22#include "llvm/IR/IntrinsicsAMDGPU.h"
23#include "llvm/IR/IntrinsicsR600.h"
27#include "R600GenCallingConv.inc"
145 {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32},
Custom);
148 {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32},
Custom);
185 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
186 for (
MVT VT : ScalarIntVTs)
205 if (std::next(
I) ==
I->getParent()->end())
207 return std::next(
I)->getOpcode() == R600::RETURN;
218 switch (
MI.getOpcode()) {
222 if (
TII->isLDSRetInstr(
MI.getOpcode())) {
223 int DstIdx =
TII->getOperandIdx(
MI.getOpcode(), R600::OpName::dst);
228 if (!
MRI.use_empty(
MI.getOperand(DstIdx).getReg()) ||
229 MI.getOpcode() == R600::LDS_CMPST_RET)
241 case R600::FABS_R600: {
243 *BB,
I, R600::MOV,
MI.getOperand(0).getReg(),
244 MI.getOperand(1).getReg());
249 case R600::FNEG_R600: {
251 *BB,
I, R600::MOV,
MI.getOperand(0).getReg(),
252 MI.getOperand(1).getReg());
257 case R600::MASK_WRITE: {
258 Register maskedRegister =
MI.getOperand(0).getReg();
265 case R600::MOV_IMM_F32:
266 TII->buildMovImm(*BB,
I,
MI.getOperand(0).getReg(),
MI.getOperand(1)
273 case R600::MOV_IMM_I32:
274 TII->buildMovImm(*BB,
I,
MI.getOperand(0).getReg(),
275 MI.getOperand(1).getImm());
278 case R600::MOV_IMM_GLOBAL_ADDR: {
280 auto MIB =
TII->buildDefaultInstruction(
281 *BB,
MI, R600::MOV,
MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
282 int Idx =
TII->getOperandIdx(*MIB, R600::OpName::literal);
290 case R600::CONST_COPY: {
292 *BB,
MI, R600::MOV,
MI.getOperand(0).getReg(), R600::ALU_CONST);
293 TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
294 MI.getOperand(1).getImm());
298 case R600::RAT_WRITE_CACHELESS_32_eg:
299 case R600::RAT_WRITE_CACHELESS_64_eg:
300 case R600::RAT_WRITE_CACHELESS_128_eg:
302 .
add(
MI.getOperand(0))
303 .
add(
MI.getOperand(1))
307 case R600::RAT_STORE_TYPED_eg:
309 .
add(
MI.getOperand(0))
310 .
add(
MI.getOperand(1))
311 .
add(
MI.getOperand(2))
317 .
add(
MI.getOperand(0));
320 case R600::BRANCH_COND_f32: {
324 .
add(
MI.getOperand(1))
329 .
add(
MI.getOperand(0))
334 case R600::BRANCH_COND_i32: {
338 .
add(
MI.getOperand(1))
339 .
addImm(R600::PRED_SETNE_INT)
343 .
add(
MI.getOperand(0))
348 case R600::EG_ExportSwz:
349 case R600::R600_ExportSwz: {
351 bool isLastInstructionOfItsType =
true;
352 unsigned InstExportType =
MI.getOperand(1).getImm();
354 EndBlock = BB->
end(); NextExportInst != EndBlock;
355 NextExportInst = std::next(NextExportInst)) {
356 if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
357 NextExportInst->getOpcode() == R600::R600_ExportSwz) {
358 unsigned CurrentInstExportType = NextExportInst->getOperand(1)
360 if (CurrentInstExportType == InstExportType) {
361 isLastInstructionOfItsType =
false;
367 if (!EOP && !isLastInstructionOfItsType)
369 unsigned CfInst = (
MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
371 .
add(
MI.getOperand(0))
372 .
add(
MI.getOperand(1))
373 .
add(
MI.getOperand(2))
374 .
add(
MI.getOperand(3))
375 .
add(
MI.getOperand(4))
376 .
add(
MI.getOperand(5))
377 .
add(
MI.getOperand(6))
387 MI.eraseFromParent();
398 switch (
Op.getOpcode()) {
413 assert((!Result.getNode() ||
414 Result.getNode()->getNumValues() == 2) &&
415 "Load should return a value and a chain");
423 return lowerADDRSPACECAST(
Op, DAG);
426 unsigned IntrinsicID =
Op.getConstantOperandVal(1);
427 switch (IntrinsicID) {
428 case Intrinsic::r600_store_swizzle: {
450 unsigned IntrinsicID =
Op.getConstantOperandVal(0);
451 EVT VT =
Op.getValueType();
453 switch (IntrinsicID) {
454 case Intrinsic::r600_tex:
455 case Intrinsic::r600_texc: {
457 switch (IntrinsicID) {
458 case Intrinsic::r600_tex:
461 case Intrinsic::r600_texc:
491 case Intrinsic::r600_dot4: {
513 case Intrinsic::r600_implicitarg_ptr: {
518 case Intrinsic::r600_read_ngroups_x:
519 return LowerImplicitParameter(DAG, VT,
DL, 0);
520 case Intrinsic::r600_read_ngroups_y:
521 return LowerImplicitParameter(DAG, VT,
DL, 1);
522 case Intrinsic::r600_read_ngroups_z:
523 return LowerImplicitParameter(DAG, VT,
DL, 2);
524 case Intrinsic::r600_read_global_size_x:
525 return LowerImplicitParameter(DAG, VT,
DL, 3);
526 case Intrinsic::r600_read_global_size_y:
527 return LowerImplicitParameter(DAG, VT,
DL, 4);
528 case Intrinsic::r600_read_global_size_z:
529 return LowerImplicitParameter(DAG, VT,
DL, 5);
530 case Intrinsic::r600_read_local_size_x:
531 return LowerImplicitParameter(DAG, VT,
DL, 6);
532 case Intrinsic::r600_read_local_size_y:
533 return LowerImplicitParameter(DAG, VT,
DL, 7);
534 case Intrinsic::r600_read_local_size_z:
535 return LowerImplicitParameter(DAG, VT,
DL, 8);
537 case Intrinsic::r600_read_tgid_x:
538 case Intrinsic::amdgcn_workgroup_id_x:
541 case Intrinsic::r600_read_tgid_y:
542 case Intrinsic::amdgcn_workgroup_id_y:
545 case Intrinsic::r600_read_tgid_z:
546 case Intrinsic::amdgcn_workgroup_id_z:
549 case Intrinsic::r600_read_tidig_x:
550 case Intrinsic::amdgcn_workitem_id_x:
553 case Intrinsic::r600_read_tidig_y:
554 case Intrinsic::amdgcn_workitem_id_y:
557 case Intrinsic::r600_read_tidig_z:
558 case Intrinsic::amdgcn_workitem_id_z:
562 case Intrinsic::r600_recipsqrt_ieee:
565 case Intrinsic::r600_recipsqrt_clamped:
581 switch (
N->getOpcode()) {
586 if (
N->getValueType(0) == MVT::i1) {
587 Results.push_back(lowerFP_TO_UINT(
N->getOperand(0), DAG));
595 if (
N->getValueType(0) == MVT::i1) {
596 Results.push_back(lowerFP_TO_SINT(
N->getOperand(0), DAG));
641 if (isa<ConstantSDNode>(Index) ||
657 if (isa<ConstantSDNode>(Index) ||
664 return vectorToVerticalVector(DAG, Insert);
685 EVT VT =
Op.getValueType();
696 switch (
Op.getOpcode()) {
724 unsigned mainop,
unsigned ovf)
const {
726 EVT VT =
Op.getValueType();
763 unsigned DwordOffset)
const {
764 unsigned ByteOffset = DwordOffset * 4;
769 assert(isInt<16>(ByteOffset));
776bool R600TargetLowering::isZero(
SDValue Op)
const {
778 return Cst->isZero();
780 return CstFP->isZero();
784bool R600TargetLowering::isHWTrueValue(
SDValue Op)
const {
786 return CFP->isExactlyValue(1.0);
791bool R600TargetLowering::isHWFalseValue(
SDValue Op)
const {
793 return CFP->getValueAPF().isZero();
800 EVT VT =
Op.getValueType();
809 if (VT == MVT::f32) {
817 EVT CompareVT =
LHS.getValueType();
831 if (isHWTrueValue(False) && isHWFalseValue(True)) {
847 if (isHWTrueValue(True) && isHWFalseValue(False) &&
848 (CompareVT == VT || VT == MVT::i32)) {
886 if (CompareVT != VT) {
918 if (CompareVT == MVT::f32) {
921 }
else if (CompareVT == MVT::i32) {
942 EVT VT =
Op.getValueType();
984void R600TargetLowering::getStackAddress(
unsigned StackWidth,
987 unsigned &PtrIncr)
const {
988 switch (StackWidth) {
999 Channel = ElemIdx % 2;
1018 ||
Store->getValue().getValueType() == MVT::i8);
1022 if (
Store->getMemoryVT() == MVT::i8) {
1025 }
else if (
Store->getMemoryVT() == MVT::i16) {
1055 Chain = Dst.getValue(1);
1075 MaskedValue, ShiftAmt);
1082 DstMask = DAG.
getNOT(
DL, DstMask, MVT::i32);
1113 EVT PtrVT =
Ptr.getValueType();
1131 StoreNode = cast<StoreSDNode>(NewStore);
1151 if (TruncatingStore) {
1154 if (MemVT == MVT::i8) {
1157 assert(MemVT == MVT::i16);
1185 Op->getVTList(), Args, MemVT,
1205 if (MemVT.
bitsLT(MVT::i32))
1206 return lowerPrivateTruncStore(StoreNode, DAG);
1228 return 512 + 4096 * 2;
1230 return 512 + 4096 * 3;
1232 return 512 + 4096 * 4;
1234 return 512 + 4096 * 5;
1236 return 512 + 4096 * 6;
1238 return 512 + 4096 * 7;
1240 return 512 + 4096 * 8;
1242 return 512 + 4096 * 9;
1244 return 512 + 4096 * 10;
1246 return 512 + 4096 * 11;
1248 return 512 + 4096 * 12;
1250 return 512 + 4096 * 13;
1252 return 512 + 4096 * 14;
1254 return 512 + 4096 * 15;
1265 EVT MemVT =
Load->getMemoryVT();
1324 return lowerPrivateExtLoad(
Op, DAG);
1328 EVT VT =
Op.getValueType();
1342 if (ConstantBlock > -1 &&
1347 isa<ConstantSDNode>(
Ptr)) {
1379 assert(!MemVT.
isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1386 SDValue MergedValues[2] = { Res, Chain };
1429 bool IsVarArg)
const {
1469 for (
unsigned i = 0, e = Ins.size(); i < e; ++i) {
1541 unsigned *IsFast)
const {
1545 if (!VT.
isSimple() || VT == MVT::Other)
1555 return VT.
bitsGT(MVT::i32) && Alignment >=
Align(4);
1567 for (
unsigned i = 0; i < 4; i++)
1571 for (
unsigned i = 0; i < 4; i++) {
1576 RemapSwizzle[i] = 7;
1579 RemapSwizzle[i] = 4;
1580 NewBldVec[i] = DAG.
getUNDEF(MVT::f32);
1581 }
else if (
C->isExactlyValue(1.0)) {
1582 RemapSwizzle[i] = 5;
1583 NewBldVec[i] = DAG.
getUNDEF(MVT::f32);
1590 for (
unsigned j = 0; j < i; j++) {
1591 if (NewBldVec[i] == NewBldVec[j]) {
1593 RemapSwizzle[i] = j;
1611 bool isUnmovable[4] = {
false,
false,
false,
false};
1612 for (
unsigned i = 0; i < 4; i++)
1616 for (
unsigned i = 0; i < 4; i++) {
1617 RemapSwizzle[i] = i;
1621 isUnmovable[
Idx] =
true;
1625 for (
unsigned i = 0; i < 4; i++) {
1628 if (isUnmovable[
Idx])
1648 for (
unsigned i = 0; i < 4; i++) {
1650 auto It = SwizzleRemap.
find(
Idx);
1651 if (It != SwizzleRemap.
end())
1655 SwizzleRemap.
clear();
1657 for (
unsigned i = 0; i < 4; i++) {
1659 auto It = SwizzleRemap.
find(
Idx);
1660 if (It != SwizzleRemap.
end())
1685 for (
unsigned i = 0; i < 4; i++) {
1695 EVT NewVT = MVT::v4i32;
1696 unsigned NumElements = 4;
1722 switch (
N->getOpcode()) {
1778 if (!isa<ConstantSDNode>(EltNo))
1797 if (Elt < Ops.
size()) {
1800 EVT OpVT = Ops[0].getValueType();
1817 if (
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(
N->getOperand(1))) {
1818 unsigned Element = Const->getZExtValue();
1826 if (
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(
N->getOperand(1))) {
1827 unsigned Element = Const->getZExtValue();
1853 ISD::CondCode NCC = cast<CondCodeSDNode>(
N->getOperand(4))->get();
1855 if (
LHS.getOperand(2).getNode() != True.
getNode() ||
1856 LHS.getOperand(3).getNode() != False.
getNode() ||
1896 NewArgs[1] = OptimizeSwizzle(
N->getOperand(1), &NewArgs[4], DAG,
DL);
1925 NewArgs[1] = OptimizeSwizzle(
N->getOperand(1), &NewArgs[2], DAG,
DL);
1933 isa<ConstantSDNode>(
Ptr))
1944bool R600TargetLowering::FoldOperand(
SDNode *ParentNode,
unsigned SrcIdx,
1949 if (!Src.isMachineOpcode())
1952 switch (Src.getMachineOpcode()) {
1953 case R600::FNEG_R600:
1956 Src = Src.getOperand(0);
1959 case R600::FABS_R600:
1962 Src = Src.getOperand(0);
1965 case R600::CONST_COPY: {
1967 bool HasDst =
TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
1972 SDValue CstOffset = Src.getOperand(0);
1977 int SrcIndices[] = {
1978 TII->getOperandIdx(Opcode, R600::OpName::src0),
1979 TII->getOperandIdx(Opcode, R600::OpName::src1),
1980 TII->getOperandIdx(Opcode, R600::OpName::src2),
1981 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
1982 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
1983 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
1984 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
1985 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
1986 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
1987 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
1988 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
1990 std::vector<unsigned> Consts;
1991 for (
int OtherSrcIdx : SrcIndices) {
1992 int OtherSelIdx =
TII->getSelIdx(Opcode, OtherSrcIdx);
1993 if (OtherSrcIdx < 0 || OtherSelIdx < 0)
2000 dyn_cast<RegisterSDNode>(ParentNode->
getOperand(OtherSrcIdx))) {
2001 if (
Reg->getReg() == R600::ALU_CONST) {
2009 if (!
TII->fitsConstReadLimitations(Consts)) {
2017 case R600::MOV_IMM_GLOBAL_ADDR:
2019 if (
Imm->getAsZExtVal())
2021 Imm = Src.getOperand(0);
2022 Src = DAG.
getRegister(R600::ALU_LITERAL_X, MVT::i32);
2024 case R600::MOV_IMM_I32:
2025 case R600::MOV_IMM_F32: {
2026 unsigned ImmReg = R600::ALU_LITERAL_X;
2029 if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2032 if (FloatValue == 0.0) {
2033 ImmReg = R600::ZERO;
2034 }
else if (FloatValue == 0.5) {
2035 ImmReg = R600::HALF;
2036 }
else if (FloatValue == 1.0) {
2044 ImmReg = R600::ZERO;
2045 }
else if (
Value == 1) {
2046 ImmReg = R600::ONE_INT;
2055 if (ImmReg == R600::ALU_LITERAL_X) {
2059 if (
C->getZExtValue())
2075 if (!
Node->isMachineOpcode())
2078 unsigned Opcode =
Node->getMachineOpcode();
2081 std::vector<SDValue> Ops(
Node->op_begin(),
Node->op_end());
2083 if (Opcode == R600::DOT_4) {
2084 int OperandIdx[] = {
2085 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2086 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2087 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2088 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2089 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2090 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2091 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2092 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2095 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2096 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2097 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2098 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2099 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2100 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2101 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2102 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2105 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2106 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2107 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2108 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2109 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2110 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2111 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2112 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2114 for (
unsigned i = 0; i < 8; i++) {
2115 if (OperandIdx[i] < 0)
2117 SDValue &Src = Ops[OperandIdx[i] - 1];
2118 SDValue &Neg = Ops[NegIdx[i] - 1];
2119 SDValue &Abs = Ops[AbsIdx[i] - 1];
2120 bool HasDst =
TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2121 int SelIdx =
TII->getSelIdx(Opcode, OperandIdx[i]);
2124 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2125 if (FoldOperand(
Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2128 }
else if (Opcode == R600::REG_SEQUENCE) {
2129 for (
unsigned i = 1, e =
Node->getNumOperands(); i <
e; i += 2) {
2131 if (FoldOperand(
Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2135 if (!
TII->hasInstrModifiers(Opcode))
2137 int OperandIdx[] = {
2138 TII->getOperandIdx(Opcode, R600::OpName::src0),
2139 TII->getOperandIdx(Opcode, R600::OpName::src1),
2140 TII->getOperandIdx(Opcode, R600::OpName::src2)
2143 TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2144 TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2145 TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2148 TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2149 TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2152 for (
unsigned i = 0; i < 3; i++) {
2153 if (OperandIdx[i] < 0)
2155 SDValue &Src = Ops[OperandIdx[i] - 1];
2156 SDValue &Neg = Ops[NegIdx[i] - 1];
2158 SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2159 bool HasDst =
TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2160 int SelIdx =
TII->getSelIdx(Opcode, OperandIdx[i]);
2161 int ImmIdx =
TII->getOperandIdx(Opcode, R600::OpName::literal);
2166 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2168 if (FoldOperand(
Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2177R600TargetLowering::shouldExpandAtomicRMWInIR(
AtomicRMWInst *RMW)
const {
2192 unsigned ValSize =
DL.getTypeSizeInBits(RMW->
getType());
2193 if (ValSize == 32 || ValSize == 64)
2198 if (
auto *IntTy = dyn_cast<IntegerType>(RMW->
getType())) {
2199 unsigned Size = IntTy->getBitWidth();
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
const HexagonInstrInfo * TII
static bool isUndef(ArrayRef< int > Mask)
static bool isEOP(MachineBasicBlock::iterator I)
static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry, DenseMap< unsigned, unsigned > &RemapSwizzle)
static int ConstantAddressBlock(unsigned AddressSpace)
static SDValue CompactSwizzlableVector(SelectionDAG &DAG, SDValue VectorEntry, DenseMap< unsigned, unsigned > &RemapSwizzle)
R600 DAG Lowering interface definition.
Provides R600 specific target descriptions.
AMDGPU R600 specific subclass of TargetSubtarget.
The AMDGPU TargetMachine interface definition for hw codegen targets.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
unsigned getStackWidth(const MachineFunction &MF) const
SDValue combineFMinMaxLegacy(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, SDValue False, SDValue CC, DAGCombinerInfo &DCI) const
Generate Min/Max node.
void analyzeFormalArgumentsCompute(CCState &State, const SmallVectorImpl< ISD::InputArg > &Ins) const
The SelectionDAGBuilder will automatically promote function arguments with illegal types.
SDValue LowerSDIVREM(SDValue Op, SelectionDAG &DAG) const
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
uint32_t getImplicitParameterOffset(const MachineFunction &MF, const ImplicitParameter Param) const
Helper function that returns the byte offset of the given type of implicit parameter.
virtual SDValue LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op, SelectionDAG &DAG) const
SDValue CreateLiveInRegisterRaw(SelectionDAG &DAG, const TargetRegisterClass *RC, Register Reg, EVT VT) const
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
void LowerUDIVREM64(SDValue Op, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results) const
float convertToFloat() const
Converts this APFloat to host float value.
APInt bitcastToAPInt() const
uint64_t getZExtValue() const
Get zero extended value.
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
an instruction that atomically reads a memory location, combines it with another value,...
@ UIncWrap
Increment one up to a maximum value.
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
BinOp getOperation() const
CCState - This class holds information needed while lowering arguments and return values.
void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
int64_t getLocMemOffset() const
const APFloat & getValueAPF() const
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
uint64_t getZExtValue() const
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
const Function * getFunction() const
Return the function this instruction belongs to.
This is an important class for using LLVM in a threaded context.
bool isIndexed() const
Return true if this is a pre/post inc/dec load/store.
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
static auto integer_valuetypes()
DebugLoc findDebugLoc(instr_iterator MBBI)
Find the next valid DebugLoc starting at MBBI, skipping any debug instructions.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
Flags
Flags values. These may be or'd together.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
Flags getFlags() const
Return the raw flags of the source value,.
const Value * getValue() const
Return the base address of the memory access.
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
unsigned getTargetFlags() const
int64_t getOffset() const
Return the offset from the symbol in this operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
An SDNode that represents everything that will be needed to construct a MachineInstr.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
StackOffset getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const override
const R600FrameLowering * getFrameLowering() const override
const R600RegisterInfo * getRegisterInfo() const override
const R600InstrInfo * getInstrInfo() const override
bool hasBCNT(unsigned Size) const
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
bool canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const override
Returns if it's reasonable to merge stores to MemVT size.
R600TargetLowering(const TargetMachine &TM, const R600Subtarget &STI)
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT VT) const override
Return the ValueType of the result of SETCC operations.
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const override
Determine if the target supports unaligned memory accesses.
CCAssignFn * CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) const
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
XXX Only kernel functions are supported, so we can assume for now that every function is a kernel fun...
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
op_iterator op_end() const
op_iterator op_begin() const
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
SDValue getRegister(Register Reg, EVT VT)
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond)
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
SDValue getValueType(EVT)
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getCondCode(ISD::CondCode Cond)
LLVMContext * getContext() const
SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=0, const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
This class is used to represent ISD::STORE nodes.
const SDValue & getBasePtr() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
const TargetMachine & getTargetMachine() const
void setHasExtractBitsInsn(bool hasExtractInsn=true)
Tells the code generator that the target has BitExtract instructions.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrNegativeOneBooleanContent
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
Primary interface to the complete machine description for the target machine.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ LOCAL_ADDRESS
Address space for local memory.
@ PARAM_I_ADDRESS
Address space for indirect addressable parameter memory (VTX1).
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUILD_VERTICAL_VECTOR
This node is for VLIW targets and it is used to represent a vector that is stored in consecutive regi...
@ CONST_DATA_PTR
Pointer to the start of the shader's constant data.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
bool isShader(CallingConv::ID cc)
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
@ C
The default llvm calling convention, compatible with C.
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ FADD
Simple binary floating point operators.
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ SIGN_EXTEND
Conversion operators.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ ATOMIC_LOAD
Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr) This corresponds to "load atomic" instruction.
@ SHL
Shift and rotation operations.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ BRCOND
BRCOND - Conditional branch.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
int getLDSNoRetOp(uint16_t Opcode)
@ Kill
The last use of a register.
Reg
All possible values of the reg field in the ModR/M byte.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
DWARFExpression::Operation Op
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
This class contains a discriminated union of information about pointers in memory operands,...
bool isBeforeLegalizeOps() const