55#define DEBUG_TYPE "callbr-prepare"
96char CallBrPrepare::ID = 0;
105void CallBrPrepare::getAnalysisUsage(
AnalysisUsage &AU)
const {
112 if (
auto *CBR = dyn_cast<CallBrInst>(BB.getTerminator()))
113 if (!CBR->getType()->isVoidTy() && !CBR->use_empty())
119 bool Changed =
false;
121 Options.setMergeIdenticalEdges();
132 for (
unsigned i = 1, e = CBR->getNumSuccessors(); i != e; ++i)
133 if (CBR->getSuccessor(i) == CBR->getSuccessor(0) ||
141 bool Changed =
false;
145 if (!CBR->getNumIndirectDests())
149 SSAUpdate.
Initialize(CBR->getType(), CBR->getName());
153 for (
BasicBlock *IndDest : CBR->getIndirectDests()) {
154 if (!Visited.
insert(IndDest).second)
158 CBR->getType(), Intrinsic::callbr_landingpad, {CBR});
160 UpdateSSA(DT, CBR, Intrinsic, SSAUpdate);
168 const auto *
I = dyn_cast<Instruction>(U.getUser());
169 return I &&
I->getParent() == BB;
175 if (!isa<Instruction>(U.getUser()))
178 << cast<Instruction>(U.getUser())->getParent()->getName()
179 <<
", is " << (DT.
dominates(BB, U) ?
"" :
"NOT ")
180 <<
"dominated by " << BB->
getName() <<
" ("
181 << (IsDefaultDest ?
"in" :
"") <<
"direct)\n");
190 BasicBlock *LandingPad = Intrinsic->getParent();
194 if (!Visited.
insert(U).second)
203 if (
const auto *
II = dyn_cast<IntrinsicInst>(U->getUser()))
204 if (
II->getIntrinsicID() == Intrinsic::callbr_landingpad)
222bool CallBrPrepare::runOnFunction(
Function &Fn) {
223 bool Changed =
false;
237 std::optional<DominatorTree> LazilyComputedDomTree;
238 if (
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
239 DT = &DTWP->getDomTree();
241 LazilyComputedDomTree.emplace(Fn);
242 DT = &*LazilyComputedDomTree;
static bool InsertIntrinsicCalls(ArrayRef< CallBrInst * > CBRs, DominatorTree &DT)
static bool SplitCriticalEdges(ArrayRef< CallBrInst * > CBRs, DominatorTree &DT)
static bool IsInSameBasicBlock(const Use &U, const BasicBlock *BB)
static void UpdateSSA(DominatorTree &DT, CallBrInst *CBR, CallInst *Intrinsic, SSAUpdater &SSAUpdate)
static void PrintDebugDomInfo(const DominatorTree &DT, const Use &U, const BasicBlock *BB, bool IsDefaultDest)
static SmallVector< CallBrInst *, 2 > FindCallBrs(Function &Fn)
uint64_t IntrinsicInst * II
FunctionAnalysisManager FAM
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Remove Loads Into Fake Uses
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM Basic Block Representation.
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
BasicBlock * getDefaultDest() const
PreservedAnalyses run(Function &Fn, FunctionAnalysisManager &FAM)
This class represents a function call, abstracting a target machine's calling convention.
Analysis pass which computes a DominatorTree.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
FunctionPass class - This class is used to implement most global optimizations.
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void preserve()
Mark an analysis as preserved.
Helper class for SSA formation on a set of values defined in multiple blocks.
void RewriteUse(Use &U)
Rewrite a use of the symbolic value.
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type 'Ty'.
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
A Use represents the edge between a Value definition and its users.
iterator_range< use_iterator > uses()
StringRef getName() const
Return a constant reference to the value's name.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
This is an optimization pass for GlobalISel generic memory operations.
FunctionPass * createCallBrPass()
BasicBlock * SplitKnownCriticalEdge(Instruction *TI, unsigned SuccNum, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
If it is known that an edge is critical, SplitKnownCriticalEdge can be called directly,...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isCriticalEdge(const Instruction *TI, unsigned SuccNum, bool AllowIdenticalEdges=false)
Return true if the specified edge is a critical edge.
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Option class for critical edge splitting.