LLVM  6.0.0svn
BitcodeReader.cpp
Go to the documentation of this file.
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
11 #include "MetadataLoader.h"
12 #include "ValueList.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorOr.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
91  "print-summary-global-ids", cl::init(false), cl::Hidden,
92  cl::desc(
93  "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104  return make_error<StringError>(
106 }
107 
108 /// Helper to read the header common to all bitcode files.
110  // Sniff for the signature.
111  if (!Stream.canSkipToPos(4) ||
112  Stream.Read(8) != 'B' ||
113  Stream.Read(8) != 'C' ||
114  Stream.Read(4) != 0x0 ||
115  Stream.Read(4) != 0xC ||
116  Stream.Read(4) != 0xE ||
117  Stream.Read(4) != 0xD)
118  return false;
119  return true;
120 }
121 
123  const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
124  const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
125 
126  if (Buffer.getBufferSize() & 3)
127  return error("Invalid bitcode signature");
128 
129  // If we have a wrapper header, parse it and ignore the non-bc file contents.
130  // The magic number is 0x0B17C0DE stored in little endian.
131  if (isBitcodeWrapper(BufPtr, BufEnd))
132  if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
133  return error("Invalid bitcode wrapper header");
134 
135  BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
136  if (!hasValidBitcodeHeader(Stream))
137  return error("Invalid bitcode signature");
138 
139  return std::move(Stream);
140 }
141 
142 /// Convert a string from a record into an std::string, return true on failure.
143 template <typename StrTy>
144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
145  StrTy &Result) {
146  if (Idx > Record.size())
147  return true;
148 
149  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
150  Result += (char)Record[i];
151  return false;
152 }
153 
154 // Strip all the TBAA attachment for the module.
155 static void stripTBAA(Module *M) {
156  for (auto &F : *M) {
157  if (F.isMaterializable())
158  continue;
159  for (auto &I : instructions(F))
160  I.setMetadata(LLVMContext::MD_tbaa, nullptr);
161  }
162 }
163 
164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
165 /// "epoch" encoded in the bitcode, and return the producer name if any.
168  return error("Invalid record");
169 
170  // Read all the records.
172 
173  std::string ProducerIdentification;
174 
175  while (true) {
176  BitstreamEntry Entry = Stream.advance();
177 
178  switch (Entry.Kind) {
179  default:
181  return error("Malformed block");
183  return ProducerIdentification;
185  // The interesting case.
186  break;
187  }
188 
189  // Read a record.
190  Record.clear();
191  unsigned BitCode = Stream.readRecord(Entry.ID, Record);
192  switch (BitCode) {
193  default: // Default behavior: reject
194  return error("Invalid value");
195  case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
196  convertToString(Record, 0, ProducerIdentification);
197  break;
198  case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
199  unsigned epoch = (unsigned)Record[0];
200  if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
201  return error(
202  Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
203  "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
204  }
205  }
206  }
207  }
208 }
209 
211  // We expect a number of well-defined blocks, though we don't necessarily
212  // need to understand them all.
213  while (true) {
214  if (Stream.AtEndOfStream())
215  return "";
216 
217  BitstreamEntry Entry = Stream.advance();
218  switch (Entry.Kind) {
221  return error("Malformed block");
222 
224  if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
225  return readIdentificationBlock(Stream);
226 
227  // Ignore other sub-blocks.
228  if (Stream.SkipBlock())
229  return error("Malformed block");
230  continue;
232  Stream.skipRecord(Entry.ID);
233  continue;
234  }
235  }
236 }
237 
240  return error("Invalid record");
241 
243  // Read all the records for this module.
244 
245  while (true) {
246  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
247 
248  switch (Entry.Kind) {
249  case BitstreamEntry::SubBlock: // Handled for us already.
251  return error("Malformed block");
253  return false;
255  // The interesting case.
256  break;
257  }
258 
259  // Read a record.
260  switch (Stream.readRecord(Entry.ID, Record)) {
261  default:
262  break; // Default behavior, ignore unknown content.
263  case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
264  std::string S;
265  if (convertToString(Record, 0, S))
266  return error("Invalid record");
267  // Check for the i386 and other (x86_64, ARM) conventions
268  if (S.find("__DATA, __objc_catlist") != std::string::npos ||
269  S.find("__OBJC,__category") != std::string::npos)
270  return true;
271  break;
272  }
273  }
274  Record.clear();
275  }
276  llvm_unreachable("Exit infinite loop");
277 }
278 
280  // We expect a number of well-defined blocks, though we don't necessarily
281  // need to understand them all.
282  while (true) {
283  BitstreamEntry Entry = Stream.advance();
284 
285  switch (Entry.Kind) {
287  return error("Malformed block");
289  return false;
290 
292  if (Entry.ID == bitc::MODULE_BLOCK_ID)
293  return hasObjCCategoryInModule(Stream);
294 
295  // Ignore other sub-blocks.
296  if (Stream.SkipBlock())
297  return error("Malformed block");
298  continue;
299 
301  Stream.skipRecord(Entry.ID);
302  continue;
303  }
304  }
305 }
306 
309  return error("Invalid record");
310 
312 
313  std::string Triple;
314 
315  // Read all the records for this module.
316  while (true) {
317  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
318 
319  switch (Entry.Kind) {
320  case BitstreamEntry::SubBlock: // Handled for us already.
322  return error("Malformed block");
324  return Triple;
326  // The interesting case.
327  break;
328  }
329 
330  // Read a record.
331  switch (Stream.readRecord(Entry.ID, Record)) {
332  default: break; // Default behavior, ignore unknown content.
333  case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
334  std::string S;
335  if (convertToString(Record, 0, S))
336  return error("Invalid record");
337  Triple = S;
338  break;
339  }
340  }
341  Record.clear();
342  }
343  llvm_unreachable("Exit infinite loop");
344 }
345 
347  // We expect a number of well-defined blocks, though we don't necessarily
348  // need to understand them all.
349  while (true) {
350  BitstreamEntry Entry = Stream.advance();
351 
352  switch (Entry.Kind) {
354  return error("Malformed block");
356  return "";
357 
359  if (Entry.ID == bitc::MODULE_BLOCK_ID)
360  return readModuleTriple(Stream);
361 
362  // Ignore other sub-blocks.
363  if (Stream.SkipBlock())
364  return error("Malformed block");
365  continue;
366 
368  Stream.skipRecord(Entry.ID);
369  continue;
370  }
371  }
372 }
373 
374 namespace {
375 
376 class BitcodeReaderBase {
377 protected:
378  BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
379  : Stream(std::move(Stream)), Strtab(Strtab) {
380  this->Stream.setBlockInfo(&BlockInfo);
381  }
382 
383  BitstreamBlockInfo BlockInfo;
384  BitstreamCursor Stream;
385  StringRef Strtab;
386 
387  /// In version 2 of the bitcode we store names of global values and comdats in
388  /// a string table rather than in the VST.
389  bool UseStrtab = false;
390 
391  Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
392 
393  /// If this module uses a string table, pop the reference to the string table
394  /// and return the referenced string and the rest of the record. Otherwise
395  /// just return the record itself.
396  std::pair<StringRef, ArrayRef<uint64_t>>
397  readNameFromStrtab(ArrayRef<uint64_t> Record);
398 
399  bool readBlockInfo();
400 
401  // Contains an arbitrary and optional string identifying the bitcode producer
402  std::string ProducerIdentification;
403 
404  Error error(const Twine &Message);
405 };
406 
407 } // end anonymous namespace
408 
409 Error BitcodeReaderBase::error(const Twine &Message) {
410  std::string FullMsg = Message.str();
411  if (!ProducerIdentification.empty())
412  FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
413  LLVM_VERSION_STRING "')";
414  return ::error(FullMsg);
415 }
416 
418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
419  if (Record.empty())
420  return error("Invalid record");
421  unsigned ModuleVersion = Record[0];
422  if (ModuleVersion > 2)
423  return error("Invalid value");
424  UseStrtab = ModuleVersion >= 2;
425  return ModuleVersion;
426 }
427 
428 std::pair<StringRef, ArrayRef<uint64_t>>
429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
430  if (!UseStrtab)
431  return {"", Record};
432  // Invalid reference. Let the caller complain about the record being empty.
433  if (Record[0] + Record[1] > Strtab.size())
434  return {"", {}};
435  return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
436 }
437 
438 namespace {
439 
440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
442  Module *TheModule = nullptr;
443  // Next offset to start scanning for lazy parsing of function bodies.
444  uint64_t NextUnreadBit = 0;
445  // Last function offset found in the VST.
446  uint64_t LastFunctionBlockBit = 0;
447  bool SeenValueSymbolTable = false;
448  uint64_t VSTOffset = 0;
449 
450  std::vector<std::string> SectionTable;
451  std::vector<std::string> GCTable;
452 
453  std::vector<Type*> TypeList;
454  BitcodeReaderValueList ValueList;
455  Optional<MetadataLoader> MDLoader;
456  std::vector<Comdat *> ComdatList;
457  SmallVector<Instruction *, 64> InstructionList;
458 
459  std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
460  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
461  std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
462  std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
463  std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
464 
465  /// The set of attributes by index. Index zero in the file is for null, and
466  /// is thus not represented here. As such all indices are off by one.
467  std::vector<AttributeList> MAttributes;
468 
469  /// The set of attribute groups.
470  std::map<unsigned, AttributeList> MAttributeGroups;
471 
472  /// While parsing a function body, this is a list of the basic blocks for the
473  /// function.
474  std::vector<BasicBlock*> FunctionBBs;
475 
476  // When reading the module header, this list is populated with functions that
477  // have bodies later in the file.
478  std::vector<Function*> FunctionsWithBodies;
479 
480  // When intrinsic functions are encountered which require upgrading they are
481  // stored here with their replacement function.
482  using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
483  UpdatedIntrinsicMap UpgradedIntrinsics;
484  // Intrinsics which were remangled because of types rename
485  UpdatedIntrinsicMap RemangledIntrinsics;
486 
487  // Several operations happen after the module header has been read, but
488  // before function bodies are processed. This keeps track of whether
489  // we've done this yet.
490  bool SeenFirstFunctionBody = false;
491 
492  /// When function bodies are initially scanned, this map contains info about
493  /// where to find deferred function body in the stream.
494  DenseMap<Function*, uint64_t> DeferredFunctionInfo;
495 
496  /// When Metadata block is initially scanned when parsing the module, we may
497  /// choose to defer parsing of the metadata. This vector contains info about
498  /// which Metadata blocks are deferred.
499  std::vector<uint64_t> DeferredMetadataInfo;
500 
501  /// These are basic blocks forward-referenced by block addresses. They are
502  /// inserted lazily into functions when they're loaded. The basic block ID is
503  /// its index into the vector.
505  std::deque<Function *> BasicBlockFwdRefQueue;
506 
507  /// Indicates that we are using a new encoding for instruction operands where
508  /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509  /// instruction number, for a more compact encoding. Some instruction
510  /// operands are not relative to the instruction ID: basic block numbers, and
511  /// types. Once the old style function blocks have been phased out, we would
512  /// not need this flag.
513  bool UseRelativeIDs = false;
514 
515  /// True if all functions will be materialized, negating the need to process
516  /// (e.g.) blockaddress forward references.
517  bool WillMaterializeAllForwardRefs = false;
518 
519  bool StripDebugInfo = false;
520  TBAAVerifier TBAAVerifyHelper;
521 
522  std::vector<std::string> BundleTags;
524 
525 public:
526  BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
527  StringRef ProducerIdentification, LLVMContext &Context);
528 
529  Error materializeForwardReferencedFunctions();
530 
531  Error materialize(GlobalValue *GV) override;
532  Error materializeModule() override;
533  std::vector<StructType *> getIdentifiedStructTypes() const override;
534 
535  /// \brief Main interface to parsing a bitcode buffer.
536  /// \returns true if an error occurred.
537  Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
538  bool IsImporting = false);
539 
540  static uint64_t decodeSignRotatedValue(uint64_t V);
541 
542  /// Materialize any deferred Metadata block.
543  Error materializeMetadata() override;
544 
545  void setStripDebugInfo() override;
546 
547 private:
548  std::vector<StructType *> IdentifiedStructTypes;
549  StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
550  StructType *createIdentifiedStructType(LLVMContext &Context);
551 
552  Type *getTypeByID(unsigned ID);
553 
554  Value *getFnValueByID(unsigned ID, Type *Ty) {
555  if (Ty && Ty->isMetadataTy())
556  return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
557  return ValueList.getValueFwdRef(ID, Ty);
558  }
559 
560  Metadata *getFnMetadataByID(unsigned ID) {
561  return MDLoader->getMetadataFwdRefOrLoad(ID);
562  }
563 
564  BasicBlock *getBasicBlock(unsigned ID) const {
565  if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
566  return FunctionBBs[ID];
567  }
568 
569  AttributeList getAttributes(unsigned i) const {
570  if (i-1 < MAttributes.size())
571  return MAttributes[i-1];
572  return AttributeList();
573  }
574 
575  /// Read a value/type pair out of the specified record from slot 'Slot'.
576  /// Increment Slot past the number of slots used in the record. Return true on
577  /// failure.
578  bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
579  unsigned InstNum, Value *&ResVal) {
580  if (Slot == Record.size()) return true;
581  unsigned ValNo = (unsigned)Record[Slot++];
582  // Adjust the ValNo, if it was encoded relative to the InstNum.
583  if (UseRelativeIDs)
584  ValNo = InstNum - ValNo;
585  if (ValNo < InstNum) {
586  // If this is not a forward reference, just return the value we already
587  // have.
588  ResVal = getFnValueByID(ValNo, nullptr);
589  return ResVal == nullptr;
590  }
591  if (Slot == Record.size())
592  return true;
593 
594  unsigned TypeNo = (unsigned)Record[Slot++];
595  ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
596  return ResVal == nullptr;
597  }
598 
599  /// Read a value out of the specified record from slot 'Slot'. Increment Slot
600  /// past the number of slots used by the value in the record. Return true if
601  /// there is an error.
602  bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
603  unsigned InstNum, Type *Ty, Value *&ResVal) {
604  if (getValue(Record, Slot, InstNum, Ty, ResVal))
605  return true;
606  // All values currently take a single record slot.
607  ++Slot;
608  return false;
609  }
610 
611  /// Like popValue, but does not increment the Slot number.
612  bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
613  unsigned InstNum, Type *Ty, Value *&ResVal) {
614  ResVal = getValue(Record, Slot, InstNum, Ty);
615  return ResVal == nullptr;
616  }
617 
618  /// Version of getValue that returns ResVal directly, or 0 if there is an
619  /// error.
620  Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
621  unsigned InstNum, Type *Ty) {
622  if (Slot == Record.size()) return nullptr;
623  unsigned ValNo = (unsigned)Record[Slot];
624  // Adjust the ValNo, if it was encoded relative to the InstNum.
625  if (UseRelativeIDs)
626  ValNo = InstNum - ValNo;
627  return getFnValueByID(ValNo, Ty);
628  }
629 
630  /// Like getValue, but decodes signed VBRs.
631  Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
632  unsigned InstNum, Type *Ty) {
633  if (Slot == Record.size()) return nullptr;
634  unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
635  // Adjust the ValNo, if it was encoded relative to the InstNum.
636  if (UseRelativeIDs)
637  ValNo = InstNum - ValNo;
638  return getFnValueByID(ValNo, Ty);
639  }
640 
641  /// Converts alignment exponent (i.e. power of two (or zero)) to the
642  /// corresponding alignment to use. If alignment is too large, returns
643  /// a corresponding error code.
644  Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
645  Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
646  Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
647 
648  Error parseComdatRecord(ArrayRef<uint64_t> Record);
649  Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
650  Error parseFunctionRecord(ArrayRef<uint64_t> Record);
651  Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
652  ArrayRef<uint64_t> Record);
653 
654  Error parseAttributeBlock();
655  Error parseAttributeGroupBlock();
656  Error parseTypeTable();
657  Error parseTypeTableBody();
658  Error parseOperandBundleTags();
659  Error parseSyncScopeNames();
660 
661  Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
662  unsigned NameIndex, Triple &TT);
663  void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
664  ArrayRef<uint64_t> Record);
665  Error parseValueSymbolTable(uint64_t Offset = 0);
666  Error parseGlobalValueSymbolTable();
667  Error parseConstants();
668  Error rememberAndSkipFunctionBodies();
669  Error rememberAndSkipFunctionBody();
670  /// Save the positions of the Metadata blocks and skip parsing the blocks.
671  Error rememberAndSkipMetadata();
672  Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
673  Error parseFunctionBody(Function *F);
674  Error globalCleanup();
675  Error resolveGlobalAndIndirectSymbolInits();
676  Error parseUseLists();
677  Error findFunctionInStream(
678  Function *F,
679  DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
680 
681  SyncScope::ID getDecodedSyncScopeID(unsigned Val);
682 };
683 
684 /// Class to manage reading and parsing function summary index bitcode
685 /// files/sections.
686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
687  /// The module index built during parsing.
688  ModuleSummaryIndex &TheIndex;
689 
690  /// Indicates whether we have encountered a global value summary section
691  /// yet during parsing.
692  bool SeenGlobalValSummary = false;
693 
694  /// Indicates whether we have already parsed the VST, used for error checking.
695  bool SeenValueSymbolTable = false;
696 
697  /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
698  /// Used to enable on-demand parsing of the VST.
699  uint64_t VSTOffset = 0;
700 
701  // Map to save ValueId to ValueInfo association that was recorded in the
702  // ValueSymbolTable. It is used after the VST is parsed to convert
703  // call graph edges read from the function summary from referencing
704  // callees by their ValueId to using the ValueInfo instead, which is how
705  // they are recorded in the summary index being built.
706  // We save a GUID which refers to the same global as the ValueInfo, but
707  // ignoring the linkage, i.e. for values other than local linkage they are
708  // identical.
710  ValueIdToValueInfoMap;
711 
712  /// Map populated during module path string table parsing, from the
713  /// module ID to a string reference owned by the index's module
714  /// path string table, used to correlate with combined index
715  /// summary records.
716  DenseMap<uint64_t, StringRef> ModuleIdMap;
717 
718  /// Original source file name recorded in a bitcode record.
719  std::string SourceFileName;
720 
721  /// The string identifier given to this module by the client, normally the
722  /// path to the bitcode file.
723  StringRef ModulePath;
724 
725  /// For per-module summary indexes, the unique numerical identifier given to
726  /// this module by the client.
727  unsigned ModuleId;
728 
729 public:
730  ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
731  ModuleSummaryIndex &TheIndex,
732  StringRef ModulePath, unsigned ModuleId);
733 
734  Error parseModule();
735 
736 private:
737  void setValueGUID(uint64_t ValueID, StringRef ValueName,
739  StringRef SourceFileName);
740  Error parseValueSymbolTable(
741  uint64_t Offset,
742  DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
743  std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
744  std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
745  bool IsOldProfileFormat,
746  bool HasProfile);
747  Error parseEntireSummary(unsigned ID);
748  Error parseModuleStringTable();
749 
750  std::pair<ValueInfo, GlobalValue::GUID>
751  getValueInfoFromValueId(unsigned ValueId);
752 
753  ModuleSummaryIndex::ModuleInfo *addThisModule();
754 };
755 
756 } // end anonymous namespace
757 
759  Error Err) {
760  if (Err) {
761  std::error_code EC;
762  handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
763  EC = EIB.convertToErrorCode();
764  Ctx.emitError(EIB.message());
765  });
766  return EC;
767  }
768  return std::error_code();
769 }
770 
771 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
772  StringRef ProducerIdentification,
774  : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
775  ValueList(Context) {
776  this->ProducerIdentification = ProducerIdentification;
777 }
778 
779 Error BitcodeReader::materializeForwardReferencedFunctions() {
780  if (WillMaterializeAllForwardRefs)
781  return Error::success();
782 
783  // Prevent recursion.
784  WillMaterializeAllForwardRefs = true;
785 
786  while (!BasicBlockFwdRefQueue.empty()) {
787  Function *F = BasicBlockFwdRefQueue.front();
788  BasicBlockFwdRefQueue.pop_front();
789  assert(F && "Expected valid function");
790  if (!BasicBlockFwdRefs.count(F))
791  // Already materialized.
792  continue;
793 
794  // Check for a function that isn't materializable to prevent an infinite
795  // loop. When parsing a blockaddress stored in a global variable, there
796  // isn't a trivial way to check if a function will have a body without a
797  // linear search through FunctionsWithBodies, so just check it here.
798  if (!F->isMaterializable())
799  return error("Never resolved function from blockaddress");
800 
801  // Try to materialize F.
802  if (Error Err = materialize(F))
803  return Err;
804  }
805  assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
806 
807  // Reset state.
808  WillMaterializeAllForwardRefs = false;
809  return Error::success();
810 }
811 
812 //===----------------------------------------------------------------------===//
813 // Helper functions to implement forward reference resolution, etc.
814 //===----------------------------------------------------------------------===//
815 
816 static bool hasImplicitComdat(size_t Val) {
817  switch (Val) {
818  default:
819  return false;
820  case 1: // Old WeakAnyLinkage
821  case 4: // Old LinkOnceAnyLinkage
822  case 10: // Old WeakODRLinkage
823  case 11: // Old LinkOnceODRLinkage
824  return true;
825  }
826 }
827 
829  switch (Val) {
830  default: // Map unknown/new linkages to external
831  case 0:
833  case 2:
835  case 3:
837  case 5:
838  return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
839  case 6:
840  return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
841  case 7:
843  case 8:
845  case 9:
847  case 12:
849  case 13:
850  return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
851  case 14:
852  return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
853  case 15:
854  return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
855  case 1: // Old value with implicit comdat.
856  case 16:
858  case 10: // Old value with implicit comdat.
859  case 17:
861  case 4: // Old value with implicit comdat.
862  case 18:
864  case 11: // Old value with implicit comdat.
865  case 19:
867  }
868 }
869 
870 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
872  Flags.ReadNone = RawFlags & 0x1;
873  Flags.ReadOnly = (RawFlags >> 1) & 0x1;
874  Flags.NoRecurse = (RawFlags >> 2) & 0x1;
875  Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
876  return Flags;
877 }
878 
879 /// Decode the flags for GlobalValue in the summary.
881  uint64_t Version) {
882  // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
883  // like getDecodedLinkage() above. Any future change to the linkage enum and
884  // to getDecodedLinkage() will need to be taken into account here as above.
885  auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
886  RawFlags = RawFlags >> 4;
887  bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
888  // The Live flag wasn't introduced until version 3. For dead stripping
889  // to work correctly on earlier versions, we must conservatively treat all
890  // values as live.
891  bool Live = (RawFlags & 0x2) || Version < 3;
892  return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live);
893 }
894 
896  switch (Val) {
897  default: // Map unknown visibilities to default.
898  case 0: return GlobalValue::DefaultVisibility;
899  case 1: return GlobalValue::HiddenVisibility;
900  case 2: return GlobalValue::ProtectedVisibility;
901  }
902 }
903 
906  switch (Val) {
907  default: // Map unknown values to default.
908  case 0: return GlobalValue::DefaultStorageClass;
909  case 1: return GlobalValue::DLLImportStorageClass;
910  case 2: return GlobalValue::DLLExportStorageClass;
911  }
912 }
913 
915  switch (Val) {
916  case 0: return GlobalVariable::NotThreadLocal;
917  default: // Map unknown non-zero value to general dynamic.
921  case 4: return GlobalVariable::LocalExecTLSModel;
922  }
923 }
924 
926  switch (Val) {
927  default: // Map unknown to UnnamedAddr::None.
928  case 0: return GlobalVariable::UnnamedAddr::None;
930  case 2: return GlobalVariable::UnnamedAddr::Local;
931  }
932 }
933 
934 static int getDecodedCastOpcode(unsigned Val) {
935  switch (Val) {
936  default: return -1;
937  case bitc::CAST_TRUNC : return Instruction::Trunc;
938  case bitc::CAST_ZEXT : return Instruction::ZExt;
939  case bitc::CAST_SEXT : return Instruction::SExt;
940  case bitc::CAST_FPTOUI : return Instruction::FPToUI;
941  case bitc::CAST_FPTOSI : return Instruction::FPToSI;
942  case bitc::CAST_UITOFP : return Instruction::UIToFP;
943  case bitc::CAST_SITOFP : return Instruction::SIToFP;
944  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
945  case bitc::CAST_FPEXT : return Instruction::FPExt;
946  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
947  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
948  case bitc::CAST_BITCAST : return Instruction::BitCast;
949  case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
950  }
951 }
952 
953 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
954  bool IsFP = Ty->isFPOrFPVectorTy();
955  // BinOps are only valid for int/fp or vector of int/fp types
956  if (!IsFP && !Ty->isIntOrIntVectorTy())
957  return -1;
958 
959  switch (Val) {
960  default:
961  return -1;
962  case bitc::BINOP_ADD:
963  return IsFP ? Instruction::FAdd : Instruction::Add;
964  case bitc::BINOP_SUB:
965  return IsFP ? Instruction::FSub : Instruction::Sub;
966  case bitc::BINOP_MUL:
967  return IsFP ? Instruction::FMul : Instruction::Mul;
968  case bitc::BINOP_UDIV:
969  return IsFP ? -1 : Instruction::UDiv;
970  case bitc::BINOP_SDIV:
971  return IsFP ? Instruction::FDiv : Instruction::SDiv;
972  case bitc::BINOP_UREM:
973  return IsFP ? -1 : Instruction::URem;
974  case bitc::BINOP_SREM:
975  return IsFP ? Instruction::FRem : Instruction::SRem;
976  case bitc::BINOP_SHL:
977  return IsFP ? -1 : Instruction::Shl;
978  case bitc::BINOP_LSHR:
979  return IsFP ? -1 : Instruction::LShr;
980  case bitc::BINOP_ASHR:
981  return IsFP ? -1 : Instruction::AShr;
982  case bitc::BINOP_AND:
983  return IsFP ? -1 : Instruction::And;
984  case bitc::BINOP_OR:
985  return IsFP ? -1 : Instruction::Or;
986  case bitc::BINOP_XOR:
987  return IsFP ? -1 : Instruction::Xor;
988  }
989 }
990 
992  switch (Val) {
993  default: return AtomicRMWInst::BAD_BINOP;
994  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
995  case bitc::RMW_ADD: return AtomicRMWInst::Add;
996  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
997  case bitc::RMW_AND: return AtomicRMWInst::And;
998  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
999  case bitc::RMW_OR: return AtomicRMWInst::Or;
1000  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1001  case bitc::RMW_MAX: return AtomicRMWInst::Max;
1002  case bitc::RMW_MIN: return AtomicRMWInst::Min;
1003  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1004  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1005  }
1006 }
1007 
1008 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1009  switch (Val) {
1016  default: // Map unknown orderings to sequentially-consistent.
1018  }
1019 }
1020 
1022  switch (Val) {
1023  default: // Map unknown selection kinds to any.
1025  return Comdat::Any;
1027  return Comdat::ExactMatch;
1029  return Comdat::Largest;
1031  return Comdat::NoDuplicates;
1033  return Comdat::SameSize;
1034  }
1035 }
1036 
1038  FastMathFlags FMF;
1039  if (0 != (Val & FastMathFlags::UnsafeAlgebra))
1040  FMF.setUnsafeAlgebra();
1041  if (0 != (Val & FastMathFlags::NoNaNs))
1042  FMF.setNoNaNs();
1043  if (0 != (Val & FastMathFlags::NoInfs))
1044  FMF.setNoInfs();
1045  if (0 != (Val & FastMathFlags::NoSignedZeros))
1046  FMF.setNoSignedZeros();
1047  if (0 != (Val & FastMathFlags::AllowReciprocal))
1048  FMF.setAllowReciprocal();
1049  if (0 != (Val & FastMathFlags::AllowContract))
1050  FMF.setAllowContract(true);
1051  return FMF;
1052 }
1053 
1054 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1055  switch (Val) {
1058  }
1059 }
1060 
1061 Type *BitcodeReader::getTypeByID(unsigned ID) {
1062  // The type table size is always specified correctly.
1063  if (ID >= TypeList.size())
1064  return nullptr;
1065 
1066  if (Type *Ty = TypeList[ID])
1067  return Ty;
1068 
1069  // If we have a forward reference, the only possible case is when it is to a
1070  // named struct. Just create a placeholder for now.
1071  return TypeList[ID] = createIdentifiedStructType(Context);
1072 }
1073 
1074 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1075  StringRef Name) {
1076  auto *Ret = StructType::create(Context, Name);
1077  IdentifiedStructTypes.push_back(Ret);
1078  return Ret;
1079 }
1080 
1081 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1082  auto *Ret = StructType::create(Context);
1083  IdentifiedStructTypes.push_back(Ret);
1084  return Ret;
1085 }
1086 
1087 //===----------------------------------------------------------------------===//
1088 // Functions for parsing blocks from the bitcode file
1089 //===----------------------------------------------------------------------===//
1090 
1092  switch (Val) {
1094  llvm_unreachable("Synthetic enumerators which should never get here");
1095 
1096  case Attribute::None: return 0;
1097  case Attribute::ZExt: return 1 << 0;
1098  case Attribute::SExt: return 1 << 1;
1099  case Attribute::NoReturn: return 1 << 2;
1100  case Attribute::InReg: return 1 << 3;
1101  case Attribute::StructRet: return 1 << 4;
1102  case Attribute::NoUnwind: return 1 << 5;
1103  case Attribute::NoAlias: return 1 << 6;
1104  case Attribute::ByVal: return 1 << 7;
1105  case Attribute::Nest: return 1 << 8;
1106  case Attribute::ReadNone: return 1 << 9;
1107  case Attribute::ReadOnly: return 1 << 10;
1108  case Attribute::NoInline: return 1 << 11;
1109  case Attribute::AlwaysInline: return 1 << 12;
1110  case Attribute::OptimizeForSize: return 1 << 13;
1111  case Attribute::StackProtect: return 1 << 14;
1112  case Attribute::StackProtectReq: return 1 << 15;
1113  case Attribute::Alignment: return 31 << 16;
1114  case Attribute::NoCapture: return 1 << 21;
1115  case Attribute::NoRedZone: return 1 << 22;
1116  case Attribute::NoImplicitFloat: return 1 << 23;
1117  case Attribute::Naked: return 1 << 24;
1118  case Attribute::InlineHint: return 1 << 25;
1119  case Attribute::StackAlignment: return 7 << 26;
1120  case Attribute::ReturnsTwice: return 1 << 29;
1121  case Attribute::UWTable: return 1 << 30;
1122  case Attribute::NonLazyBind: return 1U << 31;
1123  case Attribute::SanitizeAddress: return 1ULL << 32;
1124  case Attribute::MinSize: return 1ULL << 33;
1125  case Attribute::NoDuplicate: return 1ULL << 34;
1126  case Attribute::StackProtectStrong: return 1ULL << 35;
1127  case Attribute::SanitizeThread: return 1ULL << 36;
1128  case Attribute::SanitizeMemory: return 1ULL << 37;
1129  case Attribute::NoBuiltin: return 1ULL << 38;
1130  case Attribute::Returned: return 1ULL << 39;
1131  case Attribute::Cold: return 1ULL << 40;
1132  case Attribute::Builtin: return 1ULL << 41;
1133  case Attribute::OptimizeNone: return 1ULL << 42;
1134  case Attribute::InAlloca: return 1ULL << 43;
1135  case Attribute::NonNull: return 1ULL << 44;
1136  case Attribute::JumpTable: return 1ULL << 45;
1137  case Attribute::Convergent: return 1ULL << 46;
1138  case Attribute::SafeStack: return 1ULL << 47;
1139  case Attribute::NoRecurse: return 1ULL << 48;
1140  case Attribute::InaccessibleMemOnly: return 1ULL << 49;
1141  case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1142  case Attribute::SwiftSelf: return 1ULL << 51;
1143  case Attribute::SwiftError: return 1ULL << 52;
1144  case Attribute::WriteOnly: return 1ULL << 53;
1145  case Attribute::Speculatable: return 1ULL << 54;
1146  case Attribute::StrictFP: return 1ULL << 55;
1147  case Attribute::Dereferenceable:
1148  llvm_unreachable("dereferenceable attribute not supported in raw format");
1149  break;
1150  case Attribute::DereferenceableOrNull:
1151  llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1152  "format");
1153  break;
1154  case Attribute::ArgMemOnly:
1155  llvm_unreachable("argmemonly attribute not supported in raw format");
1156  break;
1157  case Attribute::AllocSize:
1158  llvm_unreachable("allocsize not supported in raw format");
1159  break;
1160  }
1161  llvm_unreachable("Unsupported attribute type");
1162 }
1163 
1164 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1165  if (!Val) return;
1166 
1168  I = Attribute::AttrKind(I + 1)) {
1169  if (I == Attribute::Dereferenceable ||
1170  I == Attribute::DereferenceableOrNull ||
1171  I == Attribute::ArgMemOnly ||
1172  I == Attribute::AllocSize)
1173  continue;
1174  if (uint64_t A = (Val & getRawAttributeMask(I))) {
1175  if (I == Attribute::Alignment)
1176  B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1177  else if (I == Attribute::StackAlignment)
1178  B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1179  else
1180  B.addAttribute(I);
1181  }
1182  }
1183 }
1184 
1185 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1186 /// been decoded from the given integer. This function must stay in sync with
1187 /// 'encodeLLVMAttributesForBitcode'.
1189  uint64_t EncodedAttrs) {
1190  // FIXME: Remove in 4.0.
1191 
1192  // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1193  // the bits above 31 down by 11 bits.
1194  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1195  assert((!Alignment || isPowerOf2_32(Alignment)) &&
1196  "Alignment must be a power of two.");
1197 
1198  if (Alignment)
1199  B.addAlignmentAttr(Alignment);
1200  addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1201  (EncodedAttrs & 0xffff));
1202 }
1203 
1204 Error BitcodeReader::parseAttributeBlock() {
1206  return error("Invalid record");
1207 
1208  if (!MAttributes.empty())
1209  return error("Invalid multiple blocks");
1210 
1212 
1214 
1215  // Read all the records.
1216  while (true) {
1217  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1218 
1219  switch (Entry.Kind) {
1220  case BitstreamEntry::SubBlock: // Handled for us already.
1221  case BitstreamEntry::Error:
1222  return error("Malformed block");
1224  return Error::success();
1226  // The interesting case.
1227  break;
1228  }
1229 
1230  // Read a record.
1231  Record.clear();
1232  switch (Stream.readRecord(Entry.ID, Record)) {
1233  default: // Default behavior: ignore.
1234  break;
1235  case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1236  // FIXME: Remove in 4.0.
1237  if (Record.size() & 1)
1238  return error("Invalid record");
1239 
1240  for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1241  AttrBuilder B;
1242  decodeLLVMAttributesForBitcode(B, Record[i+1]);
1243  Attrs.push_back(AttributeList::get(Context, Record[i], B));
1244  }
1245 
1246  MAttributes.push_back(AttributeList::get(Context, Attrs));
1247  Attrs.clear();
1248  break;
1249  case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1250  for (unsigned i = 0, e = Record.size(); i != e; ++i)
1251  Attrs.push_back(MAttributeGroups[Record[i]]);
1252 
1253  MAttributes.push_back(AttributeList::get(Context, Attrs));
1254  Attrs.clear();
1255  break;
1256  }
1257  }
1258 }
1259 
1260 // Returns Attribute::None on unrecognized codes.
1261 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1262  switch (Code) {
1263  default:
1264  return Attribute::None;
1266  return Attribute::Alignment;
1268  return Attribute::AlwaysInline;
1270  return Attribute::ArgMemOnly;
1272  return Attribute::Builtin;
1274  return Attribute::ByVal;
1276  return Attribute::InAlloca;
1277  case bitc::ATTR_KIND_COLD:
1278  return Attribute::Cold;
1280  return Attribute::Convergent;
1282  return Attribute::InaccessibleMemOnly;
1284  return Attribute::InaccessibleMemOrArgMemOnly;
1286  return Attribute::InlineHint;
1288  return Attribute::InReg;
1290  return Attribute::JumpTable;
1292  return Attribute::MinSize;
1293  case bitc::ATTR_KIND_NAKED:
1294  return Attribute::Naked;
1295  case bitc::ATTR_KIND_NEST:
1296  return Attribute::Nest;
1298  return Attribute::NoAlias;
1300  return Attribute::NoBuiltin;
1302  return Attribute::NoCapture;
1304  return Attribute::NoDuplicate;
1306  return Attribute::NoImplicitFloat;
1308  return Attribute::NoInline;
1310  return Attribute::NoRecurse;
1312  return Attribute::NonLazyBind;
1314  return Attribute::NonNull;
1316  return Attribute::Dereferenceable;
1318  return Attribute::DereferenceableOrNull;
1320  return Attribute::AllocSize;
1322  return Attribute::NoRedZone;
1324  return Attribute::NoReturn;
1326  return Attribute::NoUnwind;
1328  return Attribute::OptimizeForSize;
1330  return Attribute::OptimizeNone;
1332  return Attribute::ReadNone;
1334  return Attribute::ReadOnly;
1336  return Attribute::Returned;
1338  return Attribute::ReturnsTwice;
1339  case bitc::ATTR_KIND_S_EXT:
1340  return Attribute::SExt;
1342  return Attribute::Speculatable;
1344  return Attribute::StackAlignment;
1346  return Attribute::StackProtect;
1348  return Attribute::StackProtectReq;
1350  return Attribute::StackProtectStrong;
1352  return Attribute::SafeStack;
1354  return Attribute::StrictFP;
1356  return Attribute::StructRet;
1358  return Attribute::SanitizeAddress;
1360  return Attribute::SanitizeThread;
1362  return Attribute::SanitizeMemory;
1364  return Attribute::SwiftError;
1366  return Attribute::SwiftSelf;
1368  return Attribute::UWTable;
1370  return Attribute::WriteOnly;
1371  case bitc::ATTR_KIND_Z_EXT:
1372  return Attribute::ZExt;
1373  }
1374 }
1375 
1376 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1377  unsigned &Alignment) {
1378  // Note: Alignment in bitcode files is incremented by 1, so that zero
1379  // can be used for default alignment.
1380  if (Exponent > Value::MaxAlignmentExponent + 1)
1381  return error("Invalid alignment value");
1382  Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1383  return Error::success();
1384 }
1385 
1387  *Kind = getAttrFromCode(Code);
1388  if (*Kind == Attribute::None)
1389  return error("Unknown attribute kind (" + Twine(Code) + ")");
1390  return Error::success();
1391 }
1392 
1393 Error BitcodeReader::parseAttributeGroupBlock() {
1395  return error("Invalid record");
1396 
1397  if (!MAttributeGroups.empty())
1398  return error("Invalid multiple blocks");
1399 
1401 
1402  // Read all the records.
1403  while (true) {
1404  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1405 
1406  switch (Entry.Kind) {
1407  case BitstreamEntry::SubBlock: // Handled for us already.
1408  case BitstreamEntry::Error:
1409  return error("Malformed block");
1411  return Error::success();
1413  // The interesting case.
1414  break;
1415  }
1416 
1417  // Read a record.
1418  Record.clear();
1419  switch (Stream.readRecord(Entry.ID, Record)) {
1420  default: // Default behavior: ignore.
1421  break;
1422  case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1423  if (Record.size() < 3)
1424  return error("Invalid record");
1425 
1426  uint64_t GrpID = Record[0];
1427  uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1428 
1429  AttrBuilder B;
1430  for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1431  if (Record[i] == 0) { // Enum attribute
1433  if (Error Err = parseAttrKind(Record[++i], &Kind))
1434  return Err;
1435 
1436  B.addAttribute(Kind);
1437  } else if (Record[i] == 1) { // Integer attribute
1439  if (Error Err = parseAttrKind(Record[++i], &Kind))
1440  return Err;
1441  if (Kind == Attribute::Alignment)
1442  B.addAlignmentAttr(Record[++i]);
1443  else if (Kind == Attribute::StackAlignment)
1444  B.addStackAlignmentAttr(Record[++i]);
1445  else if (Kind == Attribute::Dereferenceable)
1446  B.addDereferenceableAttr(Record[++i]);
1447  else if (Kind == Attribute::DereferenceableOrNull)
1448  B.addDereferenceableOrNullAttr(Record[++i]);
1449  else if (Kind == Attribute::AllocSize)
1450  B.addAllocSizeAttrFromRawRepr(Record[++i]);
1451  } else { // String attribute
1452  assert((Record[i] == 3 || Record[i] == 4) &&
1453  "Invalid attribute group entry");
1454  bool HasValue = (Record[i++] == 4);
1455  SmallString<64> KindStr;
1456  SmallString<64> ValStr;
1457 
1458  while (Record[i] != 0 && i != e)
1459  KindStr += Record[i++];
1460  assert(Record[i] == 0 && "Kind string not null terminated");
1461 
1462  if (HasValue) {
1463  // Has a value associated with it.
1464  ++i; // Skip the '0' that terminates the "kind" string.
1465  while (Record[i] != 0 && i != e)
1466  ValStr += Record[i++];
1467  assert(Record[i] == 0 && "Value string not null terminated");
1468  }
1469 
1470  B.addAttribute(KindStr.str(), ValStr.str());
1471  }
1472  }
1473 
1474  MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1475  break;
1476  }
1477  }
1478  }
1479 }
1480 
1481 Error BitcodeReader::parseTypeTable() {
1483  return error("Invalid record");
1484 
1485  return parseTypeTableBody();
1486 }
1487 
1488 Error BitcodeReader::parseTypeTableBody() {
1489  if (!TypeList.empty())
1490  return error("Invalid multiple blocks");
1491 
1493  unsigned NumRecords = 0;
1494 
1496 
1497  // Read all the records for this type table.
1498  while (true) {
1499  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1500 
1501  switch (Entry.Kind) {
1502  case BitstreamEntry::SubBlock: // Handled for us already.
1503  case BitstreamEntry::Error:
1504  return error("Malformed block");
1506  if (NumRecords != TypeList.size())
1507  return error("Malformed block");
1508  return Error::success();
1510  // The interesting case.
1511  break;
1512  }
1513 
1514  // Read a record.
1515  Record.clear();
1516  Type *ResultTy = nullptr;
1517  switch (Stream.readRecord(Entry.ID, Record)) {
1518  default:
1519  return error("Invalid value");
1520  case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1521  // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1522  // type list. This allows us to reserve space.
1523  if (Record.size() < 1)
1524  return error("Invalid record");
1525  TypeList.resize(Record[0]);
1526  continue;
1527  case bitc::TYPE_CODE_VOID: // VOID
1528  ResultTy = Type::getVoidTy(Context);
1529  break;
1530  case bitc::TYPE_CODE_HALF: // HALF
1531  ResultTy = Type::getHalfTy(Context);
1532  break;
1533  case bitc::TYPE_CODE_FLOAT: // FLOAT
1534  ResultTy = Type::getFloatTy(Context);
1535  break;
1536  case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1537  ResultTy = Type::getDoubleTy(Context);
1538  break;
1539  case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1540  ResultTy = Type::getX86_FP80Ty(Context);
1541  break;
1542  case bitc::TYPE_CODE_FP128: // FP128
1543  ResultTy = Type::getFP128Ty(Context);
1544  break;
1545  case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1546  ResultTy = Type::getPPC_FP128Ty(Context);
1547  break;
1548  case bitc::TYPE_CODE_LABEL: // LABEL
1549  ResultTy = Type::getLabelTy(Context);
1550  break;
1551  case bitc::TYPE_CODE_METADATA: // METADATA
1552  ResultTy = Type::getMetadataTy(Context);
1553  break;
1554  case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1555  ResultTy = Type::getX86_MMXTy(Context);
1556  break;
1557  case bitc::TYPE_CODE_TOKEN: // TOKEN
1558  ResultTy = Type::getTokenTy(Context);
1559  break;
1560  case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1561  if (Record.size() < 1)
1562  return error("Invalid record");
1563 
1564  uint64_t NumBits = Record[0];
1565  if (NumBits < IntegerType::MIN_INT_BITS ||
1566  NumBits > IntegerType::MAX_INT_BITS)
1567  return error("Bitwidth for integer type out of range");
1568  ResultTy = IntegerType::get(Context, NumBits);
1569  break;
1570  }
1571  case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1572  // [pointee type, address space]
1573  if (Record.size() < 1)
1574  return error("Invalid record");
1575  unsigned AddressSpace = 0;
1576  if (Record.size() == 2)
1577  AddressSpace = Record[1];
1578  ResultTy = getTypeByID(Record[0]);
1579  if (!ResultTy ||
1581  return error("Invalid type");
1582  ResultTy = PointerType::get(ResultTy, AddressSpace);
1583  break;
1584  }
1586  // FIXME: attrid is dead, remove it in LLVM 4.0
1587  // FUNCTION: [vararg, attrid, retty, paramty x N]
1588  if (Record.size() < 3)
1589  return error("Invalid record");
1590  SmallVector<Type*, 8> ArgTys;
1591  for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1592  if (Type *T = getTypeByID(Record[i]))
1593  ArgTys.push_back(T);
1594  else
1595  break;
1596  }
1597 
1598  ResultTy = getTypeByID(Record[2]);
1599  if (!ResultTy || ArgTys.size() < Record.size()-3)
1600  return error("Invalid type");
1601 
1602  ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1603  break;
1604  }
1605  case bitc::TYPE_CODE_FUNCTION: {
1606  // FUNCTION: [vararg, retty, paramty x N]
1607  if (Record.size() < 2)
1608  return error("Invalid record");
1609  SmallVector<Type*, 8> ArgTys;
1610  for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1611  if (Type *T = getTypeByID(Record[i])) {
1613  return error("Invalid function argument type");
1614  ArgTys.push_back(T);
1615  }
1616  else
1617  break;
1618  }
1619 
1620  ResultTy = getTypeByID(Record[1]);
1621  if (!ResultTy || ArgTys.size() < Record.size()-2)
1622  return error("Invalid type");
1623 
1624  ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1625  break;
1626  }
1627  case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1628  if (Record.size() < 1)
1629  return error("Invalid record");
1630  SmallVector<Type*, 8> EltTys;
1631  for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1632  if (Type *T = getTypeByID(Record[i]))
1633  EltTys.push_back(T);
1634  else
1635  break;
1636  }
1637  if (EltTys.size() != Record.size()-1)
1638  return error("Invalid type");
1639  ResultTy = StructType::get(Context, EltTys, Record[0]);
1640  break;
1641  }
1642  case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1643  if (convertToString(Record, 0, TypeName))
1644  return error("Invalid record");
1645  continue;
1646 
1647  case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1648  if (Record.size() < 1)
1649  return error("Invalid record");
1650 
1651  if (NumRecords >= TypeList.size())
1652  return error("Invalid TYPE table");
1653 
1654  // Check to see if this was forward referenced, if so fill in the temp.
1655  StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1656  if (Res) {
1657  Res->setName(TypeName);
1658  TypeList[NumRecords] = nullptr;
1659  } else // Otherwise, create a new struct.
1660  Res = createIdentifiedStructType(Context, TypeName);
1661  TypeName.clear();
1662 
1663  SmallVector<Type*, 8> EltTys;
1664  for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1665  if (Type *T = getTypeByID(Record[i]))
1666  EltTys.push_back(T);
1667  else
1668  break;
1669  }
1670  if (EltTys.size() != Record.size()-1)
1671  return error("Invalid record");
1672  Res->setBody(EltTys, Record[0]);
1673  ResultTy = Res;
1674  break;
1675  }
1676  case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1677  if (Record.size() != 1)
1678  return error("Invalid record");
1679 
1680  if (NumRecords >= TypeList.size())
1681  return error("Invalid TYPE table");
1682 
1683  // Check to see if this was forward referenced, if so fill in the temp.
1684  StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1685  if (Res) {
1686  Res->setName(TypeName);
1687  TypeList[NumRecords] = nullptr;
1688  } else // Otherwise, create a new struct with no body.
1689  Res = createIdentifiedStructType(Context, TypeName);
1690  TypeName.clear();
1691  ResultTy = Res;
1692  break;
1693  }
1694  case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1695  if (Record.size() < 2)
1696  return error("Invalid record");
1697  ResultTy = getTypeByID(Record[1]);
1698  if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1699  return error("Invalid type");
1700  ResultTy = ArrayType::get(ResultTy, Record[0]);
1701  break;
1702  case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
1703  if (Record.size() < 2)
1704  return error("Invalid record");
1705  if (Record[0] == 0)
1706  return error("Invalid vector length");
1707  ResultTy = getTypeByID(Record[1]);
1708  if (!ResultTy || !StructType::isValidElementType(ResultTy))
1709  return error("Invalid type");
1710  ResultTy = VectorType::get(ResultTy, Record[0]);
1711  break;
1712  }
1713 
1714  if (NumRecords >= TypeList.size())
1715  return error("Invalid TYPE table");
1716  if (TypeList[NumRecords])
1717  return error(
1718  "Invalid TYPE table: Only named structs can be forward referenced");
1719  assert(ResultTy && "Didn't read a type?");
1720  TypeList[NumRecords++] = ResultTy;
1721  }
1722 }
1723 
1724 Error BitcodeReader::parseOperandBundleTags() {
1726  return error("Invalid record");
1727 
1728  if (!BundleTags.empty())
1729  return error("Invalid multiple blocks");
1730 
1732 
1733  while (true) {
1734  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1735 
1736  switch (Entry.Kind) {
1737  case BitstreamEntry::SubBlock: // Handled for us already.
1738  case BitstreamEntry::Error:
1739  return error("Malformed block");
1741  return Error::success();
1743  // The interesting case.
1744  break;
1745  }
1746 
1747  // Tags are implicitly mapped to integers by their order.
1748 
1749  if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1750  return error("Invalid record");
1751 
1752  // OPERAND_BUNDLE_TAG: [strchr x N]
1753  BundleTags.emplace_back();
1754  if (convertToString(Record, 0, BundleTags.back()))
1755  return error("Invalid record");
1756  Record.clear();
1757  }
1758 }
1759 
1760 Error BitcodeReader::parseSyncScopeNames() {
1762  return error("Invalid record");
1763 
1764  if (!SSIDs.empty())
1765  return error("Invalid multiple synchronization scope names blocks");
1766 
1768  while (true) {
1769  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1770  switch (Entry.Kind) {
1771  case BitstreamEntry::SubBlock: // Handled for us already.
1772  case BitstreamEntry::Error:
1773  return error("Malformed block");
1775  if (SSIDs.empty())
1776  return error("Invalid empty synchronization scope names block");
1777  return Error::success();
1779  // The interesting case.
1780  break;
1781  }
1782 
1783  // Synchronization scope names are implicitly mapped to synchronization
1784  // scope IDs by their order.
1785 
1786  if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1787  return error("Invalid record");
1788 
1789  SmallString<16> SSN;
1790  if (convertToString(Record, 0, SSN))
1791  return error("Invalid record");
1792 
1793  SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1794  Record.clear();
1795  }
1796 }
1797 
1798 /// Associate a value with its name from the given index in the provided record.
1799 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1800  unsigned NameIndex, Triple &TT) {
1802  if (convertToString(Record, NameIndex, ValueName))
1803  return error("Invalid record");
1804  unsigned ValueID = Record[0];
1805  if (ValueID >= ValueList.size() || !ValueList[ValueID])
1806  return error("Invalid record");
1807  Value *V = ValueList[ValueID];
1808 
1809  StringRef NameStr(ValueName.data(), ValueName.size());
1810  if (NameStr.find_first_of(0) != StringRef::npos)
1811  return error("Invalid value name");
1812  V->setName(NameStr);
1813  auto *GO = dyn_cast<GlobalObject>(V);
1814  if (GO) {
1815  if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1816  if (TT.isOSBinFormatMachO())
1817  GO->setComdat(nullptr);
1818  else
1819  GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1820  }
1821  }
1822  return V;
1823 }
1824 
1825 /// Helper to note and return the current location, and jump to the given
1826 /// offset.
1827 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1828  BitstreamCursor &Stream) {
1829  // Save the current parsing location so we can jump back at the end
1830  // of the VST read.
1831  uint64_t CurrentBit = Stream.GetCurrentBitNo();
1832  Stream.JumpToBit(Offset * 32);
1833 #ifndef NDEBUG
1834  // Do some checking if we are in debug mode.
1835  BitstreamEntry Entry = Stream.advance();
1838 #else
1839  // In NDEBUG mode ignore the output so we don't get an unused variable
1840  // warning.
1841  Stream.advance();
1842 #endif
1843  return CurrentBit;
1844 }
1845 
1846 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1847  Function *F,
1848  ArrayRef<uint64_t> Record) {
1849  // Note that we subtract 1 here because the offset is relative to one word
1850  // before the start of the identification or module block, which was
1851  // historically always the start of the regular bitcode header.
1852  uint64_t FuncWordOffset = Record[1] - 1;
1853  uint64_t FuncBitOffset = FuncWordOffset * 32;
1854  DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1855  // Set the LastFunctionBlockBit to point to the last function block.
1856  // Later when parsing is resumed after function materialization,
1857  // we can simply skip that last function block.
1858  if (FuncBitOffset > LastFunctionBlockBit)
1859  LastFunctionBlockBit = FuncBitOffset;
1860 }
1861 
1862 /// Read a new-style GlobalValue symbol table.
1863 Error BitcodeReader::parseGlobalValueSymbolTable() {
1864  unsigned FuncBitcodeOffsetDelta =
1866 
1868  return error("Invalid record");
1869 
1871  while (true) {
1872  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1873 
1874  switch (Entry.Kind) {
1876  case BitstreamEntry::Error:
1877  return error("Malformed block");
1879  return Error::success();
1881  break;
1882  }
1883 
1884  Record.clear();
1885  switch (Stream.readRecord(Entry.ID, Record)) {
1886  case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1887  setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1888  cast<Function>(ValueList[Record[0]]), Record);
1889  break;
1890  }
1891  }
1892 }
1893 
1894 /// Parse the value symbol table at either the current parsing location or
1895 /// at the given bit offset if provided.
1896 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1897  uint64_t CurrentBit;
1898  // Pass in the Offset to distinguish between calling for the module-level
1899  // VST (where we want to jump to the VST offset) and the function-level
1900  // VST (where we don't).
1901  if (Offset > 0) {
1902  CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1903  // If this module uses a string table, read this as a module-level VST.
1904  if (UseStrtab) {
1905  if (Error Err = parseGlobalValueSymbolTable())
1906  return Err;
1907  Stream.JumpToBit(CurrentBit);
1908  return Error::success();
1909  }
1910  // Otherwise, the VST will be in a similar format to a function-level VST,
1911  // and will contain symbol names.
1912  }
1913 
1914  // Compute the delta between the bitcode indices in the VST (the word offset
1915  // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1916  // expected by the lazy reader. The reader's EnterSubBlock expects to have
1917  // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1918  // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1919  // just before entering the VST subblock because: 1) the EnterSubBlock
1920  // changes the AbbrevID width; 2) the VST block is nested within the same
1921  // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1922  // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1923  // jump to the FUNCTION_BLOCK using this offset later, we don't want
1924  // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1925  unsigned FuncBitcodeOffsetDelta =
1927 
1929  return error("Invalid record");
1930 
1932 
1933  Triple TT(TheModule->getTargetTriple());
1934 
1935  // Read all the records for this value table.
1937 
1938  while (true) {
1939  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1940 
1941  switch (Entry.Kind) {
1942  case BitstreamEntry::SubBlock: // Handled for us already.
1943  case BitstreamEntry::Error:
1944  return error("Malformed block");
1946  if (Offset > 0)
1947  Stream.JumpToBit(CurrentBit);
1948  return Error::success();
1950  // The interesting case.
1951  break;
1952  }
1953 
1954  // Read a record.
1955  Record.clear();
1956  switch (Stream.readRecord(Entry.ID, Record)) {
1957  default: // Default behavior: unknown type.
1958  break;
1959  case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
1960  Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
1961  if (Error Err = ValOrErr.takeError())
1962  return Err;
1963  ValOrErr.get();
1964  break;
1965  }
1966  case bitc::VST_CODE_FNENTRY: {
1967  // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1968  Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
1969  if (Error Err = ValOrErr.takeError())
1970  return Err;
1971  Value *V = ValOrErr.get();
1972 
1973  // Ignore function offsets emitted for aliases of functions in older
1974  // versions of LLVM.
1975  if (auto *F = dyn_cast<Function>(V))
1976  setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
1977  break;
1978  }
1979  case bitc::VST_CODE_BBENTRY: {
1980  if (convertToString(Record, 1, ValueName))
1981  return error("Invalid record");
1982  BasicBlock *BB = getBasicBlock(Record[0]);
1983  if (!BB)
1984  return error("Invalid record");
1985 
1986  BB->setName(StringRef(ValueName.data(), ValueName.size()));
1987  ValueName.clear();
1988  break;
1989  }
1990  }
1991  }
1992 }
1993 
1994 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
1995 /// encoding.
1996 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1997  if ((V & 1) == 0)
1998  return V >> 1;
1999  if (V != 1)
2000  return -(V >> 1);
2001  // There is no such thing as -0 with integers. "-0" really means MININT.
2002  return 1ULL << 63;
2003 }
2004 
2005 /// Resolve all of the initializers for global values and aliases that we can.
2006 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2007  std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2008  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2009  IndirectSymbolInitWorklist;
2010  std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2011  std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2012  std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2013 
2014  GlobalInitWorklist.swap(GlobalInits);
2015  IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2016  FunctionPrefixWorklist.swap(FunctionPrefixes);
2017  FunctionPrologueWorklist.swap(FunctionPrologues);
2018  FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2019 
2020  while (!GlobalInitWorklist.empty()) {
2021  unsigned ValID = GlobalInitWorklist.back().second;
2022  if (ValID >= ValueList.size()) {
2023  // Not ready to resolve this yet, it requires something later in the file.
2024  GlobalInits.push_back(GlobalInitWorklist.back());
2025  } else {
2026  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2027  GlobalInitWorklist.back().first->setInitializer(C);
2028  else
2029  return error("Expected a constant");
2030  }
2031  GlobalInitWorklist.pop_back();
2032  }
2033 
2034  while (!IndirectSymbolInitWorklist.empty()) {
2035  unsigned ValID = IndirectSymbolInitWorklist.back().second;
2036  if (ValID >= ValueList.size()) {
2037  IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2038  } else {
2039  Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2040  if (!C)
2041  return error("Expected a constant");
2042  GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2043  if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2044  return error("Alias and aliasee types don't match");
2045  GIS->setIndirectSymbol(C);
2046  }
2047  IndirectSymbolInitWorklist.pop_back();
2048  }
2049 
2050  while (!FunctionPrefixWorklist.empty()) {
2051  unsigned ValID = FunctionPrefixWorklist.back().second;
2052  if (ValID >= ValueList.size()) {
2053  FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2054  } else {
2055  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2056  FunctionPrefixWorklist.back().first->setPrefixData(C);
2057  else
2058  return error("Expected a constant");
2059  }
2060  FunctionPrefixWorklist.pop_back();
2061  }
2062 
2063  while (!FunctionPrologueWorklist.empty()) {
2064  unsigned ValID = FunctionPrologueWorklist.back().second;
2065  if (ValID >= ValueList.size()) {
2066  FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2067  } else {
2068  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2069  FunctionPrologueWorklist.back().first->setPrologueData(C);
2070  else
2071  return error("Expected a constant");
2072  }
2073  FunctionPrologueWorklist.pop_back();
2074  }
2075 
2076  while (!FunctionPersonalityFnWorklist.empty()) {
2077  unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2078  if (ValID >= ValueList.size()) {
2079  FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2080  } else {
2081  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2082  FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2083  else
2084  return error("Expected a constant");
2085  }
2086  FunctionPersonalityFnWorklist.pop_back();
2087  }
2088 
2089  return Error::success();
2090 }
2091 
2092 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2093  SmallVector<uint64_t, 8> Words(Vals.size());
2094  transform(Vals, Words.begin(),
2095  BitcodeReader::decodeSignRotatedValue);
2096 
2097  return APInt(TypeBits, Words);
2098 }
2099 
2100 Error BitcodeReader::parseConstants() {
2102  return error("Invalid record");
2103 
2105 
2106  // Read all the records for this value table.
2107  Type *CurTy = Type::getInt32Ty(Context);
2108  unsigned NextCstNo = ValueList.size();
2109 
2110  while (true) {
2111  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2112 
2113  switch (Entry.Kind) {
2114  case BitstreamEntry::SubBlock: // Handled for us already.
2115  case BitstreamEntry::Error:
2116  return error("Malformed block");
2118  if (NextCstNo != ValueList.size())
2119  return error("Invalid constant reference");
2120 
2121  // Once all the constants have been read, go through and resolve forward
2122  // references.
2123  ValueList.resolveConstantForwardRefs();
2124  return Error::success();
2126  // The interesting case.
2127  break;
2128  }
2129 
2130  // Read a record.
2131  Record.clear();
2132  Type *VoidType = Type::getVoidTy(Context);
2133  Value *V = nullptr;
2134  unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2135  switch (BitCode) {
2136  default: // Default behavior: unknown constant
2137  case bitc::CST_CODE_UNDEF: // UNDEF
2138  V = UndefValue::get(CurTy);
2139  break;
2140  case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2141  if (Record.empty())
2142  return error("Invalid record");
2143  if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2144  return error("Invalid record");
2145  if (TypeList[Record[0]] == VoidType)
2146  return error("Invalid constant type");
2147  CurTy = TypeList[Record[0]];
2148  continue; // Skip the ValueList manipulation.
2149  case bitc::CST_CODE_NULL: // NULL
2150  V = Constant::getNullValue(CurTy);
2151  break;
2152  case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2153  if (!CurTy->isIntegerTy() || Record.empty())
2154  return error("Invalid record");
2155  V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2156  break;
2157  case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2158  if (!CurTy->isIntegerTy() || Record.empty())
2159  return error("Invalid record");
2160 
2161  APInt VInt =
2162  readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2163  V = ConstantInt::get(Context, VInt);
2164 
2165  break;
2166  }
2167  case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2168  if (Record.empty())
2169  return error("Invalid record");
2170  if (CurTy->isHalfTy())
2171  V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2172  APInt(16, (uint16_t)Record[0])));
2173  else if (CurTy->isFloatTy())
2175  APInt(32, (uint32_t)Record[0])));
2176  else if (CurTy->isDoubleTy())
2178  APInt(64, Record[0])));
2179  else if (CurTy->isX86_FP80Ty()) {
2180  // Bits are not stored the same way as a normal i80 APInt, compensate.
2181  uint64_t Rearrange[2];
2182  Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2183  Rearrange[1] = Record[0] >> 48;
2185  APInt(80, Rearrange)));
2186  } else if (CurTy->isFP128Ty())
2187  V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2188  APInt(128, Record)));
2189  else if (CurTy->isPPC_FP128Ty())
2191  APInt(128, Record)));
2192  else
2193  V = UndefValue::get(CurTy);
2194  break;
2195  }
2196 
2197  case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2198  if (Record.empty())
2199  return error("Invalid record");
2200 
2201  unsigned Size = Record.size();
2203 
2204  if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2205  for (unsigned i = 0; i != Size; ++i)
2206  Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2207  STy->getElementType(i)));
2208  V = ConstantStruct::get(STy, Elts);
2209  } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2210  Type *EltTy = ATy->getElementType();
2211  for (unsigned i = 0; i != Size; ++i)
2212  Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2213  V = ConstantArray::get(ATy, Elts);
2214  } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2215  Type *EltTy = VTy->getElementType();
2216  for (unsigned i = 0; i != Size; ++i)
2217  Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2218  V = ConstantVector::get(Elts);
2219  } else {
2220  V = UndefValue::get(CurTy);
2221  }
2222  break;
2223  }
2224  case bitc::CST_CODE_STRING: // STRING: [values]
2225  case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2226  if (Record.empty())
2227  return error("Invalid record");
2228 
2229  SmallString<16> Elts(Record.begin(), Record.end());
2230  V = ConstantDataArray::getString(Context, Elts,
2231  BitCode == bitc::CST_CODE_CSTRING);
2232  break;
2233  }
2234  case bitc::CST_CODE_DATA: {// DATA: [n x value]
2235  if (Record.empty())
2236  return error("Invalid record");
2237 
2238  Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2239  if (EltTy->isIntegerTy(8)) {
2240  SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2241  if (isa<VectorType>(CurTy))
2242  V = ConstantDataVector::get(Context, Elts);
2243  else
2244  V = ConstantDataArray::get(Context, Elts);
2245  } else if (EltTy->isIntegerTy(16)) {
2246  SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2247  if (isa<VectorType>(CurTy))
2248  V = ConstantDataVector::get(Context, Elts);
2249  else
2250  V = ConstantDataArray::get(Context, Elts);
2251  } else if (EltTy->isIntegerTy(32)) {
2252  SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2253  if (isa<VectorType>(CurTy))
2254  V = ConstantDataVector::get(Context, Elts);
2255  else
2256  V = ConstantDataArray::get(Context, Elts);
2257  } else if (EltTy->isIntegerTy(64)) {
2258  SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2259  if (isa<VectorType>(CurTy))
2260  V = ConstantDataVector::get(Context, Elts);
2261  else
2262  V = ConstantDataArray::get(Context, Elts);
2263  } else if (EltTy->isHalfTy()) {
2264  SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2265  if (isa<VectorType>(CurTy))
2266  V = ConstantDataVector::getFP(Context, Elts);
2267  else
2268  V = ConstantDataArray::getFP(Context, Elts);
2269  } else if (EltTy->isFloatTy()) {
2270  SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2271  if (isa<VectorType>(CurTy))
2272  V = ConstantDataVector::getFP(Context, Elts);
2273  else
2274  V = ConstantDataArray::getFP(Context, Elts);
2275  } else if (EltTy->isDoubleTy()) {
2276  SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2277  if (isa<VectorType>(CurTy))
2278  V = ConstantDataVector::getFP(Context, Elts);
2279  else
2280  V = ConstantDataArray::getFP(Context, Elts);
2281  } else {
2282  return error("Invalid type for value");
2283  }
2284  break;
2285  }
2286  case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2287  if (Record.size() < 3)
2288  return error("Invalid record");
2289  int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2290  if (Opc < 0) {
2291  V = UndefValue::get(CurTy); // Unknown binop.
2292  } else {
2293  Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2294  Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2295  unsigned Flags = 0;
2296  if (Record.size() >= 4) {
2297  if (Opc == Instruction::Add ||
2298  Opc == Instruction::Sub ||
2299  Opc == Instruction::Mul ||
2300  Opc == Instruction::Shl) {
2301  if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2303  if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2305  } else if (Opc == Instruction::SDiv ||
2306  Opc == Instruction::UDiv ||
2307  Opc == Instruction::LShr ||
2308  Opc == Instruction::AShr) {
2309  if (Record[3] & (1 << bitc::PEO_EXACT))
2310  Flags |= SDivOperator::IsExact;
2311  }
2312  }
2313  V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2314  }
2315  break;
2316  }
2317  case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2318  if (Record.size() < 3)
2319  return error("Invalid record");
2320  int Opc = getDecodedCastOpcode(Record[0]);
2321  if (Opc < 0) {
2322  V = UndefValue::get(CurTy); // Unknown cast.
2323  } else {
2324  Type *OpTy = getTypeByID(Record[1]);
2325  if (!OpTy)
2326  return error("Invalid record");
2327  Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2328  V = UpgradeBitCastExpr(Opc, Op, CurTy);
2329  if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2330  }
2331  break;
2332  }
2333  case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2334  case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2335  case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2336  // operands]
2337  unsigned OpNum = 0;
2338  Type *PointeeType = nullptr;
2340  Record.size() % 2)
2341  PointeeType = getTypeByID(Record[OpNum++]);
2342 
2343  bool InBounds = false;
2344  Optional<unsigned> InRangeIndex;
2346  uint64_t Op = Record[OpNum++];
2347  InBounds = Op & 1;
2348  InRangeIndex = Op >> 1;
2349  } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2350  InBounds = true;
2351 
2353  while (OpNum != Record.size()) {
2354  Type *ElTy = getTypeByID(Record[OpNum++]);
2355  if (!ElTy)
2356  return error("Invalid record");
2357  Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2358  }
2359 
2360  if (PointeeType &&
2361  PointeeType !=
2362  cast<PointerType>(Elts[0]->getType()->getScalarType())
2363  ->getElementType())
2364  return error("Explicit gep operator type does not match pointee type "
2365  "of pointer operand");
2366 
2367  if (Elts.size() < 1)
2368  return error("Invalid gep with no operands");
2369 
2370  ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2371  V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2372  InBounds, InRangeIndex);
2373  break;
2374  }
2375  case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2376  if (Record.size() < 3)
2377  return error("Invalid record");
2378 
2379  Type *SelectorTy = Type::getInt1Ty(Context);
2380 
2381  // The selector might be an i1 or an <n x i1>
2382  // Get the type from the ValueList before getting a forward ref.
2383  if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2384  if (Value *V = ValueList[Record[0]])
2385  if (SelectorTy != V->getType())
2386  SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2387 
2388  V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2389  SelectorTy),
2390  ValueList.getConstantFwdRef(Record[1],CurTy),
2391  ValueList.getConstantFwdRef(Record[2],CurTy));
2392  break;
2393  }
2395  : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2396  if (Record.size() < 3)
2397  return error("Invalid record");
2398  VectorType *OpTy =
2399  dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2400  if (!OpTy)
2401  return error("Invalid record");
2402  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2403  Constant *Op1 = nullptr;
2404  if (Record.size() == 4) {
2405  Type *IdxTy = getTypeByID(Record[2]);
2406  if (!IdxTy)
2407  return error("Invalid record");
2408  Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2409  } else // TODO: Remove with llvm 4.0
2410  Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2411  if (!Op1)
2412  return error("Invalid record");
2413  V = ConstantExpr::getExtractElement(Op0, Op1);
2414  break;
2415  }
2417  : { // CE_INSERTELT: [opval, opval, opty, opval]
2418  VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2419  if (Record.size() < 3 || !OpTy)
2420  return error("Invalid record");
2421  Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2422  Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2423  OpTy->getElementType());
2424  Constant *Op2 = nullptr;
2425  if (Record.size() == 4) {
2426  Type *IdxTy = getTypeByID(Record[2]);
2427  if (!IdxTy)
2428  return error("Invalid record");
2429  Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2430  } else // TODO: Remove with llvm 4.0
2431  Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2432  if (!Op2)
2433  return error("Invalid record");
2434  V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2435  break;
2436  }
2437  case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2438  VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2439  if (Record.size() < 3 || !OpTy)
2440  return error("Invalid record");
2441  Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2442  Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2443  Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2444  OpTy->getNumElements());
2445  Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2446  V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2447  break;
2448  }
2449  case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2450  VectorType *RTy = dyn_cast<VectorType>(CurTy);
2451  VectorType *OpTy =
2452  dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2453  if (Record.size() < 4 || !RTy || !OpTy)
2454  return error("Invalid record");
2455  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2456  Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2457  Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2458  RTy->getNumElements());
2459  Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2460  V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2461  break;
2462  }
2463  case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2464  if (Record.size() < 4)
2465  return error("Invalid record");
2466  Type *OpTy = getTypeByID(Record[0]);
2467  if (!OpTy)
2468  return error("Invalid record");
2469  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2470  Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2471 
2472  if (OpTy->isFPOrFPVectorTy())
2473  V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2474  else
2475  V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2476  break;
2477  }
2478  // This maintains backward compatibility, pre-asm dialect keywords.
2479  // FIXME: Remove with the 4.0 release.
2481  if (Record.size() < 2)
2482  return error("Invalid record");
2483  std::string AsmStr, ConstrStr;
2484  bool HasSideEffects = Record[0] & 1;
2485  bool IsAlignStack = Record[0] >> 1;
2486  unsigned AsmStrSize = Record[1];
2487  if (2+AsmStrSize >= Record.size())
2488  return error("Invalid record");
2489  unsigned ConstStrSize = Record[2+AsmStrSize];
2490  if (3+AsmStrSize+ConstStrSize > Record.size())
2491  return error("Invalid record");
2492 
2493  for (unsigned i = 0; i != AsmStrSize; ++i)
2494  AsmStr += (char)Record[2+i];
2495  for (unsigned i = 0; i != ConstStrSize; ++i)
2496  ConstrStr += (char)Record[3+AsmStrSize+i];
2497  PointerType *PTy = cast<PointerType>(CurTy);
2498  V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2499  AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2500  break;
2501  }
2502  // This version adds support for the asm dialect keywords (e.g.,
2503  // inteldialect).
2504  case bitc::CST_CODE_INLINEASM: {
2505  if (Record.size() < 2)
2506  return error("Invalid record");
2507  std::string AsmStr, ConstrStr;
2508  bool HasSideEffects = Record[0] & 1;
2509  bool IsAlignStack = (Record[0] >> 1) & 1;
2510  unsigned AsmDialect = Record[0] >> 2;
2511  unsigned AsmStrSize = Record[1];
2512  if (2+AsmStrSize >= Record.size())
2513  return error("Invalid record");
2514  unsigned ConstStrSize = Record[2+AsmStrSize];
2515  if (3+AsmStrSize+ConstStrSize > Record.size())
2516  return error("Invalid record");
2517 
2518  for (unsigned i = 0; i != AsmStrSize; ++i)
2519  AsmStr += (char)Record[2+i];
2520  for (unsigned i = 0; i != ConstStrSize; ++i)
2521  ConstrStr += (char)Record[3+AsmStrSize+i];
2522  PointerType *PTy = cast<PointerType>(CurTy);
2523  V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2524  AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2525  InlineAsm::AsmDialect(AsmDialect));
2526  break;
2527  }
2529  if (Record.size() < 3)
2530  return error("Invalid record");
2531  Type *FnTy = getTypeByID(Record[0]);
2532  if (!FnTy)
2533  return error("Invalid record");
2534  Function *Fn =
2535  dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2536  if (!Fn)
2537  return error("Invalid record");
2538 
2539  // If the function is already parsed we can insert the block address right
2540  // away.
2541  BasicBlock *BB;
2542  unsigned BBID = Record[2];
2543  if (!BBID)
2544  // Invalid reference to entry block.
2545  return error("Invalid ID");
2546  if (!Fn->empty()) {
2547  Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2548  for (size_t I = 0, E = BBID; I != E; ++I) {
2549  if (BBI == BBE)
2550  return error("Invalid ID");
2551  ++BBI;
2552  }
2553  BB = &*BBI;
2554  } else {
2555  // Otherwise insert a placeholder and remember it so it can be inserted
2556  // when the function is parsed.
2557  auto &FwdBBs = BasicBlockFwdRefs[Fn];
2558  if (FwdBBs.empty())
2559  BasicBlockFwdRefQueue.push_back(Fn);
2560  if (FwdBBs.size() < BBID + 1)
2561  FwdBBs.resize(BBID + 1);
2562  if (!FwdBBs[BBID])
2563  FwdBBs[BBID] = BasicBlock::Create(Context);
2564  BB = FwdBBs[BBID];
2565  }
2566  V = BlockAddress::get(Fn, BB);
2567  break;
2568  }
2569  }
2570 
2571  ValueList.assignValue(V, NextCstNo);
2572  ++NextCstNo;
2573  }
2574 }
2575 
2576 Error BitcodeReader::parseUseLists() {
2578  return error("Invalid record");
2579 
2580  // Read all the records.
2582 
2583  while (true) {
2584  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2585 
2586  switch (Entry.Kind) {
2587  case BitstreamEntry::SubBlock: // Handled for us already.
2588  case BitstreamEntry::Error:
2589  return error("Malformed block");
2591  return Error::success();
2593  // The interesting case.
2594  break;
2595  }
2596 
2597  // Read a use list record.
2598  Record.clear();
2599  bool IsBB = false;
2600  switch (Stream.readRecord(Entry.ID, Record)) {
2601  default: // Default behavior: unknown type.
2602  break;
2603  case bitc::USELIST_CODE_BB:
2604  IsBB = true;
2607  unsigned RecordLength = Record.size();
2608  if (RecordLength < 3)
2609  // Records should have at least an ID and two indexes.
2610  return error("Invalid record");
2611  unsigned ID = Record.back();
2612  Record.pop_back();
2613 
2614  Value *V;
2615  if (IsBB) {
2616  assert(ID < FunctionBBs.size() && "Basic block not found");
2617  V = FunctionBBs[ID];
2618  } else
2619  V = ValueList[ID];
2620  unsigned NumUses = 0;
2622  for (const Use &U : V->materialized_uses()) {
2623  if (++NumUses > Record.size())
2624  break;
2625  Order[&U] = Record[NumUses - 1];
2626  }
2627  if (Order.size() != Record.size() || NumUses > Record.size())
2628  // Mismatches can happen if the functions are being materialized lazily
2629  // (out-of-order), or a value has been upgraded.
2630  break;
2631 
2632  V->sortUseList([&](const Use &L, const Use &R) {
2633  return Order.lookup(&L) < Order.lookup(&R);
2634  });
2635  break;
2636  }
2637  }
2638  }
2639 }
2640 
2641 /// When we see the block for metadata, remember where it is and then skip it.
2642 /// This lets us lazily deserialize the metadata.
2643 Error BitcodeReader::rememberAndSkipMetadata() {
2644  // Save the current stream state.
2645  uint64_t CurBit = Stream.GetCurrentBitNo();
2646  DeferredMetadataInfo.push_back(CurBit);
2647 
2648  // Skip over the block for now.
2649  if (Stream.SkipBlock())
2650  return error("Invalid record");
2651  return Error::success();
2652 }
2653 
2654 Error BitcodeReader::materializeMetadata() {
2655  for (uint64_t BitPos : DeferredMetadataInfo) {
2656  // Move the bit stream to the saved position.
2657  Stream.JumpToBit(BitPos);
2658  if (Error Err = MDLoader->parseModuleMetadata())
2659  return Err;
2660  }
2661 
2662  // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2663  // metadata.
2664  if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2665  NamedMDNode *LinkerOpts =
2666  TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2667  for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2668  LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2669  }
2670 
2671  DeferredMetadataInfo.clear();
2672  return Error::success();
2673 }
2674 
2675 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2676 
2677 /// When we see the block for a function body, remember where it is and then
2678 /// skip it. This lets us lazily deserialize the functions.
2679 Error BitcodeReader::rememberAndSkipFunctionBody() {
2680  // Get the function we are talking about.
2681  if (FunctionsWithBodies.empty())
2682  return error("Insufficient function protos");
2683 
2684  Function *Fn = FunctionsWithBodies.back();
2685  FunctionsWithBodies.pop_back();
2686 
2687  // Save the current stream state.
2688  uint64_t CurBit = Stream.GetCurrentBitNo();
2689  assert(
2690  (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2691  "Mismatch between VST and scanned function offsets");
2692  DeferredFunctionInfo[Fn] = CurBit;
2693 
2694  // Skip over the function block for now.
2695  if (Stream.SkipBlock())
2696  return error("Invalid record");
2697  return Error::success();
2698 }
2699 
2700 Error BitcodeReader::globalCleanup() {
2701  // Patch the initializers for globals and aliases up.
2702  if (Error Err = resolveGlobalAndIndirectSymbolInits())
2703  return Err;
2704  if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2705  return error("Malformed global initializer set");
2706 
2707  // Look for intrinsic functions which need to be upgraded at some point
2708  for (Function &F : *TheModule) {
2709  MDLoader->upgradeDebugIntrinsics(F);
2710  Function *NewFn;
2711  if (UpgradeIntrinsicFunction(&F, NewFn))
2712  UpgradedIntrinsics[&F] = NewFn;
2713  else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2714  // Some types could be renamed during loading if several modules are
2715  // loaded in the same LLVMContext (LTO scenario). In this case we should
2716  // remangle intrinsics names as well.
2717  RemangledIntrinsics[&F] = Remangled.getValue();
2718  }
2719 
2720  // Look for global variables which need to be renamed.
2721  for (GlobalVariable &GV : TheModule->globals())
2722  UpgradeGlobalVariable(&GV);
2723 
2724  // Force deallocation of memory for these vectors to favor the client that
2725  // want lazy deserialization.
2726  std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2727  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2728  IndirectSymbolInits);
2729  return Error::success();
2730 }
2731 
2732 /// Support for lazy parsing of function bodies. This is required if we
2733 /// either have an old bitcode file without a VST forward declaration record,
2734 /// or if we have an anonymous function being materialized, since anonymous
2735 /// functions do not have a name and are therefore not in the VST.
2736 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2737  Stream.JumpToBit(NextUnreadBit);
2738 
2739  if (Stream.AtEndOfStream())
2740  return error("Could not find function in stream");
2741 
2742  if (!SeenFirstFunctionBody)
2743  return error("Trying to materialize functions before seeing function blocks");
2744 
2745  // An old bitcode file with the symbol table at the end would have
2746  // finished the parse greedily.
2747  assert(SeenValueSymbolTable);
2748 
2750 
2751  while (true) {
2752  BitstreamEntry Entry = Stream.advance();
2753  switch (Entry.Kind) {
2754  default:
2755  return error("Expect SubBlock");
2757  switch (Entry.ID) {
2758  default:
2759  return error("Expect function block");
2761  if (Error Err = rememberAndSkipFunctionBody())
2762  return Err;
2763  NextUnreadBit = Stream.GetCurrentBitNo();
2764  return Error::success();
2765  }
2766  }
2767  }
2768 }
2769 
2770 bool BitcodeReaderBase::readBlockInfo() {
2771  Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2772  if (!NewBlockInfo)
2773  return true;
2774  BlockInfo = std::move(*NewBlockInfo);
2775  return false;
2776 }
2777 
2778 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2779  // v1: [selection_kind, name]
2780  // v2: [strtab_offset, strtab_size, selection_kind]
2781  StringRef Name;
2782  std::tie(Name, Record) = readNameFromStrtab(Record);
2783 
2784  if (Record.empty())
2785  return error("Invalid record");
2787  std::string OldFormatName;
2788  if (!UseStrtab) {
2789  if (Record.size() < 2)
2790  return error("Invalid record");
2791  unsigned ComdatNameSize = Record[1];
2792  OldFormatName.reserve(ComdatNameSize);
2793  for (unsigned i = 0; i != ComdatNameSize; ++i)
2794  OldFormatName += (char)Record[2 + i];
2795  Name = OldFormatName;
2796  }
2797  Comdat *C = TheModule->getOrInsertComdat(Name);
2798  C->setSelectionKind(SK);
2799  ComdatList.push_back(C);
2800  return Error::success();
2801 }
2802 
2803 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2804  // v1: [pointer type, isconst, initid, linkage, alignment, section,
2805  // visibility, threadlocal, unnamed_addr, externally_initialized,
2806  // dllstorageclass, comdat, attributes] (name in VST)
2807  // v2: [strtab_offset, strtab_size, v1]
2808  StringRef Name;
2809  std::tie(Name, Record) = readNameFromStrtab(Record);
2810 
2811  if (Record.size() < 6)
2812  return error("Invalid record");
2813  Type *Ty = getTypeByID(Record[0]);
2814  if (!Ty)
2815  return error("Invalid record");
2816  bool isConstant = Record[1] & 1;
2817  bool explicitType = Record[1] & 2;
2818  unsigned AddressSpace;
2819  if (explicitType) {
2820  AddressSpace = Record[1] >> 2;
2821  } else {
2822  if (!Ty->isPointerTy())
2823  return error("Invalid type for value");
2824  AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2825  Ty = cast<PointerType>(Ty)->getElementType();
2826  }
2827 
2828  uint64_t RawLinkage = Record[3];
2829  GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2830  unsigned Alignment;
2831  if (Error Err = parseAlignmentValue(Record[4], Alignment))
2832  return Err;
2833  std::string Section;
2834  if (Record[5]) {
2835  if (Record[5] - 1 >= SectionTable.size())
2836  return error("Invalid ID");
2837  Section = SectionTable[Record[5] - 1];
2838  }
2840  // Local linkage must have default visibility.
2841  if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2842  // FIXME: Change to an error if non-default in 4.0.
2843  Visibility = getDecodedVisibility(Record[6]);
2844 
2846  if (Record.size() > 7)
2847  TLM = getDecodedThreadLocalMode(Record[7]);
2848 
2850  if (Record.size() > 8)
2851  UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2852 
2853  bool ExternallyInitialized = false;
2854  if (Record.size() > 9)
2855  ExternallyInitialized = Record[9];
2856 
2857  GlobalVariable *NewGV =
2858  new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2859  nullptr, TLM, AddressSpace, ExternallyInitialized);
2860  NewGV->setAlignment(Alignment);
2861  if (!Section.empty())
2862  NewGV->setSection(Section);
2863  NewGV->setVisibility(Visibility);
2864  NewGV->setUnnamedAddr(UnnamedAddr);
2865 
2866  if (Record.size() > 10)
2867  NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2868  else
2869  upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2870 
2871  ValueList.push_back(NewGV);
2872 
2873  // Remember which value to use for the global initializer.
2874  if (unsigned InitID = Record[2])
2875  GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2876 
2877  if (Record.size() > 11) {
2878  if (unsigned ComdatID = Record[11]) {
2879  if (ComdatID > ComdatList.size())
2880  return error("Invalid global variable comdat ID");
2881  NewGV->setComdat(ComdatList[ComdatID - 1]);
2882  }
2883  } else if (hasImplicitComdat(RawLinkage)) {
2884  NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2885  }
2886 
2887  if (Record.size() > 12) {
2888  auto AS = getAttributes(Record[12]).getFnAttributes();
2889  NewGV->setAttributes(AS);
2890  }
2891  return Error::success();
2892 }
2893 
2894 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2895  // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2896  // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2897  // prefixdata] (name in VST)
2898  // v2: [strtab_offset, strtab_size, v1]
2899  StringRef Name;
2900  std::tie(Name, Record) = readNameFromStrtab(Record);
2901 
2902  if (Record.size() < 8)
2903  return error("Invalid record");
2904  Type *Ty = getTypeByID(Record[0]);
2905  if (!Ty)
2906  return error("Invalid record");
2907  if (auto *PTy = dyn_cast<PointerType>(Ty))
2908  Ty = PTy->getElementType();
2909  auto *FTy = dyn_cast<FunctionType>(Ty);
2910  if (!FTy)
2911  return error("Invalid type for value");
2912  auto CC = static_cast<CallingConv::ID>(Record[1]);
2913  if (CC & ~CallingConv::MaxID)
2914  return error("Invalid calling convention ID");
2915 
2916  Function *Func =
2917  Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule);
2918 
2919  Func->setCallingConv(CC);
2920  bool isProto = Record[2];
2921  uint64_t RawLinkage = Record[3];
2922  Func->setLinkage(getDecodedLinkage(RawLinkage));
2923  Func->setAttributes(getAttributes(Record[4]));
2924 
2925  unsigned Alignment;
2926  if (Error Err = parseAlignmentValue(Record[5], Alignment))
2927  return Err;
2928  Func->setAlignment(Alignment);
2929  if (Record[6]) {
2930  if (Record[6] - 1 >= SectionTable.size())
2931  return error("Invalid ID");
2932  Func->setSection(SectionTable[Record[6] - 1]);
2933  }
2934  // Local linkage must have default visibility.
2935  if (!Func->hasLocalLinkage())
2936  // FIXME: Change to an error if non-default in 4.0.
2937  Func->setVisibility(getDecodedVisibility(Record[7]));
2938  if (Record.size() > 8 && Record[8]) {
2939  if (Record[8] - 1 >= GCTable.size())
2940  return error("Invalid ID");
2941  Func->setGC(GCTable[Record[8] - 1]);
2942  }
2944  if (Record.size() > 9)
2945  UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2946  Func->setUnnamedAddr(UnnamedAddr);
2947  if (Record.size() > 10 && Record[10] != 0)
2948  FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
2949 
2950  if (Record.size() > 11)
2951  Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
2952  else
2953  upgradeDLLImportExportLinkage(Func, RawLinkage);
2954 
2955  if (Record.size() > 12) {
2956  if (unsigned ComdatID = Record[12]) {
2957  if (ComdatID > ComdatList.size())
2958  return error("Invalid function comdat ID");
2959  Func->setComdat(ComdatList[ComdatID - 1]);
2960  }
2961  } else if (hasImplicitComdat(RawLinkage)) {
2962  Func->setComdat(reinterpret_cast<Comdat *>(1));
2963  }
2964 
2965  if (Record.size() > 13 && Record[13] != 0)
2966  FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
2967 
2968  if (Record.size() > 14 && Record[14] != 0)
2969  FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
2970 
2971  ValueList.push_back(Func);
2972 
2973  // If this is a function with a body, remember the prototype we are
2974  // creating now, so that we can match up the body with them later.
2975  if (!isProto) {
2976  Func->setIsMaterializable(true);
2977  FunctionsWithBodies.push_back(Func);
2978  DeferredFunctionInfo[Func] = 0;
2979  }
2980  return Error::success();
2981 }
2982 
2983 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
2984  unsigned BitCode, ArrayRef<uint64_t> Record) {
2985  // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
2986  // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
2987  // dllstorageclass] (name in VST)
2988  // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
2989  // visibility, dllstorageclass] (name in VST)
2990  // v2: [strtab_offset, strtab_size, v1]
2991  StringRef Name;
2992  std::tie(Name, Record) = readNameFromStrtab(Record);
2993 
2994  bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
2995  if (Record.size() < (3 + (unsigned)NewRecord))
2996  return error("Invalid record");
2997  unsigned OpNum = 0;
2998  Type *Ty = getTypeByID(Record[OpNum++]);
2999  if (!Ty)
3000  return error("Invalid record");
3001 
3002  unsigned AddrSpace;
3003  if (!NewRecord) {
3004  auto *PTy = dyn_cast<PointerType>(Ty);
3005  if (!PTy)
3006  return error("Invalid type for value");
3007  Ty = PTy->getElementType();
3008  AddrSpace = PTy->getAddressSpace();
3009  } else {
3010  AddrSpace = Record[OpNum++];
3011  }
3012 
3013  auto Val = Record[OpNum++];
3014  auto Linkage = Record[OpNum++];
3015  GlobalIndirectSymbol *NewGA;
3016  if (BitCode == bitc::MODULE_CODE_ALIAS ||
3017  BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3018  NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3019  TheModule);
3020  else
3021  NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3022  nullptr, TheModule);
3023  // Old bitcode files didn't have visibility field.
3024  // Local linkage must have default visibility.
3025  if (OpNum != Record.size()) {
3026  auto VisInd = OpNum++;
3027  if (!NewGA->hasLocalLinkage())
3028  // FIXME: Change to an error if non-default in 4.0.
3029  NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3030  }
3031  if (OpNum != Record.size())
3032  NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3033  else
3034  upgradeDLLImportExportLinkage(NewGA, Linkage);
3035  if (OpNum != Record.size())
3036  NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3037  if (OpNum != Record.size())
3038  NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3039  ValueList.push_back(NewGA);
3040  IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3041  return Error::success();
3042 }
3043 
3044 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3045  bool ShouldLazyLoadMetadata) {
3046  if (ResumeBit)
3047  Stream.JumpToBit(ResumeBit);
3048  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3049  return error("Invalid record");
3050 
3052 
3053  // Read all the records for this module.
3054  while (true) {
3055  BitstreamEntry Entry = Stream.advance();
3056 
3057  switch (Entry.Kind) {
3058  case BitstreamEntry::Error:
3059  return error("Malformed block");
3061  return globalCleanup();
3062 
3064  switch (Entry.ID) {
3065  default: // Skip unknown content.
3066  if (Stream.SkipBlock())
3067  return error("Invalid record");
3068  break;
3070  if (readBlockInfo())
3071  return error("Malformed block");
3072  break;
3074  if (Error Err = parseAttributeBlock())
3075  return Err;
3076  break;
3078  if (Error Err = parseAttributeGroupBlock())
3079  return Err;
3080  break;
3082  if (Error Err = parseTypeTable())
3083  return Err;
3084  break;
3086  if (!SeenValueSymbolTable) {
3087  // Either this is an old form VST without function index and an
3088  // associated VST forward declaration record (which would have caused
3089  // the VST to be jumped to and parsed before it was encountered
3090  // normally in the stream), or there were no function blocks to
3091  // trigger an earlier parsing of the VST.
3092  assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3093  if (Error Err = parseValueSymbolTable())
3094  return Err;
3095  SeenValueSymbolTable = true;
3096  } else {
3097  // We must have had a VST forward declaration record, which caused
3098  // the parser to jump to and parse the VST earlier.
3099  assert(VSTOffset > 0);
3100  if (Stream.SkipBlock())
3101  return error("Invalid record");
3102  }
3103  break;
3105  if (Error Err = parseConstants())
3106  return Err;
3107  if (Error Err = resolveGlobalAndIndirectSymbolInits())
3108  return Err;
3109  break;
3111  if (ShouldLazyLoadMetadata) {
3112  if (Error Err = rememberAndSkipMetadata())
3113  return Err;
3114  break;
3115  }
3116  assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3117  if (Error Err = MDLoader->parseModuleMetadata())
3118  return Err;
3119  break;
3121  if (Error Err = MDLoader->parseMetadataKinds())
3122  return Err;
3123  break;
3125  // If this is the first function body we've seen, reverse the
3126  // FunctionsWithBodies list.
3127  if (!SeenFirstFunctionBody) {
3128  std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3129  if (Error Err = globalCleanup())
3130  return Err;
3131  SeenFirstFunctionBody = true;
3132  }
3133 
3134  if (VSTOffset > 0) {
3135  // If we have a VST forward declaration record, make sure we
3136  // parse the VST now if we haven't already. It is needed to
3137  // set up the DeferredFunctionInfo vector for lazy reading.
3138  if (!SeenValueSymbolTable) {
3139  if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3140  return Err;
3141  SeenValueSymbolTable = true;
3142  // Fall through so that we record the NextUnreadBit below.
3143  // This is necessary in case we have an anonymous function that
3144  // is later materialized. Since it will not have a VST entry we
3145  // need to fall back to the lazy parse to find its offset.
3146  } else {
3147  // If we have a VST forward declaration record, but have already
3148  // parsed the VST (just above, when the first function body was
3149  // encountered here), then we are resuming the parse after
3150  // materializing functions. The ResumeBit points to the
3151  // start of the last function block recorded in the
3152  // DeferredFunctionInfo map. Skip it.
3153  if (Stream.SkipBlock())
3154  return error("Invalid record");
3155  continue;
3156  }
3157  }
3158 
3159  // Support older bitcode files that did not have the function
3160  // index in the VST, nor a VST forward declaration record, as
3161  // well as anonymous functions that do not have VST entries.
3162  // Build the DeferredFunctionInfo vector on the fly.
3163  if (Error Err = rememberAndSkipFunctionBody())
3164  return Err;
3165 
3166  // Suspend parsing when we reach the function bodies. Subsequent
3167  // materialization calls will resume it when necessary. If the bitcode
3168  // file is old, the symbol table will be at the end instead and will not
3169  // have been seen yet. In this case, just finish the parse now.
3170  if (SeenValueSymbolTable) {
3171  NextUnreadBit = Stream.GetCurrentBitNo();
3172  // After the VST has been parsed, we need to make sure intrinsic name
3173  // are auto-upgraded.
3174  return globalCleanup();
3175  }
3176  break;
3178  if (Error Err = parseUseLists())
3179  return Err;
3180  break;
3182  if (Error Err = parseOperandBundleTags())
3183  return Err;
3184  break;
3186  if (Error Err = parseSyncScopeNames())
3187  return Err;
3188  break;
3189  }
3190  continue;
3191 
3193  // The interesting case.
3194  break;
3195  }
3196 
3197  // Read a record.
3198  auto BitCode = Stream.readRecord(Entry.ID, Record);
3199  switch (BitCode) {
3200  default: break; // Default behavior, ignore unknown content.
3202  Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3203  if (!VersionOrErr)
3204  return VersionOrErr.takeError();
3205  UseRelativeIDs = *VersionOrErr >= 1;
3206  break;
3207  }
3208  case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3209  std::string S;
3210  if (convertToString(Record, 0, S))
3211  return error("Invalid record");
3212  TheModule->setTargetTriple(S);
3213  break;
3214  }
3215  case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3216  std::string S;
3217  if (convertToString(Record, 0, S))
3218  return error("Invalid record");
3219  TheModule->setDataLayout(S);
3220  break;
3221  }
3222  case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3223  std::string S;
3224  if (convertToString(Record, 0, S))
3225  return error("Invalid record");
3226  TheModule->setModuleInlineAsm(S);
3227  break;
3228  }
3229  case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3230  // FIXME: Remove in 4.0.
3231  std::string S;
3232  if (convertToString(Record, 0, S))
3233  return error("Invalid record");
3234  // Ignore value.
3235  break;
3236  }
3237  case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3238  std::string S;
3239  if (convertToString(Record, 0, S))
3240  return error("Invalid record");
3241  SectionTable.push_back(S);
3242  break;
3243  }
3244  case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
3245  std::string S;
3246  if (convertToString(Record, 0, S))
3247  return error("Invalid record");
3248  GCTable.push_back(S);
3249  break;
3250  }
3252  if (Error Err = parseComdatRecord(Record))
3253  return Err;
3254  break;
3256  if (Error Err = parseGlobalVarRecord(Record))
3257  return Err;
3258  break;
3260  if (Error Err = parseFunctionRecord(Record))
3261  return Err;
3262  break;
3266  if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3267  return Err;
3268  break;
3269  /// MODULE_CODE_VSTOFFSET: [offset]
3271  if (Record.size() < 1)
3272  return error("Invalid record");
3273  // Note that we subtract 1 here because the offset is relative to one word
3274  // before the start of the identification or module block, which was
3275  // historically always the start of the regular bitcode header.
3276  VSTOffset = Record[0] - 1;
3277  break;
3278  /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3281  if (convertToString(Record, 0, ValueName))
3282  return error("Invalid record");
3283  TheModule->setSourceFileName(ValueName);
3284  break;
3285  }
3286  Record.clear();
3287  }
3288 }
3289 
3290 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3291  bool IsImporting) {
3292  TheModule = M;
3293  MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3294  [&](unsigned ID) { return getTypeByID(ID); });
3295  return parseModule(0, ShouldLazyLoadMetadata);
3296 }
3297 
3298 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3299  if (!isa<PointerType>(PtrType))
3300  return error("Load/Store operand is not a pointer type");
3301  Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3302 
3303  if (ValType && ValType != ElemType)
3304  return error("Explicit load/store type does not match pointee "
3305  "type of pointer operand");
3307  return error("Cannot load/store from pointer");
3308  return Error::success();
3309 }
3310 
3311 /// Lazily parse the specified function body block.
3312 Error BitcodeReader::parseFunctionBody(Function *F) {
3314  return error("Invalid record");
3315 
3316  // Unexpected unresolved metadata when parsing function.
3317  if (MDLoader->hasFwdRefs())
3318  return error("Invalid function metadata: incoming forward references");
3319 
3320  InstructionList.clear();
3321  unsigned ModuleValueListSize = ValueList.size();
3322  unsigned ModuleMDLoaderSize = MDLoader->size();
3323 
3324  // Add all the function arguments to the value table.
3325  for (Argument &I : F->args())
3326  ValueList.push_back(&I);
3327 
3328  unsigned NextValueNo = ValueList.size();
3329  BasicBlock *CurBB = nullptr;
3330  unsigned CurBBNo = 0;
3331 
3332  DebugLoc LastLoc;
3333  auto getLastInstruction = [&]() -> Instruction * {
3334  if (CurBB && !CurBB->empty())
3335  return &CurBB->back();
3336  else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3337  !FunctionBBs[CurBBNo - 1]->empty())
3338  return &FunctionBBs[CurBBNo - 1]->back();
3339  return nullptr;
3340  };
3341 
3342  std::vector<OperandBundleDef> OperandBundles;
3343 
3344  // Read all the records.
3346 
3347  while (true) {
3348  BitstreamEntry Entry = Stream.advance();
3349 
3350  switch (Entry.Kind) {
3351  case BitstreamEntry::Error:
3352  return error("Malformed block");
3354  goto OutOfRecordLoop;
3355 
3357  switch (Entry.ID) {
3358  default: // Skip unknown content.
3359  if (Stream.SkipBlock())
3360  return error("Invalid record");
3361  break;
3363  if (Error Err = parseConstants())
3364  return Err;
3365  NextValueNo = ValueList.size();
3366  break;
3368  if (Error Err = parseValueSymbolTable())
3369  return Err;
3370  break;
3372  if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3373  return Err;
3374  break;
3376  assert(DeferredMetadataInfo.empty() &&
3377  "Must read all module-level metadata before function-level");
3378  if (Error Err = MDLoader->parseFunctionMetadata())
3379  return Err;
3380  break;
3382  if (Error Err = parseUseLists())
3383  return Err;
3384  break;
3385  }
3386  continue;
3387 
3389  // The interesting case.
3390  break;
3391  }
3392 
3393  // Read a record.
3394  Record.clear();
3395  Instruction *I = nullptr;
3396  unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3397  switch (BitCode) {
3398  default: // Default behavior: reject
3399  return error("Invalid value");
3400  case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
3401  if (Record.size() < 1 || Record[0] == 0)
3402  return error("Invalid record");
3403  // Create all the basic blocks for the function.
3404  FunctionBBs.resize(Record[0]);
3405 
3406  // See if anything took the address of blocks in this function.
3407  auto BBFRI = BasicBlockFwdRefs.find(F);
3408  if (BBFRI == BasicBlockFwdRefs.end()) {
3409  for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3410  FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3411  } else {
3412  auto &BBRefs = BBFRI->second;
3413  // Check for invalid basic block references.
3414  if (BBRefs.size() > FunctionBBs.size())
3415  return error("Invalid ID");
3416  assert(!BBRefs.empty() && "Unexpected empty array");
3417  assert(!BBRefs.front() && "Invalid reference to entry block");
3418  for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3419  ++I)
3420  if (I < RE && BBRefs[I]) {
3421  BBRefs[I]->insertInto(F);
3422  FunctionBBs[I] = BBRefs[I];
3423  } else {
3424  FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3425  }
3426 
3427  // Erase from the table.
3428  BasicBlockFwdRefs.erase(BBFRI);
3429  }
3430 
3431  CurBB = FunctionBBs[0];
3432  continue;
3433  }
3434 
3435  case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
3436  // This record indicates that the last instruction is at the same
3437  // location as the previous instruction with a location.
3438  I = getLastInstruction();
3439 
3440  if (!I)
3441  return error("Invalid record");
3442  I->setDebugLoc(LastLoc);
3443  I = nullptr;
3444  continue;
3445 
3446  case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
3447  I = getLastInstruction();
3448  if (!I || Record.size() < 4)
3449  return error("Invalid record");
3450 
3451  unsigned Line = Record[0], Col = Record[1];
3452  unsigned ScopeID = Record[2], IAID = Record[3];
3453 
3454  MDNode *Scope = nullptr, *IA = nullptr;
3455  if (ScopeID) {
3456  Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1);
3457  if (!Scope)
3458  return error("Invalid record");
3459  }
3460  if (IAID) {
3461  IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1);
3462  if (!IA)
3463  return error("Invalid record");
3464  }
3465  LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3466  I->setDebugLoc(LastLoc);
3467  I = nullptr;
3468  continue;
3469  }
3470 
3471  case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
3472  unsigned OpNum = 0;
3473  Value *LHS, *RHS;
3474  if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3475  popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3476  OpNum+1 > Record.size())
3477  return error("Invalid record");
3478 
3479  int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3480  if (Opc == -1)
3481  return error("Invalid record");
3482  I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3483  InstructionList.push_back(I);
3484  if (OpNum < Record.size()) {
3485  if (Opc == Instruction::Add ||
3486  Opc == Instruction::Sub ||
3487  Opc == Instruction::Mul ||
3488  Opc == Instruction::Shl) {
3489  if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3490  cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3491  if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3492  cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3493  } else if (Opc == Instruction::SDiv ||
3494  Opc == Instruction::UDiv ||
3495  Opc == Instruction::LShr ||
3496  Opc == Instruction::AShr) {
3497  if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3498  cast<BinaryOperator>(I)->setIsExact(true);
3499  } else if (isa<FPMathOperator>(I)) {
3500  FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3501  if (FMF.any())
3502  I->setFastMathFlags(FMF);
3503  }
3504 
3505  }
3506  break;
3507  }
3508  case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
3509  unsigned OpNum = 0;
3510  Value *Op;
3511  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3512  OpNum+2 != Record.size())
3513  return error("Invalid record");
3514 
3515  Type *ResTy = getTypeByID(Record[OpNum]);
3516  int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3517  if (Opc == -1 || !ResTy)
3518  return error("Invalid record");
3519  Instruction *Temp = nullptr;
3520  if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3521  if (Temp) {
3522  InstructionList.push_back(Temp);
3523  CurBB->getInstList().push_back(Temp);
3524  }
3525  } else {
3526  auto CastOp = (Instruction::CastOps)Opc;
3527  if (!CastInst::castIsValid(CastOp, Op, ResTy))
3528  return error("Invalid cast");
3529  I = CastInst::Create(CastOp, Op, ResTy);
3530  }
3531  InstructionList.push_back(I);
3532  break;
3533  }
3536  case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3537  unsigned OpNum = 0;
3538 
3539  Type *Ty;
3540  bool InBounds;
3541 
3542  if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3543  InBounds = Record[OpNum++];
3544  Ty = getTypeByID(Record[OpNum++]);
3545  } else {
3546  InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3547  Ty = nullptr;
3548  }
3549 
3550  Value *BasePtr;
3551  if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3552  return error("Invalid record");
3553 
3554  if (!Ty)
3555  Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3556  ->getElementType();
3557  else if (Ty !=
3558  cast<PointerType>(BasePtr->getType()->getScalarType())
3559  ->getElementType())
3560  return error(
3561  "Explicit gep type does not match pointee type of pointer operand");
3562 
3563  SmallVector<Value*, 16> GEPIdx;
3564  while (OpNum != Record.size()) {
3565  Value *Op;
3566  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3567  return error("Invalid record");
3568  GEPIdx.push_back(Op);
3569  }
3570 
3571  I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3572 
3573  InstructionList.push_back(I);
3574  if (InBounds)
3575  cast<GetElementPtrInst>(I)->setIsInBounds(true);
3576  break;
3577  }
3578 
3580  // EXTRACTVAL: [opty, opval, n x indices]
3581  unsigned OpNum = 0;
3582  Value *Agg;
3583  if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3584  return error("Invalid record");
3585 
3586  unsigned RecSize = Record.size();
3587  if (OpNum == RecSize)
3588  return error("EXTRACTVAL: Invalid instruction with 0 indices");
3589 
3590  SmallVector<unsigned, 4> EXTRACTVALIdx;
3591  Type *CurTy = Agg->getType();
3592  for (; OpNum != RecSize; ++OpNum) {
3593  bool IsArray = CurTy->isArrayTy();
3594  bool IsStruct = CurTy->isStructTy();
3595  uint64_t Index = Record[OpNum];
3596 
3597  if (!IsStruct && !IsArray)
3598  return error("EXTRACTVAL: Invalid type");
3599  if ((unsigned)Index != Index)
3600  return error("Invalid value");
3601  if (IsStruct && Index >= CurTy->subtypes().size())
3602  return error("EXTRACTVAL: Invalid struct index");
3603  if (IsArray && Index >= CurTy->getArrayNumElements())
3604  return error("EXTRACTVAL: Invalid array index");
3605  EXTRACTVALIdx.push_back((unsigned)Index);
3606 
3607  if (IsStruct)
3608  CurTy = CurTy->subtypes()[Index];
3609  else
3610  CurTy = CurTy->subtypes()[0];
3611  }
3612 
3613  I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3614  InstructionList.push_back(I);
3615  break;
3616  }
3617 
3619  // INSERTVAL: [opty, opval, opty, opval, n x indices]
3620  unsigned OpNum = 0;
3621  Value *Agg;
3622  if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3623  return error("Invalid record");
3624  Value *Val;
3625  if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3626  return error("Invalid record");
3627 
3628  unsigned RecSize = Record.size();
3629  if (OpNum == RecSize)
3630  return error("INSERTVAL: Invalid instruction with 0 indices");
3631 
3632  SmallVector<unsigned, 4> INSERTVALIdx;
3633  Type *CurTy = Agg->getType();
3634  for (; OpNum != RecSize; ++OpNum) {
3635  bool IsArray = CurTy->isArrayTy();
3636  bool IsStruct = CurTy->isStructTy();
3637  uint64_t Index = Record[OpNum];
3638 
3639  if (!IsStruct && !IsArray)
3640  return error("INSERTVAL: Invalid type");
3641  if ((unsigned)Index != Index)
3642  return error("Invalid value");
3643  if (IsStruct && Index >= CurTy->subtypes().size())
3644  return error("INSERTVAL: Invalid struct index");
3645  if (IsArray && Index >= CurTy->getArrayNumElements())
3646  return error("INSERTVAL: Invalid array index");
3647 
3648  INSERTVALIdx.push_back((unsigned)Index);
3649  if (IsStruct)
3650  CurTy = CurTy->subtypes()[Index];
3651  else
3652  CurTy = CurTy->subtypes()[0];
3653  }
3654 
3655  if (CurTy != Val->getType())
3656  return error("Inserted value type doesn't match aggregate type");
3657 
3658  I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3659  InstructionList.push_back(I);
3660  break;
3661  }
3662 
3663  case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3664  // obsolete form of select
3665  // handles select i1 ... in old bitcode
3666  unsigned OpNum = 0;
3667  Value *TrueVal, *FalseVal, *Cond;
3668  if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3669  popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3670  popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3671  return error("Invalid record");
3672 
3673  I = SelectInst::Create(Cond, TrueVal, FalseVal);
3674  InstructionList.push_back(I);
3675  break;
3676  }
3677 
3678  case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3679  // new form of select
3680  // handles select i1 or select [N x i1]
3681  unsigned OpNum = 0;
3682  Value *TrueVal, *FalseVal, *Cond;
3683  if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3684  popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3685  getValueTypePair(Record, OpNum, NextValueNo, Cond))
3686  return error("Invalid record");
3687 
3688  // select condition can be either i1 or [N x i1]
3689  if (VectorType* vector_type =
3690  dyn_cast<VectorType>(Cond->getType())) {
3691  // expect <n x i1>
3692  if (vector_type->getElementType() != Type::getInt1Ty(Context))
3693  return error("Invalid type for value");
3694  } else {
3695  // expect i1
3696  if (Cond->getType() != Type::getInt1Ty(Context))
3697  return error("Invalid type for value");
3698  }
3699 
3700  I = SelectInst::Create(Cond, TrueVal, FalseVal);
3701  InstructionList.push_back(I);
3702  break;
3703  }
3704 
3705  case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3706  unsigned OpNum = 0;
3707  Value *Vec, *Idx;
3708  if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3709  getValueTypePair(Record, OpNum, NextValueNo, Idx))
3710  return error("Invalid record");
3711  if (!Vec->getType()->isVectorTy())
3712  return error("Invalid type for value");
3713  I = ExtractElementInst::Create(Vec, Idx);
3714  InstructionList.push_back(I);
3715  break;
3716  }
3717 
3718  case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3719  unsigned OpNum = 0;
3720  Value *Vec, *Elt, *Idx;
3721  if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3722  return error("Invalid record");
3723  if (!Vec->getType()->isVectorTy())
3724  return error("Invalid type for value");
3725  if (popValue(Record, OpNum, NextValueNo,
3726  cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3727  getValueTypePair(Record, OpNum, NextValueNo, Idx))
3728  return error("Invalid record");
3729  I = InsertElementInst::Create(Vec, Elt, Idx);
3730  InstructionList.push_back(I);
3731  break;
3732  }
3733 
3734  case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3735  unsigned OpNum = 0;
3736  Value *Vec1, *Vec2, *Mask;
3737  if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3738  popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3739  return error("Invalid record");
3740 
3741  if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3742  return error("Invalid record");
3743  if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3744  return error("Invalid type for value");
3745  I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3746  InstructionList.push_back(I);
3747  break;
3748  }
3749 
3750  case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
3751  // Old form of ICmp/FCmp returning bool
3752  // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3753  // both legal on vectors but had different behaviour.
3754  case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3755  // FCmp/ICmp returning bool or vector of bool
3756 
3757  unsigned OpNum = 0;
3758  Value *LHS, *RHS;
3759  if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3760  popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3761  return error("Invalid record");
3762 
3763  unsigned PredVal = Record[OpNum];
3764  bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3765  FastMathFlags FMF;
3766  if (IsFP && Record.size() > OpNum+1)
3767  FMF = getDecodedFastMathFlags(Record[++OpNum]);
3768 
3769  if (OpNum+1 != Record.size())
3770  return error("Invalid record");
3771 
3772  if (LHS->getType()->isFPOrFPVectorTy())
3773  I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3774  else
3775  I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3776 
3777  if (FMF.any())
3778  I->setFastMathFlags(FMF);
3779  InstructionList.push_back(I);
3780  break;
3781  }
3782 
3783  case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3784  {
3785  unsigned Size = Record.size();
3786  if (Size == 0) {
3787  I = ReturnInst::Create(Context);
3788  InstructionList.push_back(I);
3789  break;
3790  }
3791 
3792  unsigned OpNum = 0;
3793  Value *Op = nullptr;
3794  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3795  return error("Invalid record");
3796  if (OpNum != Record.size())
3797  return error("Invalid record");
3798 
3799  I = ReturnInst::Create(Context, Op);
3800  InstructionList.push_back(I);
3801  break;
3802  }
3803  case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3804  if (Record.size() != 1 && Record.size() != 3)
3805  return error("Invalid record");
3806  BasicBlock *TrueDest = getBasicBlock(Record[0]);
3807  if (!TrueDest)
3808  return error("Invalid record");
3809 
3810  if (Record.size() == 1) {
3811  I = BranchInst::Create(TrueDest);
3812  InstructionList.push_back(I);
3813  }
3814  else {
3815  BasicBlock *FalseDest = getBasicBlock(Record[1]);
3816  Value *Cond = getValue(Record, 2, NextValueNo,
3817  Type::getInt1Ty(Context));
3818  if (!FalseDest || !Cond)
3819  return error("Invalid record");
3820  I = BranchInst::Create(TrueDest, FalseDest, Cond);
3821  InstructionList.push_back(I);
3822  }
3823  break;
3824  }
3825  case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3826  if (Record.size() != 1 && Record.size() != 2)
3827  return error("Invalid record");
3828  unsigned Idx = 0;
3829  Value *CleanupPad =
3830  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3831  if (!CleanupPad)
3832  return error("Invalid record");
3833  BasicBlock *UnwindDest = nullptr;
3834  if (Record.size() == 2) {
3835  UnwindDest = getBasicBlock(Record[Idx++]);
3836  if (!UnwindDest)
3837  return error("Invalid record");
3838  }
3839 
3840  I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3841  InstructionList.push_back(I);
3842  break;
3843  }
3844  case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3845  if (Record.size() != 2)
3846  return error("Invalid record");
3847  unsigned Idx = 0;
3848  Value *CatchPad =
3849  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3850  if (!CatchPad)
3851  return error("Invalid record");
3852  BasicBlock *BB = getBasicBlock(Record[Idx++]);
3853  if (!BB)
3854  return error("Invalid record");
3855 
3856  I = CatchReturnInst::Create(CatchPad, BB);
3857  InstructionList.push_back(I);
3858  break;
3859  }
3860  case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3861  // We must have, at minimum, the outer scope and the number of arguments.
3862  if (Record.size() < 2)
3863  return error("Invalid record");
3864 
3865  unsigned Idx = 0;
3866 
3867  Value *ParentPad =
3868  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3869 
3870  unsigned NumHandlers = Record[Idx++];
3871 
3873  for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3874  BasicBlock *BB = getBasicBlock(Record[Idx++]);
3875  if (!BB)
3876  return error("Invalid record");
3877  Handlers.push_back(BB);
3878  }
3879 
3880  BasicBlock *UnwindDest = nullptr;
3881  if (Idx + 1 == Record.size()) {
3882  UnwindDest = getBasicBlock(Record[Idx++]);
3883  if (!UnwindDest)
3884  return error("Invalid record");
3885  }
3886 
3887  if (Record.size() != Idx)
3888  return error("Invalid record");
3889 
3890  auto *CatchSwitch =
3891  CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
3892  for (BasicBlock *Handler : Handlers)
3893  CatchSwitch->addHandler(Handler);
3894  I = CatchSwitch;
3895  InstructionList.push_back(I);
3896  break;
3897  }
3899  case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
3900  // We must have, at minimum, the outer scope and the number of arguments.
3901  if (Record.size() < 2)
3902  return error("Invalid record");
3903 
3904  unsigned Idx = 0;
3905 
3906  Value *ParentPad =
3907  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3908 
3909  unsigned NumArgOperands = Record[Idx++];
3910 
3912  for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
3913  Value *Val;
3914  if (getValueTypePair(Record, Idx, NextValueNo, Val))
3915  return error("Invalid record");
3916  Args.push_back(Val);
3917  }
3918 
3919  if (Record.size() != Idx)
3920  return error("Invalid record");
3921 
3922  if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
3923  I = CleanupPadInst::Create(ParentPad, Args);
3924  else
3925  I = CatchPadInst::Create(ParentPad, Args);
3926  InstructionList.push_back(I);
3927  break;
3928  }
3929  case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3930  // Check magic
3931  if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3932  // "New" SwitchInst format with case ranges. The changes to write this
3933  // format were reverted but we still recognize bitcode that uses it.
3934  // Hopefully someday we will have support for case ranges and can use
3935  // this format again.
3936 
3937  Type *OpTy = getTypeByID(Record[1]);
3938  unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
3939 
3940  Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
3941  BasicBlock *Default = getBasicBlock(Record[3]);
3942  if (!OpTy || !Cond || !Default)
3943  return error("Invalid record");
3944 
3945  unsigned NumCases = Record[4];
3946 
3947  SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3948  InstructionList.push_back(SI);
3949 
3950  unsigned CurIdx = 5;
3951  for (unsigned i = 0; i != NumCases; ++i) {
3953  unsigned NumItems = Record[CurIdx++];
3954  for (unsigned ci = 0; ci != NumItems; ++ci) {
3955  bool isSingleNumber = Record[CurIdx++];
3956 
3957  APInt Low;
3958  unsigned ActiveWords = 1;
3959  if (ValueBitWidth > 64)
3960  ActiveWords = Record[CurIdx++];
3961  Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3962  ValueBitWidth);
3963  CurIdx += ActiveWords;
3964 
3965  if (!isSingleNumber) {
3966  ActiveWords = 1;
3967  if (ValueBitWidth > 64)
3968  ActiveWords = Record[CurIdx++];
3970  makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
3971  CurIdx += ActiveWords;
3972 
3973  // FIXME: It is not clear whether values in the range should be
3974  // compared as signed or unsigned values. The partially
3975  // implemented changes that used this format in the past used
3976  // unsigned comparisons.
3977  for ( ; Low.ule(High); ++Low)
3978  CaseVals.push_back(ConstantInt::get(Context, Low));
3979  } else
3980  CaseVals.push_back(ConstantInt::get(Context, Low));
3981  }
3982  BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
3983  for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
3984  cve = CaseVals.end(); cvi != cve; ++cvi)
3985  SI->addCase(*cvi, DestBB);
3986  }
3987  I = SI;
3988  break;
3989  }
3990 
3991  // Old SwitchInst format without case ranges.
3992 
3993  if (Record.size() < 3 || (Record.size() & 1) == 0)
3994  return error("Invalid record");
3995  Type *OpTy = getTypeByID(Record[0]);
3996  Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
3997  BasicBlock *Default = getBasicBlock(Record[2]);
3998  if (!OpTy || !Cond || !Default)
3999  return error("Invalid record");
4000  unsigned NumCases = (Record.size()-3)/2;
4001  SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4002  InstructionList.push_back(SI);
4003  for (unsigned i = 0, e = NumCases; i != e; ++i) {
4004  ConstantInt *CaseVal =
4005  dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4006  BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4007  if (!CaseVal || !DestBB) {
4008  delete SI;
4009  return error("Invalid record");
4010  }
4011  SI->addCase(CaseVal, DestBB);
4012  }
4013  I = SI;
4014  break;
4015  }
4016  case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4017  if (Record.size() < 2)
4018  return error("Invalid record");
4019  Type *OpTy = getTypeByID(Record[0]);
4020  Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4021  if (!OpTy || !Address)
4022  return error("Invalid record");
4023  unsigned NumDests = Record.size()-2;
4024  IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4025  InstructionList.push_back(IBI);
4026  for (unsigned i = 0, e = NumDests; i != e; ++i) {
4027  if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4028  IBI->addDestination(DestBB);
4029  } else {
4030  delete IBI;
4031  return error("Invalid record");
4032  }
4033  }
4034  I = IBI;
4035  break;
4036  }
4037 
4039  // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4040  if (Record.size() < 4)
4041  return error("Invalid record");
4042  unsigned OpNum = 0;
4043  AttributeList PAL = getAttributes(Record[OpNum++]);
4044  unsigned CCInfo = Record[OpNum++];
4045  BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4046  BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4047 
4048  FunctionType *FTy = nullptr;
4049  if (CCInfo >> 13 & 1 &&
4050  !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4051  return error("Explicit invoke type is not a function type");
4052 
4053  Value *Callee;
4054  if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4055  return error("Invalid record");
4056 
4057  PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4058  if (!CalleeTy)
4059  return error("Callee is not a pointer");
4060  if (!FTy) {
4061  FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4062  if (!FTy)
4063  return error("Callee is not of pointer to function type");
4064  } else if (CalleeTy->getElementType() != FTy)
4065  return error("Explicit invoke type does not match pointee type of "
4066  "callee operand");
4067  if (Record.size() < FTy->getNumParams() + OpNum)
4068  return error("Insufficient operands to call");
4069 
4071  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4072  Ops.push_back(getValue(Record, OpNum, NextValueNo,
4073  FTy->getParamType(i)));
4074  if (!Ops.back())
4075  return error("Invalid record");
4076  }
4077 
4078  if (!FTy->isVarArg()) {
4079  if (Record.size() != OpNum)
4080  return error("Invalid record");
4081  } else {
4082  // Read type/value pairs for varargs params.
4083  while (OpNum != Record.size()) {
4084  Value *Op;
4085  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4086  return error("Invalid record");
4087  Ops.push_back(Op);
4088  }
4089  }
4090 
4091  I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4092  OperandBundles.clear();
4093  InstructionList.push_back(I);
4094  cast<InvokeInst>(I)->setCallingConv(
4095  static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4096  cast<InvokeInst>(I)->setAttributes(PAL);
4097  break;
4098  }
4099  case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4100  unsigned Idx = 0;
4101  Value *Val = nullptr;
4102  if (getValueTypePair(Record, Idx, NextValueNo, Val))
4103  return error("Invalid record");
4104  I = ResumeInst::Create(Val);
4105  InstructionList.push_back(I);
4106  break;
4107  }
4108  case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4109  I = new UnreachableInst(Context);
4110  InstructionList.push_back(I);
4111  break;
4112  case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4113  if (Record.size() < 1 || ((Record.size()-1)&1))
4114  return error("Invalid record");
4115  Type *Ty = getTypeByID(Record[0]);
4116  if (!Ty)
4117  return error("Invalid record");
4118 
4119  PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4120  InstructionList.push_back(PN);
4121 
4122  for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4123  Value *V;
4124  // With the new function encoding, it is possible that operands have
4125  // negative IDs (for forward references). Use a signed VBR
4126  // representation to keep the encoding small.
4127  if (UseRelativeIDs)
4128  V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4129  else
4130  V = getValue(Record, 1+i, NextValueNo, Ty);
4131  BasicBlock *BB = getBasicBlock(Record[2+i]);
4132  if (!V || !BB)
4133  return error("Invalid record");
4134  PN->addIncoming(V, BB);
4135  }
4136  I = PN;
4137  break;
4138  }
4139 
4142  // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4143  unsigned Idx = 0;
4144  if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4145  if (Record.size() < 3)
4146  return error("Invalid record");
4147  } else {
4149  if (Record.size() < 4)
4150  return error("Invalid record");
4151  }
4152  Type *Ty = getTypeByID(Record[Idx++]);
4153  if (!Ty)
4154  return error("Invalid record");
4155  if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4156  Value *PersFn = nullptr;
4157  if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4158  return error("Invalid record");
4159 
4160  if (!F->hasPersonalityFn())
4161  F->setPersonalityFn(cast<Constant>(PersFn));
4162  else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4163  return error("Personality function mismatch");
4164  }
4165 
4166  bool IsCleanup = !!Record[Idx++];
4167  unsigned NumClauses = Record[Idx++];
4168  LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4169  LP->setCleanup(IsCleanup);
4170  for (unsigned J = 0; J != NumClauses; ++J) {
4172  LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4173  Value *Val;
4174 
4175  if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4176  delete LP;
4177  return error("Invalid record");
4178  }
4179 
4180  assert((CT != LandingPadInst::Catch ||
4181  !isa<ArrayType>(Val->getType())) &&
4182  "Catch clause has a invalid type!");
4183  assert((CT != LandingPadInst::Filter ||
4184  isa<ArrayType>(Val->getType())) &&
4185  "Filter clause has invalid type!");
4186  LP->addClause(cast<Constant>(Val));
4187  }
4188 
4189  I = LP;
4190  InstructionList.push_back(I);
4191  break;
4192  }
4193 
4194  case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4195  if (Record.size() != 4)
4196  return error("Invalid record");
4197  uint64_t AlignRecord = Record[3];
4198  const uint64_t InAllocaMask = uint64_t(1) << 5;
4199  const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4200  const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4201  const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4202  SwiftErrorMask;
4203  bool InAlloca = AlignRecord & InAllocaMask;
4204  bool SwiftError = AlignRecord & SwiftErrorMask;
4205  Type *Ty = getTypeByID(Record[0]);
4206  if ((AlignRecord & ExplicitTypeMask) == 0) {
4207  auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4208  if (!PTy)
4209  return error("Old-style alloca with a non-pointer type");
4210  Ty = PTy->getElementType();
4211  }
4212  Type *OpTy = getTypeByID(Record[1]);
4213  Value *Size = getFnValueByID(Record[2], OpTy);
4214  unsigned Align;
4215  if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4216  return Err;
4217  }
4218  if (!Ty || !Size)
4219  return error("Invalid record");
4220 
4221  // FIXME: Make this an optional field.
4222  const DataLayout &DL = TheModule->getDataLayout();
4223  unsigned AS = DL.getAllocaAddrSpace();
4224 
4225  AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4226  AI->setUsedWithInAlloca(InAlloca);
4227  AI->setSwiftError(SwiftError);
4228  I = AI;
4229  InstructionList.push_back(I);
4230  break;
4231  }
4232  case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4233  unsigned OpNum = 0;
4234  Value *Op;
4235  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4236  (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4237  return error("Invalid record");
4238 
4239  Type *Ty = nullptr;
4240  if (OpNum + 3 == Record.size())
4241  Ty = getTypeByID(Record[OpNum++]);
4242  if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4243  return Err;
4244  if (!Ty)
4245  Ty = cast<PointerType>(Op->getType())->getElementType();
4246 
4247  unsigned Align;
4248  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4249  return Err;
4250  I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4251 
4252  InstructionList.push_back(I);
4253  break;
4254  }
4256  // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4257  unsigned OpNum = 0;
4258  Value *Op;
4259  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4260  (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4261  return error("Invalid record");
4262 
4263  Type *Ty = nullptr;
4264  if (OpNum + 5 == Record.size())
4265  Ty = getTypeByID(Record[OpNum++]);
4266  if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4267  return Err;
4268  if (!Ty)
4269  Ty = cast<PointerType>(Op->getType())->getElementType();
4270 
4271  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4272  if (Ordering == AtomicOrdering::NotAtomic ||
4273  Ordering == AtomicOrdering::Release ||
4274  Ordering == AtomicOrdering::AcquireRelease)
4275  return error("Invalid record");
4276  if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4277  return error("Invalid record");
4278  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4279 
4280  unsigned Align;
4281  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4282  return Err;
4283  I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID);
4284 
4285  InstructionList.push_back(I);
4286  break;
4287  }
4289  case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4290  unsigned OpNum = 0;
4291  Value *Val, *Ptr;
4292  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4293  (BitCode == bitc::FUNC_CODE_INST_STORE
4294  ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4295  : popValue(Record, OpNum, NextValueNo,
4296  cast<PointerType>(Ptr->getType())->getElementType(),
4297  Val)) ||
4298  OpNum + 2 != Record.size())
4299  return error("Invalid record");
4300 
4301  if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4302  return Err;
4303  unsigned Align;
4304  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4305  return Err;
4306  I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4307  InstructionList.push_back(I);
4308  break;
4309  }
4312  // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4313  unsigned OpNum = 0;
4314  Value *Val, *Ptr;
4315  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4316  !isa<PointerType>(Ptr->getType()) ||
4318  ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4319  : popValue(Record, OpNum, NextValueNo,
4320  cast<PointerType>(Ptr->getType())->getElementType(),
4321  Val)) ||
4322  OpNum + 4 != Record.size())
4323  return error("Invalid record");
4324 
4325  if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4326  return Err;
4327  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4328  if (Ordering == AtomicOrdering::NotAtomic ||
4329  Ordering == AtomicOrdering::Acquire ||
4330  Ordering == AtomicOrdering::AcquireRelease)
4331  return error("Invalid record");
4332  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4333  if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4334  return error("Invalid record");
4335 
4336  unsigned Align;
4337  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4338  return Err;
4339  I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4340  InstructionList.push_back(I);
4341  break;
4342  }
4345  // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4346  // failureordering?, isweak?]
4347  unsigned OpNum = 0;
4348  Value *Ptr, *Cmp, *New;
4349  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4350  (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4351  ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4352  : popValue(Record, OpNum, NextValueNo,
4353  cast<PointerType>(Ptr->getType())->getElementType(),
4354  Cmp)) ||
4355  popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4356  Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4357  return error("Invalid record");
4358  AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4359  if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4360  SuccessOrdering == AtomicOrdering::Unordered)
4361  return error("Invalid record");
4362  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4363 
4364  if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4365  return Err;
4366  AtomicOrdering FailureOrdering;
4367  if (Record.size() < 7)
4368  FailureOrdering =
4370  else
4371  FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4372 
4373  I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4374  SSID);
4375  cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4376 
4377  if (Record.size() < 8) {
4378  // Before weak cmpxchgs existed, the instruction simply returned the
4379  // value loaded from memory, so bitcode files from that era will be
4380  // expecting the first component of a modern cmpxchg.
4381  CurBB->getInstList().push_back(I);
4382  I = ExtractValueInst::Create(I, 0);
4383  } else {
4384  cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4385  }
4386 
4387  InstructionList.push_back(I);
4388  break;
4389  }
4391  // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4392  unsigned OpNum = 0;
4393  Value *Ptr, *Val;
4394  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4395  !isa<PointerType>(Ptr->getType()) ||
4396  popValue(Record, OpNum, NextValueNo,
4397  cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4398  OpNum+4 != Record.size())
4399  return error("Invalid record");
4400  AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4401  if (Operation < AtomicRMWInst::FIRST_BINOP ||
4402  Operation > AtomicRMWInst::LAST_BINOP)
4403  return error("Invalid record");
4404  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4405  if (Ordering == AtomicOrdering::NotAtomic ||
4406  Ordering == AtomicOrdering::Unordered)
4407  return error("Invalid record");
4408  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4409  I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4410  cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4411  InstructionList.push_back(I);
4412  break;
4413  }
4414  case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4415  if (2 != Record.size())
4416  return error("Invalid record");
4417  AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4418  if (Ordering == AtomicOrdering::NotAtomic ||
4419  Ordering == AtomicOrdering::Unordered ||
4420  Ordering == AtomicOrdering::Monotonic)
4421  return error("Invalid record");
4422  SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4423  I = new FenceInst(Context, Ordering, SSID);
4424  InstructionList.push_back(I);
4425  break;
4426  }
4428  // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4429  if (Record.size() < 3)
4430  return error("Invalid record");
4431 
4432  unsigned OpNum = 0;
4433  AttributeList PAL = getAttributes(Record[OpNum++]);
4434  unsigned CCInfo = Record[OpNum++];
4435 
4436  FastMathFlags FMF;
4437  if ((CCInfo >> bitc::CALL_FMF) & 1) {
4438  FMF = getDecodedFastMathFlags(Record[OpNum++]);
4439  if (!FMF.any())
4440  return error("Fast math flags indicator set for call with no FMF");
4441  }
4442 
4443  FunctionType *FTy = nullptr;
4444  if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4445  !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4446  return error("Explicit call type is not a function type");
4447 
4448  Value *Callee;
4449  if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4450  return error("Invalid record");
4451 
4452  PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4453  if (!OpTy)
4454  return error("Callee is not a pointer type");
4455  if (!FTy) {
4456  FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4457  if (!FTy)
4458  return error("Callee is not of pointer to function type");
4459  } else if (OpTy->getElementType() != FTy)
4460  return error("Explicit call type does not match pointee type of "
4461  "callee operand");
4462  if (Record.size() < FTy->getNumParams() + OpNum)
4463  return error("Insufficient operands to call");
4464 
4466  // Read the fixed params.
4467  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4468  if (FTy->getParamType(i)->isLabelTy())
4469  Args.push_back(getBasicBlock(Record[OpNum]));
4470  else
4471  Args.push_back(getValue(Record, OpNum, NextValueNo,
4472  FTy->getParamType(i)));
4473  if (!Args.back())
4474  return error("Invalid record");
4475  }
4476 
4477  // Read type/value pairs for varargs params.
4478  if (!FTy->isVarArg()) {
4479  if (OpNum != Record.size())
4480  return error("Invalid record");
4481  } else {
4482  while (OpNum != Record.size()) {
4483  Value *Op;
4484  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4485  return error("Invalid record");
4486  Args.push_back(Op);
4487  }
4488  }
4489 
4490  I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4491  OperandBundles.clear();
4492  InstructionList.push_back(I);
4493  cast<CallInst>(I)->setCallingConv(
4494  static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4496  if (CCInfo & 1 << bitc::CALL_TAIL)
4497  TCK = CallInst::TCK_Tail;
4498  if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4499  TCK = CallInst::TCK_MustTail;
4500  if (CCInfo & (1 << bitc::CALL_NOTAIL))
4501  TCK = CallInst::TCK_NoTail;
4502  cast<CallInst>(I)->setTailCallKind(TCK);
4503  cast<CallInst>(I)->setAttributes(PAL);
4504  if (FMF.any()) {
4505  if (!isa<FPMathOperator>(I))
4506  return error("Fast-math-flags specified for call without "
4507  "floating-point scalar or vector return type");
4508  I->setFastMathFlags(FMF);
4509  }
4510  break;
4511  }
4512  case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4513  if (Record.size() < 3)
4514  return error("Invalid record");
4515  Type *OpTy = getTypeByID(Record[0]);
4516  Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4517  Type *ResTy = getTypeByID(Record[2]);
4518  if (!OpTy || !Op || !ResTy)
4519  return error("Invalid record");
4520  I = new VAArgInst(Op, ResTy);
4521  InstructionList.push_back(I);
4522  break;
4523  }
4524 
4526  // A call or an invoke can be optionally prefixed with some variable
4527  // number of operand bundle blocks. These blocks are read into
4528  // OperandBundles and consumed at the next call or invoke instruction.
4529 
4530  if (Record.size() < 1 || Record[0] >= BundleTags.size())
4531  return error("Invalid record");
4532 
4533  std::vector<Value *> Inputs;
4534 
4535  unsigned OpNum = 1;
4536  while (OpNum != Record.size()) {
4537  Value *Op;
4538  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4539  return error("Invalid record");
4540  Inputs.push_back(Op);
4541  }
4542 
4543  OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4544  continue;
4545  }
4546  }
4547 
4548  // Add instruction to end of current BB. If there is no current BB, reject
4549  // this file.
4550  if (!CurBB) {
4551  I->deleteValue();
4552  return error("Invalid instruction with no BB");
4553  }
4554  if (!OperandBundles.empty()) {
4555  I->deleteValue();
4556  return error("Operand bundles found with no consumer");
4557  }
4558  CurBB->getInstList().push_back(I);
4559 
4560  // If this was a terminator instruction, move to the next block.
4561  if (isa<TerminatorInst>(I)) {
4562  ++CurBBNo;
4563  CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4564  }
4565 
4566  // Non-void values get registered in the value table for future use.
4567  if (I && !I->getType()->isVoidTy())
4568  ValueList.assignValue(I, NextValueNo++);
4569  }
4570 
4571 OutOfRecordLoop:
4572 
4573  if (!OperandBundles.empty())
4574  return error("Operand bundles found with no consumer");
4575 
4576  // Check the function list for unresolved values.
4577  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4578  if (!A->getParent()) {
4579  // We found at least one unresolved value. Nuke them all to avoid leaks.
4580  for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4581  if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4582  A->replaceAllUsesWith(UndefValue::get(A->getType()));
4583  delete A;
4584  }
4585  }
4586  return error("Never resolved value found in function");
4587  }
4588  }
4589 
4590  // Unexpected unresolved metadata about to be dropped.
4591  if (MDLoader->hasFwdRefs())
4592  return error("Invalid function metadata: outgoing forward refs");
4593 
4594  // Trim the value list down to the size it was before we parsed this function.
4595  ValueList.shrinkTo(ModuleValueListSize);
4596  MDLoader->shrinkTo(ModuleMDLoaderSize);
4597  std::vector<BasicBlock*>().swap(FunctionBBs);
4598  return Error::success();
4599 }
4600 
4601 /// Find the function body in the bitcode stream
4602 Error BitcodeReader::findFunctionInStream(
4603  Function *F,
4604  DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4605  while (DeferredFunctionInfoIterator->second == 0) {
4606  // This is the fallback handling for the old format bitcode that
4607  // didn't contain the function index in the VST, or when we have
4608  // an anonymous function which would not have a VST entry.
4609  // Assert that we have one of those two cases.
4610  assert(VSTOffset == 0 || !F->hasName());
4611  // Parse the next body in the stream and set its position in the
4612  // DeferredFunctionInfo map.
4613  if (Error Err = rememberAndSkipFunctionBodies())
4614  return Err;
4615  }
4616  return Error::success();
4617 }
4618 
4619 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4620  if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4621  return SyncScope::ID(Val);
4622  if (Val >= SSIDs.size())
4623  return SyncScope::System; // Map unknown synchronization scopes to system.
4624  return SSIDs[Val];
4625 }
4626 
4627 //===----------------------------------------------------------------------===//
4628 // GVMaterializer implementation
4629 //===----------------------------------------------------------------------===//
4630 
4631 Error BitcodeReader::materialize(GlobalValue *GV) {
4632  Function *F = dyn_cast<Function>(GV);
4633  // If it's not a function or is already material, ignore the request.
4634  if (!F || !F->isMaterializable())
4635  return Error::success();
4636 
4637  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4638  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4639  // If its position is recorded as 0, its body is somewhere in the stream
4640  // but we haven't seen it yet.
4641  if (DFII->second == 0)
4642  if (Error Err = findFunctionInStream(F, DFII))
4643  return Err;
4644 
4645  // Materialize metadata before parsing any function bodies.
4646  if (Error Err = materializeMetadata())
4647  return Err;
4648 
4649  // Move the bit stream to the saved position of the deferred function body.
4650  Stream.JumpToBit(DFII->second);
4651 
4652  if (Error Err = parseFunctionBody(F))
4653  return Err;
4654  F->setIsMaterializable(false);
4655 
4656  if (StripDebugInfo)
4657  stripDebugInfo(*F);
4658 
4659  // Upgrade any old intrinsic calls in the function.
4660  for (auto &I : UpgradedIntrinsics) {
4661  for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4662  UI != UE;) {
4663  User *U = *UI;
4664  ++UI;
4665  if (CallInst *CI = dyn_cast<CallInst>(U))
4666  UpgradeIntrinsicCall(CI, I.second);
4667  }
4668  }
4669 
4670  // Update calls to the remangled intrinsics
4671  for (auto &I : RemangledIntrinsics)
4672  for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4673  UI != UE;)
4674  // Don't expect any other users than call sites
4675  CallSite(*UI++).setCalledFunction(I.second);
4676 
4677  // Finish fn->subprogram upgrade for materialized functions.
4678  if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4679  F->setSubprogram(SP);
4680 
4681  // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4682  if (!MDLoader->isStrippingTBAA()) {
4683  for (auto &I : instructions(F)) {
4684  MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4685  if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4686  continue;
4687  MDLoader->setStripTBAA(true);
4688  stripTBAA(F->getParent());
4689  }
4690  }
4691 
4692  // Bring in any functions that this function forward-referenced via
4693  // blockaddresses.
4694  return materializeForwardReferencedFunctions();
4695 }
4696 
4697 Error BitcodeReader::materializeModule() {
4698  if (Error Err = materializeMetadata())
4699  return Err;
4700 
4701  // Promise to materialize all forward references.
4702  WillMaterializeAllForwardRefs = true;
4703 
4704  // Iterate over the module, deserializing any functions that are still on
4705  // disk.
4706  for (Function &F : *TheModule) {
4707  if (Error Err = materialize(&F))
4708  return Err;
4709  }
4710  // At this point, if there are any function bodies, parse the rest of
4711  // the bits in the module past the last function block we have recorded
4712  // through either lazy scanning or the VST.
4713  if (LastFunctionBlockBit || NextUnreadBit)
4714  if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4715  ? LastFunctionBlockBit
4716  : NextUnreadBit))
4717  return Err;
4718 
4719  // Check that all block address forward references got resolved (as we
4720  // promised above).
4721  if (!BasicBlockFwdRefs.empty())
4722  return error("Never resolved function from blockaddress");
4723 
4724  // Upgrade any intrinsic calls that slipped through (should not happen!) and
4725  // delete the old functions to clean up. We can't do this unless the entire
4726  // module is materialized because there could always be another function body
4727  // with calls to the old function.
4728  for (auto &I : UpgradedIntrinsics) {
4729  for (auto *U : I.first->users()) {
4730  if (CallInst *CI = dyn_cast<CallInst>(U))
4731  UpgradeIntrinsicCall(CI, I.second);
4732  }
4733  if (!I.first->use_empty())
4734  I.first->replaceAllUsesWith(I.second);
4735  I.first->eraseFromParent();
4736  }
4737  UpgradedIntrinsics.clear();
4738  // Do the same for remangled intrinsics
4739  for (auto &I : RemangledIntrinsics) {
4740  I.first->replaceAllUsesWith(I.second);
4741  I.first->eraseFromParent();
4742  }
4743  RemangledIntrinsics.clear();
4744 
4745  UpgradeDebugInfo(*TheModule);
4746 
4747  UpgradeModuleFlags(*TheModule);
4748  return Error::success();
4749 }
4750 
4751 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4752  return IdentifiedStructTypes;
4753 }
4754 
4755 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4756  BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4757  StringRef ModulePath, unsigned ModuleId)
4758  : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4759  ModulePath(ModulePath), ModuleId(ModuleId) {}
4760 
4762 ModuleSummaryIndexBitcodeReader::addThisModule() {
4763  return TheIndex.addModule(ModulePath, ModuleId);
4764 }
4765 
4766 std::pair<ValueInfo, GlobalValue::GUID>
4767 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4768  auto VGI = ValueIdToValueInfoMap[ValueId];
4769  assert(VGI.first);
4770  return VGI;
4771 }
4772 
4773 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4774  uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4775  StringRef SourceFileName) {
4776  std::string GlobalId =
4777  GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4778  auto ValueGUID = GlobalValue::getGUID(GlobalId);
4779  auto OriginalNameID = ValueGUID;
4780  if (GlobalValue::isLocalLinkage(Linkage))
4781  OriginalNameID = GlobalValue::getGUID(ValueName);
4782  if (PrintSummaryGUIDs)
4783  dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4784  << ValueName << "\n";
4785  ValueIdToValueInfoMap[ValueID] =
4786  std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID);
4787 }
4788 
4789 // Specialized value symbol table parser used when reading module index
4790 // blocks where we don't actually create global values. The parsed information
4791 // is saved in the bitcode reader for use when later parsing summaries.
4792 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4793  uint64_t Offset,
4794  DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4795  // With a strtab the VST is not required to parse the summary.
4796  if (UseStrtab)
4797  return Error::success();
4798 
4799  assert(Offset > 0 && "Expected non-zero VST offset");
4800  uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4801 
4803  return error("Invalid record");
4804 
4806 
4807  // Read all the records for this value table.
4809 
4810  while (true) {
4811  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4812 
4813  switch (Entry.Kind) {
4814  case BitstreamEntry::SubBlock: // Handled for us already.
4815  case BitstreamEntry::Error:
4816  return error("Malformed block");
4818  // Done parsing VST, jump back to wherever we came from.
4819  Stream.JumpToBit(CurrentBit);
4820  return Error::success();
4822  // The interesting case.
4823  break;
4824  }
4825 
4826  // Read a record.
4827  Record.clear();
4828  switch (Stream.readRecord(Entry.ID, Record)) {
4829  default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4830  break;
4831  case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4832  if (convertToString(Record, 1, ValueName))
4833  return error("Invalid record");
4834  unsigned ValueID = Record[0];
4835  assert(!SourceFileName.empty());
4836  auto VLI = ValueIdToLinkageMap.find(ValueID);
4837  assert(VLI != ValueIdToLinkageMap.end() &&
4838  "No linkage found for VST entry?");
4839  auto Linkage = VLI->second;
4840  setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4841  ValueName.clear();
4842  break;
4843  }
4844  case bitc::VST_CODE_FNENTRY: {
4845  // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4846  if (convertToString(Record, 2, ValueName))
4847  return error("Invalid record");
4848  unsigned ValueID = Record[0];
4849  assert(!SourceFileName.empty());
4850  auto VLI = ValueIdToLinkageMap.find(ValueID);
4851  assert(VLI != ValueIdToLinkageMap.end() &&
4852  "No linkage found for VST entry?");
4853  auto Linkage = VLI->second;
4854  setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4855  ValueName.clear();
4856  break;
4857  }
4859  // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4860  unsigned ValueID = Record[0];
4861  GlobalValue::GUID RefGUID = Record[1];
4862  // The "original name", which is the second value of the pair will be
4863  // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
4864  ValueIdToValueInfoMap[ValueID] =
4865  std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
4866  break;
4867  }
4868  }
4869  }
4870 }
4871 
4872 // Parse just the blocks needed for building the index out of the module.
4873 // At the end of this routine the module Index is populated with a map
4874 // from global value id to GlobalValueSummary objects.
4875 Error ModuleSummaryIndexBitcodeReader::parseModule() {
4877  return error("Invalid record");
4878 
4881  unsigned ValueId = 0;
4882 
4883  // Read the index for this module.
4884  while (true) {
4885  BitstreamEntry Entry = Stream.advance();
4886 
4887  switch (Entry.Kind) {
4888  case BitstreamEntry::Error:
4889  return error("Malformed block");
4891  return Error::success();
4892 
4894  switch (Entry.ID) {
4895  default: // Skip unknown content.
4896  if (Stream.SkipBlock())
4897  return error("Invalid record");
4898  break;
4900  // Need to parse these to get abbrev ids (e.g. for VST)
4901  if (readBlockInfo())
4902  return error("Malformed block");
4903  break;
4905  // Should have been parsed earlier via VSTOffset, unless there
4906  // is no summary section.
4907  assert(((SeenValueSymbolTable && VSTOffset > 0) ||
4908  !SeenGlobalValSummary) &&
4909  "Expected early VST parse via VSTOffset record");
4910  if (Stream.SkipBlock())
4911  return error("Invalid record");
4912  break;
4915  assert(!SeenValueSymbolTable &&
4916  "Already read VST when parsing summary block?");
4917  // We might not have a VST if there were no values in the
4918  // summary. An empty summary block generated when we are
4919  // performing ThinLTO compiles so we don't later invoke
4920  // the regular LTO process on them.
4921  if (VSTOffset > 0) {
4922  if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
4923  return Err;
4924  SeenValueSymbolTable = true;
4925  }
4926  SeenGlobalValSummary = true;
4927  if (Error Err = parseEntireSummary(Entry.ID))
4928  return Err;
4929  break;
4931  if (Error Err = parseModuleStringTable())
4932  return Err;
4933  break;
4934  }
4935  continue;
4936 
4937  case BitstreamEntry::Record: {
4938  Record.clear();
4939  auto BitCode = Stream.readRecord(Entry.ID, Record);
4940  switch (BitCode) {
4941  default:
4942  break; // Default behavior, ignore unknown content.
4944  if (Error Err = parseVersionRecord(Record).takeError())
4945  return Err;
4946  break;
4947  }
4948  /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4951  if (convertToString(Record, 0, ValueName))
4952  return error("Invalid record");
4953  SourceFileName = ValueName.c_str();
4954  break;
4955  }
4956  /// MODULE_CODE_HASH: [5*i32]
4957  case bitc::MODULE_CODE_HASH: {
4958  if (Record.size() != 5)
4959  return error("Invalid hash length " + Twine(Record.size()).str());
4960  auto &Hash = addThisModule()->second.second;
4961  int Pos = 0;
4962  for (auto &Val : Record) {
4963  assert(!(Val >> 32) && "Unexpected high bits set");
4964  Hash[Pos++] = Val;
4965  }
4966  break;
4967  }
4968  /// MODULE_CODE_VSTOFFSET: [offset]
4970  if (Record.size() < 1)
4971  return error("Invalid record");
4972  // Note that we subtract 1 here because the offset is relative to one
4973  // word before the start of the identification or module block, which
4974  // was historically always the start of the regular bitcode header.
4975  VSTOffset = Record[0] - 1;
4976  break;
4977  // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
4978  // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
4979  // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
4980  // v2: [strtab offset, strtab size, v1]
4983  case bitc::MODULE_CODE_ALIAS: {
4984  StringRef Name;
4985  ArrayRef<uint64_t> GVRecord;
4986  std::tie(Name, GVRecord) = readNameFromStrtab(Record);
4987  if (GVRecord.size() <= 3)
4988  return error("Invalid record");
4989  uint64_t RawLinkage = GVRecord[3];
4990  GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4991  if (!UseStrtab) {
4992  ValueIdToLinkageMap[ValueId++] = Linkage;
4993  break;
4994  }
4995 
4996  setValueGUID(ValueId++, Name, Linkage, SourceFileName);
4997  break;
4998  }
4999  }
5000  }
5001  continue;
5002  }
5003  }
5004 }
5005 
5006 std::vector<ValueInfo>
5007 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5008  std::vector<ValueInfo> Ret;
5009  Ret.reserve(Record.size());
5010  for (uint64_t RefValueId : Record)
5011  Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5012  return Ret;
5013 }
5014 
5015 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList(
5016  ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) {
5017  std::vector<FunctionSummary::EdgeTy> Ret;
5018  Ret.reserve(Record.size());
5019  for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5021  ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5022  if (IsOldProfileFormat) {
5023  I += 1; // Skip old callsitecount field
5024  if (HasProfile)
5025  I += 1; // Skip old profilecount field
5026  } else if (HasProfile)
5027  Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5028  Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}});
5029  }
5030  return Ret;
5031 }
5032 
5033 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5034 // objects in the index.
5035 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5036  if (Stream.EnterSubBlock(ID))
5037  return error("Invalid record");
5039 
5040  // Parse version
5041  {
5042  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5043  if (Entry.Kind != BitstreamEntry::Record)
5044  return error("Invalid Summary Block: record for version expected");
5045  if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5046  return error("Invalid Summary Block: version expected");
5047  }
5048  const uint64_t Version = Record[0];
5049  const bool IsOldProfileFormat = Version == 1;
5050  if (Version < 1 || Version > 4)
5051  return error("Invalid summary version " + Twine(Version) +
5052  ", 1, 2, 3 or 4 expected");
5053  Record.clear();
5054 
5055  // Keep around the last seen summary to be used when we see an optional
5056  // "OriginalName" attachement.
5057  GlobalValueSummary *LastSeenSummary = nullptr;
5058  GlobalValue::GUID LastSeenGUID = 0;
5059 
5060  // We can expect to see any number of type ID information records before
5061  // each function summary records; these variables store the information
5062  // collected so far so that it can be used to create the summary object.
5063  std::vector<GlobalValue::GUID> PendingTypeTests;
5064  std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5065  PendingTypeCheckedLoadVCalls;
5066  std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5067  PendingTypeCheckedLoadConstVCalls;
5068 
5069  while (true) {
5070  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5071 
5072  switch (Entry.Kind) {
5073  case BitstreamEntry::SubBlock: // Handled for us already.
5074  case BitstreamEntry::Error:
5075  return error("Malformed block");
5077  return Error::success();
5079  // The interesting case.
5080  break;
5081  }
5082 
5083  // Read a record. The record format depends on whether this
5084  // is a per-module index or a combined index file. In the per-module
5085  // case the records contain the associated value's ID for correlation
5086  // with VST entries. In the combined index the correlation is done
5087  // via the bitcode offset of the summary records (which were saved
5088  // in the combined index VST entries). The records also contain
5089  // information used for ThinLTO renaming and importing.
5090  Record.clear();
5091  auto BitCode = Stream.readRecord(Entry.ID, Record);
5092  switch (BitCode) {
5093  default: // Default behavior: ignore.
5094  break;
5095  case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5096  uint64_t ValueID = Record[0];
5097  GlobalValue::GUID RefGUID = Record[1];
5098  ValueIdToValueInfoMap[ValueID] =
5099  std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5100  break;
5101  }
5102  // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5103  // numrefs x valueid, n x (valueid)]
5104  // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5105  // numrefs x valueid,
5106  // n x (valueid, hotness)]
5107  case bitc::FS_PERMODULE:
5109  unsigned ValueID = Record[0];
5110  uint64_t RawFlags = Record[1];
5111  unsigned InstCount = Record[2];
5112  uint64_t RawFunFlags = 0;
5113  unsigned NumRefs = Record[3];
5114  int RefListStartIndex = 4;
5115  if (Version >= 4) {
5116  RawFunFlags = Record[3];
5117  NumRefs = Record[4];
5118  RefListStartIndex = 5;
5119  }
5120 
5121  auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5122  // The module path string ref set in the summary must be owned by the
5123  // index's module string table. Since we don't have a module path
5124  // string table section in the per-module index, we create a single
5125  // module path string table entry with an empty (0) ID to take
5126  // ownership.
5127  int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5128  assert(Record.size() >= RefListStartIndex + NumRefs &&
5129  "Record size inconsistent with number of references");
5130  std::vector<ValueInfo> Refs = makeRefList(
5131  ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5132  bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5133  std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5134  ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5135  IsOldProfileFormat, HasProfile);
5136  auto FS = llvm::make_unique<FunctionSummary>(
5137  Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5138  std::move(Calls), std::move(PendingTypeTests),
5139  std::move(PendingTypeTestAssumeVCalls),
5140  std::move(PendingTypeCheckedLoadVCalls),
5141  std::move(PendingTypeTestAssumeConstVCalls),
5142  std::move(PendingTypeCheckedLoadConstVCalls));
5143  PendingTypeTests.clear();
5144  PendingTypeTestAssumeVCalls.clear();
5145  PendingTypeCheckedLoadVCalls.clear();
5146  PendingTypeTestAssumeConstVCalls.clear();
5147  PendingTypeCheckedLoadConstVCalls.clear();
5148  auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5149  FS->setModulePath(addThisModule()->first());
5150  FS->setOriginalName(VIAndOriginalGUID.second);
5151  TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5152  break;
5153  }
5154  // FS_ALIAS: [valueid, flags, valueid]
5155  // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5156  // they expect all aliasee summaries to be available.
5157  case bitc::FS_ALIAS: {
5158  unsigned ValueID = Record[0];
5159  uint64_t RawFlags = Record[1];
5160  unsigned AliaseeID = Record[2];
5161  auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5162  auto AS = llvm::make_unique<AliasSummary>(Flags);
5163  // The module path string ref set in the summary must be owned by the
5164  // index's module string table. Since we don't have a module path
5165  // string table section in the per-module index, we create a single
5166  // module path string table entry with an empty (0) ID to take
5167  // ownership.
5168  AS->setModulePath(addThisModule()->first());
5169 
5170  GlobalValue::GUID AliaseeGUID =
5171  getValueInfoFromValueId(AliaseeID).first.getGUID();
5172  auto AliaseeInModule =
5173  TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5174  if (!AliaseeInModule)
5175  return error("Alias expects aliasee summary to be parsed");
5176  AS->setAliasee(AliaseeInModule);
5177 
5178  auto GUID = getValueInfoFromValueId(ValueID);
5179  AS->setOriginalName(GUID.second);
5180  TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5181  break;
5182  }
5183  // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
5185  unsigned ValueID = Record[0];
5186  uint64_t RawFlags = Record[1];
5187  auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5188  std::vector<ValueInfo> Refs =
5189  makeRefList(ArrayRef<uint64_t>(Record).slice(2));
5190  auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5191  FS->setModulePath(addThisModule()->first());
5192  auto GUID = getValueInfoFromValueId(ValueID);
5193  FS->setOriginalName(GUID.second);
5194  TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5195  break;
5196  }
5197  // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5198  // numrefs x valueid, n x (valueid)]
5199  // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5200  // numrefs x valueid, n x (valueid, hotness)]
5201  case bitc::FS_COMBINED:
5203  unsigned ValueID = Record[0];
5204  uint64_t ModuleId = Record[1];
5205  uint64_t RawFlags = Record[2];
5206  unsigned InstCount = Record[3];
5207  uint64_t RawFunFlags = 0;
5208  unsigned NumRefs = Record[4];
5209  int RefListStartIndex = 5;
5210 
5211  if (Version >= 4) {
5212  RawFunFlags = Record[4];
5213  NumRefs = Record[5];
5214  RefListStartIndex = 6;
5215  }
5216 
5217  auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5218  int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5219  assert(Record.size() >= RefListStartIndex + NumRefs &&
5220  "Record size inconsistent with number of references");
5221  std::vector<ValueInfo> Refs = makeRefList(
5222  ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5223  bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5224  std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5225  ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5226  IsOldProfileFormat, HasProfile);
5227  ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5228  auto FS = llvm::make_unique<FunctionSummary>(
5229  Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5230  std::move(Edges), std::move(PendingTypeTests),
5231  std::move(PendingTypeTestAssumeVCalls),
5232  std::move(PendingTypeCheckedLoadVCalls),
5233  std::move(PendingTypeTestAssumeConstVCalls),
5234  std::move(PendingTypeCheckedLoadConstVCalls));
5235  PendingTypeTests.clear();
5236  PendingTypeTestAssumeVCalls.clear();
5237  PendingTypeCheckedLoadVCalls.clear();
5238  PendingTypeTestAssumeConstVCalls.clear();
5239  PendingTypeCheckedLoadConstVCalls.clear();
5240  LastSeenSummary = FS.get();
5241  LastSeenGUID = VI.getGUID();
5242  FS->setModulePath(ModuleIdMap[ModuleId]);
5243  TheIndex.addGlobalValueSummary(VI, std::move(FS));
5244  break;
5245  }
5246  // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5247  // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5248  // they expect all aliasee summaries to be available.
5249  case bitc::FS_COMBINED_ALIAS: {
5250  unsigned ValueID = Record[0];
5251  uint64_t ModuleId = Record[1];
5252  uint64_t RawFlags = Record[2];
5253  unsigned AliaseeValueId = Record[3];
5254  auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5255  auto AS = llvm::make_unique<AliasSummary>(Flags);
5256  LastSeenSummary = AS.get();
5257  AS->setModulePath(ModuleIdMap[ModuleId]);
5258 
5259  auto AliaseeGUID =
5260  getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5261  auto AliaseeInModule =
5262  TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5263  if (!AliaseeInModule)
5264  return error("Alias expects aliasee summary to be parsed");
5265  AS->setAliasee(AliaseeInModule);
5266 
5267  ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5268  LastSeenGUID = VI.getGUID();
5269  TheIndex.addGlobalValueSummary(VI, std::move(AS));
5270  break;
5271  }
5272  // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5274  unsigned ValueID = Record[0];
5275  uint64_t ModuleId = Record[1];
5276  uint64_t RawFlags = Record[2];
5277  auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5278  std::vector<ValueInfo> Refs =
5279  makeRefList(ArrayRef<uint64_t>(Record).slice(3));
5280  auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5281  LastSeenSummary = FS.get();
5282  FS->setModulePath(ModuleIdMap[ModuleId]);
5283  ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5284  LastSeenGUID = VI.getGUID();
5285  TheIndex.addGlobalValueSummary(VI, std::move(FS));
5286  break;
5287  }
5288  // FS_COMBINED_ORIGINAL_NAME: [original_name]
5290  uint64_t OriginalName = Record[0];
5291  if (!LastSeenSummary)
5292  return error("Name attachment that does not follow a combined record");
5293  LastSeenSummary->setOriginalName(OriginalName);
5294  TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5295  // Reset the LastSeenSummary
5296  LastSeenSummary = nullptr;
5297  LastSeenGUID = 0;
5298  break;
5299  }
5300  case bitc::FS_TYPE_TESTS:
5301  assert(PendingTypeTests.empty());
5302  PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5303  Record.end());
5304  break;
5305 
5307  assert(PendingTypeTestAssumeVCalls.empty());
5308  for (unsigned I = 0; I != Record.size(); I += 2)
5309  PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5310  break;
5311 
5313  assert(PendingTypeCheckedLoadVCalls.empty());
5314  for (unsigned I = 0; I != Record.size(); I += 2)
5315  PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5316  break;
5317 
5319  PendingTypeTestAssumeConstVCalls.push_back(
5320  {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5321  break;
5322 
5324  PendingTypeCheckedLoadConstVCalls.push_back(
5325  {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5326  break;
5327 
5329  std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5330  for (unsigned I = 0; I != Record.size(); I += 2)
5331  CfiFunctionDefs.insert(
5332  {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5333  break;
5334  }
5336  std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5337  for (unsigned I = 0; I != Record.size(); I += 2)
5338  CfiFunctionDecls.insert(
5339  {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5340  break;
5341  }
5342  }
5343  }
5344  llvm_unreachable("Exit infinite loop");
5345 }
5346 
5347 // Parse the module string table block into the Index.
5348 // This populates the ModulePathStringTable map in the index.
5349 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5351  return error("Invalid record");
5352 
5354 
5355  SmallString<128> ModulePath;
5356  ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5357 
5358  while (true) {
5359  BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5360 
5361  switch (Entry.Kind) {
5362  case BitstreamEntry::SubBlock: // Handled for us already.
5363  case BitstreamEntry::Error:
5364  return error("Malformed block");
5366  return Error::success();
5368  // The interesting case.
5369  break;
5370  }
5371 
5372  Record.clear();
5373  switch (Stream.readRecord(Entry.ID, Record)) {
5374  default: // Default behavior: ignore.
5375  break;
5376  case bitc::MST_CODE_ENTRY: {
5377  // MST_ENTRY: [modid, namechar x N]
5378  uint64_t ModuleId = Record[0];
5379 
5380  if (convertToString(Record, 1, ModulePath))
5381  return error("Invalid record");
5382 
5383  LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5384  ModuleIdMap[ModuleId] = LastSeenModule->first();
5385 
5386  ModulePath.clear();
5387  break;
5388  }
5389  /// MST_CODE_HASH: [5*i32]
5390  case bitc::MST_CODE_HASH: {
5391  if (Record.size() != 5)
5392  return error("Invalid hash length " + Twine(Record.size()).str());
5393  if (!LastSeenModule)
5394  return error("Invalid hash that does not follow a module path");
5395  int Pos = 0;
5396  for (auto &Val : Record) {
5397  assert(!(Val >> 32) && "Unexpected high bits set");
5398  LastSeenModule->second.second[Pos++] = Val;
5399  }
5400  // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5401  LastSeenModule = nullptr;
5402  break;
5403  }
5404  }
5405  }
5406  llvm_unreachable("Exit infinite loop");
5407 }
5408 
5409 namespace {
5410 
5411 // FIXME: This class is only here to support the transition to llvm::Error. It
5412 // will be removed once this transition is complete. Clients should prefer to
5413 // deal with the Error value directly, rather than converting to error_code.
5414 class BitcodeErrorCategoryType : public std::error_category {
5415  const char *name() const noexcept override {
5416  return "llvm.bitcode";
5417  }
5418