LLVM 20.0.0git
SystemZAsmParser.cpp
Go to the documentation of this file.
1//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
14#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/MC/MCAsmInfo.h"
19#include "llvm/MC/MCContext.h"
20#include "llvm/MC/MCExpr.h"
21#include "llvm/MC/MCInst.h"
23#include "llvm/MC/MCInstrInfo.h"
29#include "llvm/MC/MCStreamer.h"
34#include "llvm/Support/SMLoc.h"
35#include <algorithm>
36#include <cassert>
37#include <cstddef>
38#include <cstdint>
39#include <iterator>
40#include <memory>
41#include <string>
42
43using namespace llvm;
44
45// Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol
46// is true any MCExpr is accepted (address displacement).
47static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue,
48 bool AllowSymbol = false) {
49 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
50 int64_t Value = CE->getValue();
51 return Value >= MinValue && Value <= MaxValue;
52 }
53 return AllowSymbol;
54}
55
56namespace {
57
58enum RegisterKind {
59 GR32Reg,
60 GRH32Reg,
61 GR64Reg,
62 GR128Reg,
63 FP32Reg,
64 FP64Reg,
65 FP128Reg,
66 VR32Reg,
67 VR64Reg,
68 VR128Reg,
69 AR32Reg,
70 CR64Reg,
71};
72
73enum MemoryKind {
74 BDMem,
75 BDXMem,
76 BDLMem,
77 BDRMem,
78 BDVMem
79};
80
81class SystemZOperand : public MCParsedAsmOperand {
82private:
83 enum OperandKind {
84 KindInvalid,
85 KindToken,
86 KindReg,
87 KindImm,
88 KindImmTLS,
89 KindMem
90 };
91
92 OperandKind Kind;
93 SMLoc StartLoc, EndLoc;
94
95 // A string of length Length, starting at Data.
96 struct TokenOp {
97 const char *Data;
98 unsigned Length;
99 };
100
101 // LLVM register Num, which has kind Kind. In some ways it might be
102 // easier for this class to have a register bank (general, floating-point
103 // or access) and a raw register number (0-15). This would postpone the
104 // interpretation of the operand to the add*() methods and avoid the need
105 // for context-dependent parsing. However, we do things the current way
106 // because of the virtual getReg() method, which needs to distinguish
107 // between (say) %r0 used as a single register and %r0 used as a pair.
108 // Context-dependent parsing can also give us slightly better error
109 // messages when invalid pairs like %r1 are used.
110 struct RegOp {
111 RegisterKind Kind;
112 unsigned Num;
113 };
114
115 // Base + Disp + Index, where Base and Index are LLVM registers or 0.
116 // MemKind says what type of memory this is and RegKind says what type
117 // the base register has (GR32Reg or GR64Reg). Length is the operand
118 // length for D(L,B)-style operands, otherwise it is null.
119 struct MemOp {
120 unsigned Base : 12;
121 unsigned Index : 12;
122 unsigned MemKind : 4;
123 unsigned RegKind : 4;
124 const MCExpr *Disp;
125 union {
126 const MCExpr *Imm;
127 unsigned Reg;
128 } Length;
129 };
130
131 // Imm is an immediate operand, and Sym is an optional TLS symbol
132 // for use with a __tls_get_offset marker relocation.
133 struct ImmTLSOp {
134 const MCExpr *Imm;
135 const MCExpr *Sym;
136 };
137
138 union {
139 TokenOp Token;
140 RegOp Reg;
141 const MCExpr *Imm;
142 ImmTLSOp ImmTLS;
143 MemOp Mem;
144 };
145
146 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
147 // Add as immediates when possible. Null MCExpr = 0.
148 if (!Expr)
150 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
151 Inst.addOperand(MCOperand::createImm(CE->getValue()));
152 else
154 }
155
156public:
157 SystemZOperand(OperandKind Kind, SMLoc StartLoc, SMLoc EndLoc)
158 : Kind(Kind), StartLoc(StartLoc), EndLoc(EndLoc) {}
159
160 // Create particular kinds of operand.
161 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
162 SMLoc EndLoc) {
163 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
164 }
165
166 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
167 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
168 Op->Token.Data = Str.data();
169 Op->Token.Length = Str.size();
170 return Op;
171 }
172
173 static std::unique_ptr<SystemZOperand>
174 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
175 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
176 Op->Reg.Kind = Kind;
177 Op->Reg.Num = Num;
178 return Op;
179 }
180
181 static std::unique_ptr<SystemZOperand>
182 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
183 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
184 Op->Imm = Expr;
185 return Op;
186 }
187
188 static std::unique_ptr<SystemZOperand>
189 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
190 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
191 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
192 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
193 Op->Mem.MemKind = MemKind;
194 Op->Mem.RegKind = RegKind;
195 Op->Mem.Base = Base;
196 Op->Mem.Index = Index;
197 Op->Mem.Disp = Disp;
198 if (MemKind == BDLMem)
199 Op->Mem.Length.Imm = LengthImm;
200 if (MemKind == BDRMem)
201 Op->Mem.Length.Reg = LengthReg;
202 return Op;
203 }
204
205 static std::unique_ptr<SystemZOperand>
206 createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
207 SMLoc StartLoc, SMLoc EndLoc) {
208 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
209 Op->ImmTLS.Imm = Imm;
210 Op->ImmTLS.Sym = Sym;
211 return Op;
212 }
213
214 // Token operands
215 bool isToken() const override {
216 return Kind == KindToken;
217 }
218 StringRef getToken() const {
219 assert(Kind == KindToken && "Not a token");
220 return StringRef(Token.Data, Token.Length);
221 }
222
223 // Register operands.
224 bool isReg() const override {
225 return Kind == KindReg;
226 }
227 bool isReg(RegisterKind RegKind) const {
228 return Kind == KindReg && Reg.Kind == RegKind;
229 }
230 MCRegister getReg() const override {
231 assert(Kind == KindReg && "Not a register");
232 return Reg.Num;
233 }
234
235 // Immediate operands.
236 bool isImm() const override {
237 return Kind == KindImm;
238 }
239 bool isImm(int64_t MinValue, int64_t MaxValue) const {
240 return Kind == KindImm && inRange(Imm, MinValue, MaxValue, true);
241 }
242 const MCExpr *getImm() const {
243 assert(Kind == KindImm && "Not an immediate");
244 return Imm;
245 }
246
247 // Immediate operands with optional TLS symbol.
248 bool isImmTLS() const {
249 return Kind == KindImmTLS;
250 }
251
252 const ImmTLSOp getImmTLS() const {
253 assert(Kind == KindImmTLS && "Not a TLS immediate");
254 return ImmTLS;
255 }
256
257 // Memory operands.
258 bool isMem() const override {
259 return Kind == KindMem;
260 }
261 bool isMem(MemoryKind MemKind) const {
262 return (Kind == KindMem &&
263 (Mem.MemKind == MemKind ||
264 // A BDMem can be treated as a BDXMem in which the index
265 // register field is 0.
266 (Mem.MemKind == BDMem && MemKind == BDXMem)));
267 }
268 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
269 return isMem(MemKind) && Mem.RegKind == RegKind;
270 }
271 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
272 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true);
273 }
274 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
275 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true);
276 }
277 bool isMemDisp12Len4(RegisterKind RegKind) const {
278 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
279 }
280 bool isMemDisp12Len8(RegisterKind RegKind) const {
281 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
282 }
283
284 const MemOp& getMem() const {
285 assert(Kind == KindMem && "Not a Mem operand");
286 return Mem;
287 }
288
289 // Override MCParsedAsmOperand.
290 SMLoc getStartLoc() const override { return StartLoc; }
291 SMLoc getEndLoc() const override { return EndLoc; }
292 void print(raw_ostream &OS) const override;
293
294 /// getLocRange - Get the range between the first and last token of this
295 /// operand.
296 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
297
298 // Used by the TableGen code to add particular types of operand
299 // to an instruction.
300 void addRegOperands(MCInst &Inst, unsigned N) const {
301 assert(N == 1 && "Invalid number of operands");
303 }
304 void addImmOperands(MCInst &Inst, unsigned N) const {
305 assert(N == 1 && "Invalid number of operands");
306 addExpr(Inst, getImm());
307 }
308 void addBDAddrOperands(MCInst &Inst, unsigned N) const {
309 assert(N == 2 && "Invalid number of operands");
310 assert(isMem(BDMem) && "Invalid operand type");
311 Inst.addOperand(MCOperand::createReg(Mem.Base));
312 addExpr(Inst, Mem.Disp);
313 }
314 void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
315 assert(N == 3 && "Invalid number of operands");
316 assert(isMem(BDXMem) && "Invalid operand type");
317 Inst.addOperand(MCOperand::createReg(Mem.Base));
318 addExpr(Inst, Mem.Disp);
319 Inst.addOperand(MCOperand::createReg(Mem.Index));
320 }
321 void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
322 assert(N == 3 && "Invalid number of operands");
323 assert(isMem(BDLMem) && "Invalid operand type");
324 Inst.addOperand(MCOperand::createReg(Mem.Base));
325 addExpr(Inst, Mem.Disp);
326 addExpr(Inst, Mem.Length.Imm);
327 }
328 void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
329 assert(N == 3 && "Invalid number of operands");
330 assert(isMem(BDRMem) && "Invalid operand type");
331 Inst.addOperand(MCOperand::createReg(Mem.Base));
332 addExpr(Inst, Mem.Disp);
333 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
334 }
335 void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
336 assert(N == 3 && "Invalid number of operands");
337 assert(isMem(BDVMem) && "Invalid operand type");
338 Inst.addOperand(MCOperand::createReg(Mem.Base));
339 addExpr(Inst, Mem.Disp);
340 Inst.addOperand(MCOperand::createReg(Mem.Index));
341 }
342 void addImmTLSOperands(MCInst &Inst, unsigned N) const {
343 assert(N == 2 && "Invalid number of operands");
344 assert(Kind == KindImmTLS && "Invalid operand type");
345 addExpr(Inst, ImmTLS.Imm);
346 if (ImmTLS.Sym)
347 addExpr(Inst, ImmTLS.Sym);
348 }
349
350 // Used by the TableGen code to check for particular operand types.
351 bool isGR32() const { return isReg(GR32Reg); }
352 bool isGRH32() const { return isReg(GRH32Reg); }
353 bool isGRX32() const { return false; }
354 bool isGR64() const { return isReg(GR64Reg); }
355 bool isGR128() const { return isReg(GR128Reg); }
356 bool isADDR32() const { return isReg(GR32Reg); }
357 bool isADDR64() const { return isReg(GR64Reg); }
358 bool isADDR128() const { return false; }
359 bool isFP32() const { return isReg(FP32Reg); }
360 bool isFP64() const { return isReg(FP64Reg); }
361 bool isFP128() const { return isReg(FP128Reg); }
362 bool isVR32() const { return isReg(VR32Reg); }
363 bool isVR64() const { return isReg(VR64Reg); }
364 bool isVF128() const { return false; }
365 bool isVR128() const { return isReg(VR128Reg); }
366 bool isAR32() const { return isReg(AR32Reg); }
367 bool isCR64() const { return isReg(CR64Reg); }
368 bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
369 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
370 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
371 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
372 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
373 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
374 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
375 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
376 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
377 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
378 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
379 bool isU1Imm() const { return isImm(0, 1); }
380 bool isU2Imm() const { return isImm(0, 3); }
381 bool isU3Imm() const { return isImm(0, 7); }
382 bool isU4Imm() const { return isImm(0, 15); }
383 bool isU8Imm() const { return isImm(0, 255); }
384 bool isS8Imm() const { return isImm(-128, 127); }
385 bool isU12Imm() const { return isImm(0, 4095); }
386 bool isU16Imm() const { return isImm(0, 65535); }
387 bool isS16Imm() const { return isImm(-32768, 32767); }
388 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
389 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
390 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
391};
392
393class SystemZAsmParser : public MCTargetAsmParser {
394#define GET_ASSEMBLER_HEADER
395#include "SystemZGenAsmMatcher.inc"
396
397private:
398 MCAsmParser &Parser;
399 enum RegisterGroup {
400 RegGR,
401 RegFP,
402 RegV,
403 RegAR,
404 RegCR
405 };
406 struct Register {
407 RegisterGroup Group;
408 unsigned Num;
409 SMLoc StartLoc, EndLoc;
410 };
411
412 SystemZTargetStreamer &getTargetStreamer() {
413 assert(getParser().getStreamer().getTargetStreamer() &&
414 "do not have a target streamer");
416 return static_cast<SystemZTargetStreamer &>(TS);
417 }
418
419 bool parseRegister(Register &Reg, bool RequirePercent,
420 bool RestoreOnFailure = false);
421
422 bool parseIntegerRegister(Register &Reg, RegisterGroup Group);
423
424 ParseStatus parseRegister(OperandVector &Operands, RegisterKind Kind);
425
426 ParseStatus parseAnyRegister(OperandVector &Operands);
427
428 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2,
429 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length,
430 bool HasLength = false, bool HasVectorIndex = false);
431 bool parseAddressRegister(Register &Reg);
432
433 bool ParseDirectiveInsn(SMLoc L);
434 bool ParseDirectiveMachine(SMLoc L);
435 bool ParseGNUAttribute(SMLoc L);
436
437 ParseStatus parseAddress(OperandVector &Operands, MemoryKind MemKind,
438 RegisterKind RegKind);
439
440 ParseStatus parsePCRel(OperandVector &Operands, int64_t MinVal,
441 int64_t MaxVal, bool AllowTLS);
442
443 bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
444
445 // Both the hlasm and gnu variants still rely on the basic gnu asm
446 // format with respect to inputs, clobbers, outputs etc.
447 //
448 // However, calling the overriden getAssemblerDialect() method in
449 // AsmParser is problematic. It either returns the AssemblerDialect field
450 // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is
451 // unset, otherwise it returns the private AssemblerDialect field in
452 // AsmParser.
453 //
454 // The problematic part is because, we forcibly set the inline asm dialect
455 // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query
456 // to the overriden getAssemblerDialect function in AsmParser.cpp, will
457 // not return the assembler dialect set in the respective MCAsmInfo instance.
458 //
459 // For this purpose, we explicitly query the SystemZMCAsmInfo instance
460 // here, to get the "correct" assembler dialect, and use it in various
461 // functions.
462 unsigned getMAIAssemblerDialect() {
463 return Parser.getContext().getAsmInfo()->getAssemblerDialect();
464 }
465
466 // An alphabetic character in HLASM is a letter from 'A' through 'Z',
467 // or from 'a' through 'z', or '$', '_','#', or '@'.
468 inline bool isHLASMAlpha(char C) {
469 return isAlpha(C) || llvm::is_contained("_@#$", C);
470 }
471
472 // A digit in HLASM is a number from 0 to 9.
473 inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); }
474
475 // Are we parsing using the AD_HLASM dialect?
476 inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; }
477
478 // Are we parsing using the AD_GNU dialect?
479 inline bool isParsingGNU() { return getMAIAssemblerDialect() == AD_GNU; }
480
481public:
482 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
483 const MCInstrInfo &MII,
485 : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
487
488 // Alias the .word directive to .short.
489 parser.addAliasForDirective(".word", ".short");
490
491 // Initialize the set of available features.
492 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
493 }
494
495 // Override MCTargetAsmParser.
496 ParseStatus parseDirective(AsmToken DirectiveID) override;
497 bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override;
498 bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
499 bool RequirePercent, bool RestoreOnFailure);
501 SMLoc &EndLoc) override;
503 SMLoc NameLoc, OperandVector &Operands) override;
504 bool matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
507 bool MatchingInlineAsm) override;
508 bool isLabel(AsmToken &Token) override;
509
510 // Used by the TableGen code to parse particular operand types.
512 return parseRegister(Operands, GR32Reg);
513 }
514 ParseStatus parseGRH32(OperandVector &Operands) {
515 return parseRegister(Operands, GRH32Reg);
516 }
517 ParseStatus parseGRX32(OperandVector &Operands) {
518 llvm_unreachable("GRX32 should only be used for pseudo instructions");
519 }
521 return parseRegister(Operands, GR64Reg);
522 }
523 ParseStatus parseGR128(OperandVector &Operands) {
524 return parseRegister(Operands, GR128Reg);
525 }
526 ParseStatus parseADDR32(OperandVector &Operands) {
527 // For the AsmParser, we will accept %r0 for ADDR32 as well.
528 return parseRegister(Operands, GR32Reg);
529 }
530 ParseStatus parseADDR64(OperandVector &Operands) {
531 // For the AsmParser, we will accept %r0 for ADDR64 as well.
532 return parseRegister(Operands, GR64Reg);
533 }
534 ParseStatus parseADDR128(OperandVector &Operands) {
535 llvm_unreachable("Shouldn't be used as an operand");
536 }
538 return parseRegister(Operands, FP32Reg);
539 }
541 return parseRegister(Operands, FP64Reg);
542 }
543 ParseStatus parseFP128(OperandVector &Operands) {
544 return parseRegister(Operands, FP128Reg);
545 }
547 return parseRegister(Operands, VR32Reg);
548 }
550 return parseRegister(Operands, VR64Reg);
551 }
552 ParseStatus parseVF128(OperandVector &Operands) {
553 llvm_unreachable("Shouldn't be used as an operand");
554 }
555 ParseStatus parseVR128(OperandVector &Operands) {
556 return parseRegister(Operands, VR128Reg);
557 }
559 return parseRegister(Operands, AR32Reg);
560 }
562 return parseRegister(Operands, CR64Reg);
563 }
564 ParseStatus parseAnyReg(OperandVector &Operands) {
565 return parseAnyRegister(Operands);
566 }
567 ParseStatus parseBDAddr32(OperandVector &Operands) {
568 return parseAddress(Operands, BDMem, GR32Reg);
569 }
570 ParseStatus parseBDAddr64(OperandVector &Operands) {
571 return parseAddress(Operands, BDMem, GR64Reg);
572 }
573 ParseStatus parseBDXAddr64(OperandVector &Operands) {
574 return parseAddress(Operands, BDXMem, GR64Reg);
575 }
576 ParseStatus parseBDLAddr64(OperandVector &Operands) {
577 return parseAddress(Operands, BDLMem, GR64Reg);
578 }
579 ParseStatus parseBDRAddr64(OperandVector &Operands) {
580 return parseAddress(Operands, BDRMem, GR64Reg);
581 }
582 ParseStatus parseBDVAddr64(OperandVector &Operands) {
583 return parseAddress(Operands, BDVMem, GR64Reg);
584 }
585 ParseStatus parsePCRel12(OperandVector &Operands) {
586 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
587 }
588 ParseStatus parsePCRel16(OperandVector &Operands) {
589 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
590 }
591 ParseStatus parsePCRel24(OperandVector &Operands) {
592 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
593 }
594 ParseStatus parsePCRel32(OperandVector &Operands) {
595 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
596 }
597 ParseStatus parsePCRelTLS16(OperandVector &Operands) {
598 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
599 }
600 ParseStatus parsePCRelTLS32(OperandVector &Operands) {
601 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
602 }
603};
604
605} // end anonymous namespace
606
607#define GET_REGISTER_MATCHER
608#define GET_SUBTARGET_FEATURE_NAME
609#define GET_MATCHER_IMPLEMENTATION
610#define GET_MNEMONIC_SPELL_CHECKER
611#include "SystemZGenAsmMatcher.inc"
612
613// Used for the .insn directives; contains information needed to parse the
614// operands in the directive.
618 int32_t NumOperands;
619 MatchClassKind OperandKinds[7];
620};
621
622// For equal_range comparison.
624 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
625 return LHS.Format < RHS;
626 }
627 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
628 return LHS < RHS.Format;
629 }
630 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
631 return LHS.Format < RHS.Format;
632 }
633};
634
635// Table initializing information for parsing the .insn directive.
637 /* Format, Opcode, NumOperands, OperandKinds */
638 { "e", SystemZ::InsnE, 1,
639 { MCK_U16Imm } },
640 { "ri", SystemZ::InsnRI, 3,
641 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
642 { "rie", SystemZ::InsnRIE, 4,
643 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
644 { "ril", SystemZ::InsnRIL, 3,
645 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
646 { "rilu", SystemZ::InsnRILU, 3,
647 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
648 { "ris", SystemZ::InsnRIS, 5,
649 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
650 { "rr", SystemZ::InsnRR, 3,
651 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
652 { "rre", SystemZ::InsnRRE, 3,
653 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
654 { "rrf", SystemZ::InsnRRF, 5,
655 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
656 { "rrs", SystemZ::InsnRRS, 5,
657 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
658 { "rs", SystemZ::InsnRS, 4,
659 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
660 { "rse", SystemZ::InsnRSE, 4,
661 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
662 { "rsi", SystemZ::InsnRSI, 4,
663 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
664 { "rsy", SystemZ::InsnRSY, 4,
665 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
666 { "rx", SystemZ::InsnRX, 3,
667 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
668 { "rxe", SystemZ::InsnRXE, 3,
669 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
670 { "rxf", SystemZ::InsnRXF, 4,
671 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
672 { "rxy", SystemZ::InsnRXY, 3,
673 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
674 { "s", SystemZ::InsnS, 2,
675 { MCK_U32Imm, MCK_BDAddr64Disp12 } },
676 { "si", SystemZ::InsnSI, 3,
677 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
678 { "sil", SystemZ::InsnSIL, 3,
679 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
680 { "siy", SystemZ::InsnSIY, 3,
681 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
682 { "ss", SystemZ::InsnSS, 4,
683 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
684 { "sse", SystemZ::InsnSSE, 3,
685 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
686 { "ssf", SystemZ::InsnSSF, 4,
687 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
688 { "vri", SystemZ::InsnVRI, 6,
689 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } },
690 { "vrr", SystemZ::InsnVRR, 7,
691 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm,
692 MCK_U4Imm } },
693 { "vrs", SystemZ::InsnVRS, 5,
694 { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } },
695 { "vrv", SystemZ::InsnVRV, 4,
696 { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } },
697 { "vrx", SystemZ::InsnVRX, 4,
698 { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } },
699 { "vsi", SystemZ::InsnVSI, 4,
700 { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } }
701};
702
703static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
704 if (!E)
705 return;
706 if (auto *CE = dyn_cast<MCConstantExpr>(E))
707 OS << *CE;
708 else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
709 OS << *UE;
710 else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
711 OS << *BE;
712 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
713 OS << *SRE;
714 else
715 OS << *E;
716}
717
718void SystemZOperand::print(raw_ostream &OS) const {
719 switch (Kind) {
720 case KindToken:
721 OS << "Token:" << getToken();
722 break;
723 case KindReg:
725 break;
726 case KindImm:
727 OS << "Imm:";
728 printMCExpr(getImm(), OS);
729 break;
730 case KindImmTLS:
731 OS << "ImmTLS:";
732 printMCExpr(getImmTLS().Imm, OS);
733 if (getImmTLS().Sym) {
734 OS << ", ";
735 printMCExpr(getImmTLS().Sym, OS);
736 }
737 break;
738 case KindMem: {
739 const MemOp &Op = getMem();
740 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
741 if (Op.Base) {
742 OS << "(";
743 if (Op.MemKind == BDLMem)
744 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
745 else if (Op.MemKind == BDRMem)
746 OS << SystemZGNUInstPrinter::getRegisterName(Op.Length.Reg) << ",";
747 if (Op.Index)
750 OS << ")";
751 }
752 break;
753 }
754 case KindInvalid:
755 break;
756 }
757}
758
759// Parse one register of the form %<prefix><number>.
760bool SystemZAsmParser::parseRegister(Register &Reg, bool RequirePercent,
761 bool RestoreOnFailure) {
762 const AsmToken &PercentTok = Parser.getTok();
763 bool HasPercent = PercentTok.is(AsmToken::Percent);
764
765 Reg.StartLoc = PercentTok.getLoc();
766
767 if (RequirePercent && PercentTok.isNot(AsmToken::Percent))
768 return Error(PercentTok.getLoc(), "register expected");
769
770 if (HasPercent) {
771 Parser.Lex(); // Eat percent token.
772 }
773
774 // Expect a register name.
775 if (Parser.getTok().isNot(AsmToken::Identifier)) {
776 if (RestoreOnFailure && HasPercent)
777 getLexer().UnLex(PercentTok);
778 return Error(Reg.StartLoc,
779 HasPercent ? "invalid register" : "register expected");
780 }
781
782 // Check that there's a prefix.
783 StringRef Name = Parser.getTok().getString();
784 if (Name.size() < 2) {
785 if (RestoreOnFailure && HasPercent)
786 getLexer().UnLex(PercentTok);
787 return Error(Reg.StartLoc, "invalid register");
788 }
789 char Prefix = Name[0];
790
791 // Treat the rest of the register name as a register number.
792 if (Name.substr(1).getAsInteger(10, Reg.Num)) {
793 if (RestoreOnFailure && HasPercent)
794 getLexer().UnLex(PercentTok);
795 return Error(Reg.StartLoc, "invalid register");
796 }
797
798 // Look for valid combinations of prefix and number.
799 if (Prefix == 'r' && Reg.Num < 16)
800 Reg.Group = RegGR;
801 else if (Prefix == 'f' && Reg.Num < 16)
802 Reg.Group = RegFP;
803 else if (Prefix == 'v' && Reg.Num < 32)
804 Reg.Group = RegV;
805 else if (Prefix == 'a' && Reg.Num < 16)
806 Reg.Group = RegAR;
807 else if (Prefix == 'c' && Reg.Num < 16)
808 Reg.Group = RegCR;
809 else {
810 if (RestoreOnFailure && HasPercent)
811 getLexer().UnLex(PercentTok);
812 return Error(Reg.StartLoc, "invalid register");
813 }
814
815 Reg.EndLoc = Parser.getTok().getLoc();
816 Parser.Lex();
817 return false;
818}
819
820// Parse a register of kind Kind and add it to Operands.
821ParseStatus SystemZAsmParser::parseRegister(OperandVector &Operands,
822 RegisterKind Kind) {
824 RegisterGroup Group;
825 switch (Kind) {
826 case GR32Reg:
827 case GRH32Reg:
828 case GR64Reg:
829 case GR128Reg:
830 Group = RegGR;
831 break;
832 case FP32Reg:
833 case FP64Reg:
834 case FP128Reg:
835 Group = RegFP;
836 break;
837 case VR32Reg:
838 case VR64Reg:
839 case VR128Reg:
840 Group = RegV;
841 break;
842 case AR32Reg:
843 Group = RegAR;
844 break;
845 case CR64Reg:
846 Group = RegCR;
847 break;
848 }
849
850 // Handle register names of the form %<prefix><number>
851 if (isParsingGNU() && Parser.getTok().is(AsmToken::Percent)) {
852 if (parseRegister(Reg, /*RequirePercent=*/true))
854
855 // Check the parsed register group "Reg.Group" with the expected "Group"
856 // Have to error out if user specified wrong prefix.
857 switch (Group) {
858 case RegGR:
859 case RegFP:
860 case RegAR:
861 case RegCR:
862 if (Group != Reg.Group)
863 return Error(Reg.StartLoc, "invalid operand for instruction");
864 break;
865 case RegV:
866 if (Reg.Group != RegV && Reg.Group != RegFP)
867 return Error(Reg.StartLoc, "invalid operand for instruction");
868 break;
869 }
870 } else if (Parser.getTok().is(AsmToken::Integer)) {
871 if (parseIntegerRegister(Reg, Group))
873 }
874 // Otherwise we didn't match a register operand.
875 else
877
878 // Determine the LLVM register number according to Kind.
879 const unsigned *Regs;
880 switch (Kind) {
881 case GR32Reg: Regs = SystemZMC::GR32Regs; break;
882 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break;
883 case GR64Reg: Regs = SystemZMC::GR64Regs; break;
884 case GR128Reg: Regs = SystemZMC::GR128Regs; break;
885 case FP32Reg: Regs = SystemZMC::FP32Regs; break;
886 case FP64Reg: Regs = SystemZMC::FP64Regs; break;
887 case FP128Reg: Regs = SystemZMC::FP128Regs; break;
888 case VR32Reg: Regs = SystemZMC::VR32Regs; break;
889 case VR64Reg: Regs = SystemZMC::VR64Regs; break;
890 case VR128Reg: Regs = SystemZMC::VR128Regs; break;
891 case AR32Reg: Regs = SystemZMC::AR32Regs; break;
892 case CR64Reg: Regs = SystemZMC::CR64Regs; break;
893 }
894 if (Regs[Reg.Num] == 0)
895 return Error(Reg.StartLoc, "invalid register pair");
896
897 Operands.push_back(
898 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc));
900}
901
902// Parse any type of register (including integers) and add it to Operands.
903ParseStatus SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
904 SMLoc StartLoc = Parser.getTok().getLoc();
905
906 // Handle integer values.
907 if (Parser.getTok().is(AsmToken::Integer)) {
908 const MCExpr *Register;
909 if (Parser.parseExpression(Register))
911
912 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
913 int64_t Value = CE->getValue();
914 if (Value < 0 || Value > 15)
915 return Error(StartLoc, "invalid register");
916 }
917
918 SMLoc EndLoc =
920
921 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
922 }
923 else {
924 if (isParsingHLASM())
926
928 if (parseRegister(Reg, /*RequirePercent=*/true))
930
931 if (Reg.Num > 15)
932 return Error(StartLoc, "invalid register");
933
934 // Map to the correct register kind.
935 RegisterKind Kind;
936 unsigned RegNo;
937 if (Reg.Group == RegGR) {
938 Kind = GR64Reg;
939 RegNo = SystemZMC::GR64Regs[Reg.Num];
940 }
941 else if (Reg.Group == RegFP) {
942 Kind = FP64Reg;
943 RegNo = SystemZMC::FP64Regs[Reg.Num];
944 }
945 else if (Reg.Group == RegV) {
946 Kind = VR128Reg;
947 RegNo = SystemZMC::VR128Regs[Reg.Num];
948 }
949 else if (Reg.Group == RegAR) {
950 Kind = AR32Reg;
951 RegNo = SystemZMC::AR32Regs[Reg.Num];
952 }
953 else if (Reg.Group == RegCR) {
954 Kind = CR64Reg;
955 RegNo = SystemZMC::CR64Regs[Reg.Num];
956 }
957 else {
959 }
960
961 Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
962 Reg.StartLoc, Reg.EndLoc));
963 }
965}
966
967bool SystemZAsmParser::parseIntegerRegister(Register &Reg,
968 RegisterGroup Group) {
969 Reg.StartLoc = Parser.getTok().getLoc();
970 // We have an integer token
971 const MCExpr *Register;
972 if (Parser.parseExpression(Register))
973 return true;
974
975 const auto *CE = dyn_cast<MCConstantExpr>(Register);
976 if (!CE)
977 return true;
978
979 int64_t MaxRegNum = (Group == RegV) ? 31 : 15;
980 int64_t Value = CE->getValue();
981 if (Value < 0 || Value > MaxRegNum) {
982 Error(Parser.getTok().getLoc(), "invalid register");
983 return true;
984 }
985
986 // Assign the Register Number
987 Reg.Num = (unsigned)Value;
988 Reg.Group = Group;
989 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
990
991 // At this point, successfully parsed an integer register.
992 return false;
993}
994
995// Parse a memory operand into Reg1, Reg2, Disp, and Length.
996bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
997 bool &HaveReg2, Register &Reg2,
998 const MCExpr *&Disp, const MCExpr *&Length,
999 bool HasLength, bool HasVectorIndex) {
1000 // Parse the displacement, which must always be present.
1001 if (getParser().parseExpression(Disp))
1002 return true;
1003
1004 // Parse the optional base and index.
1005 HaveReg1 = false;
1006 HaveReg2 = false;
1007 Length = nullptr;
1008
1009 // If we have a scenario as below:
1010 // vgef %v0, 0(0), 0
1011 // This is an example of a "BDVMem" instruction type.
1012 //
1013 // So when we parse this as an integer register, the register group
1014 // needs to be tied to "RegV". Usually when the prefix is passed in
1015 // as %<prefix><reg-number> its easy to check which group it should belong to
1016 // However, if we're passing in just the integer there's no real way to
1017 // "check" what register group it should belong to.
1018 //
1019 // When the user passes in the register as an integer, the user assumes that
1020 // the compiler is responsible for substituting it as the right kind of
1021 // register. Whereas, when the user specifies a "prefix", the onus is on
1022 // the user to make sure they pass in the right kind of register.
1023 //
1024 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is
1025 // always a general register. Reg1 should be of group RegV if "HasVectorIndex"
1026 // (i.e. insn is of type BDVMem) is true.
1027 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR;
1028
1029 if (getLexer().is(AsmToken::LParen)) {
1030 Parser.Lex();
1031
1032 if (isParsingGNU() && getLexer().is(AsmToken::Percent)) {
1033 // Parse the first register.
1034 HaveReg1 = true;
1035 if (parseRegister(Reg1, /*RequirePercent=*/true))
1036 return true;
1037 }
1038 // So if we have an integer as the first token in ([tok1], ..), it could:
1039 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of
1040 // instructions)
1041 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions)
1042 else if (getLexer().is(AsmToken::Integer)) {
1043 if (HasLength) {
1044 // Instruction has a "Length" field, safe to parse the first token as
1045 // the "Length" field
1046 if (getParser().parseExpression(Length))
1047 return true;
1048 } else {
1049 // Otherwise, if the instruction has no "Length" field, parse the
1050 // token as a "Register". We don't have to worry about whether the
1051 // instruction is invalid here, because the caller will take care of
1052 // error reporting.
1053 HaveReg1 = true;
1054 if (parseIntegerRegister(Reg1, RegGroup))
1055 return true;
1056 }
1057 } else {
1058 // If its not an integer or a percent token, then if the instruction
1059 // is reported to have a "Length" then, parse it as "Length".
1060 if (HasLength) {
1061 if (getParser().parseExpression(Length))
1062 return true;
1063 }
1064 }
1065
1066 // Check whether there's a second register.
1067 if (getLexer().is(AsmToken::Comma)) {
1068 Parser.Lex();
1069 HaveReg2 = true;
1070
1071 if (getLexer().is(AsmToken::Integer)) {
1072 if (parseIntegerRegister(Reg2, RegGR))
1073 return true;
1074 } else if (isParsingGNU()) {
1075 if (Parser.getTok().is(AsmToken::Percent)) {
1076 if (parseRegister(Reg2, /*RequirePercent=*/true))
1077 return true;
1078 } else {
1079 // GAS allows ",)" to indicate a missing base register.
1080 Reg2.Num = 0;
1081 Reg2.Group = RegGR;
1082 Reg2.StartLoc = Reg2.EndLoc = Parser.getTok().getLoc();
1083 }
1084 }
1085 }
1086
1087 // Consume the closing bracket.
1088 if (getLexer().isNot(AsmToken::RParen))
1089 return Error(Parser.getTok().getLoc(), "unexpected token in address");
1090 Parser.Lex();
1091 }
1092 return false;
1093}
1094
1095// Verify that Reg is a valid address register (base or index).
1096bool
1097SystemZAsmParser::parseAddressRegister(Register &Reg) {
1098 if (Reg.Group == RegV) {
1099 Error(Reg.StartLoc, "invalid use of vector addressing");
1100 return true;
1101 }
1102 if (Reg.Group != RegGR) {
1103 Error(Reg.StartLoc, "invalid address register");
1104 return true;
1105 }
1106 return false;
1107}
1108
1109// Parse a memory operand and add it to Operands. The other arguments
1110// are as above.
1111ParseStatus SystemZAsmParser::parseAddress(OperandVector &Operands,
1112 MemoryKind MemKind,
1113 RegisterKind RegKind) {
1114 SMLoc StartLoc = Parser.getTok().getLoc();
1115 unsigned Base = 0, Index = 0, LengthReg = 0;
1116 Register Reg1, Reg2;
1117 bool HaveReg1, HaveReg2;
1118 const MCExpr *Disp;
1119 const MCExpr *Length;
1120
1121 bool HasLength = (MemKind == BDLMem) ? true : false;
1122 bool HasVectorIndex = (MemKind == BDVMem) ? true : false;
1123 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength,
1124 HasVectorIndex))
1125 return ParseStatus::Failure;
1126
1127 const unsigned *Regs;
1128 switch (RegKind) {
1129 case GR32Reg: Regs = SystemZMC::GR32Regs; break;
1130 case GR64Reg: Regs = SystemZMC::GR64Regs; break;
1131 default: llvm_unreachable("invalid RegKind");
1132 }
1133
1134 switch (MemKind) {
1135 case BDMem:
1136 // If we have Reg1, it must be an address register.
1137 if (HaveReg1) {
1138 if (parseAddressRegister(Reg1))
1139 return ParseStatus::Failure;
1140 Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num];
1141 }
1142 // There must be no Reg2.
1143 if (HaveReg2)
1144 return Error(StartLoc, "invalid use of indexed addressing");
1145 break;
1146 case BDXMem:
1147 // If we have Reg1, it must be an address register.
1148 if (HaveReg1) {
1149 if (parseAddressRegister(Reg1))
1150 return ParseStatus::Failure;
1151 // If there are two registers, the first one is the index and the
1152 // second is the base. If there is only a single register, it is
1153 // used as base with GAS and as index with HLASM.
1154 if (HaveReg2 || isParsingHLASM())
1155 Index = Reg1.Num == 0 ? 0 : Regs[Reg1.Num];
1156 else
1157 Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num];
1158 }
1159 // If we have Reg2, it must be an address register.
1160 if (HaveReg2) {
1161 if (parseAddressRegister(Reg2))
1162 return ParseStatus::Failure;
1163 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
1164 }
1165 break;
1166 case BDLMem:
1167 // If we have Reg2, it must be an address register.
1168 if (HaveReg2) {
1169 if (parseAddressRegister(Reg2))
1170 return ParseStatus::Failure;
1171 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
1172 }
1173 // We cannot support base+index addressing.
1174 if (HaveReg1 && HaveReg2)
1175 return Error(StartLoc, "invalid use of indexed addressing");
1176 // We must have a length.
1177 if (!Length)
1178 return Error(StartLoc, "missing length in address");
1179 break;
1180 case BDRMem:
1181 // We must have Reg1, and it must be a GPR.
1182 if (!HaveReg1 || Reg1.Group != RegGR)
1183 return Error(StartLoc, "invalid operand for instruction");
1184 LengthReg = SystemZMC::GR64Regs[Reg1.Num];
1185 // If we have Reg2, it must be an address register.
1186 if (HaveReg2) {
1187 if (parseAddressRegister(Reg2))
1188 return ParseStatus::Failure;
1189 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
1190 }
1191 break;
1192 case BDVMem:
1193 // We must have Reg1, and it must be a vector register.
1194 if (!HaveReg1 || Reg1.Group != RegV)
1195 return Error(StartLoc, "vector index required in address");
1196 Index = SystemZMC::VR128Regs[Reg1.Num];
1197 // In GAS mode, we must have Reg2, since a single register would be
1198 // interpreted as base register, which cannot be a vector register.
1199 if (isParsingGNU() && !HaveReg2)
1200 return Error(Reg1.StartLoc, "invalid use of vector addressing");
1201 // If we have Reg2, it must be an address register.
1202 if (HaveReg2) {
1203 if (parseAddressRegister(Reg2))
1204 return ParseStatus::Failure;
1205 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
1206 }
1207 break;
1208 }
1209
1210 SMLoc EndLoc =
1212 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
1213 Index, Length, LengthReg,
1214 StartLoc, EndLoc));
1215 return ParseStatus::Success;
1216}
1217
1218ParseStatus SystemZAsmParser::parseDirective(AsmToken DirectiveID) {
1219 StringRef IDVal = DirectiveID.getIdentifier();
1220
1221 if (IDVal == ".insn")
1222 return ParseDirectiveInsn(DirectiveID.getLoc());
1223 if (IDVal == ".machine")
1224 return ParseDirectiveMachine(DirectiveID.getLoc());
1225 if (IDVal.starts_with(".gnu_attribute"))
1226 return ParseGNUAttribute(DirectiveID.getLoc());
1227
1228 return ParseStatus::NoMatch;
1229}
1230
1231/// ParseDirectiveInsn
1232/// ::= .insn [ format, encoding, (operands (, operands)*) ]
1233bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
1234 MCAsmParser &Parser = getParser();
1235
1236 // Expect instruction format as identifier.
1238 SMLoc ErrorLoc = Parser.getTok().getLoc();
1239 if (Parser.parseIdentifier(Format))
1240 return Error(ErrorLoc, "expected instruction format");
1241
1243
1244 // Find entry for this format in InsnMatchTable.
1245 auto EntryRange =
1246 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
1247 Format, CompareInsn());
1248
1249 // If first == second, couldn't find a match in the table.
1250 if (EntryRange.first == EntryRange.second)
1251 return Error(ErrorLoc, "unrecognized format");
1252
1253 struct InsnMatchEntry *Entry = EntryRange.first;
1254
1255 // Format should match from equal_range.
1256 assert(Entry->Format == Format);
1257
1258 // Parse the following operands using the table's information.
1259 for (int I = 0; I < Entry->NumOperands; I++) {
1260 MatchClassKind Kind = Entry->OperandKinds[I];
1261
1262 SMLoc StartLoc = Parser.getTok().getLoc();
1263
1264 // Always expect commas as separators for operands.
1265 if (getLexer().isNot(AsmToken::Comma))
1266 return Error(StartLoc, "unexpected token in directive");
1267 Lex();
1268
1269 // Parse operands.
1270 ParseStatus ResTy;
1271 if (Kind == MCK_AnyReg)
1272 ResTy = parseAnyReg(Operands);
1273 else if (Kind == MCK_VR128)
1274 ResTy = parseVR128(Operands);
1275 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
1276 ResTy = parseBDXAddr64(Operands);
1277 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
1278 ResTy = parseBDAddr64(Operands);
1279 else if (Kind == MCK_BDVAddr64Disp12)
1280 ResTy = parseBDVAddr64(Operands);
1281 else if (Kind == MCK_PCRel32)
1282 ResTy = parsePCRel32(Operands);
1283 else if (Kind == MCK_PCRel16)
1284 ResTy = parsePCRel16(Operands);
1285 else {
1286 // Only remaining operand kind is an immediate.
1287 const MCExpr *Expr;
1288 SMLoc StartLoc = Parser.getTok().getLoc();
1289
1290 // Expect immediate expression.
1291 if (Parser.parseExpression(Expr))
1292 return Error(StartLoc, "unexpected token in directive");
1293
1294 SMLoc EndLoc =
1296
1297 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1298 ResTy = ParseStatus::Success;
1299 }
1300
1301 if (!ResTy.isSuccess())
1302 return true;
1303 }
1304
1305 // Build the instruction with the parsed operands.
1306 MCInst Inst = MCInstBuilder(Entry->Opcode);
1307
1308 for (size_t I = 0; I < Operands.size(); I++) {
1309 MCParsedAsmOperand &Operand = *Operands[I];
1310 MatchClassKind Kind = Entry->OperandKinds[I];
1311
1312 // Verify operand.
1313 unsigned Res = validateOperandClass(Operand, Kind);
1314 if (Res != Match_Success)
1315 return Error(Operand.getStartLoc(), "unexpected operand type");
1316
1317 // Add operands to instruction.
1318 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
1319 if (ZOperand.isReg())
1320 ZOperand.addRegOperands(Inst, 1);
1321 else if (ZOperand.isMem(BDMem))
1322 ZOperand.addBDAddrOperands(Inst, 2);
1323 else if (ZOperand.isMem(BDXMem))
1324 ZOperand.addBDXAddrOperands(Inst, 3);
1325 else if (ZOperand.isMem(BDVMem))
1326 ZOperand.addBDVAddrOperands(Inst, 3);
1327 else if (ZOperand.isImm())
1328 ZOperand.addImmOperands(Inst, 1);
1329 else
1330 llvm_unreachable("unexpected operand type");
1331 }
1332
1333 // Emit as a regular instruction.
1334 Parser.getStreamer().emitInstruction(Inst, getSTI());
1335
1336 return false;
1337}
1338
1339/// ParseDirectiveMachine
1340/// ::= .machine [ mcpu ]
1341bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) {
1342 MCAsmParser &Parser = getParser();
1343 if (Parser.getTok().isNot(AsmToken::Identifier) &&
1344 Parser.getTok().isNot(AsmToken::String))
1345 return TokError("unexpected token in '.machine' directive");
1346
1347 StringRef CPU = Parser.getTok().getIdentifier();
1348 Parser.Lex();
1349 if (parseEOL())
1350 return true;
1351
1352 MCSubtargetInfo &STI = copySTI();
1353 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
1354 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
1355
1356 getTargetStreamer().emitMachine(CPU);
1357
1358 return false;
1359}
1360
1361bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) {
1362 int64_t Tag;
1363 int64_t IntegerValue;
1364 if (!Parser.parseGNUAttribute(L, Tag, IntegerValue))
1365 return Error(L, "malformed .gnu_attribute directive");
1366
1367 // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2.
1368 if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2))
1369 return Error(L, "unrecognized .gnu_attribute tag/value pair.");
1370
1371 Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue);
1372
1373 return parseEOL();
1374}
1375
1376bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc,
1377 SMLoc &EndLoc, bool RequirePercent,
1378 bool RestoreOnFailure) {
1379 Register Reg;
1380 if (parseRegister(Reg, RequirePercent, RestoreOnFailure))
1381 return true;
1382 if (Reg.Group == RegGR)
1383 RegNo = SystemZMC::GR64Regs[Reg.Num];
1384 else if (Reg.Group == RegFP)
1385 RegNo = SystemZMC::FP64Regs[Reg.Num];
1386 else if (Reg.Group == RegV)
1387 RegNo = SystemZMC::VR128Regs[Reg.Num];
1388 else if (Reg.Group == RegAR)
1389 RegNo = SystemZMC::AR32Regs[Reg.Num];
1390 else if (Reg.Group == RegCR)
1391 RegNo = SystemZMC::CR64Regs[Reg.Num];
1392 StartLoc = Reg.StartLoc;
1393 EndLoc = Reg.EndLoc;
1394 return false;
1395}
1396
1397bool SystemZAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc,
1398 SMLoc &EndLoc) {
1399 return ParseRegister(Reg, StartLoc, EndLoc, /*RequirePercent=*/false,
1400 /*RestoreOnFailure=*/false);
1401}
1402
1403ParseStatus SystemZAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
1404 SMLoc &EndLoc) {
1405 bool Result = ParseRegister(Reg, StartLoc, EndLoc, /*RequirePercent=*/false,
1406 /*RestoreOnFailure=*/true);
1407 bool PendingErrors = getParser().hasPendingError();
1408 getParser().clearPendingErrors();
1409 if (PendingErrors)
1410 return ParseStatus::Failure;
1411 if (Result)
1412 return ParseStatus::NoMatch;
1413 return ParseStatus::Success;
1414}
1415
1416bool SystemZAsmParser::parseInstruction(ParseInstructionInfo &Info,
1417 StringRef Name, SMLoc NameLoc,
1419
1420 // Apply mnemonic aliases first, before doing anything else, in
1421 // case the target uses it.
1422 applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect());
1423
1424 Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
1425
1426 // Read the remaining operands.
1427 if (getLexer().isNot(AsmToken::EndOfStatement)) {
1428 // Read the first operand.
1429 if (parseOperand(Operands, Name)) {
1430 return true;
1431 }
1432
1433 // Read any subsequent operands.
1434 while (getLexer().is(AsmToken::Comma)) {
1435 Parser.Lex();
1436
1437 if (isParsingHLASM() && getLexer().is(AsmToken::Space))
1438 return Error(
1439 Parser.getTok().getLoc(),
1440 "No space allowed between comma that separates operand entries");
1441
1442 if (parseOperand(Operands, Name)) {
1443 return true;
1444 }
1445 }
1446
1447 // Under the HLASM variant, we could have the remark field
1448 // The remark field occurs after the operation entries
1449 // There is a space that separates the operation entries and the
1450 // remark field.
1451 if (isParsingHLASM() && getTok().is(AsmToken::Space)) {
1452 // We've confirmed that there is a Remark field.
1453 StringRef Remark(getLexer().LexUntilEndOfStatement());
1454 Parser.Lex();
1455
1456 // If there is nothing after the space, then there is nothing to emit
1457 // We could have a situation as this:
1458 // " \n"
1459 // After lexing above, we will have
1460 // "\n"
1461 // This isn't an explicit remark field, so we don't have to output
1462 // this as a comment.
1463 if (Remark.size())
1464 // Output the entire Remarks Field as a comment
1465 getStreamer().AddComment(Remark);
1466 }
1467
1468 if (getLexer().isNot(AsmToken::EndOfStatement)) {
1469 SMLoc Loc = getLexer().getLoc();
1470 return Error(Loc, "unexpected token in argument list");
1471 }
1472 }
1473
1474 // Consume the EndOfStatement.
1475 Parser.Lex();
1476 return false;
1477}
1478
1479bool SystemZAsmParser::parseOperand(OperandVector &Operands,
1480 StringRef Mnemonic) {
1481 // Check if the current operand has a custom associated parser, if so, try to
1482 // custom parse the operand, or fallback to the general approach. Force all
1483 // features to be available during the operand check, or else we will fail to
1484 // find the custom parser, and then we will later get an InvalidOperand error
1485 // instead of a MissingFeature errror.
1486 FeatureBitset AvailableFeatures = getAvailableFeatures();
1488 All.set();
1489 setAvailableFeatures(All);
1490 ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic);
1491 setAvailableFeatures(AvailableFeatures);
1492 if (Res.isSuccess())
1493 return false;
1494
1495 // If there wasn't a custom match, try the generic matcher below. Otherwise,
1496 // there was a match, but an error occurred, in which case, just return that
1497 // the operand parsing failed.
1498 if (Res.isFailure())
1499 return true;
1500
1501 // Check for a register. All real register operands should have used
1502 // a context-dependent parse routine, which gives the required register
1503 // class. The code is here to mop up other cases, like those where
1504 // the instruction isn't recognized.
1505 if (isParsingGNU() && Parser.getTok().is(AsmToken::Percent)) {
1506 Register Reg;
1507 if (parseRegister(Reg, /*RequirePercent=*/true))
1508 return true;
1509 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
1510 return false;
1511 }
1512
1513 // The only other type of operand is an immediate or address. As above,
1514 // real address operands should have used a context-dependent parse routine,
1515 // so we treat any plain expression as an immediate.
1516 SMLoc StartLoc = Parser.getTok().getLoc();
1517 Register Reg1, Reg2;
1518 bool HaveReg1, HaveReg2;
1519 const MCExpr *Expr;
1520 const MCExpr *Length;
1521 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length,
1522 /*HasLength*/ true, /*HasVectorIndex*/ true))
1523 return true;
1524 // If the register combination is not valid for any instruction, reject it.
1525 // Otherwise, fall back to reporting an unrecognized instruction.
1526 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
1527 && parseAddressRegister(Reg1))
1528 return true;
1529 if (HaveReg2 && parseAddressRegister(Reg2))
1530 return true;
1531
1532 SMLoc EndLoc =
1534 if (HaveReg1 || HaveReg2 || Length)
1535 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
1536 else
1537 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1538 return false;
1539}
1540
1541bool SystemZAsmParser::matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1543 MCStreamer &Out,
1545 bool MatchingInlineAsm) {
1546 MCInst Inst;
1547 unsigned MatchResult;
1548
1549 unsigned Dialect = getMAIAssemblerDialect();
1550
1551 FeatureBitset MissingFeatures;
1552 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
1553 MatchingInlineAsm, Dialect);
1554 switch (MatchResult) {
1555 case Match_Success:
1556 Inst.setLoc(IDLoc);
1557 Out.emitInstruction(Inst, getSTI());
1558 return false;
1559
1560 case Match_MissingFeature: {
1561 assert(MissingFeatures.any() && "Unknown missing feature!");
1562 // Special case the error message for the very common case where only
1563 // a single subtarget feature is missing
1564 std::string Msg = "instruction requires:";
1565 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
1566 if (MissingFeatures[I]) {
1567 Msg += " ";
1568 Msg += getSubtargetFeatureName(I);
1569 }
1570 }
1571 return Error(IDLoc, Msg);
1572 }
1573
1574 case Match_InvalidOperand: {
1575 SMLoc ErrorLoc = IDLoc;
1576 if (ErrorInfo != ~0ULL) {
1577 if (ErrorInfo >= Operands.size())
1578 return Error(IDLoc, "too few operands for instruction");
1579
1580 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
1581 if (ErrorLoc == SMLoc())
1582 ErrorLoc = IDLoc;
1583 }
1584 return Error(ErrorLoc, "invalid operand for instruction");
1585 }
1586
1587 case Match_MnemonicFail: {
1588 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1589 std::string Suggestion = SystemZMnemonicSpellCheck(
1590 ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect);
1591 return Error(IDLoc, "invalid instruction" + Suggestion,
1592 ((SystemZOperand &)*Operands[0]).getLocRange());
1593 }
1594 }
1595
1596 llvm_unreachable("Unexpected match type");
1597}
1598
1599ParseStatus SystemZAsmParser::parsePCRel(OperandVector &Operands,
1600 int64_t MinVal, int64_t MaxVal,
1601 bool AllowTLS) {
1602 MCContext &Ctx = getContext();
1603 MCStreamer &Out = getStreamer();
1604 const MCExpr *Expr;
1605 SMLoc StartLoc = Parser.getTok().getLoc();
1606 if (getParser().parseExpression(Expr))
1607 return ParseStatus::NoMatch;
1608
1609 auto IsOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool {
1610 if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
1611 int64_t Value = CE->getValue();
1612 if (Negate)
1613 Value = -Value;
1614 if ((Value & 1) || Value < MinVal || Value > MaxVal)
1615 return true;
1616 }
1617 return false;
1618 };
1619
1620 // For consistency with the GNU assembler, treat immediates as offsets
1621 // from ".".
1622 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
1623 if (isParsingHLASM())
1624 return Error(StartLoc, "Expected PC-relative expression");
1625 if (IsOutOfRangeConstant(CE, false))
1626 return Error(StartLoc, "offset out of range");
1627 int64_t Value = CE->getValue();
1628 MCSymbol *Sym = Ctx.createTempSymbol();
1629 Out.emitLabel(Sym);
1631 Ctx);
1632 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
1633 }
1634
1635 // For consistency with the GNU assembler, conservatively assume that a
1636 // constant offset must by itself be within the given size range.
1637 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
1638 if (IsOutOfRangeConstant(BE->getLHS(), false) ||
1639 IsOutOfRangeConstant(BE->getRHS(),
1640 BE->getOpcode() == MCBinaryExpr::Sub))
1641 return Error(StartLoc, "offset out of range");
1642
1643 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
1644 const MCExpr *Sym = nullptr;
1645 if (AllowTLS && getLexer().is(AsmToken::Colon)) {
1646 Parser.Lex();
1647
1648 if (Parser.getTok().isNot(AsmToken::Identifier))
1649 return Error(Parser.getTok().getLoc(), "unexpected token");
1650
1652 StringRef Name = Parser.getTok().getString();
1653 if (Name == "tls_gdcall")
1655 else if (Name == "tls_ldcall")
1657 else
1658 return Error(Parser.getTok().getLoc(), "unknown TLS tag");
1659 Parser.Lex();
1660
1661 if (Parser.getTok().isNot(AsmToken::Colon))
1662 return Error(Parser.getTok().getLoc(), "unexpected token");
1663 Parser.Lex();
1664
1665 if (Parser.getTok().isNot(AsmToken::Identifier))
1666 return Error(Parser.getTok().getLoc(), "unexpected token");
1667
1668 StringRef Identifier = Parser.getTok().getString();
1670 Kind, Ctx);
1671 Parser.Lex();
1672 }
1673
1674 SMLoc EndLoc =
1676
1677 if (AllowTLS)
1678 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
1679 StartLoc, EndLoc));
1680 else
1681 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1682
1683 return ParseStatus::Success;
1684}
1685
1686bool SystemZAsmParser::isLabel(AsmToken &Token) {
1687 if (isParsingGNU())
1688 return true;
1689
1690 // HLASM labels are ordinary symbols.
1691 // An HLASM label always starts at column 1.
1692 // An ordinary symbol syntax is laid out as follows:
1693 // Rules:
1694 // 1. Has to start with an "alphabetic character". Can be followed by up to
1695 // 62 alphanumeric characters. An "alphabetic character", in this scenario,
1696 // is a letter from 'A' through 'Z', or from 'a' through 'z',
1697 // or '$', '_', '#', or '@'
1698 // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc.
1699 // are all treated as the same symbol. However, the processing for the case
1700 // folding will not be done in this function.
1701 StringRef RawLabel = Token.getString();
1702 SMLoc Loc = Token.getLoc();
1703
1704 // An HLASM label cannot be empty.
1705 if (!RawLabel.size())
1706 return !Error(Loc, "HLASM Label cannot be empty");
1707
1708 // An HLASM label cannot exceed greater than 63 characters.
1709 if (RawLabel.size() > 63)
1710 return !Error(Loc, "Maximum length for HLASM Label is 63 characters");
1711
1712 // A label must start with an "alphabetic character".
1713 if (!isHLASMAlpha(RawLabel[0]))
1714 return !Error(Loc, "HLASM Label has to start with an alphabetic "
1715 "character or the underscore character");
1716
1717 // Now, we've established that the length is valid
1718 // and the first character is alphabetic.
1719 // Check whether remaining string is alphanumeric.
1720 for (unsigned I = 1; I < RawLabel.size(); ++I)
1721 if (!isHLASMAlnum(RawLabel[I]))
1722 return !Error(Loc, "HLASM Label has to be alphanumeric");
1723
1724 return true;
1725}
1726
1727// Force static initialization.
1728// NOLINTNEXTLINE(readability-identifier-naming)
1731}
static const char * getSubtargetFeatureName(uint64_t Val)
static void applyMnemonicAliases(StringRef &Mnemonic, const FeatureBitset &Features, unsigned VariantID)
static bool isNot(const MachineRegisterInfo &MRI, const MachineInstr &MI)
#define LLVM_EXTERNAL_VISIBILITY
Definition: Compiler.h:128
std::string Name
Symbol * Sym
Definition: ELF_riscv.cpp:479
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static LVOptions Options
Definition: LVOptions.cpp:25
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static bool isDigit(const char C)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, bool AllowSymbol=false)
LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser()
static struct InsnMatchEntry InsnMatchTable[]
static void printMCExpr(const MCExpr *E, raw_ostream &OS)
Value * RHS
Value * LHS
Target independent representation for an assembler token.
Definition: MCAsmMacro.h:21
SMLoc getLoc() const
Definition: MCAsmLexer.cpp:26
bool isNot(TokenKind K) const
Definition: MCAsmMacro.h:83
StringRef getString() const
Get the string for the current token, this includes all characters (for example, the quotes on string...
Definition: MCAsmMacro.h:110
bool is(TokenKind K) const
Definition: MCAsmMacro.h:82
StringRef getIdentifier() const
Get the identifier string for the current token, which should be an identifier or a string.
Definition: MCAsmMacro.h:99
This class represents an Operation in the Expression.
Base class for user error types.
Definition: Error.h:355
Lightweight error class with error context and mandatory checking.
Definition: Error.h:160
Container class for subtarget features.
constexpr size_t size() const
unsigned getAssemblerDialect() const
Definition: MCAsmInfo.h:567
virtual void Initialize(MCAsmParser &Parser)
Initialize the extension for parsing using the given Parser.
Generic assembler parser interface, for use by target specific assembly parsers.
Definition: MCAsmParser.h:123
virtual MCStreamer & getStreamer()=0
Return the output streamer for the assembler.
virtual bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc)=0
Parse an arbitrary expression.
const AsmToken & getTok() const
Get the current AsmToken from the stream.
Definition: MCAsmParser.cpp:40
virtual bool parseIdentifier(StringRef &Res)=0
Parse an identifier or string (as a quoted identifier) and set Res to the identifier contents.
virtual const AsmToken & Lex()=0
Get the next AsmToken in the stream, possibly handling file inclusion first.
virtual void addAliasForDirective(StringRef Directive, StringRef Alias)=0
bool parseGNUAttribute(SMLoc L, int64_t &Tag, int64_t &IntegerValue)
Parse a .gnu_attribute.
virtual MCContext & getContext()=0
static const MCBinaryExpr * createAdd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:537
@ Sub
Subtraction.
Definition: MCExpr.h:518
Context object for machine code objects.
Definition: MCContext.h:83
MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
Definition: MCContext.cpp:345
const MCAsmInfo * getAsmInfo() const
Definition: MCContext.h:412
MCSymbol * getOrCreateSymbol(const Twine &Name)
Lookup the symbol inside with the specified Name.
Definition: MCContext.cpp:212
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:34
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:185
void setLoc(SMLoc loc)
Definition: MCInst.h:204
void addOperand(const MCOperand Op)
Definition: MCInst.h:211
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:26
static MCOperand createExpr(const MCExpr *Val)
Definition: MCInst.h:163
static MCOperand createReg(MCRegister Reg)
Definition: MCInst.h:135
static MCOperand createImm(int64_t Val)
Definition: MCInst.h:142
MCParsedAsmOperand - This abstract class represents a source-level assembly instruction operand.
virtual SMLoc getStartLoc() const =0
getStartLoc - Get the location of the first token of this operand.
virtual bool isReg() const =0
isReg - Is this a register operand?
virtual bool isMem() const =0
isMem - Is this a memory operand?
virtual MCRegister getReg() const =0
virtual void print(raw_ostream &OS) const =0
print - Print a debug representation of the operand to the given stream.
virtual bool isToken() const =0
isToken - Is this a token operand?
virtual bool isImm() const =0
isImm - Is this an immediate operand?
virtual SMLoc getEndLoc() const =0
getEndLoc - Get the location of the last token of this operand.
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
Streaming machine code generation interface.
Definition: MCStreamer.h:213
virtual void emitGNUAttribute(unsigned Tag, unsigned Value)
Emit a .gnu_attribute directive.
Definition: MCStreamer.h:641
virtual void emitInstruction(const MCInst &Inst, const MCSubtargetInfo &STI)
Emit the given Instruction into the current section.
virtual void emitLabel(MCSymbol *Symbol, SMLoc Loc=SMLoc())
Emit a label for Symbol into the current section.
Definition: MCStreamer.cpp:420
MCTargetStreamer * getTargetStreamer()
Definition: MCStreamer.h:309
Generic base class for all target subtargets.
const FeatureBitset & getFeatureBits() const
void setDefaultFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS)
Set the features to the default for the given CPU and TuneCPU, with ano appended feature string.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx)
Definition: MCExpr.h:398
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
MCTargetAsmParser - Generic interface to target specific assembly parsers.
virtual ParseStatus parseDirective(AsmToken DirectiveID)
Parses a target-specific assembler directive.
virtual bool parseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands)=0
Parse one assembly instruction.
virtual bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc)=0
virtual ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc)=0
tryParseRegister - parse one register if possible
virtual bool matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm)=0
Recognize a series of operands of a parsed instruction as an actual MCInst and emit it to the specifi...
virtual bool isLabel(AsmToken &Token)
void setAvailableFeatures(const FeatureBitset &Value)
const MCSubtargetInfo & getSTI() const
Target specific streamer interface.
Definition: MCStreamer.h:94
Ternary parse status returned by various parse* methods.
constexpr bool isFailure() const
static constexpr StatusTy Failure
constexpr bool isSuccess() const
static constexpr StatusTy Success
static constexpr StatusTy NoMatch
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Represents a location in source code.
Definition: SMLoc.h:23
static SMLoc getFromPointer(const char *Ptr)
Definition: SMLoc.h:36
constexpr const char * getPointer() const
Definition: SMLoc.h:34
Represents a range in source code.
Definition: SMLoc.h:48
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition: StringRef.h:265
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:150
static const char * getRegisterName(MCRegister Reg)
LLVM Value Representation.
Definition: Value.h:74
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Entry
Definition: COFF.h:844
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
const unsigned GR64Regs[16]
const unsigned VR128Regs[32]
const unsigned GR128Regs[16]
const unsigned GRH32Regs[16]
const unsigned FP32Regs[16]
const unsigned GR32Regs[16]
const unsigned FP64Regs[16]
const unsigned VR64Regs[32]
const unsigned FP128Regs[16]
const unsigned AR32Regs[16]
const unsigned VR32Regs[32]
const unsigned CR64Regs[16]
@ CE
Windows NT (Windows on ARM)
Reg
All possible values of the reg field in the ModR/M byte.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
Target & getTheSystemZTarget()
@ Length
Definition: DWP.cpp:480
DWARFExpression::Operation Op
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
#define N
bool operator()(const InsnMatchEntry &LHS, StringRef RHS)
MatchClassKind OperandKinds[7]
RegisterMCAsmParser - Helper template for registering a target specific assembly parser,...