LLVM 20.0.0git
AArch64LoadStoreOptimizer.cpp
Go to the documentation of this file.
1//===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass that performs load / store related peephole
10// optimizations. This pass should be run after register allocation.
11//
12// The pass runs after the PrologEpilogInserter where we emit the CFI
13// instructions. In order to preserve the correctness of the unwind informaiton,
14// the pass should not change the order of any two instructions, one of which
15// has the FrameSetup/FrameDestroy flag or, alternatively, apply an add-hoc fix
16// to unwind information.
17//
18//===----------------------------------------------------------------------===//
19
20#include "AArch64InstrInfo.h"
22#include "AArch64Subtarget.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/StringRef.h"
37#include "llvm/IR/DebugLoc.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCDwarf.h"
40#include "llvm/Pass.h"
42#include "llvm/Support/Debug.h"
46#include <cassert>
47#include <cstdint>
48#include <functional>
49#include <iterator>
50#include <limits>
51#include <optional>
52
53using namespace llvm;
54
55#define DEBUG_TYPE "aarch64-ldst-opt"
56
57STATISTIC(NumPairCreated, "Number of load/store pair instructions generated");
58STATISTIC(NumPostFolded, "Number of post-index updates folded");
59STATISTIC(NumPreFolded, "Number of pre-index updates folded");
60STATISTIC(NumUnscaledPairCreated,
61 "Number of load/store from unscaled generated");
62STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted");
63STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted");
64STATISTIC(NumFailedAlignmentCheck, "Number of load/store pair transformation "
65 "not passed the alignment check");
66STATISTIC(NumConstOffsetFolded,
67 "Number of const offset of index address folded");
68
69DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming",
70 "Controls which pairs are considered for renaming");
71
72// The LdStLimit limits how far we search for load/store pairs.
73static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit",
74 cl::init(20), cl::Hidden);
75
76// The UpdateLimit limits how far we search for update instructions when we form
77// pre-/post-index instructions.
78static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100),
80
81// The LdStConstLimit limits how far we search for const offset instructions
82// when we form index address load/store instructions.
83static cl::opt<unsigned> LdStConstLimit("aarch64-load-store-const-scan-limit",
84 cl::init(10), cl::Hidden);
85
86// Enable register renaming to find additional store pairing opportunities.
87static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming",
88 cl::init(true), cl::Hidden);
89
90#define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass"
91
92namespace {
93
94using LdStPairFlags = struct LdStPairFlags {
95 // If a matching instruction is found, MergeForward is set to true if the
96 // merge is to remove the first instruction and replace the second with
97 // a pair-wise insn, and false if the reverse is true.
98 bool MergeForward = false;
99
100 // SExtIdx gives the index of the result of the load pair that must be
101 // extended. The value of SExtIdx assumes that the paired load produces the
102 // value in this order: (I, returned iterator), i.e., -1 means no value has
103 // to be extended, 0 means I, and 1 means the returned iterator.
104 int SExtIdx = -1;
105
106 // If not none, RenameReg can be used to rename the result register of the
107 // first store in a pair. Currently this only works when merging stores
108 // forward.
109 std::optional<MCPhysReg> RenameReg;
110
111 LdStPairFlags() = default;
112
113 void setMergeForward(bool V = true) { MergeForward = V; }
114 bool getMergeForward() const { return MergeForward; }
115
116 void setSExtIdx(int V) { SExtIdx = V; }
117 int getSExtIdx() const { return SExtIdx; }
118
119 void setRenameReg(MCPhysReg R) { RenameReg = R; }
120 void clearRenameReg() { RenameReg = std::nullopt; }
121 std::optional<MCPhysReg> getRenameReg() const { return RenameReg; }
122};
123
124struct AArch64LoadStoreOpt : public MachineFunctionPass {
125 static char ID;
126
127 AArch64LoadStoreOpt() : MachineFunctionPass(ID) {
129 }
130
131 AliasAnalysis *AA;
132 const AArch64InstrInfo *TII;
133 const TargetRegisterInfo *TRI;
134 const AArch64Subtarget *Subtarget;
135
136 // Track which register units have been modified and used.
137 LiveRegUnits ModifiedRegUnits, UsedRegUnits;
138 LiveRegUnits DefinedInBB;
139
140 void getAnalysisUsage(AnalysisUsage &AU) const override {
143 }
144
145 // Scan the instructions looking for a load/store that can be combined
146 // with the current instruction into a load/store pair.
147 // Return the matching instruction if one is found, else MBB->end().
149 LdStPairFlags &Flags,
150 unsigned Limit,
151 bool FindNarrowMerge);
152
153 // Scan the instructions looking for a store that writes to the address from
154 // which the current load instruction reads. Return true if one is found.
155 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit,
157
158 // Merge the two instructions indicated into a wider narrow store instruction.
160 mergeNarrowZeroStores(MachineBasicBlock::iterator I,
162 const LdStPairFlags &Flags);
163
164 // Merge the two instructions indicated into a single pair-wise instruction.
166 mergePairedInsns(MachineBasicBlock::iterator I,
168 const LdStPairFlags &Flags);
169
170 // Promote the load that reads directly from the address stored to.
172 promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
174
175 // Scan the instruction list to find a base register update that can
176 // be combined with the current instruction (a load or store) using
177 // pre or post indexed addressing with writeback. Scan forwards.
179 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I,
180 int UnscaledOffset, unsigned Limit);
181
182 // Scan the instruction list to find a register assigned with a const
183 // value that can be combined with the current instruction (a load or store)
184 // using base addressing with writeback. Scan backwards.
186 findMatchingConstOffsetBackward(MachineBasicBlock::iterator I, unsigned Limit,
187 unsigned &Offset);
188
189 // Scan the instruction list to find a base register update that can
190 // be combined with the current instruction (a load or store) using
191 // pre or post indexed addressing with writeback. Scan backwards.
192 // `MergeEither` is set to true if the combined instruction may be placed
193 // either at the location of the load/store instruction or at the location of
194 // the update intruction.
196 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit,
197 bool &MergeEither);
198
199 // Find an instruction that updates the base register of the ld/st
200 // instruction.
201 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI,
202 unsigned BaseReg, int Offset);
203
204 bool isMatchingMovConstInsn(MachineInstr &MemMI, MachineInstr &MI,
205 unsigned IndexReg, unsigned &Offset);
206
207 // Merge a pre- or post-index base register update into a ld/st instruction.
208 std::optional<MachineBasicBlock::iterator>
209 mergeUpdateInsn(MachineBasicBlock::iterator I,
210 MachineBasicBlock::iterator Update, bool IsForward,
211 bool IsPreIdx, bool MergeEither);
212
214 mergeConstOffsetInsn(MachineBasicBlock::iterator I,
215 MachineBasicBlock::iterator Update, unsigned Offset,
216 int Scale);
217
218 // Find and merge zero store instructions.
219 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI);
220
221 // Find and pair ldr/str instructions.
222 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI);
223
224 // Find and promote load instructions which read directly from store.
225 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI);
226
227 // Find and merge a base register updates before or after a ld/st instruction.
228 bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI);
229
230 // Find and merge an index ldr/st instruction into a base ld/st instruction.
231 bool tryToMergeIndexLdSt(MachineBasicBlock::iterator &MBBI, int Scale);
232
233 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt);
234
235 bool runOnMachineFunction(MachineFunction &Fn) override;
236
239 MachineFunctionProperties::Property::NoVRegs);
240 }
241
242 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; }
243};
244
245char AArch64LoadStoreOpt::ID = 0;
246
247} // end anonymous namespace
248
249INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt",
250 AARCH64_LOAD_STORE_OPT_NAME, false, false)
251
252static bool isNarrowStore(unsigned Opc) {
253 switch (Opc) {
254 default:
255 return false;
256 case AArch64::STRBBui:
257 case AArch64::STURBBi:
258 case AArch64::STRHHui:
259 case AArch64::STURHHi:
260 return true;
261 }
262}
263
264// These instruction set memory tag and either keep memory contents unchanged or
265// set it to zero, ignoring the address part of the source register.
266static bool isTagStore(const MachineInstr &MI) {
267 switch (MI.getOpcode()) {
268 default:
269 return false;
270 case AArch64::STGi:
271 case AArch64::STZGi:
272 case AArch64::ST2Gi:
273 case AArch64::STZ2Gi:
274 return true;
275 }
276}
277
278static unsigned getMatchingNonSExtOpcode(unsigned Opc,
279 bool *IsValidLdStrOpc = nullptr) {
280 if (IsValidLdStrOpc)
281 *IsValidLdStrOpc = true;
282 switch (Opc) {
283 default:
284 if (IsValidLdStrOpc)
285 *IsValidLdStrOpc = false;
286 return std::numeric_limits<unsigned>::max();
287 case AArch64::STRDui:
288 case AArch64::STURDi:
289 case AArch64::STRDpre:
290 case AArch64::STRQui:
291 case AArch64::STURQi:
292 case AArch64::STRQpre:
293 case AArch64::STRBBui:
294 case AArch64::STURBBi:
295 case AArch64::STRHHui:
296 case AArch64::STURHHi:
297 case AArch64::STRWui:
298 case AArch64::STRWpre:
299 case AArch64::STURWi:
300 case AArch64::STRXui:
301 case AArch64::STRXpre:
302 case AArch64::STURXi:
303 case AArch64::LDRDui:
304 case AArch64::LDURDi:
305 case AArch64::LDRDpre:
306 case AArch64::LDRQui:
307 case AArch64::LDURQi:
308 case AArch64::LDRQpre:
309 case AArch64::LDRWui:
310 case AArch64::LDURWi:
311 case AArch64::LDRWpre:
312 case AArch64::LDRXui:
313 case AArch64::LDURXi:
314 case AArch64::LDRXpre:
315 case AArch64::STRSui:
316 case AArch64::STURSi:
317 case AArch64::STRSpre:
318 case AArch64::LDRSui:
319 case AArch64::LDURSi:
320 case AArch64::LDRSpre:
321 return Opc;
322 case AArch64::LDRSWui:
323 return AArch64::LDRWui;
324 case AArch64::LDURSWi:
325 return AArch64::LDURWi;
326 case AArch64::LDRSWpre:
327 return AArch64::LDRWpre;
328 }
329}
330
331static unsigned getMatchingWideOpcode(unsigned Opc) {
332 switch (Opc) {
333 default:
334 llvm_unreachable("Opcode has no wide equivalent!");
335 case AArch64::STRBBui:
336 return AArch64::STRHHui;
337 case AArch64::STRHHui:
338 return AArch64::STRWui;
339 case AArch64::STURBBi:
340 return AArch64::STURHHi;
341 case AArch64::STURHHi:
342 return AArch64::STURWi;
343 case AArch64::STURWi:
344 return AArch64::STURXi;
345 case AArch64::STRWui:
346 return AArch64::STRXui;
347 }
348}
349
350static unsigned getMatchingPairOpcode(unsigned Opc) {
351 switch (Opc) {
352 default:
353 llvm_unreachable("Opcode has no pairwise equivalent!");
354 case AArch64::STRSui:
355 case AArch64::STURSi:
356 return AArch64::STPSi;
357 case AArch64::STRSpre:
358 return AArch64::STPSpre;
359 case AArch64::STRDui:
360 case AArch64::STURDi:
361 return AArch64::STPDi;
362 case AArch64::STRDpre:
363 return AArch64::STPDpre;
364 case AArch64::STRQui:
365 case AArch64::STURQi:
366 return AArch64::STPQi;
367 case AArch64::STRQpre:
368 return AArch64::STPQpre;
369 case AArch64::STRWui:
370 case AArch64::STURWi:
371 return AArch64::STPWi;
372 case AArch64::STRWpre:
373 return AArch64::STPWpre;
374 case AArch64::STRXui:
375 case AArch64::STURXi:
376 return AArch64::STPXi;
377 case AArch64::STRXpre:
378 return AArch64::STPXpre;
379 case AArch64::LDRSui:
380 case AArch64::LDURSi:
381 return AArch64::LDPSi;
382 case AArch64::LDRSpre:
383 return AArch64::LDPSpre;
384 case AArch64::LDRDui:
385 case AArch64::LDURDi:
386 return AArch64::LDPDi;
387 case AArch64::LDRDpre:
388 return AArch64::LDPDpre;
389 case AArch64::LDRQui:
390 case AArch64::LDURQi:
391 return AArch64::LDPQi;
392 case AArch64::LDRQpre:
393 return AArch64::LDPQpre;
394 case AArch64::LDRWui:
395 case AArch64::LDURWi:
396 return AArch64::LDPWi;
397 case AArch64::LDRWpre:
398 return AArch64::LDPWpre;
399 case AArch64::LDRXui:
400 case AArch64::LDURXi:
401 return AArch64::LDPXi;
402 case AArch64::LDRXpre:
403 return AArch64::LDPXpre;
404 case AArch64::LDRSWui:
405 case AArch64::LDURSWi:
406 return AArch64::LDPSWi;
407 case AArch64::LDRSWpre:
408 return AArch64::LDPSWpre;
409 }
410}
411
414 unsigned LdOpc = LoadInst.getOpcode();
415 unsigned StOpc = StoreInst.getOpcode();
416 switch (LdOpc) {
417 default:
418 llvm_unreachable("Unsupported load instruction!");
419 case AArch64::LDRBBui:
420 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui ||
421 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
422 case AArch64::LDURBBi:
423 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi ||
424 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
425 case AArch64::LDRHHui:
426 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui ||
427 StOpc == AArch64::STRXui;
428 case AArch64::LDURHHi:
429 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi ||
430 StOpc == AArch64::STURXi;
431 case AArch64::LDRWui:
432 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
433 case AArch64::LDURWi:
434 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
435 case AArch64::LDRXui:
436 return StOpc == AArch64::STRXui;
437 case AArch64::LDURXi:
438 return StOpc == AArch64::STURXi;
439 }
440}
441
442static unsigned getPreIndexedOpcode(unsigned Opc) {
443 // FIXME: We don't currently support creating pre-indexed loads/stores when
444 // the load or store is the unscaled version. If we decide to perform such an
445 // optimization in the future the cases for the unscaled loads/stores will
446 // need to be added here.
447 switch (Opc) {
448 default:
449 llvm_unreachable("Opcode has no pre-indexed equivalent!");
450 case AArch64::STRSui:
451 return AArch64::STRSpre;
452 case AArch64::STRDui:
453 return AArch64::STRDpre;
454 case AArch64::STRQui:
455 return AArch64::STRQpre;
456 case AArch64::STRBBui:
457 return AArch64::STRBBpre;
458 case AArch64::STRHHui:
459 return AArch64::STRHHpre;
460 case AArch64::STRWui:
461 return AArch64::STRWpre;
462 case AArch64::STRXui:
463 return AArch64::STRXpre;
464 case AArch64::LDRSui:
465 return AArch64::LDRSpre;
466 case AArch64::LDRDui:
467 return AArch64::LDRDpre;
468 case AArch64::LDRQui:
469 return AArch64::LDRQpre;
470 case AArch64::LDRBBui:
471 return AArch64::LDRBBpre;
472 case AArch64::LDRHHui:
473 return AArch64::LDRHHpre;
474 case AArch64::LDRWui:
475 return AArch64::LDRWpre;
476 case AArch64::LDRXui:
477 return AArch64::LDRXpre;
478 case AArch64::LDRSWui:
479 return AArch64::LDRSWpre;
480 case AArch64::LDPSi:
481 return AArch64::LDPSpre;
482 case AArch64::LDPSWi:
483 return AArch64::LDPSWpre;
484 case AArch64::LDPDi:
485 return AArch64::LDPDpre;
486 case AArch64::LDPQi:
487 return AArch64::LDPQpre;
488 case AArch64::LDPWi:
489 return AArch64::LDPWpre;
490 case AArch64::LDPXi:
491 return AArch64::LDPXpre;
492 case AArch64::STPSi:
493 return AArch64::STPSpre;
494 case AArch64::STPDi:
495 return AArch64::STPDpre;
496 case AArch64::STPQi:
497 return AArch64::STPQpre;
498 case AArch64::STPWi:
499 return AArch64::STPWpre;
500 case AArch64::STPXi:
501 return AArch64::STPXpre;
502 case AArch64::STGi:
503 return AArch64::STGPreIndex;
504 case AArch64::STZGi:
505 return AArch64::STZGPreIndex;
506 case AArch64::ST2Gi:
507 return AArch64::ST2GPreIndex;
508 case AArch64::STZ2Gi:
509 return AArch64::STZ2GPreIndex;
510 case AArch64::STGPi:
511 return AArch64::STGPpre;
512 }
513}
514
515static unsigned getBaseAddressOpcode(unsigned Opc) {
516 // TODO: Add more index address stores.
517 switch (Opc) {
518 default:
519 llvm_unreachable("Opcode has no base address equivalent!");
520 case AArch64::LDRBroX:
521 return AArch64::LDRBui;
522 case AArch64::LDRBBroX:
523 return AArch64::LDRBBui;
524 case AArch64::LDRSBXroX:
525 return AArch64::LDRSBXui;
526 case AArch64::LDRSBWroX:
527 return AArch64::LDRSBWui;
528 case AArch64::LDRHroX:
529 return AArch64::LDRHui;
530 case AArch64::LDRHHroX:
531 return AArch64::LDRHHui;
532 case AArch64::LDRSHXroX:
533 return AArch64::LDRSHXui;
534 case AArch64::LDRSHWroX:
535 return AArch64::LDRSHWui;
536 case AArch64::LDRWroX:
537 return AArch64::LDRWui;
538 case AArch64::LDRSroX:
539 return AArch64::LDRSui;
540 case AArch64::LDRSWroX:
541 return AArch64::LDRSWui;
542 case AArch64::LDRDroX:
543 return AArch64::LDRDui;
544 case AArch64::LDRXroX:
545 return AArch64::LDRXui;
546 case AArch64::LDRQroX:
547 return AArch64::LDRQui;
548 }
549}
550
551static unsigned getPostIndexedOpcode(unsigned Opc) {
552 switch (Opc) {
553 default:
554 llvm_unreachable("Opcode has no post-indexed wise equivalent!");
555 case AArch64::STRSui:
556 case AArch64::STURSi:
557 return AArch64::STRSpost;
558 case AArch64::STRDui:
559 case AArch64::STURDi:
560 return AArch64::STRDpost;
561 case AArch64::STRQui:
562 case AArch64::STURQi:
563 return AArch64::STRQpost;
564 case AArch64::STRBBui:
565 return AArch64::STRBBpost;
566 case AArch64::STRHHui:
567 return AArch64::STRHHpost;
568 case AArch64::STRWui:
569 case AArch64::STURWi:
570 return AArch64::STRWpost;
571 case AArch64::STRXui:
572 case AArch64::STURXi:
573 return AArch64::STRXpost;
574 case AArch64::LDRSui:
575 case AArch64::LDURSi:
576 return AArch64::LDRSpost;
577 case AArch64::LDRDui:
578 case AArch64::LDURDi:
579 return AArch64::LDRDpost;
580 case AArch64::LDRQui:
581 case AArch64::LDURQi:
582 return AArch64::LDRQpost;
583 case AArch64::LDRBBui:
584 return AArch64::LDRBBpost;
585 case AArch64::LDRHHui:
586 return AArch64::LDRHHpost;
587 case AArch64::LDRWui:
588 case AArch64::LDURWi:
589 return AArch64::LDRWpost;
590 case AArch64::LDRXui:
591 case AArch64::LDURXi:
592 return AArch64::LDRXpost;
593 case AArch64::LDRSWui:
594 return AArch64::LDRSWpost;
595 case AArch64::LDPSi:
596 return AArch64::LDPSpost;
597 case AArch64::LDPSWi:
598 return AArch64::LDPSWpost;
599 case AArch64::LDPDi:
600 return AArch64::LDPDpost;
601 case AArch64::LDPQi:
602 return AArch64::LDPQpost;
603 case AArch64::LDPWi:
604 return AArch64::LDPWpost;
605 case AArch64::LDPXi:
606 return AArch64::LDPXpost;
607 case AArch64::STPSi:
608 return AArch64::STPSpost;
609 case AArch64::STPDi:
610 return AArch64::STPDpost;
611 case AArch64::STPQi:
612 return AArch64::STPQpost;
613 case AArch64::STPWi:
614 return AArch64::STPWpost;
615 case AArch64::STPXi:
616 return AArch64::STPXpost;
617 case AArch64::STGi:
618 return AArch64::STGPostIndex;
619 case AArch64::STZGi:
620 return AArch64::STZGPostIndex;
621 case AArch64::ST2Gi:
622 return AArch64::ST2GPostIndex;
623 case AArch64::STZ2Gi:
624 return AArch64::STZ2GPostIndex;
625 case AArch64::STGPi:
626 return AArch64::STGPpost;
627 }
628}
629
631
632 unsigned OpcA = FirstMI.getOpcode();
633 unsigned OpcB = MI.getOpcode();
634
635 switch (OpcA) {
636 default:
637 return false;
638 case AArch64::STRSpre:
639 return (OpcB == AArch64::STRSui) || (OpcB == AArch64::STURSi);
640 case AArch64::STRDpre:
641 return (OpcB == AArch64::STRDui) || (OpcB == AArch64::STURDi);
642 case AArch64::STRQpre:
643 return (OpcB == AArch64::STRQui) || (OpcB == AArch64::STURQi);
644 case AArch64::STRWpre:
645 return (OpcB == AArch64::STRWui) || (OpcB == AArch64::STURWi);
646 case AArch64::STRXpre:
647 return (OpcB == AArch64::STRXui) || (OpcB == AArch64::STURXi);
648 case AArch64::LDRSpre:
649 return (OpcB == AArch64::LDRSui) || (OpcB == AArch64::LDURSi);
650 case AArch64::LDRDpre:
651 return (OpcB == AArch64::LDRDui) || (OpcB == AArch64::LDURDi);
652 case AArch64::LDRQpre:
653 return (OpcB == AArch64::LDRQui) || (OpcB == AArch64::LDURQi);
654 case AArch64::LDRWpre:
655 return (OpcB == AArch64::LDRWui) || (OpcB == AArch64::LDURWi);
656 case AArch64::LDRXpre:
657 return (OpcB == AArch64::LDRXui) || (OpcB == AArch64::LDURXi);
658 case AArch64::LDRSWpre:
659 return (OpcB == AArch64::LDRSWui) || (OpcB == AArch64::LDURSWi);
660 }
661}
662
663// Returns the scale and offset range of pre/post indexed variants of MI.
664static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale,
665 int &MinOffset, int &MaxOffset) {
666 bool IsPaired = AArch64InstrInfo::isPairedLdSt(MI);
667 bool IsTagStore = isTagStore(MI);
668 // ST*G and all paired ldst have the same scale in pre/post-indexed variants
669 // as in the "unsigned offset" variant.
670 // All other pre/post indexed ldst instructions are unscaled.
671 Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1;
672
673 if (IsPaired) {
674 MinOffset = -64;
675 MaxOffset = 63;
676 } else {
677 MinOffset = -256;
678 MaxOffset = 255;
679 }
680}
681
683 unsigned PairedRegOp = 0) {
684 assert(PairedRegOp < 2 && "Unexpected register operand idx.");
685 bool IsPreLdSt = AArch64InstrInfo::isPreLdSt(MI);
686 if (IsPreLdSt)
687 PairedRegOp += 1;
688 unsigned Idx =
689 AArch64InstrInfo::isPairedLdSt(MI) || IsPreLdSt ? PairedRegOp : 0;
690 return MI.getOperand(Idx);
691}
692
695 const AArch64InstrInfo *TII) {
696 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st.");
697 int LoadSize = TII->getMemScale(LoadInst);
698 int StoreSize = TII->getMemScale(StoreInst);
699 int UnscaledStOffset =
700 TII->hasUnscaledLdStOffset(StoreInst)
703 int UnscaledLdOffset =
704 TII->hasUnscaledLdStOffset(LoadInst)
707 return (UnscaledStOffset <= UnscaledLdOffset) &&
708 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize));
709}
710
712 unsigned Opc = MI.getOpcode();
713 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi ||
714 isNarrowStore(Opc)) &&
715 getLdStRegOp(MI).getReg() == AArch64::WZR;
716}
717
719 switch (MI.getOpcode()) {
720 default:
721 return false;
722 // Scaled instructions.
723 case AArch64::LDRBBui:
724 case AArch64::LDRHHui:
725 case AArch64::LDRWui:
726 case AArch64::LDRXui:
727 // Unscaled instructions.
728 case AArch64::LDURBBi:
729 case AArch64::LDURHHi:
730 case AArch64::LDURWi:
731 case AArch64::LDURXi:
732 return true;
733 }
734}
735
737 unsigned Opc = MI.getOpcode();
738 switch (Opc) {
739 default:
740 return false;
741 // Scaled instructions.
742 case AArch64::STRSui:
743 case AArch64::STRDui:
744 case AArch64::STRQui:
745 case AArch64::STRXui:
746 case AArch64::STRWui:
747 case AArch64::STRHHui:
748 case AArch64::STRBBui:
749 case AArch64::LDRSui:
750 case AArch64::LDRDui:
751 case AArch64::LDRQui:
752 case AArch64::LDRXui:
753 case AArch64::LDRWui:
754 case AArch64::LDRHHui:
755 case AArch64::LDRBBui:
756 case AArch64::STGi:
757 case AArch64::STZGi:
758 case AArch64::ST2Gi:
759 case AArch64::STZ2Gi:
760 case AArch64::STGPi:
761 // Unscaled instructions.
762 case AArch64::STURSi:
763 case AArch64::STURDi:
764 case AArch64::STURQi:
765 case AArch64::STURWi:
766 case AArch64::STURXi:
767 case AArch64::LDURSi:
768 case AArch64::LDURDi:
769 case AArch64::LDURQi:
770 case AArch64::LDURWi:
771 case AArch64::LDURXi:
772 // Paired instructions.
773 case AArch64::LDPSi:
774 case AArch64::LDPSWi:
775 case AArch64::LDPDi:
776 case AArch64::LDPQi:
777 case AArch64::LDPWi:
778 case AArch64::LDPXi:
779 case AArch64::STPSi:
780 case AArch64::STPDi:
781 case AArch64::STPQi:
782 case AArch64::STPWi:
783 case AArch64::STPXi:
784 // Make sure this is a reg+imm (as opposed to an address reloc).
786 return false;
787
788 // When using stack tagging, simple sp+imm loads and stores are not
789 // tag-checked, but pre- and post-indexed versions of them are, so we can't
790 // replace the former with the latter. This transformation would be valid
791 // if the load/store accesses an untagged stack slot, but we don't have
792 // that information available after frame indices have been eliminated.
793 if (AFI.isMTETagged() &&
794 AArch64InstrInfo::getLdStBaseOp(MI).getReg() == AArch64::SP)
795 return false;
796
797 return true;
798 }
799}
800
801// Make sure this is a reg+reg Ld/St
802static bool isMergeableIndexLdSt(MachineInstr &MI, int &Scale) {
803 unsigned Opc = MI.getOpcode();
804 switch (Opc) {
805 default:
806 return false;
807 // Scaled instructions.
808 // TODO: Add more index address stores.
809 case AArch64::LDRBroX:
810 case AArch64::LDRBBroX:
811 case AArch64::LDRSBXroX:
812 case AArch64::LDRSBWroX:
813 Scale = 1;
814 return true;
815 case AArch64::LDRHroX:
816 case AArch64::LDRHHroX:
817 case AArch64::LDRSHXroX:
818 case AArch64::LDRSHWroX:
819 Scale = 2;
820 return true;
821 case AArch64::LDRWroX:
822 case AArch64::LDRSroX:
823 case AArch64::LDRSWroX:
824 Scale = 4;
825 return true;
826 case AArch64::LDRDroX:
827 case AArch64::LDRXroX:
828 Scale = 8;
829 return true;
830 case AArch64::LDRQroX:
831 Scale = 16;
832 return true;
833 }
834}
835
836static bool isRewritableImplicitDef(unsigned Opc) {
837 switch (Opc) {
838 default:
839 return false;
840 case AArch64::ORRWrs:
841 case AArch64::ADDWri:
842 return true;
843 }
844}
845
847AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I,
849 const LdStPairFlags &Flags) {
851 "Expected promotable zero stores.");
852
853 MachineBasicBlock::iterator E = I->getParent()->end();
855 // If NextI is the second of the two instructions to be merged, we need
856 // to skip one further. Either way we merge will invalidate the iterator,
857 // and we don't need to scan the new instruction, as it's a pairwise
858 // instruction, which we're not considering for further action anyway.
859 if (NextI == MergeMI)
860 NextI = next_nodbg(NextI, E);
861
862 unsigned Opc = I->getOpcode();
863 unsigned MergeMIOpc = MergeMI->getOpcode();
864 bool IsScaled = !TII->hasUnscaledLdStOffset(Opc);
865 bool IsMergedMIScaled = !TII->hasUnscaledLdStOffset(MergeMIOpc);
866 int OffsetStride = IsScaled ? TII->getMemScale(*I) : 1;
867 int MergeMIOffsetStride = IsMergedMIScaled ? TII->getMemScale(*MergeMI) : 1;
868
869 bool MergeForward = Flags.getMergeForward();
870 // Insert our new paired instruction after whichever of the paired
871 // instructions MergeForward indicates.
872 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I;
873 // Also based on MergeForward is from where we copy the base register operand
874 // so we get the flags compatible with the input code.
875 const MachineOperand &BaseRegOp =
876 MergeForward ? AArch64InstrInfo::getLdStBaseOp(*MergeMI)
877 : AArch64InstrInfo::getLdStBaseOp(*I);
878
879 // Which register is Rt and which is Rt2 depends on the offset order.
880 int64_t IOffsetInBytes =
881 AArch64InstrInfo::getLdStOffsetOp(*I).getImm() * OffsetStride;
882 int64_t MIOffsetInBytes =
884 MergeMIOffsetStride;
885 // Select final offset based on the offset order.
886 int64_t OffsetImm;
887 if (IOffsetInBytes > MIOffsetInBytes)
888 OffsetImm = MIOffsetInBytes;
889 else
890 OffsetImm = IOffsetInBytes;
891
892 int NewOpcode = getMatchingWideOpcode(Opc);
893 bool FinalIsScaled = !TII->hasUnscaledLdStOffset(NewOpcode);
894
895 // Adjust final offset if the result opcode is a scaled store.
896 if (FinalIsScaled) {
897 int NewOffsetStride = FinalIsScaled ? TII->getMemScale(NewOpcode) : 1;
898 assert(((OffsetImm % NewOffsetStride) == 0) &&
899 "Offset should be a multiple of the store memory scale");
900 OffsetImm = OffsetImm / NewOffsetStride;
901 }
902
903 // Construct the new instruction.
904 DebugLoc DL = I->getDebugLoc();
905 MachineBasicBlock *MBB = I->getParent();
908 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR)
909 .add(BaseRegOp)
910 .addImm(OffsetImm)
911 .cloneMergedMemRefs({&*I, &*MergeMI})
912 .setMIFlags(I->mergeFlagsWith(*MergeMI));
913 (void)MIB;
914
915 LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n ");
916 LLVM_DEBUG(I->print(dbgs()));
917 LLVM_DEBUG(dbgs() << " ");
918 LLVM_DEBUG(MergeMI->print(dbgs()));
919 LLVM_DEBUG(dbgs() << " with instruction:\n ");
920 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
921 LLVM_DEBUG(dbgs() << "\n");
922
923 // Erase the old instructions.
924 I->eraseFromParent();
925 MergeMI->eraseFromParent();
926 return NextI;
927}
928
929// Apply Fn to all instructions between MI and the beginning of the block, until
930// a def for DefReg is reached. Returns true, iff Fn returns true for all
931// visited instructions. Stop after visiting Limit iterations.
933 const TargetRegisterInfo *TRI, unsigned Limit,
934 std::function<bool(MachineInstr &, bool)> &Fn) {
935 auto MBB = MI.getParent();
936 for (MachineInstr &I :
937 instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) {
938 if (!Limit)
939 return false;
940 --Limit;
941
942 bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) {
943 return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() &&
944 TRI->regsOverlap(MOP.getReg(), DefReg);
945 });
946 if (!Fn(I, isDef))
947 return false;
948 if (isDef)
949 break;
950 }
951 return true;
952}
953
955 const TargetRegisterInfo *TRI) {
956
957 for (const MachineOperand &MOP : phys_regs_and_masks(MI))
958 if (MOP.isReg() && MOP.isKill())
959 Units.removeReg(MOP.getReg());
960
961 for (const MachineOperand &MOP : phys_regs_and_masks(MI))
962 if (MOP.isReg() && !MOP.isKill())
963 Units.addReg(MOP.getReg());
964}
965
967AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I,
969 const LdStPairFlags &Flags) {
970 MachineBasicBlock::iterator E = I->getParent()->end();
972 // If NextI is the second of the two instructions to be merged, we need
973 // to skip one further. Either way we merge will invalidate the iterator,
974 // and we don't need to scan the new instruction, as it's a pairwise
975 // instruction, which we're not considering for further action anyway.
976 if (NextI == Paired)
977 NextI = next_nodbg(NextI, E);
978
979 int SExtIdx = Flags.getSExtIdx();
980 unsigned Opc =
981 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode());
982 bool IsUnscaled = TII->hasUnscaledLdStOffset(Opc);
983 int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1;
984
985 bool MergeForward = Flags.getMergeForward();
986
987 std::optional<MCPhysReg> RenameReg = Flags.getRenameReg();
988 if (RenameReg) {
989 MCRegister RegToRename = getLdStRegOp(*I).getReg();
990 DefinedInBB.addReg(*RenameReg);
991
992 // Return the sub/super register for RenameReg, matching the size of
993 // OriginalReg.
994 auto GetMatchingSubReg =
995 [this, RenameReg](const TargetRegisterClass *C) -> MCPhysReg {
996 for (MCPhysReg SubOrSuper :
997 TRI->sub_and_superregs_inclusive(*RenameReg)) {
998 if (C->contains(SubOrSuper))
999 return SubOrSuper;
1000 }
1001 llvm_unreachable("Should have found matching sub or super register!");
1002 };
1003
1004 std::function<bool(MachineInstr &, bool)> UpdateMIs =
1005 [this, RegToRename, GetMatchingSubReg, MergeForward](MachineInstr &MI,
1006 bool IsDef) {
1007 if (IsDef) {
1008 bool SeenDef = false;
1009 for (unsigned OpIdx = 0; OpIdx < MI.getNumOperands(); ++OpIdx) {
1010 MachineOperand &MOP = MI.getOperand(OpIdx);
1011 // Rename the first explicit definition and all implicit
1012 // definitions matching RegToRename.
1013 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
1014 (!MergeForward || !SeenDef ||
1015 (MOP.isDef() && MOP.isImplicit())) &&
1016 TRI->regsOverlap(MOP.getReg(), RegToRename)) {
1017 assert((MOP.isImplicit() ||
1018 (MOP.isRenamable() && !MOP.isEarlyClobber())) &&
1019 "Need renamable operands");
1020 Register MatchingReg;
1021 if (const TargetRegisterClass *RC =
1022 MI.getRegClassConstraint(OpIdx, TII, TRI))
1023 MatchingReg = GetMatchingSubReg(RC);
1024 else {
1025 if (!isRewritableImplicitDef(MI.getOpcode()))
1026 continue;
1027 MatchingReg = GetMatchingSubReg(
1028 TRI->getMinimalPhysRegClass(MOP.getReg()));
1029 }
1030 MOP.setReg(MatchingReg);
1031 SeenDef = true;
1032 }
1033 }
1034 } else {
1035 for (unsigned OpIdx = 0; OpIdx < MI.getNumOperands(); ++OpIdx) {
1036 MachineOperand &MOP = MI.getOperand(OpIdx);
1037 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
1038 TRI->regsOverlap(MOP.getReg(), RegToRename)) {
1039 assert((MOP.isImplicit() ||
1040 (MOP.isRenamable() && !MOP.isEarlyClobber())) &&
1041 "Need renamable operands");
1042 Register MatchingReg;
1043 if (const TargetRegisterClass *RC =
1044 MI.getRegClassConstraint(OpIdx, TII, TRI))
1045 MatchingReg = GetMatchingSubReg(RC);
1046 else
1047 MatchingReg = GetMatchingSubReg(
1048 TRI->getMinimalPhysRegClass(MOP.getReg()));
1049 assert(MatchingReg != AArch64::NoRegister &&
1050 "Cannot find matching regs for renaming");
1051 MOP.setReg(MatchingReg);
1052 }
1053 }
1054 }
1055 LLVM_DEBUG(dbgs() << "Renamed " << MI);
1056 return true;
1057 };
1058 forAllMIsUntilDef(MergeForward ? *I : *std::prev(Paired), RegToRename, TRI,
1059 UINT32_MAX, UpdateMIs);
1060
1061#if !defined(NDEBUG)
1062 // For forward merging store:
1063 // Make sure the register used for renaming is not used between the
1064 // paired instructions. That would trash the content before the new
1065 // paired instruction.
1066 MCPhysReg RegToCheck = *RenameReg;
1067 // For backward merging load:
1068 // Make sure the register being renamed is not used between the
1069 // paired instructions. That would trash the content after the new
1070 // paired instruction.
1071 if (!MergeForward)
1072 RegToCheck = RegToRename;
1073 for (auto &MI :
1075 MergeForward ? std::next(I) : I,
1076 MergeForward ? std::next(Paired) : Paired))
1077 assert(all_of(MI.operands(),
1078 [this, RegToCheck](const MachineOperand &MOP) {
1079 return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
1080 MOP.isUndef() ||
1081 !TRI->regsOverlap(MOP.getReg(), RegToCheck);
1082 }) &&
1083 "Rename register used between paired instruction, trashing the "
1084 "content");
1085#endif
1086 }
1087
1088 // Insert our new paired instruction after whichever of the paired
1089 // instructions MergeForward indicates.
1090 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I;
1091 // Also based on MergeForward is from where we copy the base register operand
1092 // so we get the flags compatible with the input code.
1093 const MachineOperand &BaseRegOp =
1094 MergeForward ? AArch64InstrInfo::getLdStBaseOp(*Paired)
1095 : AArch64InstrInfo::getLdStBaseOp(*I);
1096
1098 int PairedOffset = AArch64InstrInfo::getLdStOffsetOp(*Paired).getImm();
1099 bool PairedIsUnscaled = TII->hasUnscaledLdStOffset(Paired->getOpcode());
1100 if (IsUnscaled != PairedIsUnscaled) {
1101 // We're trying to pair instructions that differ in how they are scaled. If
1102 // I is scaled then scale the offset of Paired accordingly. Otherwise, do
1103 // the opposite (i.e., make Paired's offset unscaled).
1104 int MemSize = TII->getMemScale(*Paired);
1105 if (PairedIsUnscaled) {
1106 // If the unscaled offset isn't a multiple of the MemSize, we can't
1107 // pair the operations together.
1108 assert(!(PairedOffset % TII->getMemScale(*Paired)) &&
1109 "Offset should be a multiple of the stride!");
1110 PairedOffset /= MemSize;
1111 } else {
1112 PairedOffset *= MemSize;
1113 }
1114 }
1115
1116 // Which register is Rt and which is Rt2 depends on the offset order.
1117 // However, for pre load/stores the Rt should be the one of the pre
1118 // load/store.
1119 MachineInstr *RtMI, *Rt2MI;
1120 if (Offset == PairedOffset + OffsetStride &&
1122 RtMI = &*Paired;
1123 Rt2MI = &*I;
1124 // Here we swapped the assumption made for SExtIdx.
1125 // I.e., we turn ldp I, Paired into ldp Paired, I.
1126 // Update the index accordingly.
1127 if (SExtIdx != -1)
1128 SExtIdx = (SExtIdx + 1) % 2;
1129 } else {
1130 RtMI = &*I;
1131 Rt2MI = &*Paired;
1132 }
1133 int OffsetImm = AArch64InstrInfo::getLdStOffsetOp(*RtMI).getImm();
1134 // Scale the immediate offset, if necessary.
1135 if (TII->hasUnscaledLdStOffset(RtMI->getOpcode())) {
1136 assert(!(OffsetImm % TII->getMemScale(*RtMI)) &&
1137 "Unscaled offset cannot be scaled.");
1138 OffsetImm /= TII->getMemScale(*RtMI);
1139 }
1140
1141 // Construct the new instruction.
1143 DebugLoc DL = I->getDebugLoc();
1144 MachineBasicBlock *MBB = I->getParent();
1145 MachineOperand RegOp0 = getLdStRegOp(*RtMI);
1146 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI);
1147 MachineOperand &PairedRegOp = RtMI == &*Paired ? RegOp0 : RegOp1;
1148 // Kill flags may become invalid when moving stores for pairing.
1149 if (RegOp0.isUse()) {
1150 if (!MergeForward) {
1151 // Clear kill flags on store if moving upwards. Example:
1152 // STRWui kill %w0, ...
1153 // USE %w1
1154 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards
1155 // We are about to move the store of w1, so its kill flag may become
1156 // invalid; not the case for w0.
1157 // Since w1 is used between the stores, the kill flag on w1 is cleared
1158 // after merging.
1159 // STPWi kill %w0, %w1, ...
1160 // USE %w1
1161 for (auto It = std::next(I); It != Paired && PairedRegOp.isKill(); ++It)
1162 if (It->readsRegister(PairedRegOp.getReg(), TRI))
1163 PairedRegOp.setIsKill(false);
1164 } else {
1165 // Clear kill flags of the first stores register. Example:
1166 // STRWui %w1, ...
1167 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards
1168 // STRW %w0
1170 for (MachineInstr &MI : make_range(std::next(I), Paired))
1171 MI.clearRegisterKills(Reg, TRI);
1172 }
1173 }
1174
1175 unsigned int MatchPairOpcode = getMatchingPairOpcode(Opc);
1176 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(MatchPairOpcode));
1177
1178 // Adds the pre-index operand for pre-indexed ld/st pairs.
1179 if (AArch64InstrInfo::isPreLdSt(*RtMI))
1180 MIB.addReg(BaseRegOp.getReg(), RegState::Define);
1181
1182 MIB.add(RegOp0)
1183 .add(RegOp1)
1184 .add(BaseRegOp)
1185 .addImm(OffsetImm)
1186 .cloneMergedMemRefs({&*I, &*Paired})
1187 .setMIFlags(I->mergeFlagsWith(*Paired));
1188
1189 (void)MIB;
1190
1191 LLVM_DEBUG(
1192 dbgs() << "Creating pair load/store. Replacing instructions:\n ");
1193 LLVM_DEBUG(I->print(dbgs()));
1194 LLVM_DEBUG(dbgs() << " ");
1195 LLVM_DEBUG(Paired->print(dbgs()));
1196 LLVM_DEBUG(dbgs() << " with instruction:\n ");
1197 if (SExtIdx != -1) {
1198 // Generate the sign extension for the proper result of the ldp.
1199 // I.e., with X1, that would be:
1200 // %w1 = KILL %w1, implicit-def %x1
1201 // %x1 = SBFMXri killed %x1, 0, 31
1202 MachineOperand &DstMO = MIB->getOperand(SExtIdx);
1203 // Right now, DstMO has the extended register, since it comes from an
1204 // extended opcode.
1205 Register DstRegX = DstMO.getReg();
1206 // Get the W variant of that register.
1207 Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32);
1208 // Update the result of LDP to use the W instead of the X variant.
1209 DstMO.setReg(DstRegW);
1210 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
1211 LLVM_DEBUG(dbgs() << "\n");
1212 // Make the machine verifier happy by providing a definition for
1213 // the X register.
1214 // Insert this definition right after the generated LDP, i.e., before
1215 // InsertionPoint.
1216 MachineInstrBuilder MIBKill =
1217 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW)
1218 .addReg(DstRegW)
1219 .addReg(DstRegX, RegState::Define);
1220 MIBKill->getOperand(2).setImplicit();
1221 // Create the sign extension.
1222 MachineInstrBuilder MIBSXTW =
1223 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX)
1224 .addReg(DstRegX)
1225 .addImm(0)
1226 .addImm(31);
1227 (void)MIBSXTW;
1228 LLVM_DEBUG(dbgs() << " Extend operand:\n ");
1229 LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs()));
1230 } else {
1231 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
1232 }
1233 LLVM_DEBUG(dbgs() << "\n");
1234
1235 if (MergeForward)
1236 for (const MachineOperand &MOP : phys_regs_and_masks(*I))
1237 if (MOP.isReg() && MOP.isKill())
1238 DefinedInBB.addReg(MOP.getReg());
1239
1240 // Erase the old instructions.
1241 I->eraseFromParent();
1242 Paired->eraseFromParent();
1243
1244 return NextI;
1245}
1246
1248AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
1251 next_nodbg(LoadI, LoadI->getParent()->end());
1252
1253 int LoadSize = TII->getMemScale(*LoadI);
1254 int StoreSize = TII->getMemScale(*StoreI);
1255 Register LdRt = getLdStRegOp(*LoadI).getReg();
1256 const MachineOperand &StMO = getLdStRegOp(*StoreI);
1257 Register StRt = getLdStRegOp(*StoreI).getReg();
1258 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt);
1259
1260 assert((IsStoreXReg ||
1261 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) &&
1262 "Unexpected RegClass");
1263
1264 MachineInstr *BitExtMI;
1265 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) {
1266 // Remove the load, if the destination register of the loads is the same
1267 // register for stored value.
1268 if (StRt == LdRt && LoadSize == 8) {
1269 for (MachineInstr &MI : make_range(StoreI->getIterator(),
1270 LoadI->getIterator())) {
1271 if (MI.killsRegister(StRt, TRI)) {
1272 MI.clearRegisterKills(StRt, TRI);
1273 break;
1274 }
1275 }
1276 LLVM_DEBUG(dbgs() << "Remove load instruction:\n ");
1277 LLVM_DEBUG(LoadI->print(dbgs()));
1278 LLVM_DEBUG(dbgs() << "\n");
1279 LoadI->eraseFromParent();
1280 return NextI;
1281 }
1282 // Replace the load with a mov if the load and store are in the same size.
1283 BitExtMI =
1284 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1285 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt)
1286 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR)
1287 .add(StMO)
1289 .setMIFlags(LoadI->getFlags());
1290 } else {
1291 // FIXME: Currently we disable this transformation in big-endian targets as
1292 // performance and correctness are verified only in little-endian.
1293 if (!Subtarget->isLittleEndian())
1294 return NextI;
1295 bool IsUnscaled = TII->hasUnscaledLdStOffset(*LoadI);
1296 assert(IsUnscaled == TII->hasUnscaledLdStOffset(*StoreI) &&
1297 "Unsupported ld/st match");
1298 assert(LoadSize <= StoreSize && "Invalid load size");
1299 int UnscaledLdOffset =
1300 IsUnscaled
1302 : AArch64InstrInfo::getLdStOffsetOp(*LoadI).getImm() * LoadSize;
1303 int UnscaledStOffset =
1304 IsUnscaled
1306 : AArch64InstrInfo::getLdStOffsetOp(*StoreI).getImm() * StoreSize;
1307 int Width = LoadSize * 8;
1308 Register DestReg =
1309 IsStoreXReg ? Register(TRI->getMatchingSuperReg(
1310 LdRt, AArch64::sub_32, &AArch64::GPR64RegClass))
1311 : LdRt;
1312
1313 assert((UnscaledLdOffset >= UnscaledStOffset &&
1314 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) &&
1315 "Invalid offset");
1316
1317 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
1318 int Imms = Immr + Width - 1;
1319 if (UnscaledLdOffset == UnscaledStOffset) {
1320 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N
1321 | ((Immr) << 6) // immr
1322 | ((Imms) << 0) // imms
1323 ;
1324
1325 BitExtMI =
1326 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1327 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri),
1328 DestReg)
1329 .add(StMO)
1330 .addImm(AndMaskEncoded)
1331 .setMIFlags(LoadI->getFlags());
1332 } else if (IsStoreXReg && Imms == 31) {
1333 // Use the 32 bit variant of UBFM if it's the LSR alias of the
1334 // instruction.
1335 assert(Immr <= Imms && "Expected LSR alias of UBFM");
1336 BitExtMI = BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1337 TII->get(AArch64::UBFMWri),
1338 TRI->getSubReg(DestReg, AArch64::sub_32))
1339 .addReg(TRI->getSubReg(StRt, AArch64::sub_32))
1340 .addImm(Immr)
1341 .addImm(Imms)
1342 .setMIFlags(LoadI->getFlags());
1343 } else {
1344 BitExtMI =
1345 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1346 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri),
1347 DestReg)
1348 .add(StMO)
1349 .addImm(Immr)
1350 .addImm(Imms)
1351 .setMIFlags(LoadI->getFlags());
1352 }
1353 }
1354
1355 // Clear kill flags between store and load.
1356 for (MachineInstr &MI : make_range(StoreI->getIterator(),
1357 BitExtMI->getIterator()))
1358 if (MI.killsRegister(StRt, TRI)) {
1359 MI.clearRegisterKills(StRt, TRI);
1360 break;
1361 }
1362
1363 LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n ");
1364 LLVM_DEBUG(StoreI->print(dbgs()));
1365 LLVM_DEBUG(dbgs() << " ");
1366 LLVM_DEBUG(LoadI->print(dbgs()));
1367 LLVM_DEBUG(dbgs() << " with instructions:\n ");
1368 LLVM_DEBUG(StoreI->print(dbgs()));
1369 LLVM_DEBUG(dbgs() << " ");
1370 LLVM_DEBUG((BitExtMI)->print(dbgs()));
1371 LLVM_DEBUG(dbgs() << "\n");
1372
1373 // Erase the old instructions.
1374 LoadI->eraseFromParent();
1375 return NextI;
1376}
1377
1378static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) {
1379 // Convert the byte-offset used by unscaled into an "element" offset used
1380 // by the scaled pair load/store instructions.
1381 if (IsUnscaled) {
1382 // If the byte-offset isn't a multiple of the stride, there's no point
1383 // trying to match it.
1384 if (Offset % OffsetStride)
1385 return false;
1386 Offset /= OffsetStride;
1387 }
1388 return Offset <= 63 && Offset >= -64;
1389}
1390
1391// Do alignment, specialized to power of 2 and for signed ints,
1392// avoiding having to do a C-style cast from uint_64t to int when
1393// using alignTo from include/llvm/Support/MathExtras.h.
1394// FIXME: Move this function to include/MathExtras.h?
1395static int alignTo(int Num, int PowOf2) {
1396 return (Num + PowOf2 - 1) & ~(PowOf2 - 1);
1397}
1398
1399static bool mayAlias(MachineInstr &MIa,
1401 AliasAnalysis *AA) {
1402 for (MachineInstr *MIb : MemInsns) {
1403 if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false)) {
1404 LLVM_DEBUG(dbgs() << "Aliasing with: "; MIb->dump());
1405 return true;
1406 }
1407 }
1408
1409 LLVM_DEBUG(dbgs() << "No aliases found\n");
1410 return false;
1411}
1412
1413bool AArch64LoadStoreOpt::findMatchingStore(
1414 MachineBasicBlock::iterator I, unsigned Limit,
1416 MachineBasicBlock::iterator B = I->getParent()->begin();
1418 MachineInstr &LoadMI = *I;
1420
1421 // If the load is the first instruction in the block, there's obviously
1422 // not any matching store.
1423 if (MBBI == B)
1424 return false;
1425
1426 // Track which register units have been modified and used between the first
1427 // insn and the second insn.
1428 ModifiedRegUnits.clear();
1429 UsedRegUnits.clear();
1430
1431 unsigned Count = 0;
1432 do {
1433 MBBI = prev_nodbg(MBBI, B);
1434 MachineInstr &MI = *MBBI;
1435
1436 // Don't count transient instructions towards the search limit since there
1437 // may be different numbers of them if e.g. debug information is present.
1438 if (!MI.isTransient())
1439 ++Count;
1440
1441 // If the load instruction reads directly from the address to which the
1442 // store instruction writes and the stored value is not modified, we can
1443 // promote the load. Since we do not handle stores with pre-/post-index,
1444 // it's unnecessary to check if BaseReg is modified by the store itself.
1445 // Also we can't handle stores without an immediate offset operand,
1446 // while the operand might be the address for a global variable.
1447 if (MI.mayStore() && isMatchingStore(LoadMI, MI) &&
1450 isLdOffsetInRangeOfSt(LoadMI, MI, TII) &&
1451 ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) {
1452 StoreI = MBBI;
1453 return true;
1454 }
1455
1456 if (MI.isCall())
1457 return false;
1458
1459 // Update modified / uses register units.
1460 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
1461
1462 // Otherwise, if the base register is modified, we have no match, so
1463 // return early.
1464 if (!ModifiedRegUnits.available(BaseReg))
1465 return false;
1466
1467 // If we encounter a store aliased with the load, return early.
1468 if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false))
1469 return false;
1470 } while (MBBI != B && Count < Limit);
1471 return false;
1472}
1473
1474static bool needsWinCFI(const MachineFunction *MF) {
1475 return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() &&
1477}
1478
1479// Returns true if FirstMI and MI are candidates for merging or pairing.
1480// Otherwise, returns false.
1482 LdStPairFlags &Flags,
1483 const AArch64InstrInfo *TII) {
1484 // If this is volatile or if pairing is suppressed, not a candidate.
1485 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI))
1486 return false;
1487
1488 // We should have already checked FirstMI for pair suppression and volatility.
1489 assert(!FirstMI.hasOrderedMemoryRef() &&
1490 !TII->isLdStPairSuppressed(FirstMI) &&
1491 "FirstMI shouldn't get here if either of these checks are true.");
1492
1493 if (needsWinCFI(MI.getMF()) && (MI.getFlag(MachineInstr::FrameSetup) ||
1495 return false;
1496
1497 unsigned OpcA = FirstMI.getOpcode();
1498 unsigned OpcB = MI.getOpcode();
1499
1500 // Opcodes match: If the opcodes are pre ld/st there is nothing more to check.
1501 if (OpcA == OpcB)
1502 return !AArch64InstrInfo::isPreLdSt(FirstMI);
1503
1504 // Two pre ld/st of different opcodes cannot be merged either
1506 return false;
1507
1508 // Try to match a sign-extended load/store with a zero-extended load/store.
1509 bool IsValidLdStrOpc, PairIsValidLdStrOpc;
1510 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc);
1511 assert(IsValidLdStrOpc &&
1512 "Given Opc should be a Load or Store with an immediate");
1513 // OpcA will be the first instruction in the pair.
1514 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) {
1515 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0);
1516 return true;
1517 }
1518
1519 // If the second instruction isn't even a mergable/pairable load/store, bail
1520 // out.
1521 if (!PairIsValidLdStrOpc)
1522 return false;
1523
1524 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled
1525 // offsets.
1526 if (isNarrowStore(OpcA) || isNarrowStore(OpcB))
1527 return false;
1528
1529 // The STR<S,D,Q,W,X>pre - STR<S,D,Q,W,X>ui and
1530 // LDR<S,D,Q,W,X,SW>pre-LDR<S,D,Q,W,X,SW>ui
1531 // are candidate pairs that can be merged.
1532 if (isPreLdStPairCandidate(FirstMI, MI))
1533 return true;
1534
1535 // Try to match an unscaled load/store with a scaled load/store.
1536 return TII->hasUnscaledLdStOffset(OpcA) != TII->hasUnscaledLdStOffset(OpcB) &&
1538
1539 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair?
1540}
1541
1542static bool canRenameMOP(const MachineOperand &MOP,
1543 const TargetRegisterInfo *TRI) {
1544 if (MOP.isReg()) {
1545 auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg());
1546 // Renaming registers with multiple disjunct sub-registers (e.g. the
1547 // result of a LD3) means that all sub-registers are renamed, potentially
1548 // impacting other instructions we did not check. Bail out.
1549 // Note that this relies on the structure of the AArch64 register file. In
1550 // particular, a subregister cannot be written without overwriting the
1551 // whole register.
1552 if (RegClass->HasDisjunctSubRegs && RegClass->CoveredBySubRegs &&
1553 (TRI->getSubRegisterClass(RegClass, AArch64::dsub0) ||
1554 TRI->getSubRegisterClass(RegClass, AArch64::qsub0) ||
1555 TRI->getSubRegisterClass(RegClass, AArch64::zsub0))) {
1556 LLVM_DEBUG(
1557 dbgs()
1558 << " Cannot rename operands with multiple disjunct subregisters ("
1559 << MOP << ")\n");
1560 return false;
1561 }
1562
1563 // We cannot rename arbitrary implicit-defs, the specific rule to rewrite
1564 // them must be known. For example, in ORRWrs the implicit-def
1565 // corresponds to the result register.
1566 if (MOP.isImplicit() && MOP.isDef()) {
1568 return false;
1569 return TRI->isSuperOrSubRegisterEq(
1570 MOP.getParent()->getOperand(0).getReg(), MOP.getReg());
1571 }
1572 }
1573 return MOP.isImplicit() ||
1574 (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied());
1575}
1576
1577static bool
1580 const TargetRegisterInfo *TRI) {
1581 if (!FirstMI.mayStore())
1582 return false;
1583
1584 // Check if we can find an unused register which we can use to rename
1585 // the register used by the first load/store.
1586
1587 auto RegToRename = getLdStRegOp(FirstMI).getReg();
1588 // For now, we only rename if the store operand gets killed at the store.
1589 if (!getLdStRegOp(FirstMI).isKill() &&
1590 !any_of(FirstMI.operands(),
1591 [TRI, RegToRename](const MachineOperand &MOP) {
1592 return MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
1593 MOP.isImplicit() && MOP.isKill() &&
1594 TRI->regsOverlap(RegToRename, MOP.getReg());
1595 })) {
1596 LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI);
1597 return false;
1598 }
1599
1600 bool FoundDef = false;
1601
1602 // For each instruction between FirstMI and the previous def for RegToRename,
1603 // we
1604 // * check if we can rename RegToRename in this instruction
1605 // * collect the registers used and required register classes for RegToRename.
1606 std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI,
1607 bool IsDef) {
1608 LLVM_DEBUG(dbgs() << "Checking " << MI);
1609 // Currently we do not try to rename across frame-setup instructions.
1610 if (MI.getFlag(MachineInstr::FrameSetup)) {
1611 LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions "
1612 << "currently\n");
1613 return false;
1614 }
1615
1616 UsedInBetween.accumulate(MI);
1617
1618 // For a definition, check that we can rename the definition and exit the
1619 // loop.
1620 FoundDef = IsDef;
1621
1622 // For defs, check if we can rename the first def of RegToRename.
1623 if (FoundDef) {
1624 // For some pseudo instructions, we might not generate code in the end
1625 // (e.g. KILL) and we would end up without a correct def for the rename
1626 // register.
1627 // TODO: This might be overly conservative and we could handle those cases
1628 // in multiple ways:
1629 // 1. Insert an extra copy, to materialize the def.
1630 // 2. Skip pseudo-defs until we find an non-pseudo def.
1631 if (MI.isPseudo()) {
1632 LLVM_DEBUG(dbgs() << " Cannot rename pseudo/bundle instruction\n");
1633 return false;
1634 }
1635
1636 for (auto &MOP : MI.operands()) {
1637 if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() ||
1638 !TRI->regsOverlap(MOP.getReg(), RegToRename))
1639 continue;
1640 if (!canRenameMOP(MOP, TRI)) {
1641 LLVM_DEBUG(dbgs() << " Cannot rename " << MOP << " in " << MI);
1642 return false;
1643 }
1644 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
1645 }
1646 return true;
1647 } else {
1648 for (auto &MOP : MI.operands()) {
1649 if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
1650 !TRI->regsOverlap(MOP.getReg(), RegToRename))
1651 continue;
1652
1653 if (!canRenameMOP(MOP, TRI)) {
1654 LLVM_DEBUG(dbgs() << " Cannot rename " << MOP << " in " << MI);
1655 return false;
1656 }
1657 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
1658 }
1659 }
1660 return true;
1661 };
1662
1663 if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs))
1664 return false;
1665
1666 if (!FoundDef) {
1667 LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n");
1668 return false;
1669 }
1670 return true;
1671}
1672
1673// We want to merge the second load into the first by rewriting the usages of
1674// the same reg between first (incl.) and second (excl.). We don't need to care
1675// about any insns before FirstLoad or after SecondLoad.
1676// 1. The second load writes new value into the same reg.
1677// - The renaming is impossible to impact later use of the reg.
1678// - The second load always trash the value written by the first load which
1679// means the reg must be killed before the second load.
1680// 2. The first load must be a def for the same reg so we don't need to look
1681// into anything before it.
1683 MachineInstr &FirstLoad, MachineInstr &SecondLoad,
1684 LiveRegUnits &UsedInBetween,
1686 const TargetRegisterInfo *TRI) {
1687 if (FirstLoad.isPseudo())
1688 return false;
1689
1690 UsedInBetween.accumulate(FirstLoad);
1691 auto RegToRename = getLdStRegOp(FirstLoad).getReg();
1692 bool Success = std::all_of(
1693 FirstLoad.getIterator(), SecondLoad.getIterator(),
1694 [&](MachineInstr &MI) {
1695 LLVM_DEBUG(dbgs() << "Checking " << MI);
1696 // Currently we do not try to rename across frame-setup instructions.
1697 if (MI.getFlag(MachineInstr::FrameSetup)) {
1698 LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions "
1699 << "currently\n");
1700 return false;
1701 }
1702
1703 for (auto &MOP : MI.operands()) {
1704 if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
1705 !TRI->regsOverlap(MOP.getReg(), RegToRename))
1706 continue;
1707 if (!canRenameMOP(MOP, TRI)) {
1708 LLVM_DEBUG(dbgs() << " Cannot rename " << MOP << " in " << MI);
1709 return false;
1710 }
1711 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
1712 }
1713
1714 return true;
1715 });
1716 return Success;
1717}
1718
1719// Check if we can find a physical register for renaming \p Reg. This register
1720// must:
1721// * not be defined already in \p DefinedInBB; DefinedInBB must contain all
1722// defined registers up to the point where the renamed register will be used,
1723// * not used in \p UsedInBetween; UsedInBetween must contain all accessed
1724// registers in the range the rename register will be used,
1725// * is available in all used register classes (checked using RequiredClasses).
1726static std::optional<MCPhysReg> tryToFindRegisterToRename(
1727 const MachineFunction &MF, Register Reg, LiveRegUnits &DefinedInBB,
1728 LiveRegUnits &UsedInBetween,
1730 const TargetRegisterInfo *TRI) {
1732
1733 // Checks if any sub- or super-register of PR is callee saved.
1734 auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) {
1735 return any_of(TRI->sub_and_superregs_inclusive(PR),
1736 [&MF, TRI](MCPhysReg SubOrSuper) {
1737 return TRI->isCalleeSavedPhysReg(SubOrSuper, MF);
1738 });
1739 };
1740
1741 // Check if PR or one of its sub- or super-registers can be used for all
1742 // required register classes.
1743 auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) {
1744 return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) {
1745 return any_of(
1746 TRI->sub_and_superregs_inclusive(PR),
1747 [C](MCPhysReg SubOrSuper) { return C->contains(SubOrSuper); });
1748 });
1749 };
1750
1751 auto *RegClass = TRI->getMinimalPhysRegClass(Reg);
1752 for (const MCPhysReg &PR : *RegClass) {
1753 if (DefinedInBB.available(PR) && UsedInBetween.available(PR) &&
1754 !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) &&
1755 CanBeUsedForAllClasses(PR)) {
1756 DefinedInBB.addReg(PR);
1757 LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI)
1758 << "\n");
1759 return {PR};
1760 }
1761 }
1762 LLVM_DEBUG(dbgs() << "No rename register found from "
1763 << TRI->getRegClassName(RegClass) << "\n");
1764 return std::nullopt;
1765}
1766
1767// For store pairs: returns a register from FirstMI to the beginning of the
1768// block that can be renamed.
1769// For load pairs: returns a register from FirstMI to MI that can be renamed.
1770static std::optional<MCPhysReg> findRenameRegForSameLdStRegPair(
1771 std::optional<bool> MaybeCanRename, MachineInstr &FirstMI, MachineInstr &MI,
1772 Register Reg, LiveRegUnits &DefinedInBB, LiveRegUnits &UsedInBetween,
1774 const TargetRegisterInfo *TRI) {
1775 std::optional<MCPhysReg> RenameReg;
1776 if (!DebugCounter::shouldExecute(RegRenamingCounter))
1777 return RenameReg;
1778
1779 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg());
1780 MachineFunction &MF = *FirstMI.getParent()->getParent();
1781 if (!RegClass || !MF.getRegInfo().tracksLiveness())
1782 return RenameReg;
1783
1784 const bool IsLoad = FirstMI.mayLoad();
1785
1786 if (!MaybeCanRename) {
1787 if (IsLoad)
1788 MaybeCanRename = {canRenameUntilSecondLoad(FirstMI, MI, UsedInBetween,
1789 RequiredClasses, TRI)};
1790 else
1791 MaybeCanRename = {
1792 canRenameUpToDef(FirstMI, UsedInBetween, RequiredClasses, TRI)};
1793 }
1794
1795 if (*MaybeCanRename) {
1796 RenameReg = tryToFindRegisterToRename(MF, Reg, DefinedInBB, UsedInBetween,
1797 RequiredClasses, TRI);
1798 }
1799 return RenameReg;
1800}
1801
1802/// Scan the instructions looking for a load/store that can be combined with the
1803/// current instruction into a wider equivalent or a load/store pair.
1805AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I,
1806 LdStPairFlags &Flags, unsigned Limit,
1807 bool FindNarrowMerge) {
1808 MachineBasicBlock::iterator E = I->getParent()->end();
1810 MachineBasicBlock::iterator MBBIWithRenameReg;
1811 MachineInstr &FirstMI = *I;
1812 MBBI = next_nodbg(MBBI, E);
1813
1814 bool MayLoad = FirstMI.mayLoad();
1815 bool IsUnscaled = TII->hasUnscaledLdStOffset(FirstMI);
1816 Register Reg = getLdStRegOp(FirstMI).getReg();
1817 Register BaseReg = AArch64InstrInfo::getLdStBaseOp(FirstMI).getReg();
1819 int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1;
1820 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI);
1821
1822 std::optional<bool> MaybeCanRename;
1823 if (!EnableRenaming)
1824 MaybeCanRename = {false};
1825
1827 LiveRegUnits UsedInBetween;
1828 UsedInBetween.init(*TRI);
1829
1830 Flags.clearRenameReg();
1831
1832 // Track which register units have been modified and used between the first
1833 // insn (inclusive) and the second insn.
1834 ModifiedRegUnits.clear();
1835 UsedRegUnits.clear();
1836
1837 // Remember any instructions that read/write memory between FirstMI and MI.
1839
1840 LLVM_DEBUG(dbgs() << "Find match for: "; FirstMI.dump());
1841 for (unsigned Count = 0; MBBI != E && Count < Limit;
1842 MBBI = next_nodbg(MBBI, E)) {
1843 MachineInstr &MI = *MBBI;
1844 LLVM_DEBUG(dbgs() << "Analysing 2nd insn: "; MI.dump());
1845
1846 UsedInBetween.accumulate(MI);
1847
1848 // Don't count transient instructions towards the search limit since there
1849 // may be different numbers of them if e.g. debug information is present.
1850 if (!MI.isTransient())
1851 ++Count;
1852
1853 Flags.setSExtIdx(-1);
1854 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) &&
1856 assert(MI.mayLoadOrStore() && "Expected memory operation.");
1857 // If we've found another instruction with the same opcode, check to see
1858 // if the base and offset are compatible with our starting instruction.
1859 // These instructions all have scaled immediate operands, so we just
1860 // check for +1/-1. Make sure to check the new instruction offset is
1861 // actually an immediate and not a symbolic reference destined for
1862 // a relocation.
1865 bool MIIsUnscaled = TII->hasUnscaledLdStOffset(MI);
1866 if (IsUnscaled != MIIsUnscaled) {
1867 // We're trying to pair instructions that differ in how they are scaled.
1868 // If FirstMI is scaled then scale the offset of MI accordingly.
1869 // Otherwise, do the opposite (i.e., make MI's offset unscaled).
1870 int MemSize = TII->getMemScale(MI);
1871 if (MIIsUnscaled) {
1872 // If the unscaled offset isn't a multiple of the MemSize, we can't
1873 // pair the operations together: bail and keep looking.
1874 if (MIOffset % MemSize) {
1875 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1876 UsedRegUnits, TRI);
1877 MemInsns.push_back(&MI);
1878 continue;
1879 }
1880 MIOffset /= MemSize;
1881 } else {
1882 MIOffset *= MemSize;
1883 }
1884 }
1885
1886 bool IsPreLdSt = isPreLdStPairCandidate(FirstMI, MI);
1887
1888 if (BaseReg == MIBaseReg) {
1889 // If the offset of the second ld/st is not equal to the size of the
1890 // destination register it can’t be paired with a pre-index ld/st
1891 // pair. Additionally if the base reg is used or modified the operations
1892 // can't be paired: bail and keep looking.
1893 if (IsPreLdSt) {
1894 bool IsOutOfBounds = MIOffset != TII->getMemScale(MI);
1895 bool IsBaseRegUsed = !UsedRegUnits.available(
1897 bool IsBaseRegModified = !ModifiedRegUnits.available(
1899 // If the stored value and the address of the second instruction is
1900 // the same, it needs to be using the updated register and therefore
1901 // it must not be folded.
1902 bool IsMIRegTheSame =
1903 TRI->regsOverlap(getLdStRegOp(MI).getReg(),
1905 if (IsOutOfBounds || IsBaseRegUsed || IsBaseRegModified ||
1906 IsMIRegTheSame) {
1907 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1908 UsedRegUnits, TRI);
1909 MemInsns.push_back(&MI);
1910 continue;
1911 }
1912 } else {
1913 if ((Offset != MIOffset + OffsetStride) &&
1914 (Offset + OffsetStride != MIOffset)) {
1915 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1916 UsedRegUnits, TRI);
1917 MemInsns.push_back(&MI);
1918 continue;
1919 }
1920 }
1921
1922 int MinOffset = Offset < MIOffset ? Offset : MIOffset;
1923 if (FindNarrowMerge) {
1924 // If the alignment requirements of the scaled wide load/store
1925 // instruction can't express the offset of the scaled narrow input,
1926 // bail and keep looking. For promotable zero stores, allow only when
1927 // the stored value is the same (i.e., WZR).
1928 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) ||
1929 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) {
1930 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1931 UsedRegUnits, TRI);
1932 MemInsns.push_back(&MI);
1933 continue;
1934 }
1935 } else {
1936 // Pairwise instructions have a 7-bit signed offset field. Single
1937 // insns have a 12-bit unsigned offset field. If the resultant
1938 // immediate offset of merging these instructions is out of range for
1939 // a pairwise instruction, bail and keep looking.
1940 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) {
1941 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1942 UsedRegUnits, TRI);
1943 MemInsns.push_back(&MI);
1944 LLVM_DEBUG(dbgs() << "Offset doesn't fit in immediate, "
1945 << "keep looking.\n");
1946 continue;
1947 }
1948 // If the alignment requirements of the paired (scaled) instruction
1949 // can't express the offset of the unscaled input, bail and keep
1950 // looking.
1951 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) {
1952 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1953 UsedRegUnits, TRI);
1954 MemInsns.push_back(&MI);
1956 << "Offset doesn't fit due to alignment requirements, "
1957 << "keep looking.\n");
1958 continue;
1959 }
1960 }
1961
1962 // If the BaseReg has been modified, then we cannot do the optimization.
1963 // For example, in the following pattern
1964 // ldr x1 [x2]
1965 // ldr x2 [x3]
1966 // ldr x4 [x2, #8],
1967 // the first and third ldr cannot be converted to ldp x1, x4, [x2]
1968 if (!ModifiedRegUnits.available(BaseReg))
1969 return E;
1970
1971 const bool SameLoadReg = MayLoad && TRI->isSuperOrSubRegisterEq(
1972 Reg, getLdStRegOp(MI).getReg());
1973
1974 // If the Rt of the second instruction (destination register of the
1975 // load) was not modified or used between the two instructions and none
1976 // of the instructions between the second and first alias with the
1977 // second, we can combine the second into the first.
1978 bool RtNotModified =
1979 ModifiedRegUnits.available(getLdStRegOp(MI).getReg());
1980 bool RtNotUsed = !(MI.mayLoad() && !SameLoadReg &&
1981 !UsedRegUnits.available(getLdStRegOp(MI).getReg()));
1982
1983 LLVM_DEBUG(dbgs() << "Checking, can combine 2nd into 1st insn:\n"
1984 << "Reg '" << getLdStRegOp(MI) << "' not modified: "
1985 << (RtNotModified ? "true" : "false") << "\n"
1986 << "Reg '" << getLdStRegOp(MI) << "' not used: "
1987 << (RtNotUsed ? "true" : "false") << "\n");
1988
1989 if (RtNotModified && RtNotUsed && !mayAlias(MI, MemInsns, AA)) {
1990 // For pairs loading into the same reg, try to find a renaming
1991 // opportunity to allow the renaming of Reg between FirstMI and MI
1992 // and combine MI into FirstMI; otherwise bail and keep looking.
1993 if (SameLoadReg) {
1994 std::optional<MCPhysReg> RenameReg =
1995 findRenameRegForSameLdStRegPair(MaybeCanRename, FirstMI, MI,
1996 Reg, DefinedInBB, UsedInBetween,
1997 RequiredClasses, TRI);
1998 if (!RenameReg) {
1999 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
2000 UsedRegUnits, TRI);
2001 MemInsns.push_back(&MI);
2002 LLVM_DEBUG(dbgs() << "Can't find reg for renaming, "
2003 << "keep looking.\n");
2004 continue;
2005 }
2006 Flags.setRenameReg(*RenameReg);
2007 }
2008
2009 Flags.setMergeForward(false);
2010 if (!SameLoadReg)
2011 Flags.clearRenameReg();
2012 return MBBI;
2013 }
2014
2015 // Likewise, if the Rt of the first instruction is not modified or used
2016 // between the two instructions and none of the instructions between the
2017 // first and the second alias with the first, we can combine the first
2018 // into the second.
2019 RtNotModified = !(
2020 MayLoad && !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg()));
2021
2022 LLVM_DEBUG(dbgs() << "Checking, can combine 1st into 2nd insn:\n"
2023 << "Reg '" << getLdStRegOp(FirstMI)
2024 << "' not modified: "
2025 << (RtNotModified ? "true" : "false") << "\n");
2026
2027 if (RtNotModified && !mayAlias(FirstMI, MemInsns, AA)) {
2028 if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) {
2029 Flags.setMergeForward(true);
2030 Flags.clearRenameReg();
2031 return MBBI;
2032 }
2033
2034 std::optional<MCPhysReg> RenameReg = findRenameRegForSameLdStRegPair(
2035 MaybeCanRename, FirstMI, MI, Reg, DefinedInBB, UsedInBetween,
2036 RequiredClasses, TRI);
2037 if (RenameReg) {
2038 Flags.setMergeForward(true);
2039 Flags.setRenameReg(*RenameReg);
2040 MBBIWithRenameReg = MBBI;
2041 }
2042 }
2043 LLVM_DEBUG(dbgs() << "Unable to combine these instructions due to "
2044 << "interference in between, keep looking.\n");
2045 }
2046 }
2047
2048 if (Flags.getRenameReg())
2049 return MBBIWithRenameReg;
2050
2051 // If the instruction wasn't a matching load or store. Stop searching if we
2052 // encounter a call instruction that might modify memory.
2053 if (MI.isCall()) {
2054 LLVM_DEBUG(dbgs() << "Found a call, stop looking.\n");
2055 return E;
2056 }
2057
2058 // Update modified / uses register units.
2059 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
2060
2061 // Otherwise, if the base register is modified, we have no match, so
2062 // return early.
2063 if (!ModifiedRegUnits.available(BaseReg)) {
2064 LLVM_DEBUG(dbgs() << "Base reg is modified, stop looking.\n");
2065 return E;
2066 }
2067
2068 // Update list of instructions that read/write memory.
2069 if (MI.mayLoadOrStore())
2070 MemInsns.push_back(&MI);
2071 }
2072 return E;
2073}
2074
2077 assert((MI.getOpcode() == AArch64::SUBXri ||
2078 MI.getOpcode() == AArch64::ADDXri) &&
2079 "Expected a register update instruction");
2080 auto End = MI.getParent()->end();
2081 if (MaybeCFI == End ||
2082 MaybeCFI->getOpcode() != TargetOpcode::CFI_INSTRUCTION ||
2083 !(MI.getFlag(MachineInstr::FrameSetup) ||
2084 MI.getFlag(MachineInstr::FrameDestroy)) ||
2085 MI.getOperand(0).getReg() != AArch64::SP)
2086 return End;
2087
2088 const MachineFunction &MF = *MI.getParent()->getParent();
2089 unsigned CFIIndex = MaybeCFI->getOperand(0).getCFIIndex();
2090 const MCCFIInstruction &CFI = MF.getFrameInstructions()[CFIIndex];
2091 switch (CFI.getOperation()) {
2094 return MaybeCFI;
2095 default:
2096 return End;
2097 }
2098}
2099
2100std::optional<MachineBasicBlock::iterator> AArch64LoadStoreOpt::mergeUpdateInsn(
2102 bool IsForward, bool IsPreIdx, bool MergeEither) {
2103 assert((Update->getOpcode() == AArch64::ADDXri ||
2104 Update->getOpcode() == AArch64::SUBXri) &&
2105 "Unexpected base register update instruction to merge!");
2106 MachineBasicBlock::iterator E = I->getParent()->end();
2108
2109 // If updating the SP and the following instruction is CFA offset related CFI,
2110 // make sure the CFI follows the SP update either by merging at the location
2111 // of the update or by moving the CFI after the merged instruction. If unable
2112 // to do so, bail.
2113 MachineBasicBlock::iterator InsertPt = I;
2114 if (IsForward) {
2115 assert(IsPreIdx);
2116 if (auto CFI = maybeMoveCFI(*Update, next_nodbg(Update, E)); CFI != E) {
2117 if (MergeEither) {
2118 InsertPt = Update;
2119 } else {
2120 // Take care not to reorder CFIs.
2121 if (std::any_of(std::next(CFI), I, [](const auto &Insn) {
2122 return Insn.getOpcode() == TargetOpcode::CFI_INSTRUCTION;
2123 }))
2124 return std::nullopt;
2125
2126 MachineBasicBlock *MBB = InsertPt->getParent();
2127 MBB->splice(std::next(InsertPt), MBB, CFI);
2128 }
2129 }
2130 }
2131
2132 // Return the instruction following the merged instruction, which is
2133 // the instruction following our unmerged load. Unless that's the add/sub
2134 // instruction we're merging, in which case it's the one after that.
2135 if (NextI == Update)
2136 NextI = next_nodbg(NextI, E);
2137
2138 int Value = Update->getOperand(2).getImm();
2139 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
2140 "Can't merge 1 << 12 offset into pre-/post-indexed load / store");
2141 if (Update->getOpcode() == AArch64::SUBXri)
2142 Value = -Value;
2143
2144 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode())
2147 int Scale, MinOffset, MaxOffset;
2148 getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset);
2150 // Non-paired instruction.
2151 MIB = BuildMI(*InsertPt->getParent(), InsertPt, InsertPt->getDebugLoc(),
2152 TII->get(NewOpc))
2153 .add(Update->getOperand(0))
2154 .add(getLdStRegOp(*I))
2156 .addImm(Value / Scale)
2157 .setMemRefs(I->memoperands())
2158 .setMIFlags(I->mergeFlagsWith(*Update));
2159 } else {
2160 // Paired instruction.
2161 MIB = BuildMI(*InsertPt->getParent(), InsertPt, InsertPt->getDebugLoc(),
2162 TII->get(NewOpc))
2163 .add(Update->getOperand(0))
2164 .add(getLdStRegOp(*I, 0))
2165 .add(getLdStRegOp(*I, 1))
2167 .addImm(Value / Scale)
2168 .setMemRefs(I->memoperands())
2169 .setMIFlags(I->mergeFlagsWith(*Update));
2170 }
2171
2172 if (IsPreIdx) {
2173 ++NumPreFolded;
2174 LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store.");
2175 } else {
2176 ++NumPostFolded;
2177 LLVM_DEBUG(dbgs() << "Creating post-indexed load/store.");
2178 }
2179 LLVM_DEBUG(dbgs() << " Replacing instructions:\n ");
2180 LLVM_DEBUG(I->print(dbgs()));
2181 LLVM_DEBUG(dbgs() << " ");
2182 LLVM_DEBUG(Update->print(dbgs()));
2183 LLVM_DEBUG(dbgs() << " with instruction:\n ");
2184 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
2185 LLVM_DEBUG(dbgs() << "\n");
2186
2187 // Erase the old instructions for the block.
2188 I->eraseFromParent();
2189 Update->eraseFromParent();
2190
2191 return NextI;
2192}
2193
2195AArch64LoadStoreOpt::mergeConstOffsetInsn(MachineBasicBlock::iterator I,
2197 unsigned Offset, int Scale) {
2198 assert((Update->getOpcode() == AArch64::MOVKWi) &&
2199 "Unexpected const mov instruction to merge!");
2200 MachineBasicBlock::iterator E = I->getParent()->end();
2202 MachineBasicBlock::iterator PrevI = prev_nodbg(Update, E);
2203 MachineInstr &MemMI = *I;
2204 unsigned Mask = (1 << 12) * Scale - 1;
2205 unsigned Low = Offset & Mask;
2206 unsigned High = Offset - Low;
2209 MachineInstrBuilder AddMIB, MemMIB;
2210
2211 // Add IndexReg, BaseReg, High (the BaseReg may be SP)
2212 AddMIB =
2213 BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(AArch64::ADDXri))
2214 .addDef(IndexReg)
2215 .addUse(BaseReg)
2216 .addImm(High >> 12) // shifted value
2217 .addImm(12); // shift 12
2218 (void)AddMIB;
2219 // Ld/St DestReg, IndexReg, Imm12
2220 unsigned NewOpc = getBaseAddressOpcode(I->getOpcode());
2221 MemMIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
2222 .add(getLdStRegOp(MemMI))
2224 .addImm(Low / Scale)
2225 .setMemRefs(I->memoperands())
2226 .setMIFlags(I->mergeFlagsWith(*Update));
2227 (void)MemMIB;
2228
2229 ++NumConstOffsetFolded;
2230 LLVM_DEBUG(dbgs() << "Creating base address load/store.\n");
2231 LLVM_DEBUG(dbgs() << " Replacing instructions:\n ");
2232 LLVM_DEBUG(PrevI->print(dbgs()));
2233 LLVM_DEBUG(dbgs() << " ");
2234 LLVM_DEBUG(Update->print(dbgs()));
2235 LLVM_DEBUG(dbgs() << " ");
2236 LLVM_DEBUG(I->print(dbgs()));
2237 LLVM_DEBUG(dbgs() << " with instruction:\n ");
2238 LLVM_DEBUG(((MachineInstr *)AddMIB)->print(dbgs()));
2239 LLVM_DEBUG(dbgs() << " ");
2240 LLVM_DEBUG(((MachineInstr *)MemMIB)->print(dbgs()));
2241 LLVM_DEBUG(dbgs() << "\n");
2242
2243 // Erase the old instructions for the block.
2244 I->eraseFromParent();
2245 PrevI->eraseFromParent();
2246 Update->eraseFromParent();
2247
2248 return NextI;
2249}
2250
2251bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI,
2253 unsigned BaseReg, int Offset) {
2254 switch (MI.getOpcode()) {
2255 default:
2256 break;
2257 case AArch64::SUBXri:
2258 case AArch64::ADDXri:
2259 // Make sure it's a vanilla immediate operand, not a relocation or
2260 // anything else we can't handle.
2261 if (!MI.getOperand(2).isImm())
2262 break;
2263 // Watch out for 1 << 12 shifted value.
2264 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm()))
2265 break;
2266
2267 // The update instruction source and destination register must be the
2268 // same as the load/store base register.
2269 if (MI.getOperand(0).getReg() != BaseReg ||
2270 MI.getOperand(1).getReg() != BaseReg)
2271 break;
2272
2273 int UpdateOffset = MI.getOperand(2).getImm();
2274 if (MI.getOpcode() == AArch64::SUBXri)
2275 UpdateOffset = -UpdateOffset;
2276
2277 // The immediate must be a multiple of the scaling factor of the pre/post
2278 // indexed instruction.
2279 int Scale, MinOffset, MaxOffset;
2280 getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset);
2281 if (UpdateOffset % Scale != 0)
2282 break;
2283
2284 // Scaled offset must fit in the instruction immediate.
2285 int ScaledOffset = UpdateOffset / Scale;
2286 if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset)
2287 break;
2288
2289 // If we have a non-zero Offset, we check that it matches the amount
2290 // we're adding to the register.
2291 if (!Offset || Offset == UpdateOffset)
2292 return true;
2293 break;
2294 }
2295 return false;
2296}
2297
2298bool AArch64LoadStoreOpt::isMatchingMovConstInsn(MachineInstr &MemMI,
2300 unsigned IndexReg,
2301 unsigned &Offset) {
2302 // The update instruction source and destination register must be the
2303 // same as the load/store index register.
2304 if (MI.getOpcode() == AArch64::MOVKWi &&
2305 TRI->isSuperOrSubRegisterEq(IndexReg, MI.getOperand(1).getReg())) {
2306
2307 // movz + movk hold a large offset of a Ld/St instruction.
2308 MachineBasicBlock::iterator B = MI.getParent()->begin();
2310 // Skip the scene when the MI is the first instruction of a block.
2311 if (MBBI == B)
2312 return false;
2313 MBBI = prev_nodbg(MBBI, B);
2314 MachineInstr &MovzMI = *MBBI;
2315 // Make sure the MOVKWi and MOVZWi set the same register.
2316 if (MovzMI.getOpcode() == AArch64::MOVZWi &&
2317 MovzMI.getOperand(0).getReg() == MI.getOperand(0).getReg()) {
2318 unsigned Low = MovzMI.getOperand(1).getImm();
2319 unsigned High = MI.getOperand(2).getImm() << MI.getOperand(3).getImm();
2320 Offset = High + Low;
2321 // 12-bit optionally shifted immediates are legal for adds.
2322 return Offset >> 24 == 0;
2323 }
2324 }
2325 return false;
2326}
2327
2328MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward(
2329 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) {
2330 MachineBasicBlock::iterator E = I->getParent()->end();
2331 MachineInstr &MemMI = *I;
2333
2335 int MIUnscaledOffset = AArch64InstrInfo::getLdStOffsetOp(MemMI).getImm() *
2336 TII->getMemScale(MemMI);
2337
2338 // Scan forward looking for post-index opportunities. Updating instructions
2339 // can't be formed if the memory instruction doesn't have the offset we're
2340 // looking for.
2341 if (MIUnscaledOffset != UnscaledOffset)
2342 return E;
2343
2344 // If the base register overlaps a source/destination register, we can't
2345 // merge the update. This does not apply to tag store instructions which
2346 // ignore the address part of the source register.
2347 // This does not apply to STGPi as well, which does not have unpredictable
2348 // behavior in this case unlike normal stores, and always performs writeback
2349 // after reading the source register value.
2350 if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) {
2351 bool IsPairedInsn = AArch64InstrInfo::isPairedLdSt(MemMI);
2352 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
2353 Register DestReg = getLdStRegOp(MemMI, i).getReg();
2354 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
2355 return E;
2356 }
2357 }
2358
2359 // Track which register units have been modified and used between the first
2360 // insn (inclusive) and the second insn.
2361 ModifiedRegUnits.clear();
2362 UsedRegUnits.clear();
2363 MBBI = next_nodbg(MBBI, E);
2364
2365 // We can't post-increment the stack pointer if any instruction between
2366 // the memory access (I) and the increment (MBBI) can access the memory
2367 // region defined by [SP, MBBI].
2368 const bool BaseRegSP = BaseReg == AArch64::SP;
2369 if (BaseRegSP && needsWinCFI(I->getMF())) {
2370 // FIXME: For now, we always block the optimization over SP in windows
2371 // targets as it requires to adjust the unwind/debug info, messing up
2372 // the unwind info can actually cause a miscompile.
2373 return E;
2374 }
2375
2376 for (unsigned Count = 0; MBBI != E && Count < Limit;
2377 MBBI = next_nodbg(MBBI, E)) {
2378 MachineInstr &MI = *MBBI;
2379
2380 // Don't count transient instructions towards the search limit since there
2381 // may be different numbers of them if e.g. debug information is present.
2382 if (!MI.isTransient())
2383 ++Count;
2384
2385 // If we found a match, return it.
2386 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset))
2387 return MBBI;
2388
2389 // Update the status of what the instruction clobbered and used.
2390 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
2391
2392 // Otherwise, if the base register is used or modified, we have no match, so
2393 // return early.
2394 // If we are optimizing SP, do not allow instructions that may load or store
2395 // in between the load and the optimized value update.
2396 if (!ModifiedRegUnits.available(BaseReg) ||
2397 !UsedRegUnits.available(BaseReg) ||
2398 (BaseRegSP && MBBI->mayLoadOrStore()))
2399 return E;
2400 }
2401 return E;
2402}
2403
2404MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward(
2405 MachineBasicBlock::iterator I, unsigned Limit, bool &MergeEither) {
2406 MachineBasicBlock::iterator B = I->getParent()->begin();
2407 MachineBasicBlock::iterator E = I->getParent()->end();
2408 MachineInstr &MemMI = *I;
2410 MachineFunction &MF = *MemMI.getMF();
2411
2414
2415 bool IsPairedInsn = AArch64InstrInfo::isPairedLdSt(MemMI);
2416 Register DestReg[] = {getLdStRegOp(MemMI, 0).getReg(),
2417 IsPairedInsn ? getLdStRegOp(MemMI, 1).getReg()
2418 : AArch64::NoRegister};
2419
2420 // If the load/store is the first instruction in the block, there's obviously
2421 // not any matching update. Ditto if the memory offset isn't zero.
2422 if (MBBI == B || Offset != 0)
2423 return E;
2424 // If the base register overlaps a destination register, we can't
2425 // merge the update.
2426 if (!isTagStore(MemMI)) {
2427 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i)
2428 if (DestReg[i] == BaseReg || TRI->isSubRegister(BaseReg, DestReg[i]))
2429 return E;
2430 }
2431
2432 const bool BaseRegSP = BaseReg == AArch64::SP;
2433 if (BaseRegSP && needsWinCFI(I->getMF())) {
2434 // FIXME: For now, we always block the optimization over SP in windows
2435 // targets as it requires to adjust the unwind/debug info, messing up
2436 // the unwind info can actually cause a miscompile.
2437 return E;
2438 }
2439
2440 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2441 unsigned RedZoneSize =
2442 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
2443
2444 // Track which register units have been modified and used between the first
2445 // insn (inclusive) and the second insn.
2446 ModifiedRegUnits.clear();
2447 UsedRegUnits.clear();
2448 unsigned Count = 0;
2449 bool MemAcessBeforeSPPreInc = false;
2450 MergeEither = true;
2451 do {
2452 MBBI = prev_nodbg(MBBI, B);
2453 MachineInstr &MI = *MBBI;
2454
2455 // Don't count transient instructions towards the search limit since there
2456 // may be different numbers of them if e.g. debug information is present.
2457 if (!MI.isTransient())
2458 ++Count;
2459
2460 // If we found a match, return it.
2461 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) {
2462 // Check that the update value is within our red zone limit (which may be
2463 // zero).
2464 if (MemAcessBeforeSPPreInc && MBBI->getOperand(2).getImm() > RedZoneSize)
2465 return E;
2466 return MBBI;
2467 }
2468
2469 // Update the status of what the instruction clobbered and used.
2470 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
2471
2472 // Otherwise, if the base register is used or modified, we have no match, so
2473 // return early.
2474 if (!ModifiedRegUnits.available(BaseReg) ||
2475 !UsedRegUnits.available(BaseReg))
2476 return E;
2477
2478 // If we have a destination register (i.e. a load instruction) and a
2479 // destination register is used or modified, then we can only merge forward,
2480 // i.e. the combined instruction is put in the place of the memory
2481 // instruction. Same applies if we see a memory access or side effects.
2482 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects() ||
2483 (DestReg[0] != AArch64::NoRegister &&
2484 !(ModifiedRegUnits.available(DestReg[0]) &&
2485 UsedRegUnits.available(DestReg[0]))) ||
2486 (DestReg[1] != AArch64::NoRegister &&
2487 !(ModifiedRegUnits.available(DestReg[1]) &&
2488 UsedRegUnits.available(DestReg[1]))))
2489 MergeEither = false;
2490
2491 // Keep track if we have a memory access before an SP pre-increment, in this
2492 // case we need to validate later that the update amount respects the red
2493 // zone.
2494 if (BaseRegSP && MBBI->mayLoadOrStore())
2495 MemAcessBeforeSPPreInc = true;
2496 } while (MBBI != B && Count < Limit);
2497 return E;
2498}
2499
2501AArch64LoadStoreOpt::findMatchingConstOffsetBackward(
2502 MachineBasicBlock::iterator I, unsigned Limit, unsigned &Offset) {
2503 MachineBasicBlock::iterator B = I->getParent()->begin();
2504 MachineBasicBlock::iterator E = I->getParent()->end();
2505 MachineInstr &MemMI = *I;
2507
2508 // If the load is the first instruction in the block, there's obviously
2509 // not any matching load or store.
2510 if (MBBI == B)
2511 return E;
2512
2513 // Make sure the IndexReg is killed and the shift amount is zero.
2514 // TODO: Relex this restriction to extend, simplify processing now.
2515 if (!AArch64InstrInfo::getLdStOffsetOp(MemMI).isKill() ||
2517 (AArch64InstrInfo::getLdStAmountOp(MemMI).getImm() != 0))
2518 return E;
2519
2521
2522 // Track which register units have been modified and used between the first
2523 // insn (inclusive) and the second insn.
2524 ModifiedRegUnits.clear();
2525 UsedRegUnits.clear();
2526 unsigned Count = 0;
2527 do {
2528 MBBI = prev_nodbg(MBBI, B);
2529 MachineInstr &MI = *MBBI;
2530
2531 // Don't count transient instructions towards the search limit since there
2532 // may be different numbers of them if e.g. debug information is present.
2533 if (!MI.isTransient())
2534 ++Count;
2535
2536 // If we found a match, return it.
2537 if (isMatchingMovConstInsn(*I, MI, IndexReg, Offset)) {
2538 return MBBI;
2539 }
2540
2541 // Update the status of what the instruction clobbered and used.
2542 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
2543
2544 // Otherwise, if the index register is used or modified, we have no match,
2545 // so return early.
2546 if (!ModifiedRegUnits.available(IndexReg) ||
2547 !UsedRegUnits.available(IndexReg))
2548 return E;
2549
2550 } while (MBBI != B && Count < Limit);
2551 return E;
2552}
2553
2554bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore(
2556 MachineInstr &MI = *MBBI;
2557 // If this is a volatile load, don't mess with it.
2558 if (MI.hasOrderedMemoryRef())
2559 return false;
2560
2561 if (needsWinCFI(MI.getMF()) && MI.getFlag(MachineInstr::FrameDestroy))
2562 return false;
2563
2564 // Make sure this is a reg+imm.
2565 // FIXME: It is possible to extend it to handle reg+reg cases.
2567 return false;
2568
2569 // Look backward up to LdStLimit instructions.
2571 if (findMatchingStore(MBBI, LdStLimit, StoreI)) {
2572 ++NumLoadsFromStoresPromoted;
2573 // Promote the load. Keeping the iterator straight is a
2574 // pain, so we let the merge routine tell us what the next instruction
2575 // is after it's done mucking about.
2576 MBBI = promoteLoadFromStore(MBBI, StoreI);
2577 return true;
2578 }
2579 return false;
2580}
2581
2582// Merge adjacent zero stores into a wider store.
2583bool AArch64LoadStoreOpt::tryToMergeZeroStInst(
2585 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store.");
2586 MachineInstr &MI = *MBBI;
2587 MachineBasicBlock::iterator E = MI.getParent()->end();
2588
2589 if (!TII->isCandidateToMergeOrPair(MI))
2590 return false;
2591
2592 // Look ahead up to LdStLimit instructions for a mergable instruction.
2593 LdStPairFlags Flags;
2595 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true);
2596 if (MergeMI != E) {
2597 ++NumZeroStoresPromoted;
2598
2599 // Keeping the iterator straight is a pain, so we let the merge routine tell
2600 // us what the next instruction is after it's done mucking about.
2601 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags);
2602 return true;
2603 }
2604 return false;
2605}
2606
2607// Find loads and stores that can be merged into a single load or store pair
2608// instruction.
2609bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) {
2610 MachineInstr &MI = *MBBI;
2611 MachineBasicBlock::iterator E = MI.getParent()->end();
2612
2613 if (!TII->isCandidateToMergeOrPair(MI))
2614 return false;
2615
2616 // If disable-ldp feature is opted, do not emit ldp.
2617 if (MI.mayLoad() && Subtarget->hasDisableLdp())
2618 return false;
2619
2620 // If disable-stp feature is opted, do not emit stp.
2621 if (MI.mayStore() && Subtarget->hasDisableStp())
2622 return false;
2623
2624 // Early exit if the offset is not possible to match. (6 bits of positive
2625 // range, plus allow an extra one in case we find a later insn that matches
2626 // with Offset-1)
2627 bool IsUnscaled = TII->hasUnscaledLdStOffset(MI);
2629 int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1;
2630 // Allow one more for offset.
2631 if (Offset > 0)
2632 Offset -= OffsetStride;
2633 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride))
2634 return false;
2635
2636 // Look ahead up to LdStLimit instructions for a pairable instruction.
2637 LdStPairFlags Flags;
2639 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false);
2640 if (Paired != E) {
2641 // Keeping the iterator straight is a pain, so we let the merge routine tell
2642 // us what the next instruction is after it's done mucking about.
2643 auto Prev = std::prev(MBBI);
2644
2645 // Fetch the memoperand of the load/store that is a candidate for
2646 // combination.
2648 MI.memoperands_empty() ? nullptr : MI.memoperands().front();
2649
2650 // If a load/store arrives and ldp/stp-aligned-only feature is opted, check
2651 // that the alignment of the source pointer is at least double the alignment
2652 // of the type.
2653 if ((MI.mayLoad() && Subtarget->hasLdpAlignedOnly()) ||
2654 (MI.mayStore() && Subtarget->hasStpAlignedOnly())) {
2655 // If there is no size/align information, cancel the transformation.
2656 if (!MemOp || !MemOp->getMemoryType().isValid()) {
2657 NumFailedAlignmentCheck++;
2658 return false;
2659 }
2660
2661 // Get the needed alignments to check them if
2662 // ldp-aligned-only/stp-aligned-only features are opted.
2663 uint64_t MemAlignment = MemOp->getAlign().value();
2664 uint64_t TypeAlignment = Align(MemOp->getSize().getValue()).value();
2665
2666 if (MemAlignment < 2 * TypeAlignment) {
2667 NumFailedAlignmentCheck++;
2668 return false;
2669 }
2670 }
2671
2672 ++NumPairCreated;
2673 if (TII->hasUnscaledLdStOffset(MI))
2674 ++NumUnscaledPairCreated;
2675
2676 MBBI = mergePairedInsns(MBBI, Paired, Flags);
2677 // Collect liveness info for instructions between Prev and the new position
2678 // MBBI.
2679 for (auto I = std::next(Prev); I != MBBI; I++)
2680 updateDefinedRegisters(*I, DefinedInBB, TRI);
2681
2682 return true;
2683 }
2684 return false;
2685}
2686
2687bool AArch64LoadStoreOpt::tryToMergeLdStUpdate
2689 MachineInstr &MI = *MBBI;
2690 MachineBasicBlock::iterator E = MI.getParent()->end();
2692
2693 // Look forward to try to form a post-index instruction. For example,
2694 // ldr x0, [x20]
2695 // add x20, x20, #32
2696 // merged into:
2697 // ldr x0, [x20], #32
2698 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit);
2699 if (Update != E) {
2700 // Merge the update into the ld/st.
2701 if (auto NextI = mergeUpdateInsn(MBBI, Update, /*IsForward=*/false,
2702 /*IsPreIdx=*/false,
2703 /*MergeEither=*/false)) {
2704 MBBI = *NextI;
2705 return true;
2706 }
2707 }
2708
2709 // Don't know how to handle unscaled pre/post-index versions below, so bail.
2710 if (TII->hasUnscaledLdStOffset(MI.getOpcode()))
2711 return false;
2712
2713 // Look back to try to find a pre-index instruction. For example,
2714 // add x0, x0, #8
2715 // ldr x1, [x0]
2716 // merged into:
2717 // ldr x1, [x0, #8]!
2718 bool MergeEither;
2719 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit, MergeEither);
2720 if (Update != E) {
2721 // Merge the update into the ld/st.
2722 if (auto NextI = mergeUpdateInsn(MBBI, Update, /*IsForward=*/true,
2723 /*IsPreIdx=*/true, MergeEither)) {
2724 MBBI = *NextI;
2725 return true;
2726 }
2727 }
2728
2729 // The immediate in the load/store is scaled by the size of the memory
2730 // operation. The immediate in the add we're looking for,
2731 // however, is not, so adjust here.
2732 int UnscaledOffset =
2734
2735 // Look forward to try to find a pre-index instruction. For example,
2736 // ldr x1, [x0, #64]
2737 // add x0, x0, #64
2738 // merged into:
2739 // ldr x1, [x0, #64]!
2740 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit);
2741 if (Update != E) {
2742 // Merge the update into the ld/st.
2743 if (auto NextI = mergeUpdateInsn(MBBI, Update, /*IsForward=*/false,
2744 /*IsPreIdx=*/true,
2745 /*MergeEither=*/false)) {
2746 MBBI = *NextI;
2747 return true;
2748 }
2749 }
2750
2751 return false;
2752}
2753
2754bool AArch64LoadStoreOpt::tryToMergeIndexLdSt(MachineBasicBlock::iterator &MBBI,
2755 int Scale) {
2756 MachineInstr &MI = *MBBI;
2757 MachineBasicBlock::iterator E = MI.getParent()->end();
2759
2760 // Don't know how to handle unscaled pre/post-index versions below, so bail.
2761 if (TII->hasUnscaledLdStOffset(MI.getOpcode()))
2762 return false;
2763
2764 // Look back to try to find a const offset for index LdSt instruction. For
2765 // example,
2766 // mov x8, #LargeImm ; = a * (1<<12) + imm12
2767 // ldr x1, [x0, x8]
2768 // merged into:
2769 // add x8, x0, a * (1<<12)
2770 // ldr x1, [x8, imm12]
2771 unsigned Offset;
2772 Update = findMatchingConstOffsetBackward(MBBI, LdStConstLimit, Offset);
2773 if (Update != E && (Offset & (Scale - 1)) == 0) {
2774 // Merge the imm12 into the ld/st.
2775 MBBI = mergeConstOffsetInsn(MBBI, Update, Offset, Scale);
2776 return true;
2777 }
2778
2779 return false;
2780}
2781
2782bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB,
2783 bool EnableNarrowZeroStOpt) {
2785
2786 bool Modified = false;
2787 // Four tranformations to do here:
2788 // 1) Find loads that directly read from stores and promote them by
2789 // replacing with mov instructions. If the store is wider than the load,
2790 // the load will be replaced with a bitfield extract.
2791 // e.g.,
2792 // str w1, [x0, #4]
2793 // ldrh w2, [x0, #6]
2794 // ; becomes
2795 // str w1, [x0, #4]
2796 // lsr w2, w1, #16
2798 MBBI != E;) {
2799 if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI))
2800 Modified = true;
2801 else
2802 ++MBBI;
2803 }
2804 // 2) Merge adjacent zero stores into a wider store.
2805 // e.g.,
2806 // strh wzr, [x0]
2807 // strh wzr, [x0, #2]
2808 // ; becomes
2809 // str wzr, [x0]
2810 // e.g.,
2811 // str wzr, [x0]
2812 // str wzr, [x0, #4]
2813 // ; becomes
2814 // str xzr, [x0]
2815 if (EnableNarrowZeroStOpt)
2817 MBBI != E;) {
2818 if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI))
2819 Modified = true;
2820 else
2821 ++MBBI;
2822 }
2823 // 3) Find loads and stores that can be merged into a single load or store
2824 // pair instruction.
2825 // e.g.,
2826 // ldr x0, [x2]
2827 // ldr x1, [x2, #8]
2828 // ; becomes
2829 // ldp x0, x1, [x2]
2830
2832 DefinedInBB.clear();
2833 DefinedInBB.addLiveIns(MBB);
2834 }
2835
2837 MBBI != E;) {
2838 // Track currently live registers up to this point, to help with
2839 // searching for a rename register on demand.
2840 updateDefinedRegisters(*MBBI, DefinedInBB, TRI);
2841 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI))
2842 Modified = true;
2843 else
2844 ++MBBI;
2845 }
2846 // 4) Find base register updates that can be merged into the load or store
2847 // as a base-reg writeback.
2848 // e.g.,
2849 // ldr x0, [x2]
2850 // add x2, x2, #4
2851 // ; becomes
2852 // ldr x0, [x2], #4
2854 MBBI != E;) {
2855 if (isMergeableLdStUpdate(*MBBI, AFI) && tryToMergeLdStUpdate(MBBI))
2856 Modified = true;
2857 else
2858 ++MBBI;
2859 }
2860
2861 // 5) Find a register assigned with a const value that can be combined with
2862 // into the load or store. e.g.,
2863 // mov x8, #LargeImm ; = a * (1<<12) + imm12
2864 // ldr x1, [x0, x8]
2865 // ; becomes
2866 // add x8, x0, a * (1<<12)
2867 // ldr x1, [x8, imm12]
2869 MBBI != E;) {
2870 int Scale;
2871 if (isMergeableIndexLdSt(*MBBI, Scale) && tryToMergeIndexLdSt(MBBI, Scale))
2872 Modified = true;
2873 else
2874 ++MBBI;
2875 }
2876
2877 return Modified;
2878}
2879
2880bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
2881 if (skipFunction(Fn.getFunction()))
2882 return false;
2883
2884 Subtarget = &Fn.getSubtarget<AArch64Subtarget>();
2885 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo());
2886 TRI = Subtarget->getRegisterInfo();
2887 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2888
2889 // Resize the modified and used register unit trackers. We do this once
2890 // per function and then clear the register units each time we optimize a load
2891 // or store.
2892 ModifiedRegUnits.init(*TRI);
2893 UsedRegUnits.init(*TRI);
2894 DefinedInBB.init(*TRI);
2895
2896 bool Modified = false;
2897 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign();
2898 for (auto &MBB : Fn) {
2899 auto M = optimizeBlock(MBB, enableNarrowZeroStOpt);
2900 Modified |= M;
2901 }
2902
2903 return Modified;
2904}
2905
2906// FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and
2907// stores near one another? Note: The pre-RA instruction scheduler already has
2908// hooks to try and schedule pairable loads/stores together to improve pairing
2909// opportunities. Thus, pre-RA pairing pass may not be worth the effort.
2910
2911// FIXME: When pairing store instructions it's very possible for this pass to
2912// hoist a store with a KILL marker above another use (without a KILL marker).
2913// The resulting IR is invalid, but nothing uses the KILL markers after this
2914// pass, so it's never caused a problem in practice.
2915
2916/// createAArch64LoadStoreOptimizationPass - returns an instance of the
2917/// load / store optimization pass.
2919 return new AArch64LoadStoreOpt();
2920}
#define Success
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static cl::opt< bool > EnableRenaming("aarch64-load-store-renaming", cl::init(true), cl::Hidden)
static MachineOperand & getLdStRegOp(MachineInstr &MI, unsigned PairedRegOp=0)
static bool isPromotableLoadFromStore(MachineInstr &MI)
static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale, int &MinOffset, int &MaxOffset)
static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride)
static unsigned getMatchingPairOpcode(unsigned Opc)
static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, LdStPairFlags &Flags, const AArch64InstrInfo *TII)
static std::optional< MCPhysReg > tryToFindRegisterToRename(const MachineFunction &MF, Register Reg, LiveRegUnits &DefinedInBB, LiveRegUnits &UsedInBetween, SmallPtrSetImpl< const TargetRegisterClass * > &RequiredClasses, const TargetRegisterInfo *TRI)
static bool needsWinCFI(const MachineFunction *MF)
static bool canRenameUntilSecondLoad(MachineInstr &FirstLoad, MachineInstr &SecondLoad, LiveRegUnits &UsedInBetween, SmallPtrSetImpl< const TargetRegisterClass * > &RequiredClasses, const TargetRegisterInfo *TRI)
static std::optional< MCPhysReg > findRenameRegForSameLdStRegPair(std::optional< bool > MaybeCanRename, MachineInstr &FirstMI, MachineInstr &MI, Register Reg, LiveRegUnits &DefinedInBB, LiveRegUnits &UsedInBetween, SmallPtrSetImpl< const TargetRegisterClass * > &RequiredClasses, const TargetRegisterInfo *TRI)
static bool mayAlias(MachineInstr &MIa, SmallVectorImpl< MachineInstr * > &MemInsns, AliasAnalysis *AA)
static cl::opt< unsigned > LdStLimit("aarch64-load-store-scan-limit", cl::init(20), cl::Hidden)
static bool canRenameMOP(const MachineOperand &MOP, const TargetRegisterInfo *TRI)
static unsigned getPreIndexedOpcode(unsigned Opc)
#define AARCH64_LOAD_STORE_OPT_NAME
static cl::opt< unsigned > UpdateLimit("aarch64-update-scan-limit", cl::init(100), cl::Hidden)
static bool isPromotableZeroStoreInst(MachineInstr &MI)
static unsigned getMatchingWideOpcode(unsigned Opc)
static unsigned getMatchingNonSExtOpcode(unsigned Opc, bool *IsValidLdStrOpc=nullptr)
static MachineBasicBlock::iterator maybeMoveCFI(MachineInstr &MI, MachineBasicBlock::iterator MaybeCFI)
static int alignTo(int Num, int PowOf2)
static bool isTagStore(const MachineInstr &MI)
static unsigned isMatchingStore(MachineInstr &LoadInst, MachineInstr &StoreInst)
static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg, const TargetRegisterInfo *TRI, unsigned Limit, std::function< bool(MachineInstr &, bool)> &Fn)
static bool isRewritableImplicitDef(unsigned Opc)
static unsigned getPostIndexedOpcode(unsigned Opc)
static bool isMergeableLdStUpdate(MachineInstr &MI, AArch64FunctionInfo &AFI)
#define DEBUG_TYPE
static cl::opt< unsigned > LdStConstLimit("aarch64-load-store-const-scan-limit", cl::init(10), cl::Hidden)
static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, MachineInstr &StoreInst, const AArch64InstrInfo *TII)
static bool isPreLdStPairCandidate(MachineInstr &FirstMI, MachineInstr &MI)
static bool isMergeableIndexLdSt(MachineInstr &MI, int &Scale)
static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units, const TargetRegisterInfo *TRI)
static bool canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween, SmallPtrSetImpl< const TargetRegisterClass * > &RequiredClasses, const TargetRegisterInfo *TRI)
static unsigned getBaseAddressOpcode(unsigned Opc)
SmallVector< AArch64_IMM::ImmInsnModel, 4 > Insn
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
Definition: DebugCounter.h:190
#define LLVM_DEBUG(...)
Definition: Debug.h:106
bool End
Definition: ELF_riscv.cpp:480
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
uint64_t High
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isImm(const MachineOperand &MO, MachineRegisterInfo *MRI)
static bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT, const TargetTransformInfo &TTI, const DataLayout &DL, bool HasBranchDivergence, DomTreeUpdater *DTU)
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:191
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
AArch64FunctionInfo - This class is derived from MachineFunctionInfo and contains private AArch64-spe...
static const MachineOperand & getLdStOffsetOp(const MachineInstr &MI)
Returns the immediate offset operator of a load/store.
static const MachineOperand & getLdStAmountOp(const MachineInstr &MI)
Returns the shift amount operator of a load/store.
static bool isPreLdSt(const MachineInstr &MI)
Returns whether the instruction is a pre-indexed load/store.
static bool isPairedLdSt(const MachineInstr &MI)
Returns whether the instruction is a paired load/store.
static int getMemScale(unsigned Opc)
Scaling factor for (scaled or unscaled) load or store.
static const MachineOperand & getLdStBaseOp(const MachineInstr &MI)
Returns the base register operator of a load/store.
const AArch64RegisterInfo * getRegisterInfo() const override
const AArch64InstrInfo * getInstrInfo() const override
const AArch64TargetLowering * getTargetLowering() const override
unsigned getRedZoneSize(const Function &F) const
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
static bool shouldExecute(unsigned CounterName)
Definition: DebugCounter.h:87
A debug info location.
Definition: DebugLoc.h:33
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
bool needsUnwindTableEntry() const
True if this function needs an unwind table.
Definition: Function.h:682
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:274
A set of register units used to track register liveness.
Definition: LiveRegUnits.h:30
static void accumulateUsedDefed(const MachineInstr &MI, LiveRegUnits &ModifiedRegUnits, LiveRegUnits &UsedRegUnits, const TargetRegisterInfo *TRI)
For a machine instruction MI, adds all register units used in UsedRegUnits and defined or clobbered i...
Definition: LiveRegUnits.h:47
bool available(MCPhysReg Reg) const
Returns true if no part of physical register Reg is live.
Definition: LiveRegUnits.h:116
void init(const TargetRegisterInfo &TRI)
Initialize and clear the set.
Definition: LiveRegUnits.h:73
void addReg(MCPhysReg Reg)
Adds register units covered by physical register Reg.
Definition: LiveRegUnits.h:86
void removeReg(MCPhysReg Reg)
Removes all register units covered by physical register Reg.
Definition: LiveRegUnits.h:102
void accumulate(const MachineInstr &MI)
Adds all register units used, defined or clobbered in MI.
An instruction for reading from memory.
Definition: Instructions.h:176
bool usesWindowsCFI() const
Definition: MCAsmInfo.h:759
OpType getOperation() const
Definition: MCDwarf.h:710
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
reverse_instr_iterator instr_rend()
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
MachineFunctionProperties & set(Property P)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
const std::vector< MCCFIInstruction > & getFrameInstructions() const
Returns a reference to a list of cfi instructions in the function's prologue.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & cloneMergedMemRefs(ArrayRef< const MachineInstr * > OtherMIs) const
const MachineInstrBuilder & setMemRefs(ArrayRef< MachineMemOperand * > MMOs) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:575
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:347
bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const
Returns true if this instruction's memory access aliases the memory access of Other.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
iterator_range< mop_iterator > operands()
Definition: MachineInstr.h:691
bool hasOrderedMemoryRef() const
Return true if this instruction may have an ordered or volatile memory reference, or if the informati...
const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
bool isPseudo(QueryType Type=IgnoreBundle) const
Return true if this is a pseudo instruction that doesn't correspond to a real machine instruction.
Definition: MachineInstr.h:936
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:585
A description of a memory reference used in the backend.
MachineOperand class - Representation of each machine instruction operand.
void setImplicit(bool Val=true)
int64_t getImm() const
bool isImplicit() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
void setReg(Register Reg)
Change the register this operand corresponds to.
void setIsKill(bool Val=true)
bool isRenamable() const
isRenamable - Returns true if this register may be renamed, i.e.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
bool isEarlyClobber() const
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
bool tracksLiveness() const
tracksLiveness - Returns true when tracking register liveness accurately.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
void dump() const
Definition: Pass.cpp:136
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:363
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
An instruction for storing to memory.
Definition: Instructions.h:292
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
LLVM Value Representation.
Definition: Value.h:74
self_iterator getIterator()
Definition: ilist_node.h:132
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static unsigned getShiftValue(unsigned Imm)
getShiftValue - Extract the shift value.
static unsigned getShifterImm(AArch64_AM::ShiftExtendType ST, unsigned Imm)
getShifterImm - Encode the shift type and amount: imm: 6-bit shift amount shifter: 000 ==> lsl 001 ==...
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:125
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ Define
Register definition.
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
constexpr double e
Definition: MathExtras.h:47
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
IterT next_nodbg(IterT It, IterT End, bool SkipPseudoOp=true)
Increment It, then continue incrementing it while it points to a debug instruction.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
@ Offset
Definition: DWP.cpp:480
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
iterator_range< filter_iterator< ConstMIBundleOperands, bool(*)(const MachineOperand &)> > phys_regs_and_masks(const MachineInstr &MI)
Returns an iterator range over all physical register and mask operands for MI and bundled instruction...
Definition: LiveRegUnits.h:166
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
FunctionPass * createAArch64LoadStoreOptimizationPass()
createAArch64LoadStoreOptimizationPass - returns an instance of the load / store optimization pass.
auto instructionsWithoutDebug(IterT It, IterT End, bool SkipPseudoOp=true)
Construct a range iterator which begins at It and moves forwards until End is reached,...
void initializeAArch64LoadStoreOptPass(PassRegistry &)
IterT prev_nodbg(IterT It, IterT Begin, bool SkipPseudoOp=true)
Decrement It, then continue decrementing it while it points to a debug instruction.
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85