bitcode files is incremented by 1, so that zero
1408  // can be used for default alignment.
1409  if (Exponent > Value::MaxAlignmentExponent + 1)
1410  return error("Invalid alignment value");
1411  Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1412  return Error::success();
1413 }
1414 
1416  *Kind = getAttrFromCode(Code);
1417  if (*Kind == Attribute::None)
1418  return error("Unknown attribute kind (" + Twine(Code) + ")");
1419  return Error::success();
1420 }
1421 
1422 Error BitcodeReader::parseAttributeGroupBlock() {
1424  return error("Invalid record");
1425 
1426  if (!MAttributeGroups.empty())
1427  return error("Invalid multiple blocks");
1428 
1430 
1431  // Read all the records.
1432  while (true) {
1433  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1434 
1435  switch (Entry.Kind) {
1436  case BitstreamEntry::SubBlock: // Handled for us already.
1437  case BitstreamEntry::Error:
1438  return error("Malformed block");
1440  return Error::success();
1442  // The interesting case.
1443  break;
1444  }
1445 
1446  // Read a record.
1447  Record.clear();
1448  switch (Stream.readRecord(Entry.ID, Record)) {
1449  default: // Default behavior: ignore.
1450  break;
1451  case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1452  if (Record.size() < 3)
1453  return error("Invalid record");
1454 
1455  uint64_t GrpID = Record[0];
1456  uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1457 
1458  AttrBuilder B;
1459  for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1460  if (Record[i] == 0) { // Enum attribute
1462  if (Error Err = parseAttrKind(Record[++i], &Kind))
1463  return Err;
1464 
1465  B.addAttribute(Kind);
1466  } else if (Record[i] == 1) { // Integer attribute
1468  if (Error Err = parseAttrKind(Record[++i], &Kind))
1469  return Err;
1470  if (Kind == Attribute::Alignment)
1471  B.addAlignmentAttr(Record[++i]);
1472  else if (Kind == Attribute::StackAlignment)
1473  B.addStackAlignmentAttr(Record[++i]);
1474  else if (Kind == Attribute::Dereferenceable)
1475  B.addDereferenceableAttr(Record[++i]);
1476  else if (Kind == Attribute::DereferenceableOrNull)
1477  B.addDereferenceableOrNullAttr(Record[++i]);
1478  else if (Kind == Attribute::AllocSize)
1479  B.addAllocSizeAttrFromRawRepr(Record[++i]);
1480  } else { // String attribute
1481  assert((Record[i] == 3 || Record[i] == 4) &&
1482  "Invalid attribute group entry");
1483  bool HasValue = (Record[i++] == 4);
1484  SmallString<64> KindStr;
1485  SmallString<64> ValStr;
1486 
1487  while (Record[i] != 0 && i != e)
1488  KindStr += Record[i++];
1489  assert(Record[i] == 0 && "Kind string not null terminated");
1490 
1491  if (HasValue) {
1492  // Has a value associated with it.
1493  ++i; // Skip the '0' that terminates the "kind" string.
1494  while (Record[i] != 0 && i != e)
1495  ValStr += Record[i++];
1496  assert(Record[i] == 0 && "Value string not null terminated");
1497  }
1498 
1499  B.addAttribute(KindStr.str(), ValStr.str());
1500  }
1501  }
1502 
1503  MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1504  break;
1505  }
1506  }
1507  }
1508 }
1509 
1510 Error BitcodeReader::parseTypeTable() {
1512  return error("Invalid record");
1513 
1514  return parseTypeTableBody();
1515 }
1516 
1517 Error BitcodeReader::parseTypeTableBody() {
1518  if (!TypeList.empty())
1519  return error("Invalid multiple blocks");
1520 
1522  unsigned NumRecords = 0;
1523 
1525 
1526  // Read all the records for this type table.
1527  while (true) {
1528  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1529 
1530  switch (Entry.Kind) {
1531  case BitstreamEntry::SubBlock: // Handled for us already.
1532  case BitstreamEntry::Error:
1533  return error("Malformed block");
1535  if (NumRecords != TypeList.size())
1536  return error("Malformed block");
1537  return Error::success();
1539  // The interesting case.
1540  break;
1541  }
1542 
1543  // Read a record.
1544  Record.clear();
1545  Type *ResultTy = nullptr;
1546  switch (Stream.readRecord(Entry.ID, Record)) {
1547  default:
1548  return error("Invalid value");
1549  case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1550  // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1551  // type list. This allows us to reserve space.
1552  if (Record.size() < 1)
1553  return error("Invalid record");
1554  TypeList.resize(Record[0]);
1555  continue;
1556  case bitc::TYPE_CODE_VOID: // VOID
1557  ResultTy = Type::getVoidTy(Context);
1558  break;
1559  case bitc::TYPE_CODE_HALF: // HALF
1560  ResultTy = Type::getHalfTy(Context);
1561  break;
1562  case bitc::TYPE_CODE_FLOAT: // FLOAT
1563  ResultTy = Type::getFloatTy(Context);
1564  break;
1565  case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1566  ResultTy = Type::getDoubleTy(Context);
1567  break;
1568  case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1569  ResultTy = Type::getX86_FP80Ty(Context);
1570  break;
1571  case bitc::TYPE_CODE_FP128: // FP128
1572  ResultTy = Type::getFP128Ty(Context);
1573  break;
1574  case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1575  ResultTy = Type::getPPC_FP128Ty(Context);
1576  break;
1577  case bitc::TYPE_CODE_LABEL: // LABEL
1578  ResultTy = Type::getLabelTy(Context);
1579  break;
1580  case bitc::TYPE_CODE_METADATA: // METADATA
1581  ResultTy = Type::getMetadataTy(Context);
1582  break;
1583  case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1584  ResultTy = Type::getX86_MMXTy(Context);
1585  break;
1586  case bitc::TYPE_CODE_TOKEN: // TOKEN
1587  ResultTy = Type::getTokenTy(Context);
1588  break;
1589  case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1590  if (Record.size() < 1)
1591  return error("Invalid record");
1592 
1593  uint64_t NumBits = Record[0];
1594  if (NumBits < IntegerType::MIN_INT_BITS ||
1595  NumBits > IntegerType::MAX_INT_BITS)
1596  return error("Bitwidth for integer type out of range");
1597  ResultTy = IntegerType::get(Context, NumBits);
1598  break;
1599  }
1600  case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1601  // [pointee type, address space]
1602  if (Record.size() < 1)
1603  return error("Invalid record");
1604  unsigned AddressSpace = 0;
1605  if (Record.size() == 2)
1606  AddressSpace = Record[1];
1607  ResultTy = getTypeByID(Record[0]);
1608  if (!ResultTy ||
1610  return error("Invalid type");
1611  ResultTy = PointerType::get(ResultTy, AddressSpace);
1612  break;
1613  }
1615  // FIXME: attrid is dead, remove it in LLVM 4.0
1616  // FUNCTION: [vararg, attrid, retty, paramty x N]
1617  if (Record.size() < 3)
1618  return error("Invalid record");
1619  SmallVector<Type*, 8> ArgTys;
1620  for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1621  if (Type *T = getTypeByID(Record[i]))
1622  ArgTys.push_back(T);
1623  else
1624  break;
1625  }
1626 
1627  ResultTy = getTypeByID(Record[2]);
1628  if (!ResultTy || ArgTys.size() < Record.size()-3)
1629  return error("Invalid type");
1630 
1631  ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1632  break;
1633  }
1634  case bitc::TYPE_CODE_FUNCTION: {
1635  // FUNCTION: [vararg, retty, paramty x N]
1636  if (Record.size() < 2)
1637  return error("Invalid record");
1638  SmallVector<Type*, 8> ArgTys;
1639  for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1640  if (Type *T = getTypeByID(Record[i])) {
1642  return error("Invalid function argument type");
1643  ArgTys.push_back(T);
1644  }
1645  else
1646  break;
1647  }
1648 
1649  ResultTy = getTypeByID(Record[1]);
1650  if (!ResultTy || ArgTys.size() < Record.size()-2)
1651  return error("Invalid type");
1652 
1653  ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1654  break;
1655  }
1656  case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1657  if (Record.size() < 1)
1658  return error("Invalid record");
1659  SmallVector<Type*, 8> EltTys;
1660  for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1661  if (Type *T = getTypeByID(Record[i]))
1662  EltTys.push_back(T);
1663  else
1664  break;
1665  }
1666  if (EltTys.size() != Record.size()-1)
1667  return error("Invalid type");
1668  ResultTy = StructType::get(Context, EltTys, Record[0]);
1669  break;
1670  }
1671  case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1672  if (convertToString(Record, 0, TypeName))
1673  return error("Invalid record");
1674  continue;
1675 
1676  case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1677  if (Record.size() < 1)
1678  return error("Invalid record");
1679 
1680  if (NumRecords >= TypeList.size())
1681  return error("Invalid TYPE table");
1682 
1683  // Check to see if this was forward referenced, if so fill in the temp.
1684  StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1685  if (Res) {
1686  Res->setName(TypeName);
1687  TypeList[NumRecords] = nullptr;
1688  } else // Otherwise, create a new struct.
1689  Res = createIdentifiedStructType(Context, TypeName);
1690  TypeName.clear();
1691 
1692  SmallVector<Type*, 8> EltTys;
1693  for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1694  if (Type *T = getTypeByID(Record[i]))
1695  EltTys.push_back(T);
1696  else
1697  break;
1698  }
1699  if (EltTys.size() != Record.size()-1)
1700  return error("Invalid record");
1701  Res->setBody(EltTys, Record[0]);
1702  ResultTy = Res;
1703  break;
1704  }
1705  case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1706  if (Record.size() != 1)
1707  return error("Invalid record");
1708 
1709  if (NumRecords >= TypeList.size())
1710  return error("Invalid TYPE table");
1711 
1712  // Check to see if this was forward referenced, if so fill in the temp.
1713  StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1714  if (Res) {
1715  Res->setName(TypeName);
1716  TypeList[NumRecords] = nullptr;
1717  } else // Otherwise, create a new struct with no body.
1718  Res = createIdentifiedStructType(Context, TypeName);
1719  TypeName.clear();
1720  ResultTy = Res;
1721  break;
1722  }
1723  case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1724  if (Record.size() < 2)
1725  return error("Invalid record");
1726  ResultTy = getTypeByID(Record[1]);
1727  if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1728  return error("Invalid type");
1729  ResultTy = ArrayType::get(ResultTy, Record[0]);
1730  break;
1731  case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
1732  if (Record.size() < 2)
1733  return error("Invalid record");
1734  if (Record[0] == 0)
1735  return error("Invalid vector length");
1736  ResultTy = getTypeByID(Record[1]);
1737  if (!ResultTy || !StructType::isValidElementType(ResultTy))
1738  return error("Invalid type");
1739  ResultTy = VectorType::get(ResultTy, Record[0]);
1740  break;
1741  }
1742 
1743  if (NumRecords >= TypeList.size())
1744  return error("Invalid TYPE table");
1745  if (TypeList[NumRecords])
1746  return error(
1747  "Invalid TYPE table: Only named structs can be forward referenced");
1748  assert(ResultTy && "Didn't read a type?");
1749  TypeList[NumRecords++] = ResultTy;
1750  }
1751 }
1752 
1753 Error BitcodeReader::parseOperandBundleTags() {
1755  return error("Invalid record");
1756 
1757  if (!BundleTags.empty())
1758  return error("Invalid multiple blocks");
1759 
1761 
1762  while (true) {
1763  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1764 
1765  switch (Entry.Kind) {
1766  case BitstreamEntry::SubBlock: // Handled for us already.
1767  case BitstreamEntry::Error:
1768  return error("Malformed block");
1770  return Error::success();
1772  // The interesting case.
1773  break;
1774  }
1775 
1776  // Tags are implicitly mapped to integers by their order.
1777 
1778  if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1779  return error("Invalid record");
1780 
1781  // OPERAND_BUNDLE_TAG: [strchr x N]
1782  BundleTags.emplace_back();
1783  if (convertToString(Record, 0, BundleTags.back()))
1784  return error("Invalid record");
1785  Record.clear();
1786  }
1787 }
1788 
1789 Error BitcodeReader::parseSyncScopeNames() {
1791  return error("Invalid record");
1792 
1793  if (!SSIDs.empty())
1794  return error("Invalid multiple synchronization scope names blocks");
1795 
1797  while (true) {
1798  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1799  switch (Entry.Kind) {
1800  case BitstreamEntry::SubBlock: // Handled for us already.
1801  case BitstreamEntry::Error:
1802  return error("Malformed block");
1804  if (SSIDs.empty())
1805  return error("Invalid empty synchronization scope names block");
1806  return Error::success();
1808  // The interesting case.
1809  break;
1810  }
1811 
1812  // Synchronization scope names are implicitly mapped to synchronization
1813  // scope IDs by their order.
1814 
1815  if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1816  return error("Invalid record");
1817 
1818  SmallString<16> SSN;
1819  if (convertToString(Record, 0, SSN))
1820  return error("Invalid record");
1821 
1822  SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1823  Record.clear();
1824  }
1825 }
1826 
1827 /// Associate a value with its name from the given index in the provided record.
1828 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1829  unsigned NameIndex, Triple &TT) {
1831  if (convertToString(Record, NameIndex, ValueName))
1832  return error("Invalid record");
1833  unsigned ValueID = Record[0];
1834  if (ValueID >= ValueList.size() || !ValueList[ValueID])
1835  return error("Invalid record");
1836  Value *V = ValueList[ValueID];
1837 
1838  StringRef NameStr(ValueName.data(), ValueName.size());
1839  if (NameStr.find_first_of(0) != StringRef::npos)
1840  return error("Invalid value name");
1841  V->setName(NameStr);
1842  auto *GO = dyn_cast<GlobalObject>(V);
1843  if (GO) {
1844  if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1845  if (TT.supportsCOMDAT())
1846  GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1847  else
1848  GO->setComdat(nullptr);
1849  }
1850  }
1851  return V;
1852 }
1853 
1854 /// Helper to note and return the current location, and jump to the given
1855 /// offset.
1856 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1857  BitstreamCursor &Stream) {
1858  // Save the current parsing location so we can jump back at the end
1859  // of the VST read.
1860  uint64_t CurrentBit = Stream.GetCurrentBitNo();
1861  Stream.JumpToBit(Offset * 32);
1862 #ifndef NDEBUG
1863  // Do some checking if we are in debug mode.
1864  BitstreamEntry Entry = Stream.advance();
1867 #else
1868  // In NDEBUG mode ignore the output so we don't get an unused variable
1869  // warning.
1870  Stream.advance();
1871 #endif
1872  return CurrentBit;
1873 }
1874 
1875 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1876  Function *F,
1877  ArrayRef<uint64_t> Record) {
1878  // Note that we subtract 1 here because the offset is relative to one word
1879  // before the start of the identification or module block, which was
1880  // historically always the start of the regular bitcode header.
1881  uint64_t FuncWordOffset = Record[1] - 1;
1882  uint64_t FuncBitOffset = FuncWordOffset * 32;
1883  DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1884  // Set the LastFunctionBlockBit to point to the last function block.
1885  // Later when parsing is resumed after function materialization,
1886  // we can simply skip that last function block.
1887  if (FuncBitOffset > LastFunctionBlockBit)
1888  LastFunctionBlockBit = FuncBitOffset;
1889 }
1890 
1891 /// Read a new-style GlobalValue symbol table.
1892 Error BitcodeReader::parseGlobalValueSymbolTable() {
1893  unsigned FuncBitcodeOffsetDelta =
1895 
1897  return error("Invalid record");
1898 
1900  while (true) {
1901  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1902 
1903  switch (Entry.Kind) {
1905  case BitstreamEntry::Error:
1906  return error("Malformed block");
1908  return Error::success();
1910  break;
1911  }
1912 
1913  Record.clear();
1914  switch (Stream.readRecord(Entry.ID, Record)) {
1915  case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1916  setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1917  cast<Function>(ValueList[Record[0]]), Record);
1918  break;
1919  }
1920  }
1921 }
1922 
1923 /// Parse the value symbol table at either the current parsing location or
1924 /// at the given bit offset if provided.
1925 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1926  uint64_t CurrentBit;
1927  // Pass in the Offset to distinguish between calling for the module-level
1928  // VST (where we want to jump to the VST offset) and the function-level
1929  // VST (where we don't).
1930  if (Offset > 0) {
1931  CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1932  // If this module uses a string table, read this as a module-level VST.
1933  if (UseStrtab) {
1934  if (Error Err = parseGlobalValueSymbolTable())
1935  return Err;
1936  Stream.JumpToBit(CurrentBit);
1937  return Error::success();
1938  }
1939  // Otherwise, the VST will be in a similar format to a function-level VST,
1940  // and will contain symbol names.
1941  }
1942 
1943  // Compute the delta between the bitcode indices in the VST (the word offset
1944  // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1945  // expected by the lazy reader. The reader's EnterSubBlock expects to have
1946  // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1947  // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1948  // just before entering the VST subblock because: 1) the EnterSubBlock
1949  // changes the AbbrevID width; 2) the VST block is nested within the same
1950  // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1951  // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1952  // jump to the FUNCTION_BLOCK using this offset later, we don't want
1953  // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1954  unsigned FuncBitcodeOffsetDelta =
1956 
1958  return error("Invalid record");
1959 
1961 
1962  Triple TT(TheModule->getTargetTriple());
1963 
1964  // Read all the records for this value table.
1966 
1967  while (true) {
1968  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1969 
1970  switch (Entry.Kind) {
1971  case BitstreamEntry::SubBlock: // Handled for us already.
1972  case BitstreamEntry::Error:
1973  return error("Malformed block");
1975  if (Offset > 0)
1976  Stream.JumpToBit(CurrentBit);
1977  return Error::success();
1979  // The interesting case.
1980  break;
1981  }
1982 
1983  // Read a record.
1984  Record.clear();
1985  switch (Stream.readRecord(Entry.ID, Record)) {
1986  default: // Default behavior: unknown type.
1987  break;
1988  case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
1989  Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
1990  if (Error Err = ValOrErr.takeError())
1991  return Err;
1992  ValOrErr.get();
1993  break;
1994  }
1995  case bitc::VST_CODE_FNENTRY: {
1996  // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1997  Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
1998  if (Error Err = ValOrErr.takeError())
1999  return Err;
2000  Value *V = ValOrErr.get();
2001 
2002  // Ignore function offsets emitted for aliases of functions in older
2003  // versions of LLVM.
2004  if (auto *F = dyn_cast<Function>(V))
2005  setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2006  break;
2007  }
2008  case bitc::VST_CODE_BBENTRY: {
2009  if (convertToString(Record, 1, ValueName))
2010  return error("Invalid record");
2011  BasicBlock *BB = getBasicBlock(Record[0]);
2012  if (!BB)
2013  return error("Invalid record");
2014 
2015  BB->setName(StringRef(ValueName.data(), ValueName.size()));
2016  ValueName.clear();
2017  break;
2018  }
2019  }
2020  }
2021 }
2022 
2023 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2024 /// encoding.
2025 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2026  if ((V & 1) == 0)
2027  return V >> 1;
2028  if (V != 1)
2029  return -(V >> 1);
2030  // There is no such thing as -0 with integers. "-0" really means MININT.
2031  return 1ULL << 63;
2032 }
2033 
2034 /// Resolve all of the initializers for global values and aliases that we can.
2035 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2036  std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2037  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2038  IndirectSymbolInitWorklist;
2039  std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2040  std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2041  std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2042 
2043  GlobalInitWorklist.swap(GlobalInits);
2044  IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2045  FunctionPrefixWorklist.swap(FunctionPrefixes);
2046  FunctionPrologueWorklist.swap(FunctionPrologues);
2047  FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2048 
2049  while (!GlobalInitWorklist.empty()) {
2050  unsigned ValID = GlobalInitWorklist.back().second;
2051  if (ValID >= ValueList.size()) {
2052  // Not ready to resolve this yet, it requires something later in the file.
2053  GlobalInits.push_back(GlobalInitWorklist.back());
2054  } else {
2055  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2056  GlobalInitWorklist.back().first->setInitializer(C);
2057  else
2058  return error("Expected a constant");
2059  }
2060  GlobalInitWorklist.pop_back();
2061  }
2062 
2063  while (!IndirectSymbolInitWorklist.empty()) {
2064  unsigned ValID = IndirectSymbolInitWorklist.back().second;
2065  if (ValID >= ValueList.size()) {
2066  IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2067  } else {
2068  Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2069  if (!C)
2070  return error("Expected a constant");
2071  GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2072  if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2073  return error("Alias and aliasee types don't match");
2074  GIS->setIndirectSymbol(C);
2075  }
2076  IndirectSymbolInitWorklist.pop_back();
2077  }
2078 
2079  while (!FunctionPrefixWorklist.empty()) {
2080  unsigned ValID = FunctionPrefixWorklist.back().second;
2081  if (ValID >= ValueList.size()) {
2082  FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2083  } else {
2084  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2085  FunctionPrefixWorklist.back().first->setPrefixData(C);
2086  else
2087  return error("Expected a constant");
2088  }
2089  FunctionPrefixWorklist.pop_back();
2090  }
2091 
2092  while (!FunctionPrologueWorklist.empty()) {
2093  unsigned ValID = FunctionPrologueWorklist.back().second;
2094  if (ValID >= ValueList.size()) {
2095  FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2096  } else {
2097  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2098  FunctionPrologueWorklist.back().first->setPrologueData(C);
2099  else
2100  return error("Expected a constant");
2101  }
2102  FunctionPrologueWorklist.pop_back();
2103  }
2104 
2105  while (!FunctionPersonalityFnWorklist.empty()) {
2106  unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2107  if (ValID >= ValueList.size()) {
2108  FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2109  } else {
2110  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2111  FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2112  else
2113  return error("Expected a constant");
2114  }
2115  FunctionPersonalityFnWorklist.pop_back();
2116  }
2117 
2118  return Error::success();
2119 }
2120 
2121 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2122  SmallVector<uint64_t, 8> Words(Vals.size());
2123  transform(Vals, Words.begin(),
2124  BitcodeReader::decodeSignRotatedValue);
2125 
2126  return APInt(TypeBits, Words);
2127 }
2128 
2129 Error BitcodeReader::parseConstants() {
2131  return error("Invalid record");
2132 
2134 
2135  // Read all the records for this value table.
2136  Type *CurTy = Type::getInt32Ty(Context);
2137  unsigned NextCstNo = ValueList.size();
2138 
2139  while (true) {
2140  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2141 
2142  switch (Entry.Kind) {
2143  case BitstreamEntry::SubBlock: // Handled for us already.
2144  case BitstreamEntry::Error:
2145  return error("Malformed block");
2147  if (NextCstNo != ValueList.size())
2148  return error("Invalid constant reference");
2149 
2150  // Once all the constants have been read, go through and resolve forward
2151  // references.
2152  ValueList.resolveConstantForwardRefs();
2153  return Error::success();
2155  // The interesting case.
2156  break;
2157  }
2158 
2159  // Read a record.
2160  Record.clear();
2161  Type *VoidType = Type::getVoidTy(Context);
2162  Value *V = nullptr;
2163  unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2164  switch (BitCode) {
2165  default: // Default behavior: unknown constant
2166  case bitc::CST_CODE_UNDEF: // UNDEF
2167  V = UndefValue::get(CurTy);
2168  break;
2169  case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2170  if (Record.empty())
2171  return error("Invalid record");
2172  if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2173  return error("Invalid record");
2174  if (TypeList[Record[0]] == VoidType)
2175  return error("Invalid constant type");
2176  CurTy = TypeList[Record[0]];
2177  continue; // Skip the ValueList manipulation.
2178  case bitc::CST_CODE_NULL: // NULL
2179  V = Constant::getNullValue(CurTy);
2180  break;
2181  case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2182  if (!CurTy->isIntegerTy() || Record.empty())
2183  return error("Invalid record");
2184  V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2185  break;
2186  case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2187  if (!CurTy->isIntegerTy() || Record.empty())
2188  return error("Invalid record");
2189 
2190  APInt VInt =
2191  readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2192  V = ConstantInt::get(Context, VInt);
2193 
2194  break;
2195  }
2196  case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2197  if (Record.empty())
2198  return error("Invalid record");
2199  if (CurTy->isHalfTy())
2200  V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2201  APInt(16, (uint16_t)Record[0])));
2202  else if (CurTy->isFloatTy())
2204  APInt(32, (uint32_t)Record[0])));
2205  else if (CurTy->isDoubleTy())
2207  APInt(64, Record[0])));
2208  else if (CurTy->isX86_FP80Ty()) {
2209  // Bits are not stored the same way as a normal i80 APInt, compensate.
2210  uint64_t Rearrange[2];
2211  Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2212  Rearrange[1] = Record[0] >> 48;
2214  APInt(80, Rearrange)));
2215  } else if (CurTy->isFP128Ty())
2216  V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2217  APInt(128, Record)));
2218  else if (CurTy->isPPC_FP128Ty())
2220  APInt(128, Record)));
2221  else
2222  V = UndefValue::get(CurTy);
2223  break;
2224  }
2225 
2226  case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2227  if (Record.empty())
2228  return error("Invalid record");
2229 
2230  unsigned Size = Record.size();
2232 
2233  if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2234  for (unsigned i = 0; i != Size; ++i)
2235  Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2236  STy->getElementType(i)));
2237  V = ConstantStruct::get(STy, Elts);
2238  } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2239  Type *EltTy = ATy->getElementType();
2240  for (unsigned i = 0; i != Size; ++i)
2241  Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2242  V = ConstantArray::get(ATy, Elts);
2243  } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2244  Type *EltTy = VTy->getElementType();
2245  for (unsigned i = 0; i != Size; ++i)
2246  Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2247  V = ConstantVector::get(Elts);
2248  } else {
2249  V = UndefValue::get(CurTy);
2250  }
2251  break;
2252  }
2253  case bitc::CST_CODE_STRING: // STRING: [values]
2254  case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2255  if (Record.empty())
2256  return error("Invalid record");
2257 
2258  SmallString<16> Elts(Record.begin(), Record.end());
2259  V = ConstantDataArray::getString(Context, Elts,
2260  BitCode == bitc::CST_CODE_CSTRING);
2261  break;
2262  }
2263  case bitc::CST_CODE_DATA: {// DATA: [n x value]
2264  if (Record.empty())
2265  return error("Invalid record");
2266 
2267  Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2268  if (EltTy->isIntegerTy(8)) {
2269  SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2270  if (isa<VectorType>(CurTy))
2271  V = ConstantDataVector::get(Context, Elts);
2272  else
2273  V = ConstantDataArray::get(Context, Elts);
2274  } else if (EltTy->isIntegerTy(16)) {
2275  SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2276  if (isa<VectorType>(CurTy))
2277  V = ConstantDataVector::get(Context, Elts);
2278  else
2279  V = ConstantDataArray::get(Context, Elts);
2280  } else if (EltTy->isIntegerTy(32)) {
2281  SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2282  if (isa<VectorType>(CurTy))
2283  V = ConstantDataVector::get(Context, Elts);
2284  else
2285  V = ConstantDataArray::get(Context, Elts);
2286  } else if (EltTy->isIntegerTy(64)) {
2287  SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2288  if (isa<VectorType>(CurTy))
2289  V = ConstantDataVector::get(Context, Elts);
2290  else
2291  V = ConstantDataArray::get(Context, Elts);
2292  } else if (EltTy->isHalfTy()) {
2293  SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2294  if (isa<VectorType>(CurTy))
2295  V = ConstantDataVector::getFP(Context, Elts);
2296  else
2297  V = ConstantDataArray::getFP(Context, Elts);
2298  } else if (EltTy->isFloatTy()) {
2299  SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2300  if (isa<VectorType>(CurTy))
2301  V = ConstantDataVector::getFP(Context, Elts);
2302  else
2303  V = ConstantDataArray::getFP(Context, Elts);
2304  } else if (EltTy->isDoubleTy()) {
2305  SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2306  if (isa<VectorType>(CurTy))
2307  V = ConstantDataVector::getFP(Context, Elts);
2308  else
2309  V = ConstantDataArray::getFP(Context, Elts);
2310  } else {
2311  return error("Invalid type for value");
2312  }
2313  break;
2314  }
2315  case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2316  if (Record.size() < 3)
2317  return error("Invalid record");
2318  int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2319  if (Opc < 0) {
2320  V = UndefValue::get(CurTy); // Unknown binop.
2321  } else {
2322  Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2323  Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2324  unsigned Flags = 0;
2325  if (Record.size() >= 4) {
2326  if (Opc == Instruction::Add ||
2327  Opc == Instruction::Sub ||
2328  Opc == Instruction::Mul ||
2329  Opc == Instruction::Shl) {
2330  if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2332  if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2334  } else if (Opc == Instruction::SDiv ||
2335  Opc == Instruction::UDiv ||
2336  Opc == Instruction::LShr ||
2337  Opc == Instruction::AShr) {
2338  if (Record[3] & (1 << bitc::PEO_EXACT))
2339  Flags |= SDivOperator::IsExact;
2340  }
2341  }
2342  V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2343  }
2344  break;
2345  }
2346  case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2347  if (Record.size() < 3)
2348  return error("Invalid record");
2349  int Opc = getDecodedCastOpcode(Record[0]);
2350  if (Opc < 0) {
2351  V = UndefValue::get(CurTy); // Unknown cast.
2352  } else {
2353  Type *OpTy = getTypeByID(Record[1]);
2354  if (!OpTy)
2355  return error("Invalid record");
2356  Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2357  V = UpgradeBitCastExpr(Opc, Op, CurTy);
2358  if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2359  }
2360  break;
2361  }
2362  case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2363  case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2364  case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2365  // operands]
2366  unsigned OpNum = 0;
2367  Type *PointeeType = nullptr;
2369  Record.size() % 2)
2370  PointeeType = getTypeByID(Record[OpNum++]);
2371 
2372  bool InBounds = false;
2373  Optional<unsigned> InRangeIndex;
2375  uint64_t Op = Record[OpNum++];
2376  InBounds = Op & 1;
2377  InRangeIndex = Op >> 1;
2378  } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2379  InBounds = true;
2380 
2382  while (OpNum != Record.size()) {
2383  Type *ElTy = getTypeByID(Record[OpNum++]);
2384  if (!ElTy)
2385  return error("Invalid record");
2386  Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2387  }
2388 
2389  if (PointeeType &&
2390  PointeeType !=
2391  cast<PointerType>(Elts[0]->getType()->getScalarType())
2392  ->getElementType())
2393  return error("Explicit gep operator type does not match pointee type "
2394  "of pointer operand");
2395 
2396  if (Elts.size() < 1)
2397  return error("Invalid gep with no operands");
2398 
2399  ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2400  V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2401  InBounds, InRangeIndex);
2402  break;
2403  }
2404  case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2405  if (Record.size() < 3)
2406  return error("Invalid record");
2407 
2408  Type *SelectorTy = Type::getInt1Ty(Context);
2409 
2410  // The selector might be an i1 or an <n x i1>
2411  // Get the type from the ValueList before getting a forward ref.
2412  if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2413  if (Value *V = ValueList[Record[0]])
2414  if (SelectorTy != V->getType())
2415  SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2416 
2417  V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2418  SelectorTy),
2419  ValueList.getConstantFwdRef(Record[1],CurTy),
2420  ValueList.getConstantFwdRef(Record[2],CurTy));
2421  break;
2422  }
2424  : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2425  if (Record.size() < 3)
2426  return error("Invalid record");
2427  VectorType *OpTy =
2428  dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2429  if (!OpTy)
2430  return error("Invalid record");
2431  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2432  Constant *Op1 = nullptr;
2433  if (Record.size() == 4) {
2434  Type *IdxTy = getTypeByID(Record[2]);
2435  if (!IdxTy)
2436  return error("Invalid record");
2437  Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2438  } else // TODO: Remove with llvm 4.0
2439  Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2440  if (!Op1)
2441  return error("Invalid record");
2442  V = ConstantExpr::getExtractElement(Op0, Op1);
2443  break;
2444  }
2446  : { // CE_INSERTELT: [opval, opval, opty, opval]
2447  VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2448  if (Record.size() < 3 || !OpTy)
2449  return error("Invalid record");
2450  Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2451  Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2452  OpTy->getElementType());
2453  Constant *Op2 = nullptr;
2454  if (Record.size() == 4) {
2455  Type *IdxTy = getTypeByID(Record[2]);
2456  if (!IdxTy)
2457  return error("Invalid record");
2458  Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2459  } else // TODO: Remove with llvm 4.0
2460  Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2461  if (!Op2)
2462  return error("Invalid record");
2463  V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2464  break;
2465  }
2466  case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2467  VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2468  if (Record.size() < 3 || !OpTy)
2469  return error("Invalid record");
2470  Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2471  Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2472  Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2473  OpTy->getNumElements());
2474  Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2475  V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2476  break;
2477  }
2478  case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2479  VectorType *RTy = dyn_cast<VectorType>(CurTy);
2480  VectorType *OpTy =
2481  dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2482  if (Record.size() < 4 || !RTy || !OpTy)
2483  return error("Invalid record");
2484  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2485  Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2486  Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2487  RTy->getNumElements());
2488  Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2489  V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2490  break;
2491  }
2492  case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2493  if (Record.size() < 4)
2494  return error("Invalid record");
2495  Type *OpTy = getTypeByID(Record[0]);
2496  if (!OpTy)
2497  return error("Invalid record");
2498  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2499  Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2500 
2501  if (OpTy->isFPOrFPVectorTy())
2502  V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2503  else
2504  V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2505  break;
2506  }
2507  // This maintains backward compatibility, pre-asm dialect keywords.
2508  // FIXME: Remove with the 4.0 release.
2510  if (Record.size() < 2)
2511  return error("Invalid record");
2512  std::string AsmStr, ConstrStr;
2513  bool HasSideEffects = Record[0] & 1;
2514  bool IsAlignStack = Record[0] >> 1;
2515  unsigned AsmStrSize = Record[1];
2516  if (2+AsmStrSize >= Record.size())
2517  return error("Invalid record");
2518  unsigned ConstStrSize = Record[2+AsmStrSize];
2519  if (3+AsmStrSize+ConstStrSize > Record.size())
2520  return error("Invalid record");
2521 
2522  for (unsigned i = 0; i != AsmStrSize; ++i)
2523  AsmStr += (char)Record[2+i];
2524  for (unsigned i = 0; i != ConstStrSize; ++i)
2525  ConstrStr += (char)Record[3+AsmStrSize+i];
2526  PointerType *PTy = cast<PointerType>(CurTy);
2527  UpgradeInlineAsmString(&AsmStr);
2528  V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2529  AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2530  break;
2531  }
2532  // This version adds support for the asm dialect keywords (e.g.,
2533  // inteldialect).
2534  case bitc::CST_CODE_INLINEASM: {
2535  if (Record.size() < 2)
2536  return error("Invalid record");
2537  std::string AsmStr, ConstrStr;
2538  bool HasSideEffects = Record[0] & 1;
2539  bool IsAlignStack = (Record[0] >> 1) & 1;
2540  unsigned AsmDialect = Record[0] >> 2;
2541  unsigned AsmStrSize = Record[1];
2542  if (2+AsmStrSize >= Record.size())
2543  return error("Invalid record");
2544  unsigned ConstStrSize = Record[2+AsmStrSize];
2545  if (3+AsmStrSize+ConstStrSize > Record.size())
2546  return error("Invalid record");
2547 
2548  for (unsigned i = 0; i != AsmStrSize; ++i)
2549  AsmStr += (char)Record[2+i];
2550  for (unsigned i = 0; i != ConstStrSize; ++i)
2551  ConstrStr += (char)Record[3+AsmStrSize+i];
2552  PointerType *PTy = cast<PointerType>(CurTy);
2553  UpgradeInlineAsmString(&AsmStr);
2554  V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2555  AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2556  InlineAsm::AsmDialect(AsmDialect));
2557  break;
2558  }
2560  if (Record.size() < 3)
2561  return error("Invalid record");
2562  Type *FnTy = getTypeByID(Record[0]);
2563  if (!FnTy)
2564  return error("Invalid record");
2565  Function *Fn =
2566  dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2567  if (!Fn)
2568  return error("Invalid record");
2569 
2570  // If the function is already parsed we can insert the block address right
2571  // away.
2572  BasicBlock *BB;
2573  unsigned BBID = Record[2];
2574  if (!BBID)
2575  // Invalid reference to entry block.
2576  return error("Invalid ID");
2577  if (!Fn->empty()) {
2578  Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2579  for (size_t I = 0, E = BBID; I != E; ++I) {
2580  if (BBI == BBE)
2581  return error("Invalid ID");
2582  ++BBI;
2583  }
2584  BB = &*BBI;
2585  } else {
2586  // Otherwise insert a placeholder and remember it so it can be inserted
2587  // when the function is parsed.
2588  auto &FwdBBs = BasicBlockFwdRefs[Fn];
2589  if (FwdBBs.empty())
2590  BasicBlockFwdRefQueue.push_back(Fn);
2591  if (FwdBBs.size() < BBID + 1)
2592  FwdBBs.resize(BBID + 1);
2593  if (!FwdBBs[BBID])
2594  FwdBBs[BBID] = BasicBlock::Create(Context);
2595  BB = FwdBBs[BBID];
2596  }
2597  V = BlockAddress::get(Fn, BB);
2598  break;
2599  }
2600  }
2601 
2602  ValueList.assignValue(V, NextCstNo);
2603  ++NextCstNo;
2604  }
2605 }
2606 
2607 Error BitcodeReader::parseUseLists() {
2609  return error("Invalid record");
2610 
2611  // Read all the records.
2613 
2614  while (true) {
2615  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2616 
2617  switch (Entry.Kind) {
2618  case BitstreamEntry::SubBlock: // Handled for us already.
2619  case BitstreamEntry::Error:
2620  return error("Malformed block");
2622  return Error::success();
2624  // The interesting case.
2625  break;
2626  }
2627 
2628  // Read a use list record.
2629  Record.clear();
2630  bool IsBB = false;
2631  switch (Stream.readRecord(Entry.ID, Record)) {
2632  default: // Default behavior: unknown type.
2633  break;
2634  case bitc::USELIST_CODE_BB:
2635  IsBB = true;
2638  unsigned RecordLength = Record.size();
2639  if (RecordLength < 3)
2640  // Records should have at least an ID and two indexes.
2641  return error("Invalid record");
2642  unsigned ID = Record.back();
2643  Record.pop_back();
2644 
2645  Value *V;
2646  if (IsBB) {
2647  assert(ID < FunctionBBs.size() && "Basic block not found");
2648  V = FunctionBBs[ID];
2649  } else
2650  V = ValueList[ID];
2651  unsigned NumUses = 0;
2653  for (const Use &U : V->materialized_uses()) {
2654  if (++NumUses > Record.size())
2655  break;
2656  Order[&U] = Record[NumUses - 1];
2657  }
2658  if (Order.size() != Record.size() || NumUses > Record.size())
2659  // Mismatches can happen if the functions are being materialized lazily
2660  // (out-of-order), or a value has been upgraded.
2661  break;
2662 
2663  V->sortUseList([&](const Use &L, const Use &R) {
2664  return Order.lookup(&L) < Order.lookup(&R);
2665  });
2666  break;
2667  }
2668  }
2669  }
2670 }
2671 
2672 /// When we see the block for metadata, remember where it is and then skip it.
2673 /// This lets us lazily deserialize the metadata.
2674 Error BitcodeReader::rememberAndSkipMetadata() {
2675  // Save the current stream state.
2676  uint64_t CurBit = Stream.GetCurrentBitNo();
2677  DeferredMetadataInfo.push_back(CurBit);
2678 
2679  // Skip over the block for now.
2680  if (Stream.SkipBlock())
2681  return error("Invalid record");
2682  return Error::success();
2683 }
2684 
2685 Error BitcodeReader::materializeMetadata() {
2686  for (uint64_t BitPos : DeferredMetadataInfo) {
2687  // Move the bit stream to the saved position.
2688  Stream.JumpToBit(BitPos);
2689  if (Error Err = MDLoader->parseModuleMetadata())
2690  return Err;
2691  }
2692 
2693  // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2694  // metadata.
2695  if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2696  NamedMDNode *LinkerOpts =
2697  TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2698  for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2699  LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2700  }
2701 
2702  DeferredMetadataInfo.clear();
2703  return Error::success();
2704 }
2705 
2706 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2707 
2708 /// When we see the block for a function body, remember where it is and then
2709 /// skip it. This lets us lazily deserialize the functions.
2710 Error BitcodeReader::rememberAndSkipFunctionBody() {
2711  // Get the function we are talking about.
2712  if (FunctionsWithBodies.empty())
2713  return error("Insufficient function protos");
2714 
2715  Function *Fn = FunctionsWithBodies.back();
2716  FunctionsWithBodies.pop_back();
2717 
2718  // Save the current stream state.
2719  uint64_t CurBit = Stream.GetCurrentBitNo();
2720  assert(
2721  (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2722  "Mismatch between VST and scanned function offsets");
2723  DeferredFunctionInfo[Fn] = CurBit;
2724 
2725  // Skip over the function block for now.
2726  if (Stream.SkipBlock())
2727  return error("Invalid record");
2728  return Error::success();
2729 }
2730 
2731 Error BitcodeReader::globalCleanup() {
2732  // Patch the initializers for globals and aliases up.
2733  if (Error Err = resolveGlobalAndIndirectSymbolInits())
2734  return Err;
2735  if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2736  return error("Malformed global initializer set");
2737 
2738  // Look for intrinsic functions which need to be upgraded at some point
2739  for (Function &F : *TheModule) {
2740  MDLoader->upgradeDebugIntrinsics(F);
2741  Function *NewFn;
2742  if (UpgradeIntrinsicFunction(&F, NewFn))
2743  UpgradedIntrinsics[&F] = NewFn;
2744  else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2745  // Some types could be renamed during loading if several modules are
2746  // loaded in the same LLVMContext (LTO scenario). In this case we should
2747  // remangle intrinsics names as well.
2748  RemangledIntrinsics[&F] = Remangled.getValue();
2749  }
2750 
2751  // Look for global variables which need to be renamed.
2752  for (GlobalVariable &GV : TheModule->globals())
2753  UpgradeGlobalVariable(&GV);
2754 
2755  // Force deallocation of memory for these vectors to favor the client that
2756  // want lazy deserialization.
2757  std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2758  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2759  IndirectSymbolInits);
2760  return Error::success();
2761 }
2762 
2763 /// Support for lazy parsing of function bodies. This is required if we
2764 /// either have an old bitcode file without a VST forward declaration record,
2765 /// or if we have an anonymous function being materialized, since anonymous
2766 /// functions do not have a name and are therefore not in the VST.
2767 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2768  Stream.JumpToBit(NextUnreadBit);
2769 
2770  if (Stream.AtEndOfStream())
2771  return error("Could not find function in stream");
2772 
2773  if (!SeenFirstFunctionBody)
2774  return error("Trying to materialize functions before seeing function blocks");
2775 
2776  // An old bitcode file with the symbol table at the end would have
2777  // finished the parse greedily.
2778  assert(SeenValueSymbolTable);
2779 
2781 
2782  while (true) {
2783  BitstreamEntry Entry = Stream.advance();
2784  switch (Entry.Kind) {
2785  default:
2786  return error("Expect SubBlock");
2788  switch (Entry.ID) {
2789  default:
2790  return error("Expect function block");
2792  if (Error Err = rememberAndSkipFunctionBody())
2793  return Err;
2794  NextUnreadBit = Stream.GetCurrentBitNo();
2795  return Error::success();
2796  }
2797  }
2798  }
2799 }
2800 
2801 bool BitcodeReaderBase::readBlockInfo() {
2802  Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2803  if (!NewBlockInfo)
2804  return true;
2805  BlockInfo = std::move(*NewBlockInfo);
2806  return false;
2807 }
2808 
2809 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2810  // v1: [selection_kind, name]
2811  // v2: [strtab_offset, strtab_size, selection_kind]
2812  StringRef Name;
2813  std::tie(Name, Record) = readNameFromStrtab(Record);
2814 
2815  if (Record.empty())
2816  return error("Invalid record");
2818  std::string OldFormatName;
2819  if (!UseStrtab) {
2820  if (Record.size() < 2)
2821  return error("Invalid record");
2822  unsigned ComdatNameSize = Record[1];
2823  OldFormatName.reserve(ComdatNameSize);
2824  for (unsigned i = 0; i != ComdatNameSize; ++i)
2825  OldFormatName += (char)Record[2 + i];
2826  Name = OldFormatName;
2827  }
2828  Comdat *C = TheModule->getOrInsertComdat(Name);
2829  C->setSelectionKind(SK);
2830  ComdatList.push_back(C);
2831  return Error::success();
2832 }
2833 
2834 static void inferDSOLocal(GlobalValue *GV) {
2835  // infer dso_local from linkage and visibility if it is not encoded.
2836  if (GV->hasLocalLinkage() ||
2837  (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
2838  GV->setDSOLocal(true);
2839 }
2840 
2841 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2842  // v1: [pointer type, isconst, initid, linkage, alignment, section,
2843  // visibility, threadlocal, unnamed_addr, externally_initialized,
2844  // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
2845  // v2: [strtab_offset, strtab_size, v1]
2846  StringRef Name;
2847  std::tie(Name, Record) = readNameFromStrtab(Record);
2848 
2849  if (Record.size() < 6)
2850  return error("Invalid record");
2851  Type *Ty = getTypeByID(Record[0]);
2852  if (!Ty)
2853  return error("Invalid record");
2854  bool isConstant = Record[1] & 1;
2855  bool explicitType = Record[1] & 2;
2856  unsigned AddressSpace;
2857  if (explicitType) {
2858  AddressSpace = Record[1] >> 2;
2859  } else {
2860  if (!Ty->isPointerTy())
2861  return error("Invalid type for value");
2862  AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2863  Ty = cast<PointerType>(Ty)->getElementType();
2864  }
2865 
2866  uint64_t RawLinkage = Record[3];
2867  GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2868  unsigned Alignment;
2869  if (Error Err = parseAlignmentValue(Record[4], Alignment))
2870  return Err;
2871  std::string Section;
2872  if (Record[5]) {
2873  if (Record[5] - 1 >= SectionTable.size())
2874  return error("Invalid ID");
2875  Section = SectionTable[Record[5] - 1];
2876  }
2878  // Local linkage must have default visibility.
2879  if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2880  // FIXME: Change to an error if non-default in 4.0.
2881  Visibility = getDecodedVisibility(Record[6]);
2882 
2884  if (Record.size() > 7)
2885  TLM = getDecodedThreadLocalMode(Record[7]);
2886 
2888  if (Record.size() > 8)
2889  UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2890 
2891  bool ExternallyInitialized = false;
2892  if (Record.size() > 9)
2893  ExternallyInitialized = Record[9];
2894 
2895  GlobalVariable *NewGV =
2896  new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2897  nullptr, TLM, AddressSpace, ExternallyInitialized);
2898  NewGV->setAlignment(Alignment);
2899  if (!Section.empty())
2900  NewGV->setSection(Section);
2901  NewGV->setVisibility(Visibility);
2902  NewGV->setUnnamedAddr(UnnamedAddr);
2903 
2904  if (Record.size() > 10)
2905  NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2906  else
2907  upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2908 
2909  ValueList.push_back(NewGV);
2910 
2911  // Remember which value to use for the global initializer.
2912  if (unsigned InitID = Record[2])
2913  GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2914 
2915  if (Record.size() > 11) {
2916  if (unsigned ComdatID = Record[11]) {
2917  if (ComdatID > ComdatList.size())
2918  return error("Invalid global variable comdat ID");
2919  NewGV->setComdat(ComdatList[ComdatID - 1]);
2920  }
2921  } else if (hasImplicitComdat(RawLinkage)) {
2922  NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2923  }
2924 
2925  if (Record.size() > 12) {
2926  auto AS = getAttributes(Record[12]).getFnAttributes();
2927  NewGV->setAttributes(AS);
2928  }
2929 
2930  if (Record.size() > 13) {
2931  NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
2932  }
2933  inferDSOLocal(NewGV);
2934 
2935  return Error::success();
2936 }
2937 
2938 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2939  // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2940  // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2941  // prefixdata, personalityfn, preemption specifier] (name in VST)
2942  // v2: [strtab_offset, strtab_size, v1]
2943  StringRef Name;
2944  std::tie(Name, Record) = readNameFromStrtab(Record);
2945 
2946  if (Record.size() < 8)
2947  return error("Invalid record");
2948  Type *Ty = getTypeByID(Record[0]);
2949  if (!Ty)
2950  return error("Invalid record");
2951  if (auto *PTy = dyn_cast<PointerType>(Ty))
2952  Ty = PTy->getElementType();
2953  auto *FTy = dyn_cast<FunctionType>(Ty);
2954  if (!FTy)
2955  return error("Invalid type for value");
2956  auto CC = static_cast<CallingConv::ID>(Record[1]);
2957  if (CC & ~CallingConv::MaxID)
2958  return error("Invalid calling convention ID");
2959 
2960  Function *Func =
2961  Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule);
2962 
2963  Func->setCallingConv(CC);
2964  bool isProto = Record[2];
2965  uint64_t RawLinkage = Record[3];
2966  Func->setLinkage(getDecodedLinkage(RawLinkage));
2967  Func->setAttributes(getAttributes(Record[4]));
2968 
2969  unsigned Alignment;
2970  if (Error Err = parseAlignmentValue(Record[5], Alignment))
2971  return Err;
2972  Func->setAlignment(Alignment);
2973  if (Record[6]) {
2974  if (Record[6] - 1 >= SectionTable.size())
2975  return error("Invalid ID");
2976  Func->setSection(SectionTable[Record[6] - 1]);
2977  }
2978  // Local linkage must have default visibility.
2979  if (!Func->hasLocalLinkage())
2980  // FIXME: Change to an error if non-default in 4.0.
2981  Func->setVisibility(getDecodedVisibility(Record[7]));
2982  if (Record.size() > 8 && Record[8]) {
2983  if (Record[8] - 1 >= GCTable.size())
2984  return error("Invalid ID");
2985  Func->setGC(GCTable[Record[8] - 1]);
2986  }
2988  if (Record.size() > 9)
2989  UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2990  Func->setUnnamedAddr(UnnamedAddr);
2991  if (Record.size() > 10 && Record[10] != 0)
2992  FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
2993 
2994  if (Record.size() > 11)
2995  Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
2996  else
2997  upgradeDLLImportExportLinkage(Func, RawLinkage);
2998 
2999  if (Record.size() > 12) {
3000  if (unsigned ComdatID = Record[12]) {
3001  if (ComdatID > ComdatList.size())
3002  return error("Invalid function comdat ID");
3003  Func->setComdat(ComdatList[ComdatID - 1]);
3004  }
3005  } else if (hasImplicitComdat(RawLinkage)) {
3006  Func->setComdat(reinterpret_cast<Comdat *>(1));
3007  }
3008 
3009  if (Record.size() > 13 && Record[13] != 0)
3010  FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3011 
3012  if (Record.size() > 14 && Record[14] != 0)
3013  FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3014 
3015  if (Record.size() > 15) {
3016  Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3017  }
3018  inferDSOLocal(Func);
3019 
3020  ValueList.push_back(Func);
3021 
3022  // If this is a function with a body, remember the prototype we are
3023  // creating now, so that we can match up the body with them later.
3024  if (!isProto) {
3025  Func->setIsMaterializable(true);
3026  FunctionsWithBodies.push_back(Func);
3027  DeferredFunctionInfo[Func] = 0;
3028  }
3029  return Error::success();
3030 }
3031 
3032 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3033  unsigned BitCode, ArrayRef<uint64_t> Record) {
3034  // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3035  // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3036  // dllstorageclass, threadlocal, unnamed_addr,
3037  // preemption specifier] (name in VST)
3038  // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3039  // visibility, dllstorageclass, threadlocal, unnamed_addr,
3040  // preemption specifier] (name in VST)
3041  // v2: [strtab_offset, strtab_size, v1]
3042  StringRef Name;
3043  std::tie(Name, Record) = readNameFromStrtab(Record);
3044 
3045  bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3046  if (Record.size() < (3 + (unsigned)NewRecord))
3047  return error("Invalid record");
3048  unsigned OpNum = 0;
3049  Type *Ty = getTypeByID(Record[OpNum++]);
3050  if (!Ty)
3051  return error("Invalid record");
3052 
3053  unsigned AddrSpace;
3054  if (!NewRecord) {
3055  auto *PTy = dyn_cast<PointerType>(Ty);
3056  if (!PTy)
3057  return error("Invalid type for value");
3058  Ty = PTy->getElementType();
3059  AddrSpace = PTy->getAddressSpace();
3060  } else {
3061  AddrSpace = Record[OpNum++];
3062  }
3063 
3064  auto Val = Record[OpNum++];
3065  auto Linkage = Record[OpNum++];
3066  GlobalIndirectSymbol *NewGA;
3067  if (BitCode == bitc::MODULE_CODE_ALIAS ||
3068  BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3069  NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3070  TheModule);
3071  else
3072  NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3073  nullptr, TheModule);
3074  // Old bitcode files didn't have visibility field.
3075  // Local linkage must have default visibility.
3076  if (OpNum != Record.size()) {
3077  auto VisInd = OpNum++;
3078  if (!NewGA->hasLocalLinkage())
3079  // FIXME: Change to an error if non-default in 4.0.
3080  NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3081  }
3082  if (BitCode == bitc::MODULE_CODE_ALIAS ||
3083  BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3084  if (OpNum != Record.size())
3085  NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3086  else
3087  upgradeDLLImportExportLinkage(NewGA, Linkage);
3088  if (OpNum != Record.size())
3089  NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3090  if (OpNum != Record.size())
3091  NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3092  }
3093  if (OpNum != Record.size())
3094  NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3095  inferDSOLocal(NewGA);
3096 
3097  ValueList.push_back(NewGA);
3098  IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3099  return Error::success();
3100 }
3101 
3102 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3103  bool ShouldLazyLoadMetadata) {
3104  if (ResumeBit)
3105  Stream.JumpToBit(ResumeBit);
3106  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3107  return error("Invalid record");
3108 
3110 
3111  // Read all the records for this module.
3112  while (true) {
3113  BitstreamEntry Entry = Stream.advance();
3114 
3115  switch (Entry.Kind) {
3116  case BitstreamEntry::Error:
3117  return error("Malformed block");
3119  return globalCleanup();
3120 
3122  switch (Entry.ID) {
3123  default: // Skip unknown content.
3124  if (Stream.SkipBlock())
3125  return error("Invalid record");
3126  break;
3128  if (readBlockInfo())
3129  return error("Malformed block");
3130  break;
3132  if (Error Err = parseAttributeBlock())
3133  return Err;
3134  break;
3136  if (Error Err = parseAttributeGroupBlock())
3137  return Err;
3138  break;
3140  if (Error Err = parseTypeTable())
3141  return Err;
3142  break;
3144  if (!SeenValueSymbolTable) {
3145  // Either this is an old form VST without function index and an
3146  // associated VST forward declaration record (which would have caused
3147  // the VST to be jumped to and parsed before it was encountered
3148  // normally in the stream), or there were no function blocks to
3149  // trigger an earlier parsing of the VST.
3150  assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3151  if (Error Err = parseValueSymbolTable())
3152  return Err;
3153  SeenValueSymbolTable = true;
3154  } else {
3155  // We must have had a VST forward declaration record, which caused
3156  // the parser to jump to and parse the VST earlier.
3157  assert(VSTOffset > 0);
3158  if (Stream.SkipBlock())
3159  return error("Invalid record");
3160  }
3161  break;
3163  if (Error Err = parseConstants())
3164  return Err;
3165  if (Error Err = resolveGlobalAndIndirectSymbolInits())
3166  return Err;
3167  break;
3169  if (ShouldLazyLoadMetadata) {
3170  if (Error Err = rememberAndSkipMetadata())
3171  return Err;
3172  break;
3173  }
3174  assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3175  if (Error Err = MDLoader->parseModuleMetadata())
3176  return Err;
3177  break;
3179  if (Error Err = MDLoader->parseMetadataKinds())
3180  return Err;
3181  break;
3183  // If this is the first function body we've seen, reverse the
3184  // FunctionsWithBodies list.
3185  if (!SeenFirstFunctionBody) {
3186  std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3187  if (Error Err = globalCleanup())
3188  return Err;
3189  SeenFirstFunctionBody = true;
3190  }
3191 
3192  if (VSTOffset > 0) {
3193  // If we have a VST forward declaration record, make sure we
3194  // parse the VST now if we haven't already. It is needed to
3195  // set up the DeferredFunctionInfo vector for lazy reading.
3196  if (!SeenValueSymbolTable) {
3197  if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3198  return Err;
3199  SeenValueSymbolTable = true;
3200  // Fall through so that we record the NextUnreadBit below.
3201  // This is necessary in case we have an anonymous function that
3202  // is later materialized. Since it will not have a VST entry we
3203  // need to fall back to the lazy parse to find its offset.
3204  } else {
3205  // If we have a VST forward declaration record, but have already
3206  // parsed the VST (just above, when the first function body was
3207  // encountered here), then we are resuming the parse after
3208  // materializing functions. The ResumeBit points to the
3209  // start of the last function block recorded in the
3210  // DeferredFunctionInfo map. Skip it.
3211  if (Stream.SkipBlock())
3212  return error("Invalid record");
3213  continue;
3214  }
3215  }
3216 
3217  // Support older bitcode files that did not have the function
3218  // index in the VST, nor a VST forward declaration record, as
3219  // well as anonymous functions that do not have VST entries.
3220  // Build the DeferredFunctionInfo vector on the fly.
3221  if (Error Err = rememberAndSkipFunctionBody())
3222  return Err;
3223 
3224  // Suspend parsing when we reach the function bodies. Subsequent
3225  // materialization calls will resume it when necessary. If the bitcode
3226  // file is old, the symbol table will be at the end instead and will not
3227  // have been seen yet. In this case, just finish the parse now.
3228  if (SeenValueSymbolTable) {
3229  NextUnreadBit = Stream.GetCurrentBitNo();
3230  // After the VST has been parsed, we need to make sure intrinsic name
3231  // are auto-upgraded.
3232  return globalCleanup();
3233  }
3234  break;
3236  if (Error Err = parseUseLists())
3237  return Err;
3238  break;
3240  if (Error Err = parseOperandBundleTags())
3241  return Err;
3242  break;
3244  if (Error Err = parseSyncScopeNames())
3245  return Err;
3246  break;
3247  }
3248  continue;
3249 
3251  // The interesting case.
3252  break;
3253  }
3254 
3255  // Read a record.
3256  auto BitCode = Stream.readRecord(Entry.ID, Record);
3257  switch (BitCode) {
3258  default: break; // Default behavior, ignore unknown content.
3260  Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3261  if (!VersionOrErr)
3262  return VersionOrErr.takeError();
3263  UseRelativeIDs = *VersionOrErr >= 1;
3264  break;
3265  }
3266  case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3267  std::string S;
3268  if (convertToString(Record, 0, S))
3269  return error("Invalid record");
3270  TheModule->setTargetTriple(S);
3271  break;
3272  }
3273  case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3274  std::string S;
3275  if (convertToString(Record, 0, S))
3276  return error("Invalid record");
3277  TheModule->setDataLayout(S);
3278  break;
3279  }
3280  case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3281  std::string S;
3282  if (convertToString(Record, 0, S))
3283  return error("Invalid record");
3284  TheModule->setModuleInlineAsm(S);
3285  break;
3286  }
3287  case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3288  // FIXME: Remove in 4.0.
3289  std::string S;
3290  if (convertToString(Record, 0, S))
3291  return error("Invalid record");
3292  // Ignore value.
3293  break;
3294  }
3295  case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3296  std::string S;
3297  if (convertToString(Record, 0, S))
3298  return error("Invalid record");
3299  SectionTable.push_back(S);
3300  break;
3301  }
3302  case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
3303  std::string S;
3304  if (convertToString(Record, 0, S))
3305  return error("Invalid record");
3306  GCTable.push_back(S);
3307  break;
3308  }
3310  if (Error Err = parseComdatRecord(Record))
3311  return Err;
3312  break;
3314  if (Error Err = parseGlobalVarRecord(Record))
3315  return Err;
3316  break;
3318  if (Error Err = parseFunctionRecord(Record))
3319  return Err;
3320  break;
3324  if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3325  return Err;
3326  break;
3327  /// MODULE_CODE_VSTOFFSET: [offset]
3329  if (Record.size() < 1)
3330  return error("Invalid record");
3331  // Note that we subtract 1 here because the offset is relative to one word
3332  // before the start of the identification or module block, which was
3333  // historically always the start of the regular bitcode header.
3334  VSTOffset = Record[0] - 1;
3335  break;
3336  /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3339  if (convertToString(Record, 0, ValueName))
3340  return error("Invalid record");
3341  TheModule->setSourceFileName(ValueName);
3342  break;
3343  }
3344  Record.clear();
3345  }
3346 }
3347 
3348 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3349  bool IsImporting) {
3350  TheModule = M;
3351  MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3352  [&](unsigned ID) { return getTypeByID(ID); });
3353  return parseModule(0, ShouldLazyLoadMetadata);
3354 }
3355 
3356 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3357  if (!isa<PointerType>(PtrType))
3358  return error("Load/Store operand is not a pointer type");
3359  Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3360 
3361  if (ValType && ValType != ElemType)
3362  return error("Explicit load/store type does not match pointee "
3363  "type of pointer operand");
3365  return error("Cannot load/store from pointer");
3366  return Error::success();
3367 }
3368 
3369 /// Lazily parse the specified function body block.
3370 Error BitcodeReader::parseFunctionBody(Function *F) {
3372  return error("Invalid record");
3373 
3374  // Unexpected unresolved metadata when parsing function.
3375  if (MDLoader->hasFwdRefs())
3376  return error("Invalid function metadata: incoming forward references");
3377 
3378  InstructionList.clear();
3379  unsigned ModuleValueListSize = ValueList.size();
3380  unsigned ModuleMDLoaderSize = MDLoader->size();
3381 
3382  // Add all the function arguments to the value table.
3383  for (Argument &I : F->args())
3384  ValueList.push_back(&I);
3385 
3386  unsigned NextValueNo = ValueList.size();
3387  BasicBlock *CurBB = nullptr;
3388  unsigned CurBBNo = 0;
3389 
3390  DebugLoc LastLoc;
3391  auto getLastInstruction = [&]() -> Instruction * {
3392  if (CurBB && !CurBB->empty())
3393  return &CurBB->back();
3394  else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3395  !FunctionBBs[CurBBNo - 1]->empty())
3396  return &FunctionBBs[CurBBNo - 1]->back();
3397  return nullptr;
3398  };
3399 
3400  std::vector<OperandBundleDef> OperandBundles;
3401 
3402  // Read all the records.
3404 
3405  while (true) {
3406  BitstreamEntry Entry = Stream.advance();
3407 
3408  switch (Entry.Kind) {
3409  case BitstreamEntry::Error:
3410  return error("Malformed block");
3412  goto OutOfRecordLoop;
3413 
3415  switch (Entry.ID) {
3416  default: // Skip unknown content.
3417  if (Stream.SkipBlock())
3418  return error("Invalid record");
3419  break;
3421  if (Error Err = parseConstants())
3422  return Err;
3423  NextValueNo = ValueList.size();
3424  break;
3426  if (Error Err = parseValueSymbolTable())
3427  return Err;
3428  break;
3430  if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3431  return Err;
3432  break;
3434  assert(DeferredMetadataInfo.empty() &&
3435  "Must read all module-level metadata before function-level");
3436  if (Error Err = MDLoader->parseFunctionMetadata())
3437  return Err;
3438  break;
3440  if (Error Err = parseUseLists())
3441  return Err;
3442  break;
3443  }
3444  continue;
3445 
3447  // The interesting case.
3448  break;
3449  }
3450 
3451  // Read a record.
3452  Record.clear();
3453  Instruction *I = nullptr;
3454  unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3455  switch (BitCode) {
3456  default: // Default behavior: reject
3457  return error("Invalid value");
3458  case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
3459  if (Record.size() < 1 || Record[0] == 0)
3460  return error("Invalid record");
3461  // Create all the basic blocks for the function.
3462  FunctionBBs.resize(Record[0]);
3463 
3464  // See if anything took the address of blocks in this function.
3465  auto BBFRI = BasicBlockFwdRefs.find(F);
3466  if (BBFRI == BasicBlockFwdRefs.end()) {
3467  for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3468  FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3469  } else {
3470  auto &BBRefs = BBFRI->second;
3471  // Check for invalid basic block references.
3472  if (BBRefs.size() > FunctionBBs.size())
3473  return error("Invalid ID");
3474  assert(!BBRefs.empty() && "Unexpected empty array");
3475  assert(!BBRefs.front() && "Invalid reference to entry block");
3476  for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3477  ++I)
3478  if (I < RE && BBRefs[I]) {
3479  BBRefs[I]->insertInto(F);
3480  FunctionBBs[I] = BBRefs[I];
3481  } else {
3482  FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3483  }
3484 
3485  // Erase from the table.
3486  BasicBlockFwdRefs.erase(BBFRI);
3487  }
3488 
3489  CurBB = FunctionBBs[0];
3490  continue;
3491  }
3492 
3493  case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
3494  // This record indicates that the last instruction is at the same
3495  // location as the previous instruction with a location.
3496  I = getLastInstruction();
3497 
3498  if (!I)
3499  return error("Invalid record");
3500  I->setDebugLoc(LastLoc);
3501  I = nullptr;
3502  continue;
3503 
3504  case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
3505  I = getLastInstruction();
3506  if (!I || Record.size() < 4)
3507  return error("Invalid record");
3508 
3509  unsigned Line = Record[0], Col = Record[1];
3510  unsigned ScopeID = Record[2], IAID = Record[3];
3511 
3512  MDNode *Scope = nullptr, *IA = nullptr;
3513  if (ScopeID) {
3514  Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1);
3515  if (!Scope)
3516  return error("Invalid record");
3517  }
3518  if (IAID) {
3519  IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1);
3520  if (!IA)
3521  return error("Invalid record");
3522  }
3523  LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3524  I->setDebugLoc(LastLoc);
3525  I = nullptr;
3526  continue;
3527  }
3528 
3529  case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
3530  unsigned OpNum = 0;
3531  Value *LHS, *RHS;
3532  if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3533  popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3534  OpNum+1 > Record.size())
3535  return error("Invalid record");
3536 
3537  int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3538  if (Opc == -1)
3539  return error("Invalid record");
3540  I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3541  InstructionList.push_back(I);
3542  if (OpNum < Record.size()) {
3543  if (Opc == Instruction::Add ||
3544  Opc == Instruction::Sub ||
3545  Opc == Instruction::Mul ||
3546  Opc == Instruction::Shl) {
3547  if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3548  cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3549  if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3550  cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3551  } else if (Opc == Instruction::SDiv ||
3552  Opc == Instruction::UDiv ||
3553  Opc == Instruction::LShr ||
3554  Opc == Instruction::AShr) {
3555  if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3556  cast<BinaryOperator>(I)->setIsExact(true);
3557  } else if (isa<FPMathOperator>(I)) {
3558  FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3559  if (FMF.any())
3560  I->setFastMathFlags(FMF);
3561  }
3562 
3563  }
3564  break;
3565  }
3566  case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
3567  unsigned OpNum = 0;
3568  Value *Op;
3569  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3570  OpNum+2 != Record.size())
3571  return error("Invalid record");
3572 
3573  Type *ResTy = getTypeByID(Record[OpNum]);
3574  int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3575  if (Opc == -1 || !ResTy)
3576  return error("Invalid record");
3577  Instruction *Temp = nullptr;
3578  if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3579  if (Temp) {
3580  InstructionList.push_back(Temp);
3581  CurBB->getInstList().push_back(Temp);
3582  }
3583  } else {
3584  auto CastOp = (Instruction::CastOps)Opc;
3585  if (!CastInst::castIsValid(CastOp, Op, ResTy))
3586  return error("Invalid cast");
3587  I = CastInst::Create(CastOp, Op, ResTy);
3588  }
3589  InstructionList.push_back(I);
3590  break;
3591  }
3594  case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3595  unsigned OpNum = 0;
3596 
3597  Type *Ty;
3598  bool InBounds;
3599 
3600  if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3601  InBounds = Record[OpNum++];
3602  Ty = getTypeByID(Record[OpNum++]);
3603  } else {
3604  InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3605  Ty = nullptr;
3606  }
3607 
3608  Value *BasePtr;
3609  if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3610  return error("Invalid record");
3611 
3612  if (!Ty)
3613  Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3614  ->getElementType();
3615  else if (Ty !=
3616  cast<PointerType>(BasePtr->getType()->getScalarType())
3617  ->getElementType())
3618  return error(
3619  "Explicit gep type does not match pointee type of pointer operand");
3620 
3621  SmallVector<Value*, 16> GEPIdx;
3622  while (OpNum != Record.size()) {
3623  Value *Op;
3624  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3625  return error("Invalid record");
3626  GEPIdx.push_back(Op);
3627  }
3628 
3629  I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3630 
3631  InstructionList.push_back(I);
3632  if (InBounds)
3633  cast<GetElementPtrInst>(I)->setIsInBounds(true);
3634  break;
3635  }
3636 
3638  // EXTRACTVAL: [opty, opval, n x indices]
3639  unsigned OpNum = 0;
3640  Value *Agg;
3641  if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3642  return error("Invalid record");
3643 
3644  unsigned RecSize = Record.size();
3645  if (OpNum == RecSize)
3646  return error("EXTRACTVAL: Invalid instruction with 0 indices");
3647 
3648  SmallVector<unsigned, 4> EXTRACTVALIdx;
3649  Type *CurTy = Agg->getType();
3650  for (; OpNum != RecSize; ++OpNum) {
3651  bool IsArray = CurTy->isArrayTy();
3652  bool IsStruct = CurTy->isStructTy();
3653  uint64_t Index = Record[OpNum];
3654 
3655  if (!IsStruct && !IsArray)
3656  return error("EXTRACTVAL: Invalid type");
3657  if ((unsigned)Index != Index)
3658  return error("Invalid value");
3659  if (IsStruct && Index >= CurTy->subtypes().size())
3660  return error("EXTRACTVAL: Invalid struct index");
3661  if (IsArray && Index >= CurTy->getArrayNumElements())
3662  return error("EXTRACTVAL: Invalid array index");
3663  EXTRACTVALIdx.push_back((unsigned)Index);
3664 
3665  if (IsStruct)
3666  CurTy = CurTy->subtypes()[Index];
3667  else
3668  CurTy = CurTy->subtypes()[0];
3669  }
3670 
3671  I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3672  InstructionList.push_back(I);
3673  break;
3674  }
3675 
3677  // INSERTVAL: [opty, opval, opty, opval, n x indices]
3678  unsigned OpNum = 0;
3679  Value *Agg;
3680  if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3681  return error("Invalid record");
3682  Value *Val;
3683  if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3684  return error("Invalid record");
3685 
3686  unsigned RecSize = Record.size();
3687  if (OpNum == RecSize)
3688  return error("INSERTVAL: Invalid instruction with 0 indices");
3689 
3690  SmallVector<unsigned, 4> INSERTVALIdx;
3691  Type *CurTy = Agg->getType();
3692  for (; OpNum != RecSize; ++OpNum) {
3693  bool IsArray = CurTy->isArrayTy();
3694  bool IsStruct = CurTy->isStructTy();
3695  uint64_t Index = Record[OpNum];
3696 
3697  if (!IsStruct && !IsArray)
3698  return error("INSERTVAL: Invalid type");
3699  if ((unsigned)Index != Index)
3700  return error("Invalid value");
3701  if (IsStruct && Index >= CurTy->subtypes().size())
3702  return error("INSERTVAL: Invalid struct index");
3703  if (IsArray && Index >= CurTy->getArrayNumElements())
3704  return error("INSERTVAL: Invalid array index");
3705 
3706  INSERTVALIdx.push_back((unsigned)Index);
3707  if (IsStruct)
3708  CurTy = CurTy->subtypes()[Index];
3709  else
3710  CurTy = CurTy->subtypes()[0];
3711  }
3712 
3713  if (CurTy != Val->getType())
3714  return error("Inserted value type doesn't match aggregate type");
3715 
3716  I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3717  InstructionList.push_back(I);
3718  break;
3719  }
3720 
3721  case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3722  // obsolete form of select
3723  // handles select i1 ... in old bitcode
3724  unsigned OpNum = 0;
3725  Value *TrueVal, *FalseVal, *Cond;
3726  if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3727  popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3728  popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3729  return error("Invalid record");
3730 
3731  I = SelectInst::Create(Cond, TrueVal, FalseVal);
3732  InstructionList.push_back(I);
3733  break;
3734  }
3735 
3736  case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3737  // new form of select
3738  // handles select i1 or select [N x i1]
3739  unsigned OpNum = 0;
3740  Value *TrueVal, *FalseVal, *Cond;
3741  if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3742  popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3743  getValueTypePair(Record, OpNum, NextValueNo, Cond))
3744  return error("Invalid record");
3745 
3746  // select condition can be either i1 or [N x i1]
3747  if (VectorType* vector_type =
3748  dyn_cast<VectorType>(Cond->getType())) {
3749  // expect <n x i1>
3750  if (vector_type->getElementType() != Type::getInt1Ty(Context))
3751  return error("Invalid type for value");
3752  } else {
3753  // expect i1
3754  if (Cond->getType() != Type::getInt1Ty(Context))
3755  return error("Invalid type for value");
3756  }
3757 
3758  I = SelectInst::Create(Cond, TrueVal, FalseVal);
3759  InstructionList.push_back(I);
3760  break;
3761  }
3762 
3763  case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3764  unsigned OpNum = 0;
3765  Value *Vec, *Idx;
3766  if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3767  getValueTypePair(Record, OpNum, NextValueNo, Idx))
3768  return error("Invalid record");
3769  if (!Vec->getType()->isVectorTy())
3770  return error("Invalid type for value");
3771  I = ExtractElementInst::Create(Vec, Idx);
3772  InstructionList.push_back(I);
3773  break;
3774  }
3775 
3776  case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3777  unsigned OpNum = 0;
3778  Value *Vec, *Elt, *Idx;
3779  if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3780  return error("Invalid record");
3781  if (!Vec->getType()->isVectorTy())
3782  return error("Invalid type for value");
3783  if (popValue(Record, OpNum, NextValueNo,
3784  cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3785  getValueTypePair(Record, OpNum, NextValueNo, Idx))
3786  return error("Invalid record");
3787  I = InsertElementInst::Create(Vec, Elt, Idx);
3788  InstructionList.push_back(I);
3789  break;
3790  }
3791 
3792  case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3793  unsigned OpNum = 0;
3794  Value *Vec1, *Vec2, *Mask;
3795  if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3796  popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3797  return error("Invalid record");
3798 
3799  if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3800  return error("Invalid record");
3801  if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3802  return error("Invalid type for value");
3803  I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3804  InstructionList.push_back(I);
3805  break;
3806  }
3807 
3808  case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
3809  // Old form of ICmp/FCmp returning bool
3810  // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3811  // both legal on vectors but had different behaviour.
3812  case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3813  // FCmp/ICmp returning bool or vector of bool
3814 
3815  unsigned OpNum = 0;
3816  Value *LHS, *RHS;
3817  if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3818  popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3819  return error("Invalid record");
3820 
3821  unsigned PredVal = Record[OpNum];
3822  bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3823  FastMathFlags FMF;
3824  if (IsFP && Record.size() > OpNum+1)
3825  FMF = getDecodedFastMathFlags(Record[++OpNum]);
3826 
3827  if (OpNum+1 != Record.size())
3828  return error("Invalid record");
3829 
3830  if (LHS->getType()->isFPOrFPVectorTy())
3831  I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3832  else
3833  I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3834 
3835  if (FMF.any())
3836  I->setFastMathFlags(FMF);
3837  InstructionList.push_back(I);
3838  break;
3839  }
3840 
3841  case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3842  {
3843  unsigned Size = Record.size();
3844  if (Size == 0) {
3845  I = ReturnInst::Create(Context);
3846  InstructionList.push_back(I);
3847  break;
3848  }
3849 
3850  unsigned OpNum = 0;
3851  Value *Op = nullptr;
3852  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3853  return error("Invalid record");
3854  if (OpNum != Record.size())
3855  return error("Invalid record");
3856 
3857  I = ReturnInst::Create(Context, Op);
3858  InstructionList.push_back(I);
3859  break;
3860  }
3861  case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3862  if (Record.size() != 1 && Record.size() != 3)
3863  return error("Invalid record");
3864  BasicBlock *TrueDest = getBasicBlock(Record[0]);
3865  if (!TrueDest)
3866  return error("Invalid record");
3867 
3868  if (Record.size() == 1) {
3869  I = BranchInst::Create(TrueDest);
3870  InstructionList.push_back(I);
3871  }
3872  else {
3873  BasicBlock *FalseDest = getBasicBlock(Record[1]);
3874  Value *Cond = getValue(Record, 2, NextValueNo,
3875  Type::getInt1Ty(Context));
3876  if (!FalseDest || !Cond)
3877  return error("Invalid record");
3878  I = BranchInst::Create(TrueDest, FalseDest, Cond);
3879  InstructionList.push_back(I);
3880  }
3881  break;
3882  }
3883  case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3884  if (Record.size() != 1 && Record.size() != 2)
3885  return error("Invalid record");
3886  unsigned Idx = 0;
3887  Value *CleanupPad =
3888  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3889  if (!CleanupPad)
3890  return error("Invalid record");
3891  BasicBlock *UnwindDest = nullptr;
3892  if (Record.size() == 2) {
3893  UnwindDest = getBasicBlock(Record[Idx++]);
3894  if (!UnwindDest)
3895  return error("Invalid record");
3896  }
3897 
3898  I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3899  InstructionList.push_back(I);
3900  break;
3901  }
3902  case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3903  if (Record.size() != 2)
3904  return error("Invalid record");
3905  unsigned Idx = 0;
3906  Value *CatchPad =
3907  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3908  if (!CatchPad)
3909  return error("Invalid record");
3910  BasicBlock *BB = getBasicBlock(Record[Idx++]);
3911  if (!BB)
3912  return error("Invalid record");
3913 
3914  I = CatchReturnInst::Create(CatchPad, BB);
3915  InstructionList.push_back(I);
3916  break;
3917  }
3918  case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3919  // We must have, at minimum, the outer scope and the number of arguments.
3920  if (Record.size() < 2)
3921  return error("Invalid record");
3922 
3923  unsigned Idx = 0;
3924 
3925  Value *ParentPad =
3926  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3927 
3928  unsigned NumHandlers = Record[Idx++];
3929 
3931  for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3932  BasicBlock *BB = getBasicBlock(Record[Idx++]);
3933  if (!BB)
3934  return error("Invalid record");
3935  Handlers.push_back(BB);
3936  }
3937 
3938  BasicBlock *UnwindDest = nullptr;
3939  if (Idx + 1 == Record.size()) {
3940  UnwindDest = getBasicBlock(Record[Idx++]);
3941  if (!UnwindDest)
3942  return error("Invalid record");
3943  }
3944 
3945  if (Record.size() != Idx)
3946  return error("Invalid record");
3947 
3948  auto *CatchSwitch =
3949  CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
3950  for (BasicBlock *Handler : Handlers)
3951  CatchSwitch->addHandler(Handler);
3952  I = CatchSwitch;
3953  InstructionList.push_back(I);
3954  break;
3955  }
3957  case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
3958  // We must have, at minimum, the outer scope and the number of arguments.
3959  if (Record.size() < 2)
3960  return error("Invalid record");
3961 
3962  unsigned Idx = 0;
3963 
3964  Value *ParentPad =
3965  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3966 
3967  unsigned NumArgOperands = Record[Idx++];
3968 
3970  for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
3971  Value *Val;
3972  if (getValueTypePair(Record, Idx, NextValueNo, Val))
3973  return error("Invalid record");
3974  Args.push_back(Val);
3975  }
3976 
3977  if (Record.size() != Idx)
3978  return error("Invalid record");
3979 
3980  if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
3981  I = CleanupPadInst::Create(ParentPad, Args);
3982  else
3983  I = CatchPadInst::Create(ParentPad, Args);
3984  InstructionList.push_back(I);
3985  break;
3986  }
3987  case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3988  // Check magic
3989  if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3990  // "New" SwitchInst format with case ranges. The changes to write this
3991  // format were reverted but we still recognize bitcode that uses it.
3992  // Hopefully someday we will have support for case ranges and can use
3993  // this format again.
3994 
3995  Type *OpTy = getTypeByID(Record[1]);
3996  unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
3997 
3998  Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
3999  BasicBlock *Default = getBasicBlock(Record[3]);
4000  if (!OpTy || !Cond || !Default)
4001  return error("Invalid record");
4002 
4003  unsigned NumCases = Record[4];
4004 
4005  SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4006  InstructionList.push_back(SI);
4007 
4008  unsigned CurIdx = 5;
4009  for (unsigned i = 0; i != NumCases; ++i) {
4011  unsigned NumItems = Record[CurIdx++];
4012  for (unsigned ci = 0; ci != NumItems; ++ci) {
4013  bool isSingleNumber = Record[CurIdx++];
4014 
4015  APInt Low;
4016  unsigned ActiveWords = 1;
4017  if (ValueBitWidth > 64)
4018  ActiveWords = Record[CurIdx++];
4019  Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4020  ValueBitWidth);
4021  CurIdx += ActiveWords;
4022 
4023  if (!isSingleNumber) {
4024  ActiveWords = 1;
4025  if (ValueBitWidth > 64)
4026  ActiveWords = Record[CurIdx++];
4028  makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4029  CurIdx += ActiveWords;
4030 
4031  // FIXME: It is not clear whether values in the range should be
4032  // compared as signed or unsigned values. The partially
4033  // implemented changes that used this format in the past used
4034  // unsigned comparisons.
4035  for ( ; Low.ule(High); ++Low)
4036  CaseVals.push_back(ConstantInt::get(Context, Low));
4037  } else
4038  CaseVals.push_back(ConstantInt::get(Context, Low));
4039  }
4040  BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4041  for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4042  cve = CaseVals.end(); cvi != cve; ++cvi)
4043  SI->addCase(*cvi, DestBB);
4044  }
4045  I = SI;
4046  break;
4047  }
4048 
4049  // Old SwitchInst format without case ranges.
4050 
4051  if (Record.size() < 3 || (Record.size() & 1) == 0)
4052  return error("Invalid record");
4053  Type *OpTy = getTypeByID(Record[0]);
4054  Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4055  BasicBlock *Default = getBasicBlock(Record[2]);
4056  if (!OpTy || !Cond || !Default)
4057  return error("Invalid record");
4058  unsigned NumCases = (Record.size()-3)/2;
4059  SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4060  InstructionList.push_back(SI);
4061  for (unsigned i = 0, e = NumCases; i != e; ++i) {
4062  ConstantInt *CaseVal =
4063  dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4064  BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4065  if (!CaseVal || !DestBB) {
4066  delete SI;
4067  return error("Invalid record");
4068  }
4069  SI->addCase(CaseVal, DestBB);
4070  }
4071  I = SI;
4072  break;
4073  }
4074  case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4075  if (Record.size() < 2)
4076  return error("Invalid record");
4077  Type *OpTy = getTypeByID(Record[0]);
4078  Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4079  if (!OpTy || !Address)
4080  return error("Invalid record");
4081  unsigned NumDests = Record.size()-2;
4082  IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4083  InstructionList.push_back(IBI);
4084  for (unsigned i = 0, e = NumDests; i != e; ++i) {
4085  if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4086  IBI->addDestination(DestBB);
4087  } else {
4088  delete IBI;
4089  return error("Invalid record");
4090  }
4091  }
4092  I = IBI;
4093  break;
4094  }
4095 
4097  // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4098  if (Record.size() < 4)
4099  return error("Invalid record");
4100  unsigned OpNum = 0;
4101  AttributeList PAL = getAttributes(Record[OpNum++]);
4102  unsigned CCInfo = Record[OpNum++];
4103  BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4104  BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4105 
4106  FunctionType *FTy = nullptr;
4107  if (CCInfo >> 13 & 1 &&
4108  !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4109  return error("Explicit invoke type is not a function type");
4110 
4111  Value *Callee;
4112  if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4113  return error("Invalid record");
4114 
4115  PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4116  if (!CalleeTy)
4117  return error("Callee is not a pointer");
4118  if (!FTy) {
4119  FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4120  if (!FTy)
4121  return error("Callee is not of pointer to function type");
4122  } else if (CalleeTy->getElementType() != FTy)
4123  return error("Explicit invoke type does not match pointee type of "
4124  "callee operand");
4125  if (Record.size() < FTy->getNumParams() + OpNum)
4126  return error("Insufficient operands to call");
4127 
4129  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4130  Ops.push_back(getValue(Record, OpNum, NextValueNo,
4131  FTy->getParamType(i)));
4132  if (!Ops.back())
4133  return error("Invalid record");
4134  }
4135 
4136  if (!FTy->isVarArg()) {
4137  if (Record.size() != OpNum)
4138  return error("Invalid record");
4139  } else {
4140  // Read type/value pairs for varargs params.
4141  while (OpNum != Record.size()) {
4142  Value *Op;
4143  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4144  return error("Invalid record");
4145  Ops.push_back(Op);
4146  }
4147  }
4148 
4149  I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4150  OperandBundles.clear();
4151  InstructionList.push_back(I);
4152  cast<InvokeInst>(I)->setCallingConv(
4153  static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4154  cast<InvokeInst>(I)->setAttributes(PAL);
4155  break;
4156  }
4157  case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4158  unsigned Idx = 0;
4159  Value *Val = nullptr;
4160  if (getValueTypePair(Record, Idx, NextValueNo, Val))
4161  return error("Invalid record");
4162  I = ResumeInst::Create(Val);
4163  InstructionList.push_back(I);
4164  break;
4165  }
4166  case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4167  I = new UnreachableInst(Context);
4168  InstructionList.push_back(I);
4169  break;
4170  case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4171  if (Record.size() < 1 || ((Record.size()-1)&1))
4172  return error("Invalid record");
4173  Type *Ty = getTypeByID(Record[0]);
4174  if (!Ty)
4175  return error("Invalid record");
4176 
4177  PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4178  InstructionList.push_back(PN);
4179 
4180  for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4181  Value *V;
4182  // With the new function encoding, it is possible that operands have
4183  // negative IDs (for forward references). Use a signed VBR
4184  // representation to keep the encoding small.
4185  if (UseRelativeIDs)
4186  V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4187  else
4188  V = getValue(Record, 1+i, NextValueNo, Ty);
4189  BasicBlock *BB = getBasicBlock(Record[2+i]);
4190  if (!V || !BB)
4191  return error("Invalid record");
4192  PN->addIncoming(V, BB);
4193  }
4194  I = PN;
4195  break;
4196  }
4197 
4200  // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4201  unsigned Idx = 0;
4202  if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4203  if (Record.size() < 3)
4204  return error("Invalid record");
4205  } else {
4207  if (Record.size() < 4)
4208  return error("Invalid record");
4209  }
4210  Type *Ty = getTypeByID(Record[Idx++]);
4211  if (!Ty)
4212  return error("Invalid record");
4213  if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4214  Value *PersFn = nullptr;
4215  if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4216  return error("Invalid record");
4217 
4218  if (!F->hasPersonalityFn())
4219  F->setPersonalityFn(cast<Constant>(PersFn));
4220  else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4221  return error("Personality function mismatch");
4222  }
4223 
4224  bool IsCleanup = !!Record[Idx++];
4225  unsigned NumClauses = Record[Idx++];
4226  LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4227  LP->setCleanup(IsCleanup);
4228  for (unsigned J = 0; J != NumClauses; ++J) {
4230  LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4231  Value *Val;
4232 
4233  if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4234  delete LP;
4235  return error("Invalid record");
4236  }
4237 
4238  assert((CT != LandingPadInst::Catch ||
4239  !isa<ArrayType>(Val->getType())) &&
4240  "Catch clause has a invalid type!");
4241  assert((CT != LandingPadInst::Filter ||
4242  isa<ArrayType>(Val->getType())) &&
4243  "Filter clause has invalid type!");
4244  LP->addClause(cast<Constant>(Val));
4245  }
4246 
4247  I = LP;
4248  InstructionList.push_back(I);
4249  break;
4250  }
4251 
4252  case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4253  if (Record.size() != 4)
4254  return error("Invalid record");
4255  uint64_t AlignRecord = Record[3];
4256  const uint64_t InAllocaMask = uint64_t(1) << 5;
4257  const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4258  const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4259  const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4260  SwiftErrorMask;
4261  bool InAlloca = AlignRecord & InAllocaMask;
4262  bool SwiftError = AlignRecord & SwiftErrorMask;
4263  Type *Ty = getTypeByID(Record[0]);
4264  if ((AlignRecord & ExplicitTypeMask) == 0) {
4265  auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4266  if (!PTy)
4267  return error("Old-style alloca with a non-pointer type");
4268  Ty = PTy->getElementType();
4269  }
4270  Type *OpTy = getTypeByID(Record[1]);
4271  Value *Size = getFnValueByID(Record[2], OpTy);
4272  unsigned Align;
4273  if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4274  return Err;
4275  }
4276  if (!Ty || !Size)
4277  return error("Invalid record");
4278 
4279  // FIXME: Make this an optional field.
4280  const DataLayout &DL = TheModule->getDataLayout();
4281  unsigned AS = DL.getAllocaAddrSpace();
4282 
4283  AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4284  AI->setUsedWithInAlloca(InAlloca);
4285  AI->setSwiftError(SwiftError);
4286  I = AI;
4287  InstructionList.push_back(I);
4288  break;
4289  }
4290  case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4291  unsigned OpNum = 0;
4292  Value *Op;
4293  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4294  (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4295  return error("Invalid record");
4296 
4297  Type *Ty = nullptr;
4298  if (OpNum + 3 == Record.size())
4299  Ty = getTypeByID(Record[OpNum++]);
4300  if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4301  return Err;
4302  if (!Ty)
4303  Ty = cast<PointerType>(Op->getType())->getElementType();
4304 
4305  unsigned Align;
4306  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4307  return Err;
4308  I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4309 
4310  InstructionList.push_back(I);
4311  break;
4312  }
4314  // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4315  unsigned OpNum = 0;
4316  Value *Op;
4317  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4318  (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4319  return error("Invalid record");
4320 
4321  Type *Ty = nullptr;
4322  if (OpNum + 5 == Record.size())
4323  Ty = getTypeByID(Record[OpNum++]);
4324  if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4325  return Err;
4326  if (!Ty)
4327  Ty = cast<PointerType>(Op->getType())->getElementType();
4328 
4329  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4330  if (Ordering == AtomicOrdering::NotAtomic ||
4331  Ordering == AtomicOrdering::Release ||
4332  Ordering == AtomicOrdering::AcquireRelease)
4333  return error("Invalid record");
4334  if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4335  return error("Invalid record");
4336  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4337 
4338  unsigned Align;
4339  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4340  return Err;
4341  I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID);
4342 
4343  InstructionList.push_back(I);
4344  break;
4345  }
4347  case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4348  unsigned OpNum = 0;
4349  Value *Val, *Ptr;
4350  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4351  (BitCode == bitc::FUNC_CODE_INST_STORE
4352  ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4353  : popValue(Record, OpNum, NextValueNo,
4354  cast<PointerType>(Ptr->getType())->getElementType(),
4355  Val)) ||
4356  OpNum + 2 != Record.size())
4357  return error("Invalid record");
4358 
4359  if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4360  return Err;
4361  unsigned Align;
4362  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4363  return Err;
4364  I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4365  InstructionList.push_back(I);
4366  break;
4367  }
4370  // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4371  unsigned OpNum = 0;
4372  Value *Val, *Ptr;
4373  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4374  !isa<PointerType>(Ptr->getType()) ||
4376  ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4377  : popValue(Record, OpNum, NextValueNo,
4378  cast<PointerType>(Ptr->getType())->getElementType(),
4379  Val)) ||
4380  OpNum + 4 != Record.size())
4381  return error("Invalid record");
4382 
4383  if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4384  return Err;
4385  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4386  if (Ordering == AtomicOrdering::NotAtomic ||
4387  Ordering == AtomicOrdering::Acquire ||
4388  Ordering == AtomicOrdering::AcquireRelease)
4389  return error("Invalid record");
4390  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4391  if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4392  return error("Invalid record");
4393 
4394  unsigned Align;
4395  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4396  return Err;
4397  I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4398  InstructionList.push_back(I);
4399  break;
4400  }
4403  // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4404  // failureordering?, isweak?]
4405  unsigned OpNum = 0;
4406  Value *Ptr, *Cmp, *New;
4407  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4408  (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4409  ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4410  : popValue(Record, OpNum, NextValueNo,
4411  cast<PointerType>(Ptr->getType())->getElementType(),
4412  Cmp)) ||
4413  popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4414  Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4415  return error("Invalid record");
4416  AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4417  if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4418  SuccessOrdering == AtomicOrdering::Unordered)
4419  return error("Invalid record");
4420  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4421 
4422  if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4423  return Err;
4424  AtomicOrdering FailureOrdering;
4425  if (Record.size() < 7)
4426  FailureOrdering =
4428  else
4429  FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4430 
4431  I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4432  SSID);
4433  cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4434 
4435  if (Record.size() < 8) {
4436  // Before weak cmpxchgs existed, the instruction simply returned the
4437  // value loaded from memory, so bitcode files from that era will be
4438  // expecting the first component of a modern cmpxchg.
4439  CurBB->getInstList().push_back(I);
4440  I = ExtractValueInst::Create(I, 0);
4441  } else {
4442  cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4443  }
4444 
4445  InstructionList.push_back(I);
4446  break;
4447  }
4449  // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4450  unsigned OpNum = 0;
4451  Value *Ptr, *Val;
4452  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4453  !isa<PointerType>(Ptr->getType()) ||
4454  popValue(Record, OpNum, NextValueNo,
4455  cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4456  OpNum+4 != Record.size())
4457  return error("Invalid record");
4459  if (Operation < AtomicRMWInst::FIRST_BINOP ||
4460  Operation > AtomicRMWInst::LAST_BINOP)
4461  return error("Invalid record");
4462  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4463  if (Ordering == AtomicOrdering::NotAtomic ||
4464  Ordering == AtomicOrdering::Unordered)
4465  return error("Invalid record");
4466  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4467  I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4468  cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4469  InstructionList.push_back(I);
4470  break;
4471  }
4472  case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4473  if (2 != Record.size())
4474  return error("Invalid record");
4475  AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4476  if (Ordering == AtomicOrdering::NotAtomic ||
4477  Ordering == AtomicOrdering::Unordered ||
4478  Ordering == AtomicOrdering::Monotonic)
4479  return error("Invalid record");
4480  SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4481  I = new FenceInst(Context, Ordering, SSID);
4482  InstructionList.push_back(I);
4483  break;
4484  }
4486  // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4487  if (Record.size() < 3)
4488  return error("Invalid record");
4489 
4490  unsigned OpNum = 0;
4491  AttributeList PAL = getAttributes(Record[OpNum++]);
4492  unsigned CCInfo = Record[OpNum++];
4493 
4494  FastMathFlags FMF;
4495  if ((CCInfo >> bitc::CALL_FMF) & 1) {
4496  FMF = getDecodedFastMathFlags(Record[OpNum++]);
4497  if (!FMF.any())
4498  return error("Fast math flags indicator set for call with no FMF");
4499  }
4500 
4501  FunctionType *FTy = nullptr;
4502  if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4503  !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4504  return error("Explicit call type is not a function type");
4505 
4506  Value *Callee;
4507  if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4508  return error("Invalid record");
4509 
4510  PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4511  if (!OpTy)
4512  return error("Callee is not a pointer type");
4513  if (!FTy) {
4514  FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4515  if (!FTy)
4516  return error("Callee is not of pointer to function type");
4517  } else if (OpTy->getElementType() != FTy)
4518  return error("Explicit call type does not match pointee type of "
4519  "callee operand");
4520  if (Record.size() < FTy->getNumParams() + OpNum)
4521  return error("Insufficient operands to call");
4522 
4524  // Read the fixed params.
4525  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4526  if (FTy->getParamType(i)->isLabelTy())
4527  Args.push_back(getBasicBlock(Record[OpNum]));
4528  else
4529  Args.push_back(getValue(Record, OpNum, NextValueNo,
4530  FTy->getParamType(i)));
4531  if (!Args.back())
4532  return error("Invalid record");
4533  }
4534 
4535  // Read type/value pairs for varargs params.
4536  if (!FTy->isVarArg()) {
4537  if (OpNum != Record.size())
4538  return error("Invalid record");
4539  } else {
4540  while (OpNum != Record.size()) {
4541  Value *Op;
4542  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4543  return error("Invalid record");
4544  Args.push_back(Op);
4545  }
4546  }
4547 
4548  I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4549  OperandBundles.clear();
4550  InstructionList.push_back(I);
4551  cast<CallInst>(I)->setCallingConv(
4552  static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4554  if (CCInfo & 1 << bitc::CALL_TAIL)
4555  TCK = CallInst::TCK_Tail;
4556  if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4557  TCK = CallInst::TCK_MustTail;
4558  if (CCInfo & (1 << bitc::CALL_NOTAIL))
4559  TCK = CallInst::TCK_NoTail;
4560  cast<CallInst>(I)->setTailCallKind(TCK);
4561  cast<CallInst>(I)->setAttributes(PAL);
4562  if (FMF.any()) {
4563  if (!isa<FPMathOperator>(I))
4564  return error("Fast-math-flags specified for call without "
4565  "floating-point scalar or vector return type");
4566  I->setFastMathFlags(FMF);
4567  }
4568  break;
4569  }
4570  case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4571  if (Record.size() < 3)
4572  return error("Invalid record");
4573  Type *OpTy = getTypeByID(Record[0]);
4574  Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4575  Type *ResTy = getTypeByID(Record[2]);
4576  if (!OpTy || !Op || !ResTy)
4577  return error("Invalid record");
4578  I = new VAArgInst(Op, ResTy);
4579  InstructionList.push_back(I);
4580  break;
4581  }
4582 
4584  // A call or an invoke can be optionally prefixed with some variable
4585  // number of operand bundle blocks. These blocks are read into
4586  // OperandBundles and consumed at the next call or invoke instruction.
4587 
4588  if (Record.size() < 1 || Record[0] >= BundleTags.size())
4589  return error("Invalid record");
4590 
4591  std::vector<Value *> Inputs;
4592 
4593  unsigned OpNum = 1;
4594  while (OpNum != Record.size()) {
4595  Value *Op;
4596  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4597  return error("Invalid record");
4598  Inputs.push_back(Op);
4599  }
4600 
4601  OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4602  continue;
4603  }
4604  }
4605 
4606  // Add instruction to end of current BB. If there is no current BB, reject
4607  // this file.
4608  if (!CurBB) {
4609  I->deleteValue();
4610  return error("Invalid instruction with no BB");
4611  }
4612  if (!OperandBundles.empty()) {
4613  I->deleteValue();
4614  return error("Operand bundles found with no consumer");
4615  }
4616  CurBB->getInstList().push_back(I);
4617 
4618  // If this was a terminator instruction, move to the next block.
4619  if (isa<TerminatorInst>(I)) {
4620  ++CurBBNo;
4621  CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4622  }
4623 
4624  // Non-void values get registered in the value table for future use.
4625  if (I && !I->getType()->isVoidTy())
4626  ValueList.assignValue(I, NextValueNo++);
4627  }
4628 
4629 OutOfRecordLoop:
4630 
4631  if (!OperandBundles.empty())
4632  return error("Operand bundles found with no consumer");
4633 
4634  // Check the function list for unresolved values.
4635  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4636  if (!A->getParent()) {
4637  // We found at least one unresolved value. Nuke them all to avoid leaks.
4638  for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4639  if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4640  A->replaceAllUsesWith(UndefValue::get(A->getType()));
4641  delete A;
4642  }
4643  }
4644  return error("Never resolved value found in function");
4645  }
4646  }
4647 
4648  // Unexpected unresolved metadata about to be dropped.
4649  if (MDLoader->hasFwdRefs())
4650  return error("Invalid function metadata: outgoing forward refs");
4651 
4652  // Trim the value list down to the size it was before we parsed this function.
4653  ValueList.shrinkTo(ModuleValueListSize);
4654  MDLoader->shrinkTo(ModuleMDLoaderSize);
4655  std::vector<BasicBlock*>().swap(FunctionBBs);
4656  return Error::success();
4657 }
4658 
4659 /// Find the function body in the bitcode stream
4660 Error BitcodeReader::findFunctionInStream(
4661  Function *F,
4662  DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4663  while (DeferredFunctionInfoIterator->second == 0) {
4664  // This is the fallback handling for the old format bitcode that
4665  // didn't contain the function index in the VST, or when we have
4666  // an anonymous function which would not have a VST entry.
4667  // Assert that we have one of those two cases.
4668  assert(VSTOffset == 0 || !F->hasName());
4669  // Parse the next body in the stream and set its position in the
4670  // DeferredFunctionInfo map.
4671  if (Error Err = rememberAndSkipFunctionBodies())
4672  return Err;
4673  }
4674  return Error::success();
4675 }
4676 
4677 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4678  if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4679  return SyncScope::ID(Val);
4680  if (Val >= SSIDs.size())
4681  return SyncScope::System; // Map unknown synchronization scopes to system.
4682  return SSIDs[Val];
4683 }
4684 
4685 //===----------------------------------------------------------------------===//
4686 // GVMaterializer implementation
4687 //===----------------------------------------------------------------------===//
4688 
4689 Error BitcodeReader::materialize(GlobalValue *GV) {
4690  Function *F = dyn_cast<Function>(GV);
4691  // If it's not a function or is already material, ignore the request.
4692  if (!F || !F->isMaterializable())
4693  return Error::success();
4694 
4695  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4696  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4697  // If its position is recorded as 0, its body is somewhere in the stream
4698  // but we haven't seen it yet.
4699  if (DFII->second == 0)
4700  if (Error Err = findFunctionInStream(F, DFII))
4701  return Err;
4702 
4703  // Materialize metadata before parsing any function bodies.
4704  if (Error Err = materializeMetadata())
4705  return Err;
4706 
4707  // Move the bit stream to the saved position of the deferred function body.
4708  Stream.JumpToBit(DFII->second);
4709 
4710  if (Error Err = parseFunctionBody(F))
4711  return Err;
4712  F->setIsMaterializable(false);
4713 
4714  if (StripDebugInfo)
4715  stripDebugInfo(*F);
4716 
4717  // Upgrade any old intrinsic calls in the function.
4718  for (auto &I : UpgradedIntrinsics) {
4719  for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4720  UI != UE;) {
4721  User *U = *UI;
4722  ++UI;
4723  if (CallInst *CI = dyn_cast<CallInst>(U))
4724  UpgradeIntrinsicCall(CI, I.second);
4725  }
4726  }
4727 
4728  // Update calls to the remangled intrinsics
4729  for (auto &I : RemangledIntrinsics)
4730  for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4731  UI != UE;)
4732  // Don't expect any other users than call sites
4733  CallSite(*UI++).setCalledFunction(I.second);
4734 
4735  // Finish fn->subprogram upgrade for materialized functions.
4736  if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4737  F->setSubprogram(SP);
4738 
4739  // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4740  if (!MDLoader->isStrippingTBAA()) {
4741  for (auto &I : instructions(F)) {
4742  MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4743  if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4744  continue;
4745  MDLoader->setStripTBAA(true);
4746  stripTBAA(F->getParent());
4747  }
4748  }
4749 
4750  // Bring in any functions that this function forward-referenced via
4751  // blockaddresses.
4752  return materializeForwardReferencedFunctions();
4753 }
4754 
4755 Error BitcodeReader::materializeModule() {
4756  if (Error Err = materializeMetadata())
4757  return Err;
4758 
4759  // Promise to materialize all forward references.
4760  WillMaterializeAllForwardRefs = true;
4761 
4762  // Iterate over the module, deserializing any functions that are still on
4763  // disk.
4764  for (Function &F : *TheModule) {
4765  if (Error Err = materialize(&F))
4766  return Err;
4767  }
4768  // At this point, if there are any function bodies, parse the rest of
4769  // the bits in the module past the last function block we have recorded
4770  // through either lazy scanning or the VST.
4771  if (LastFunctionBlockBit || NextUnreadBit)
4772  if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4773  ? LastFunctionBlockBit
4774  : NextUnreadBit))
4775  return Err;
4776 
4777  // Check that all block address forward references got resolved (as we
4778  // promised above).
4779  if (!BasicBlockFwdRefs.empty())
4780  return error("Never resolved function from blockaddress");
4781 
4782  // Upgrade any intrinsic calls that slipped through (should not happen!) and
4783  // delete the old functions to clean up. We can't do this unless the entire
4784  // module is materialized because there could always be another function body
4785  // with calls to the old function.
4786  for (auto &I : UpgradedIntrinsics) {
4787  for (auto *U : I.first->users()) {
4788  if (CallInst *CI = dyn_cast<CallInst>(U))
4789  UpgradeIntrinsicCall(CI, I.second);
4790  }
4791  if (!I.first->use_empty())
4792  I.first->replaceAllUsesWith(I.second);
4793  I.first->eraseFromParent();
4794  }
4795  UpgradedIntrinsics.clear();
4796  // Do the same for remangled intrinsics
4797  for (auto &I : RemangledIntrinsics) {
4798  I.first->replaceAllUsesWith(I.second);
4799  I.first->eraseFromParent();
4800  }
4801  RemangledIntrinsics.clear();
4802 
4803  UpgradeDebugInfo(*TheModule);
4804 
4805  UpgradeModuleFlags(*TheModule);
4806 
4807  UpgradeRetainReleaseMarker(*TheModule);
4808 
4809  return Error::success();
4810 }
4811 
4812 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4813  return IdentifiedStructTypes;
4814 }
4815 
4816 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4817  BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4818  StringRef ModulePath, unsigned ModuleId)
4819  : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4820  ModulePath(ModulePath), ModuleId(ModuleId) {}
4821 
4822 void ModuleSummaryIndexBitcodeReader::addThisModule() {
4823  TheIndex.addModule(ModulePath, ModuleId);
4824 }
4825 
4827 ModuleSummaryIndexBitcodeReader::getThisModule() {
4828  return TheIndex.getModule(ModulePath);
4829 }
4830 
4831 std::pair<ValueInfo, GlobalValue::GUID>
4832 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4833  auto VGI = ValueIdToValueInfoMap[ValueId];
4834  assert(VGI.first);
4835  return VGI;
4836 }
4837 
4838 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4839  uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4840  StringRef SourceFileName) {
4841  std::string GlobalId =
4842  GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4843  auto ValueGUID = GlobalValue::getGUID(GlobalId);
4844  auto OriginalNameID = ValueGUID;
4845  if (GlobalValue::isLocalLinkage(Linkage))
4846  OriginalNameID = GlobalValue::getGUID(ValueName);
4847  if (PrintSummaryGUIDs)
4848  dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4849  << ValueName << "\n";
4850 
4851  // UseStrtab is false for legacy summary formats and value names are
4852  // created on stack. In that case we save the name in a string saver in
4853  // the index so that the value name can be recorded.
4854  ValueIdToValueInfoMap[ValueID] = std::make_pair(
4855  TheIndex.getOrInsertValueInfo(
4856  ValueGUID,
4857  UseStrtab ? ValueName : TheIndex.saveString(ValueName.str())),
4858  OriginalNameID);
4859 }
4860 
4861 // Specialized value symbol table parser used when reading module index
4862 // blocks where we don't actually create global values. The parsed information
4863 // is saved in the bitcode reader for use when later parsing summaries.
4864 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4865  uint64_t Offset,
4866  DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4867  // With a strtab the VST is not required to parse the summary.
4868  if (UseStrtab)
4869  return Error::success();
4870 
4871  assert(Offset > 0 && "Expected non-zero VST offset");
4872  uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4873 
4875  return error("Invalid record");
4876 
4878 
4879  // Read all the records for this value table.
4881 
4882  while (true) {
4883  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4884 
4885  switch (Entry.Kind) {
4886  case BitstreamEntry::SubBlock: // Handled for us already.
4887  case BitstreamEntry::Error:
4888  return error("Malformed block");
4890  // Done parsing VST, jump back to wherever we came from.
4891  Stream.JumpToBit(CurrentBit);
4892  return Error::success();
4894  // The interesting case.
4895  break;
4896  }
4897 
4898  // Read a record.
4899  Record.clear();
4900  switch (Stream.readRecord(Entry.ID, Record)) {
4901  default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4902  break;
4903  case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4904  if (convertToString(Record, 1, ValueName))
4905  return error("Invalid record");
4906  unsigned ValueID = Record[0];
4907  assert(!SourceFileName.empty());
4908  auto VLI = ValueIdToLinkageMap.find(ValueID);
4909  assert(VLI != ValueIdToLinkageMap.end() &&
4910  "No linkage found for VST entry?");
4911  auto Linkage = VLI->second;
4912  setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4913  ValueName.clear();
4914  break;
4915  }
4916  case bitc::VST_CODE_FNENTRY: {
4917  // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4918  if (convertToString(Record, 2, ValueName))
4919  return error("Invalid record");
4920  unsigned ValueID = Record[0];
4921  assert(!SourceFileName.empty());
4922  auto VLI = ValueIdToLinkageMap.find(ValueID);
4923  assert(VLI != ValueIdToLinkageMap.end() &&
4924  "No linkage found for VST entry?");
4925  auto Linkage = VLI->second;
4926  setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4927  ValueName.clear();
4928  break;
4929  }
4931  // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4932  unsigned ValueID = Record[0];
4933  GlobalValue::GUID RefGUID = Record[1];
4934  // The "original name", which is the second value of the pair will be
4935  // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
4936  ValueIdToValueInfoMap[ValueID] =
4937  std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
4938  break;
4939  }
4940  }
4941  }
4942 }
4943 
4944 // Parse just the blocks needed for building the index out of the module.
4945 // At the end of this routine the module Index is populated with a map
4946 // from global value id to GlobalValueSummary objects.
4949  return error("Invalid record");
4950 
4953  unsigned ValueId = 0;
4954 
4955  // Read the index for this module.
4956  while (true) {
4957  BitstreamEntry Entry = Stream.advance();
4958 
4959  switch (Entry.Kind) {
4960  case BitstreamEntry::Error:
4961  return error("Malformed block");
4963  return Error::success();
4964 
4966  switch (Entry.ID) {
4967  default: // Skip unknown content.
4968  if (Stream.SkipBlock())
4969  return error("Invalid record");
4970  break;
4972  // Need to parse these to get abbrev ids (e.g. for VST)
4973  if (readBlockInfo())
4974  return error("Malformed block");
4975  break;
4977  // Should have been parsed earlier via VSTOffset, unless there
4978  // is no summary section.
4979  assert(((SeenValueSymbolTable && VSTOffset > 0) ||
4980  !SeenGlobalValSummary) &&
4981  "Expected early VST parse via VSTOffset record");
4982  if (Stream.SkipBlock())
4983  return error("Invalid record");
4984  break;
4987  // Add the module if it is a per-module index (has a source file name).
4988  if (!SourceFileName.empty())
4989  addThisModule();
4990  assert(!SeenValueSymbolTable &&
4991  "Already read VST when parsing summary block?");
4992  // We might not have a VST if there were no values in the
4993  // summary. An empty summary block generated when we are
4994  // performing ThinLTO compiles so we don't later invoke
4995  // the regular LTO process on them.
4996  if (VSTOffset > 0) {
4997  if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
4998  return Err;
4999  SeenValueSymbolTable = true;
5000  }
5001  SeenGlobalValSummary = true;
5002  if (Error Err = parseEntireSummary(Entry.ID))
5003  return Err;
5004  break;
5006  if (Error Err = parseModuleStringTable())
5007  return Err;
5008  break;
5009  }
5010  continue;
5011 
5012  case BitstreamEntry::Record: {
5013  Record.clear();
5014  auto BitCode = Stream.readRecord(Entry.ID, Record);
5015  switch (BitCode) {
5016  default:
5017  break; // Default behavior, ignore unknown content.
5019  if (Error Err = parseVersionRecord(Record).takeError())
5020  return Err;
5021  break;
5022  }
5023  /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5026  if (convertToString(Record, 0, ValueName))
5027  return error("Invalid record");
5028  SourceFileName = ValueName.c_str();
5029  break;
5030  }
5031  /// MODULE_CODE_HASH: [5*i32]
5032  case bitc::MODULE_CODE_HASH: {
5033  if (Record.size() != 5)
5034  return error("Invalid hash length " + Twine(Record.size()).str());
5035  auto &Hash = getThisModule()->second.second;
5036  int Pos = 0;
5037  for (auto &Val : Record) {
5038  assert(!(Val >> 32) && "Unexpected high bits set");
5039  Hash[Pos++] = Val;
5040  }
5041  break;
5042  }
5043  /// MODULE_CODE_VSTOFFSET: [offset]
5045  if (Record.size() < 1)
5046  return error("Invalid record");
5047  // Note that we subtract 1 here because the offset is relative to one
5048  // word before the start of the identification or module block, which
5049  // was historically always the start of the regular bitcode header.
5050  VSTOffset = Record[0] - 1;
5051  break;
5052  // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
5053  // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
5054  // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
5055  // v2: [strtab offset, strtab size, v1]
5058  case bitc::MODULE_CODE_ALIAS: {
5059  StringRef Name;
5060  ArrayRef<uint64_t> GVRecord;
5061  std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5062  if (GVRecord.size() <= 3)
5063  return error("Invalid record");
5064  uint64_t RawLinkage = GVRecord[3];
5065  GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5066  if (!UseStrtab) {
5067  ValueIdToLinkageMap[ValueId++] = Linkage;
5068  break;
5069  }
5070 
5071  setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5072  break;
5073  }
5074  }
5075  }
5076  continue;
5077  }
5078  }
5079 }
5080 
5081 std::vector<ValueInfo>
5082 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5083  std::vector<ValueInfo> Ret;
5084  Ret.reserve(Record.size());
5085  for (uint64_t RefValueId : Record)
5086  Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5087  return Ret;
5088 }
5089 
5090 std::vector<FunctionSummary::EdgeTy>
5091 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5092  bool IsOldProfileFormat,
5093  bool HasProfile, bool HasRelBF) {
5094  std::vector<FunctionSummary::EdgeTy> Ret;
5095  Ret.reserve(Record.size());
5096  for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5098  uint64_t RelBF = 0;
5099  ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5100  if (IsOldProfileFormat) {
5101  I += 1; // Skip old callsitecount field
5102  if (HasProfile)
5103  I += 1; // Skip old profilecount field
5104  } else if (HasProfile)
5105  Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5106  else if (HasRelBF)
5107  RelBF = Record[++I];
5108  Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5109  }
5110  return Ret;
5111 }
5112 
5113 static void
5116  uint64_t ArgNum = Record[Slot++];
5118  Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5119  Slot += ArgNum;
5120 
5121  B.TheKind =
5122  static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5123  B.Info = Record[Slot++];
5124  B.Byte = Record[Slot++];
5125  B.Bit = Record[Slot++];
5126 }
5127 
5129  StringRef Strtab, size_t &Slot,
5130  TypeIdSummary &TypeId) {
5131  uint64_t Id = Record[Slot++];
5132  WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5133 
5134  Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5135  Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5136  static_cast<size_t>(Record[Slot + 1])};
5137  Slot += 2;
5138 
5139  uint64_t ResByArgNum = Record[Slot++];
5140  for (uint64_t I = 0; I != ResByArgNum; ++I)
5141  parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5142 }
5143 
5145  StringRef Strtab,
5146  ModuleSummaryIndex &TheIndex) {
5147  size_t Slot = 0;
5148  TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5149  {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5150  Slot += 2;
5151 
5152  TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5153  TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5154  TypeId.TTRes.AlignLog2 = Record[Slot++];
5155  TypeId.TTRes.SizeM1 = Record[Slot++];
5156  TypeId.TTRes.BitMask = Record[Slot++];
5157  TypeId.TTRes.InlineBits = Record[Slot++];
5158 
5159  while (Slot < Record.size())
5160  parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5161 }
5162 
5163 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5164 // objects in the index.
5165 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5166  if (Stream.EnterSubBlock(ID))
5167  return error("Invalid record");
5169 
5170  // Parse version
5171  {
5172  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5173  if (Entry.Kind != BitstreamEntry::Record)
5174  return error("Invalid Summary Block: record for version expected");
5175  if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5176  return error("Invalid Summary Block: version expected");
5177  }
5178  const uint64_t Version = Record[0];
5179  const bool IsOldProfileFormat = Version == 1;
5180  if (Version < 1 || Version > 4)
5181  return error("Invalid summary version " + Twine(Version) +
5182  ", 1, 2, 3 or 4 expected");
5183  Record.clear();
5184 
5185  // Keep around the last seen summary to be used when we see an optional
5186  // "OriginalName" attachement.
5187  GlobalValueSummary *LastSeenSummary = nullptr;
5188  GlobalValue::GUID LastSeenGUID = 0;
5189 
5190  // We can expect to see any number of type ID information records before
5191  // each function summary records; these variables store the information
5192  // collected so far so that it can be used to create the summary object.
5193  std::vector<GlobalValue::GUID> PendingTypeTests;
5194  std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5195  PendingTypeCheckedLoadVCalls;
5196  std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5197  PendingTypeCheckedLoadConstVCalls;
5198 
5199  while (true) {
5200  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5201 
5202  switch (Entry.Kind) {
5203  case BitstreamEntry::SubBlock: // Handled for us already.
5204  case BitstreamEntry::Error:
5205  return error("Malformed block");
5207  return Error::success();
5209  // The interesting case.
5210  break;
5211  }
5212 
5213  // Read a record. The record format depends on whether this
5214  // is a per-module index or a combined index file. In the per-module
5215  // case the records contain the associated value's ID for correlation
5216  // with VST entries. In the combined index the correlation is done
5217  // via the bitcode offset of the summary records (which were saved
5218  // in the combined index VST entries). The records also contain
5219  // information used for ThinLTO renaming and importing.
5220  Record.clear();
5221  auto BitCode = Stream.readRecord(Entry.ID, Record);
5222  switch (BitCode) {
5223  default: // Default behavior: ignore.
5224  break;
5225  case bitc::FS_FLAGS: { // [flags]
5226  uint64_t Flags = Record[0];
5227  // Scan flags (set only on the combined index).
5228  assert(Flags <= 0x3 && "Unexpected bits in flag");
5229 
5230  // 1 bit: WithGlobalValueDeadStripping flag.
5231  if (Flags & 0x1)
5233  // 1 bit: SkipModuleByDistributedBackend flag.
5234  if (Flags & 0x2)
5236  break;
5237  }
5238  case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5239  uint64_t ValueID = Record[0];
5240  GlobalValue::GUID RefGUID = Record[1];
5241  ValueIdToValueInfoMap[ValueID] =
5242  std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5243  break;
5244  }
5245  // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5246  // numrefs x valueid, n x (valueid)]
5247  // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5248  // numrefs x valueid,
5249  // n x (valueid, hotness)]
5250  // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5251  // numrefs x valueid,
5252  // n x (valueid, relblockfreq)]
5253  case bitc::FS_PERMODULE:
5256  unsigned ValueID = Record[0];
5257  uint64_t RawFlags = Record[1];
5258  unsigned InstCount = Record[2];
5259  uint64_t RawFunFlags = 0;
5260  unsigned NumRefs = Record[3];
5261  int RefListStartIndex = 4;
5262  if (Version >= 4) {
5263  RawFunFlags = Record[3];
5264  NumRefs = Record[4];
5265  RefListStartIndex = 5;
5266  }
5267 
5268  auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5269  // The module path string ref set in the summary must be owned by the
5270  // index's module string table. Since we don't have a module path
5271  // string table section in the per-module index, we create a single
5272  // module path string table entry with an empty (0) ID to take
5273  // ownership.
5274  int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5275  assert(Record.size() >= RefListStartIndex + NumRefs &&
5276  "Record size inconsistent with number of references");
5277  std::vector<ValueInfo> Refs = makeRefList(
5278  ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5279  bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5280  bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5281  std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5282  ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5283  IsOldProfileFormat, HasProfile, HasRelBF);
5284  auto FS = llvm::make_unique<FunctionSummary>(
5285  Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5286  std::move(Calls), std::move(PendingTypeTests),
5287  std::move(PendingTypeTestAssumeVCalls),
5288  std::move(PendingTypeCheckedLoadVCalls),
5289  std::move(PendingTypeTestAssumeConstVCalls),
5290  std::move(PendingTypeCheckedLoadConstVCalls));
5291  PendingTypeTests.clear();
5292  PendingTypeTestAssumeVCalls.clear();
5293  PendingTypeCheckedLoadVCalls.clear();
5294  PendingTypeTestAssumeConstVCalls.clear();
5295  PendingTypeCheckedLoadConstVCalls.clear();
5296  auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5297  FS->setModulePath(getThisModule()->first());
5298  FS->setOriginalName(VIAndOriginalGUID.second);
5299  TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5300  break;
5301  }
5302  // FS_ALIAS: [valueid, flags, valueid]
5303  // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5304  // they expect all aliasee summaries to be available.
5305  case bitc::FS_ALIAS: {
5306  unsigned ValueID = Record[0];
5307  uint64_t RawFlags = Record[1];
5308  unsigned AliaseeID = Record[2];
5309  auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5310  auto AS = llvm::make_unique<AliasSummary>(Flags);
5311  // The module path string ref set in the summary must be owned by the
5312  // index's module string table. Since we don't have a module path
5313  // string table section in the per-module index, we create a single
5314  // module path string table entry with an empty (0) ID to take
5315  // ownership.
5316  AS->setModulePath(getThisModule()->first());
5317 
5318  GlobalValue::GUID AliaseeGUID =
5319  getValueInfoFromValueId(AliaseeID).first.getGUID();
5320  auto AliaseeInModule =
5321  TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5322  if (!AliaseeInModule)
5323  return error("Alias expects aliasee summary to be parsed");
5324  AS->setAliasee(AliaseeInModule);
5325  AS->setAliaseeGUID(AliaseeGUID);
5326 
5327  auto GUID = getValueInfoFromValueId(ValueID);
5328  AS->setOriginalName(GUID.second);
5329  TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5330  break;
5331  }
5332  // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
5334  unsigned ValueID = Record[0];
5335  uint64_t RawFlags = Record[1];
5336  auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5337  std::vector<ValueInfo> Refs =
5338  makeRefList(ArrayRef<uint64_t>(Record).slice(2));
5339  auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5340  FS->setModulePath(getThisModule()->first());
5341  auto GUID = getValueInfoFromValueId(ValueID);
5342  FS->setOriginalName(GUID.second);
5343  TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5344  break;
5345  }
5346  // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5347  // numrefs x valueid, n x (valueid)]
5348  // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5349  // numrefs x valueid, n x (valueid, hotness)]
5350  case bitc::FS_COMBINED:
5352  unsigned ValueID = Record[0];
5353  uint64_t ModuleId = Record[1];
5354  uint64_t RawFlags = Record[2];
5355  unsigned InstCount = Record[3];
5356  uint64_t RawFunFlags = 0;
5357  unsigned NumRefs = Record[4];
5358  int RefListStartIndex = 5;
5359 
5360  if (Version >= 4) {
5361  RawFunFlags = Record[4];
5362  NumRefs = Record[5];
5363  RefListStartIndex = 6;
5364  }
5365 
5366  auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5367  int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5368  assert(Record.size() >= RefListStartIndex + NumRefs &&
5369  "Record size inconsistent with number of references");
5370  std::vector<ValueInfo> Refs = makeRefList(
5371  ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5372  bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5373  std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5374  ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5375  IsOldProfileFormat, HasProfile, false);
5376  ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5377  auto FS = llvm::make_unique<FunctionSummary>(
5378  Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5379  std::move(Edges), std::move(PendingTypeTests),
5380  std::move(PendingTypeTestAssumeVCalls),
5381  std::move(PendingTypeCheckedLoadVCalls),
5382  std::move(PendingTypeTestAssumeConstVCalls),
5383  std::move(PendingTypeCheckedLoadConstVCalls));
5384  PendingTypeTests.clear();
5385  PendingTypeTestAssumeVCalls.clear();
5386  PendingTypeCheckedLoadVCalls.clear();
5387  PendingTypeTestAssumeConstVCalls.clear();
5388  PendingTypeCheckedLoadConstVCalls.clear();
5389  LastSeenSummary = FS.get();
5390  LastSeenGUID = VI.getGUID();
5391  FS->setModulePath(ModuleIdMap[ModuleId]);
5392  TheIndex.addGlobalValueSummary(VI, std::move(FS));
5393  break;
5394  }
5395  // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5396  // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5397  // they expect all aliasee summaries to be available.
5398  case bitc::FS_COMBINED_ALIAS: {
5399  unsigned ValueID = Record[0];
5400  uint64_t ModuleId = Record[1];
5401  uint64_t RawFlags = Record[2];
5402  unsigned AliaseeValueId = Record[3];
5403  auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5404  auto AS = llvm::make_unique<AliasSummary>(Flags);
5405  LastSeenSummary = AS.get();
5406  AS->setModulePath(ModuleIdMap[ModuleId]);
5407 
5408  auto AliaseeGUID =
5409  getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5410  auto AliaseeInModule =
5411  TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());