LLVM 19.0.0git
AMDGPUIGroupLP.cpp
Go to the documentation of this file.
1//===--- AMDGPUIGroupLP.cpp - AMDGPU IGroupLP ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file This file defines a set of schedule DAG mutations that can be used to
10// override default scheduler behavior to enforce specific scheduling patterns.
11// They should be used in cases where runtime performance considerations such as
12// inter-wavefront interactions, mean that compile-time heuristics cannot
13// predict the optimal instruction ordering, or in kernels where optimum
14// instruction scheduling is important enough to warrant manual intervention.
15//
16//===----------------------------------------------------------------------===//
17
18#include "AMDGPUIGroupLP.h"
19#include "AMDGPUTargetMachine.h"
21#include "SIInstrInfo.h"
24#include "llvm/ADT/DenseMap.h"
27
28using namespace llvm;
29
30#define DEBUG_TYPE "igrouplp"
31
32namespace {
33
34static cl::opt<bool> EnableExactSolver(
35 "amdgpu-igrouplp-exact-solver", cl::Hidden,
36 cl::desc("Whether to use the exponential time solver to fit "
37 "the instructions to the pipeline as closely as "
38 "possible."),
39 cl::init(false));
40
41static cl::opt<unsigned> CutoffForExact(
42 "amdgpu-igrouplp-exact-solver-cutoff", cl::init(0), cl::Hidden,
43 cl::desc("The maximum number of scheduling group conflicts "
44 "which we attempt to solve with the exponential time "
45 "exact solver. Problem sizes greater than this will"
46 "be solved by the less accurate greedy algorithm. Selecting "
47 "solver by size is superseded by manually selecting "
48 "the solver (e.g. by amdgpu-igrouplp-exact-solver"));
49
50static cl::opt<uint64_t> MaxBranchesExplored(
51 "amdgpu-igrouplp-exact-solver-max-branches", cl::init(0), cl::Hidden,
52 cl::desc("The amount of branches that we are willing to explore with"
53 "the exact algorithm before giving up."));
54
55static cl::opt<bool> UseCostHeur(
56 "amdgpu-igrouplp-exact-solver-cost-heur", cl::init(true), cl::Hidden,
57 cl::desc("Whether to use the cost heuristic to make choices as we "
58 "traverse the search space using the exact solver. Defaulted "
59 "to on, and if turned off, we will use the node order -- "
60 "attempting to put the later nodes in the later sched groups. "
61 "Experimentally, results are mixed, so this should be set on a "
62 "case-by-case basis."));
63
64// Components of the mask that determines which instruction types may be may be
65// classified into a SchedGroup.
66enum class SchedGroupMask {
67 NONE = 0u,
68 ALU = 1u << 0,
69 VALU = 1u << 1,
70 SALU = 1u << 2,
71 MFMA = 1u << 3,
72 VMEM = 1u << 4,
73 VMEM_READ = 1u << 5,
74 VMEM_WRITE = 1u << 6,
75 DS = 1u << 7,
76 DS_READ = 1u << 8,
77 DS_WRITE = 1u << 9,
78 TRANS = 1u << 10,
79 ALL = ALU | VALU | SALU | MFMA | VMEM | VMEM_READ | VMEM_WRITE | DS |
80 DS_READ | DS_WRITE | TRANS,
81 LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL)
82};
83
84class SchedGroup;
85
86// InstructionRule class is used to enact a filter which determines whether or
87// not an SU maps to a given SchedGroup. It contains complementary data
88// structures (e.g Cache) to help those filters.
89class InstructionRule {
90protected:
91 const SIInstrInfo *TII;
92 unsigned SGID;
93 // A cache made available to the Filter to store SUnits for subsequent
94 // invocations of the Filter
95 std::optional<SmallVector<SUnit *, 4>> Cache;
96
97public:
98 virtual bool
99 apply(const SUnit *, const ArrayRef<SUnit *>,
101 return true;
102 };
103
104 InstructionRule(const SIInstrInfo *TII, unsigned SGID,
105 bool NeedsCache = false)
106 : TII(TII), SGID(SGID) {
107 if (NeedsCache) {
108 Cache = SmallVector<SUnit *, 4>();
109 }
110 }
111
112 virtual ~InstructionRule() = default;
113};
114
115typedef DenseMap<SUnit *, SmallVector<int, 4>> SUnitsToCandidateSGsMap;
116
117// Classify instructions into groups to enable fine tuned control over the
118// scheduler. These groups may be more specific than current SchedModel
119// instruction classes.
120class SchedGroup {
121private:
122 // Mask that defines which instruction types can be classified into this
123 // SchedGroup. The instruction types correspond to the mask from SCHED_BARRIER
124 // and SCHED_GROUP_BARRIER.
125 SchedGroupMask SGMask;
126
127 // Maximum number of SUnits that can be added to this group.
128 std::optional<unsigned> MaxSize;
129
130 // SchedGroups will only synchronize with other SchedGroups that have the same
131 // SyncID.
132 int SyncID = 0;
133
134 // SGID is used to map instructions to candidate SchedGroups
135 unsigned SGID;
136
137 // The different rules each instruction in this SchedGroup must conform to
139
140 // Count of the number of created SchedGroups, used to initialize SGID.
141 static unsigned NumSchedGroups;
142
143 // Try to add and edge from SU A to SU B.
144 bool tryAddEdge(SUnit *A, SUnit *B);
145
146 // Use SGMask to determine whether we can classify MI as a member of this
147 // SchedGroup object.
148 bool canAddMI(const MachineInstr &MI) const;
149
150public:
151 // Collection of SUnits that are classified as members of this group.
152 SmallVector<SUnit *, 32> Collection;
153
155 const SIInstrInfo *TII;
156
157 // Returns true if SU can be added to this SchedGroup.
158 bool canAddSU(SUnit &SU) const;
159
160 // Add DAG dependencies from all SUnits in this SchedGroup and this SU. If
161 // MakePred is true, SU will be a predecessor of the SUnits in this
162 // SchedGroup, otherwise SU will be a successor.
163 void link(SUnit &SU, bool MakePred = false);
164
165 // Add DAG dependencies and track which edges are added, and the count of
166 // missed edges
167 int link(SUnit &SU, bool MakePred,
168 std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges);
169
170 // Add DAG dependencies from all SUnits in this SchedGroup and this SU.
171 // Use the predicate to determine whether SU should be a predecessor (P =
172 // true) or a successor (P = false) of this SchedGroup.
173 void link(SUnit &SU, function_ref<bool(const SUnit *A, const SUnit *B)> P);
174
175 // Add DAG dependencies such that SUnits in this group shall be ordered
176 // before SUnits in OtherGroup.
177 void link(SchedGroup &OtherGroup);
178
179 // Returns true if no more instructions may be added to this group.
180 bool isFull() const { return MaxSize && Collection.size() >= *MaxSize; }
181
182 // Append a constraint that SUs must meet in order to fit into this
183 // SchedGroup. Since many rules involve the relationship between a SchedGroup
184 // and the SUnits in other SchedGroups, rules are checked at Pipeline Solve
185 // time (rather than SchedGroup init time.)
186 void addRule(std::shared_ptr<InstructionRule> NewRule) {
187 Rules.push_back(NewRule);
188 }
189
190 // Returns true if the SU matches all rules
191 bool allowedByRules(const SUnit *SU,
192 SmallVectorImpl<SchedGroup> &SyncPipe) const {
193 if (Rules.empty())
194 return true;
195 for (size_t I = 0; I < Rules.size(); I++) {
196 auto TheRule = Rules[I].get();
197 if (!TheRule->apply(SU, Collection, SyncPipe)) {
198 return false;
199 }
200 }
201 return true;
202 }
203
204 // Add SU to the SchedGroup.
205 void add(SUnit &SU) {
206 LLVM_DEBUG(dbgs() << "For SchedGroup with mask "
207 << format_hex((int)SGMask, 10, true) << " adding "
208 << *SU.getInstr());
209 Collection.push_back(&SU);
210 }
211
212 // Remove last element in the SchedGroup
213 void pop() { Collection.pop_back(); }
214
215 // Identify and add all relevant SUs from the DAG to this SchedGroup.
216 void initSchedGroup();
217
218 // Add instructions to the SchedGroup bottom up starting from RIter.
219 // PipelineInstrs is a set of instructions that should not be added to the
220 // SchedGroup even when the other conditions for adding it are satisfied.
221 // RIter will be added to the SchedGroup as well, and dependencies will be
222 // added so that RIter will always be scheduled at the end of the group.
223 void initSchedGroup(std::vector<SUnit>::reverse_iterator RIter,
224 SUnitsToCandidateSGsMap &SyncedInstrs);
225
226 void initSchedGroup(SUnitsToCandidateSGsMap &SyncedInstrs);
227
228 int getSyncID() { return SyncID; }
229
230 int getSGID() { return SGID; }
231
232 SchedGroupMask getMask() { return SGMask; }
233
234 SchedGroup(SchedGroupMask SGMask, std::optional<unsigned> MaxSize,
235 ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
236 : SGMask(SGMask), MaxSize(MaxSize), DAG(DAG), TII(TII) {
237 SGID = NumSchedGroups++;
238 }
239
240 SchedGroup(SchedGroupMask SGMask, std::optional<unsigned> MaxSize, int SyncID,
241 ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
242 : SGMask(SGMask), MaxSize(MaxSize), SyncID(SyncID), DAG(DAG), TII(TII) {
243 SGID = NumSchedGroups++;
244 }
245};
246
247// Remove all existing edges from a SCHED_BARRIER or SCHED_GROUP_BARRIER.
248static void resetEdges(SUnit &SU, ScheduleDAGInstrs *DAG) {
249 assert(SU.getInstr()->getOpcode() == AMDGPU::SCHED_BARRIER ||
250 SU.getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER ||
251 SU.getInstr()->getOpcode() == AMDGPU::IGLP_OPT);
252
253 while (!SU.Preds.empty())
254 for (auto &P : SU.Preds)
255 SU.removePred(P);
256
257 while (!SU.Succs.empty())
258 for (auto &S : SU.Succs)
259 for (auto &SP : S.getSUnit()->Preds)
260 if (SP.getSUnit() == &SU)
261 S.getSUnit()->removePred(SP);
262}
263
264typedef std::pair<SUnit *, SmallVector<int, 4>> SUToCandSGsPair;
265typedef SmallVector<SUToCandSGsPair, 4> SUsToCandSGsVec;
266
267// The PipelineSolver is used to assign SUnits to SchedGroups in a pipeline
268// in non-trivial cases. For example, if the requested pipeline is
269// {VMEM_READ, VALU, MFMA, VMEM_READ} and we encounter a VMEM_READ instruction
270// in the DAG, then we will have an instruction that can not be trivially
271// assigned to a SchedGroup. The PipelineSolver class implements two algorithms
272// to find a good solution to the pipeline -- a greedy algorithm and an exact
273// algorithm. The exact algorithm has an exponential time complexity and should
274// only be used for small sized problems or medium sized problems where an exact
275// solution is highly desired.
276class PipelineSolver {
277 ScheduleDAGMI *DAG;
278
279 // Instructions that can be assigned to multiple SchedGroups
281 SmallVector<SUsToCandSGsVec, 4> PipelineInstrs;
283 // The current working pipeline
285 // The pipeline that has the best solution found so far
287
288 // Whether or not we actually have any SyncedInstrs to try to solve.
289 bool NeedsSolver = false;
290
291 // Compute an estimate of the size of search tree -- the true size is
292 // the product of each conflictedInst.Matches.size() across all SyncPipelines
293 unsigned computeProblemSize();
294
295 // The cost penalty of not assigning a SU to a SchedGroup
296 int MissPenalty = 0;
297
298 // Costs in terms of the number of edges we are unable to add
299 int BestCost = -1;
300 int CurrCost = 0;
301
302 // Index pointing to the conflicting instruction that is currently being
303 // fitted
304 int CurrConflInstNo = 0;
305 // Index to the pipeline that is currently being fitted
306 int CurrSyncGroupIdx = 0;
307 // The first non trivial pipeline
308 int BeginSyncGroupIdx = 0;
309
310 // How many branches we have explored
311 uint64_t BranchesExplored = 0;
312
313 // The direction in which we process the candidate SchedGroups per SU
314 bool IsBottomUp = 1;
315
316 // Update indices to fit next conflicting instruction
317 void advancePosition();
318 // Recede indices to attempt to find better fit for previous conflicting
319 // instruction
320 void retreatPosition();
321
322 // The exponential time algorithm which finds the provably best fit
323 bool solveExact();
324 // The polynomial time algorithm which attempts to find a good fit
325 bool solveGreedy();
326 // Find the best SchedGroup for the current SU using the heuristic given all
327 // current information. One step in the greedy algorithm. Templated against
328 // the SchedGroup iterator (either reverse or forward).
329 template <typename T>
330 void greedyFind(std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I,
331 T E);
332 // Whether or not the current solution is optimal
333 bool checkOptimal();
334 // Populate the ready list, prioiritizing fewest missed edges first
335 // Templated against the SchedGroup iterator (either reverse or forward).
336 template <typename T>
337 void populateReadyList(SmallVectorImpl<std::pair<int, int>> &ReadyList, T I,
338 T E);
339 // Add edges corresponding to the SchedGroups as assigned by solver
340 void makePipeline();
341 // Link the SchedGroups in the best found pipeline.
342 // Tmplated against the SchedGroup iterator (either reverse or forward).
343 template <typename T> void linkSchedGroups(T I, T E);
344 // Add the edges from the SU to the other SchedGroups in pipeline, and
345 // return the number of edges missed.
346 int addEdges(SmallVectorImpl<SchedGroup> &SyncPipeline, SUnit *SU, int SGID,
347 std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges);
348 /// Link the pipeline as if \p SU was in the SchedGroup with ID \p SGID. It
349 /// returns the cost (in terms of missed pipeline edges), and tracks the edges
350 /// added in \p AddedEdges
351 template <typename T>
352 int linkSUnit(SUnit *SU, int SGID,
353 std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I, T E);
354 /// Remove the edges passed via \p AddedEdges
355 void removeEdges(const std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges);
356 // Convert the passed in maps to arrays for bidirectional iterators
357 void convertSyncMapsToArrays();
358
359 void reset();
360
361public:
362 // Invoke the solver to map instructions to instruction groups. Heuristic &&
363 // command-line-option determines to use exact or greedy algorithm.
364 void solve();
365
366 PipelineSolver(DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
368 ScheduleDAGMI *DAG, bool IsBottomUp = 1)
369 : DAG(DAG), SyncedInstrs(SyncedInstrs),
370 SyncedSchedGroups(SyncedSchedGroups), IsBottomUp(IsBottomUp) {
371
372 for (auto &PipelineInstrs : SyncedInstrs) {
373 if (PipelineInstrs.second.size() > 0) {
374 NeedsSolver = true;
375 break;
376 }
377 }
378
379 if (!NeedsSolver)
380 return;
381
382 convertSyncMapsToArrays();
383
384 CurrPipeline = BestPipeline;
385
386 while (static_cast<size_t>(BeginSyncGroupIdx) < PipelineInstrs.size() &&
387 PipelineInstrs[BeginSyncGroupIdx].size() == 0)
388 ++BeginSyncGroupIdx;
389
390 if (static_cast<size_t>(BeginSyncGroupIdx) >= PipelineInstrs.size())
391 return;
392 }
393};
394
395void PipelineSolver::reset() {
396
397 for (auto &SyncPipeline : CurrPipeline) {
398 for (auto &SG : SyncPipeline) {
399 SmallVector<SUnit *, 32> TempCollection = SG.Collection;
400 SG.Collection.clear();
401 auto SchedBarr = llvm::find_if(TempCollection, [](SUnit *SU) {
402 return SU->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER;
403 });
404 if (SchedBarr != TempCollection.end())
405 SG.Collection.push_back(*SchedBarr);
406 }
407 }
408
409 CurrSyncGroupIdx = BeginSyncGroupIdx;
410 CurrConflInstNo = 0;
411 CurrCost = 0;
412}
413
414void PipelineSolver::convertSyncMapsToArrays() {
415 for (auto &SyncPipe : SyncedSchedGroups) {
416 BestPipeline.insert(BestPipeline.begin(), SyncPipe.second);
417 }
418
419 int PipelineIDx = SyncedInstrs.size() - 1;
420 PipelineInstrs.resize(SyncedInstrs.size());
421 for (auto &SyncInstrMap : SyncedInstrs) {
422 for (auto &SUsToCandSGs : SyncInstrMap.second) {
423 if (PipelineInstrs[PipelineIDx].size() == 0) {
424 PipelineInstrs[PipelineIDx].push_back(
425 std::pair(SUsToCandSGs.first, SUsToCandSGs.second));
426 continue;
427 }
428 auto SortPosition = PipelineInstrs[PipelineIDx].begin();
429 // Insert them in sorted order -- this allows for good parsing order in
430 // the greedy algorithm
431 while (SortPosition != PipelineInstrs[PipelineIDx].end() &&
432 SUsToCandSGs.first->NodeNum > SortPosition->first->NodeNum)
433 ++SortPosition;
434 PipelineInstrs[PipelineIDx].insert(
435 SortPosition, std::pair(SUsToCandSGs.first, SUsToCandSGs.second));
436 }
437 --PipelineIDx;
438 }
439}
440
441template <typename T> void PipelineSolver::linkSchedGroups(T I, T E) {
442 for (; I != E; ++I) {
443 auto &GroupA = *I;
444 for (auto J = std::next(I); J != E; ++J) {
445 auto &GroupB = *J;
446 GroupA.link(GroupB);
447 }
448 }
449}
450
451void PipelineSolver::makePipeline() {
452 // Preserve the order of barrier for subsequent SchedGroupBarrier mutations
453 for (auto &SyncPipeline : BestPipeline) {
454 LLVM_DEBUG(dbgs() << "Printing SchedGroups\n");
455 for (auto &SG : SyncPipeline) {
456 LLVM_DEBUG(dbgs() << "SchedGroup with SGID " << SG.getSGID()
457 << " has: \n");
458 SUnit *SGBarr = nullptr;
459 for (auto &SU : SG.Collection) {
460 if (SU->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER)
461 SGBarr = SU;
462 LLVM_DEBUG(dbgs() << "SU(" << SU->NodeNum << ")\n");
463 }
464 // Command line requested IGroupLP doesn't have SGBarr
465 if (!SGBarr)
466 continue;
467 resetEdges(*SGBarr, DAG);
468 SG.link(*SGBarr, false);
469 }
470 }
471
472 for (auto &SyncPipeline : BestPipeline) {
473 IsBottomUp ? linkSchedGroups(SyncPipeline.rbegin(), SyncPipeline.rend())
474 : linkSchedGroups(SyncPipeline.begin(), SyncPipeline.end());
475 }
476}
477
478template <typename T>
479int PipelineSolver::linkSUnit(
480 SUnit *SU, int SGID, std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges,
481 T I, T E) {
482 bool MakePred = false;
483 int AddedCost = 0;
484 for (; I < E; ++I) {
485 if (I->getSGID() == SGID) {
486 MakePred = true;
487 continue;
488 }
489 auto Group = *I;
490 AddedCost += Group.link(*SU, MakePred, AddedEdges);
491 assert(AddedCost >= 0);
492 }
493 return AddedCost;
494}
495
496int PipelineSolver::addEdges(
497 SmallVectorImpl<SchedGroup> &SyncPipeline, SUnit *SU, int SGID,
498 std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges) {
499
500 // For IsBottomUp, the first SchedGroup in SyncPipeline contains the
501 // instructions that are the ultimate successors in the resultant mutation.
502 // Therefore, in such a configuration, the SchedGroups occurring before the
503 // candidate SGID are successors of the candidate SchedGroup, thus the current
504 // SU should be linked as a predecessor to SUs in those SchedGroups. The
505 // opposite is true if !IsBottomUp. IsBottomUp occurs in the case of multiple
506 // SCHED_GROUP_BARRIERS, or if a user specifies IGLP_OPT SchedGroups using
507 // IsBottomUp (in reverse).
508 return IsBottomUp ? linkSUnit(SU, SGID, AddedEdges, SyncPipeline.rbegin(),
509 SyncPipeline.rend())
510 : linkSUnit(SU, SGID, AddedEdges, SyncPipeline.begin(),
511 SyncPipeline.end());
512}
513
514void PipelineSolver::removeEdges(
515 const std::vector<std::pair<SUnit *, SUnit *>> &EdgesToRemove) {
516 // Only remove the edges that we have added when testing
517 // the fit.
518 for (auto &PredSuccPair : EdgesToRemove) {
519 SUnit *Pred = PredSuccPair.first;
520 SUnit *Succ = PredSuccPair.second;
521
522 auto Match = llvm::find_if(
523 Succ->Preds, [&Pred](SDep &P) { return P.getSUnit() == Pred; });
524 if (Match != Succ->Preds.end()) {
525 assert(Match->isArtificial());
526 Succ->removePred(*Match);
527 }
528 }
529}
530
531void PipelineSolver::advancePosition() {
532 ++CurrConflInstNo;
533
534 if (static_cast<size_t>(CurrConflInstNo) >=
535 PipelineInstrs[CurrSyncGroupIdx].size()) {
536 CurrConflInstNo = 0;
537 ++CurrSyncGroupIdx;
538 // Advance to next non-trivial pipeline
539 while (static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size() &&
540 PipelineInstrs[CurrSyncGroupIdx].size() == 0)
541 ++CurrSyncGroupIdx;
542 }
543}
544
545void PipelineSolver::retreatPosition() {
546 assert(CurrConflInstNo >= 0);
547 assert(CurrSyncGroupIdx >= 0);
548
549 if (CurrConflInstNo > 0) {
550 --CurrConflInstNo;
551 return;
552 }
553
554 if (CurrConflInstNo == 0) {
555 // If we return to the starting position, we have explored
556 // the entire tree
557 if (CurrSyncGroupIdx == BeginSyncGroupIdx)
558 return;
559
560 --CurrSyncGroupIdx;
561 // Go to previous non-trivial pipeline
562 while (PipelineInstrs[CurrSyncGroupIdx].size() == 0)
563 --CurrSyncGroupIdx;
564
565 CurrConflInstNo = PipelineInstrs[CurrSyncGroupIdx].size() - 1;
566 }
567}
568
569bool PipelineSolver::checkOptimal() {
570 if (static_cast<size_t>(CurrSyncGroupIdx) == PipelineInstrs.size()) {
571 if (BestCost == -1 || CurrCost < BestCost) {
572 BestPipeline = CurrPipeline;
573 BestCost = CurrCost;
574 LLVM_DEBUG(dbgs() << "Found Fit with cost " << BestCost << "\n");
575 }
576 assert(BestCost >= 0);
577 }
578
579 bool DoneExploring = false;
580 if (MaxBranchesExplored > 0 && BranchesExplored >= MaxBranchesExplored)
581 DoneExploring = true;
582
583 return (DoneExploring || BestCost == 0);
584}
585
586template <typename T>
587void PipelineSolver::populateReadyList(
588 SmallVectorImpl<std::pair<int, int>> &ReadyList, T I, T E) {
589 SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
590 auto SyncPipeline = CurrPipeline[CurrSyncGroupIdx];
591 assert(CurrSU.second.size() >= 1);
592
593 for (; I != E; ++I) {
594 std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
595 int CandSGID = *I;
596 SchedGroup *Match = llvm::find_if(SyncPipeline, [CandSGID](SchedGroup &SG) {
597 return SG.getSGID() == CandSGID;
598 });
599 assert(Match);
600
601 if (UseCostHeur) {
602 if (Match->isFull()) {
603 ReadyList.push_back(std::pair(*I, MissPenalty));
604 continue;
605 }
606
607 int TempCost = addEdges(SyncPipeline, CurrSU.first, CandSGID, AddedEdges);
608 ReadyList.push_back(std::pair(*I, TempCost));
609 removeEdges(AddedEdges);
610 } else
611 ReadyList.push_back(std::pair(*I, -1));
612 }
613
614 if (UseCostHeur) {
615 std::sort(ReadyList.begin(), ReadyList.end(),
616 [](std::pair<int, int> A, std::pair<int, int> B) {
617 return A.second < B.second;
618 });
619 }
620
621 assert(ReadyList.size() == CurrSU.second.size());
622}
623
624bool PipelineSolver::solveExact() {
625 if (checkOptimal())
626 return true;
627
628 if (static_cast<size_t>(CurrSyncGroupIdx) == PipelineInstrs.size())
629 return false;
630
631 assert(static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size());
632 assert(static_cast<size_t>(CurrConflInstNo) <
633 PipelineInstrs[CurrSyncGroupIdx].size());
634 SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
635 LLVM_DEBUG(dbgs() << "Fitting SU(" << CurrSU.first->NodeNum
636 << ") in Pipeline # " << CurrSyncGroupIdx << "\n");
637
638 // SchedGroup -> Cost pairs
640 // Prioritize the candidate sched groups in terms of lowest cost first
641 IsBottomUp ? populateReadyList(ReadyList, CurrSU.second.rbegin(),
642 CurrSU.second.rend())
643 : populateReadyList(ReadyList, CurrSU.second.begin(),
644 CurrSU.second.end());
645
646 auto I = ReadyList.begin();
647 auto E = ReadyList.end();
648 for (; I != E; ++I) {
649 // If we are trying SGs in least cost order, and the current SG is cost
650 // infeasible, then all subsequent SGs will also be cost infeasible, so we
651 // can prune.
652 if (BestCost != -1 && (CurrCost + I->second > BestCost))
653 return false;
654
655 int CandSGID = I->first;
656 int AddedCost = 0;
657 std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
658 auto &SyncPipeline = CurrPipeline[CurrSyncGroupIdx];
659 SchedGroup *Match;
660 for (auto &SG : SyncPipeline) {
661 if (SG.getSGID() == CandSGID)
662 Match = &SG;
663 }
664
665 if (Match->isFull())
666 continue;
667
668 if (!Match->allowedByRules(CurrSU.first, SyncPipeline))
669 continue;
670
671 LLVM_DEBUG(dbgs() << "Assigning to SchedGroup with Mask "
672 << (int)Match->getMask() << "and ID " << CandSGID
673 << "\n");
674 Match->add(*CurrSU.first);
675 AddedCost = addEdges(SyncPipeline, CurrSU.first, CandSGID, AddedEdges);
676 LLVM_DEBUG(dbgs() << "Cost of Assignment: " << AddedCost << "\n");
677 CurrCost += AddedCost;
678 advancePosition();
679 ++BranchesExplored;
680 bool FinishedExploring = false;
681 // If the Cost after adding edges is greater than a known solution,
682 // backtrack
683 if (CurrCost < BestCost || BestCost == -1) {
684 if (solveExact()) {
685 FinishedExploring = BestCost != 0;
686 if (!FinishedExploring)
687 return true;
688 }
689 }
690
691 retreatPosition();
692 CurrCost -= AddedCost;
693 removeEdges(AddedEdges);
694 Match->pop();
695 CurrPipeline[CurrSyncGroupIdx] = SyncPipeline;
696 if (FinishedExploring)
697 return true;
698 }
699
700 // Try the pipeline where the current instruction is omitted
701 // Potentially if we omit a problematic instruction from the pipeline,
702 // all the other instructions can nicely fit.
703 CurrCost += MissPenalty;
704 advancePosition();
705
706 LLVM_DEBUG(dbgs() << "NOT Assigned (" << CurrSU.first->NodeNum << ")\n");
707
708 bool FinishedExploring = false;
709 if (CurrCost < BestCost || BestCost == -1) {
710 if (solveExact()) {
711 bool FinishedExploring = BestCost != 0;
712 if (!FinishedExploring)
713 return true;
714 }
715 }
716
717 retreatPosition();
718 CurrCost -= MissPenalty;
719 return FinishedExploring;
720}
721
722template <typename T>
723void PipelineSolver::greedyFind(
724 std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I, T E) {
725 SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
726 int BestNodeCost = -1;
727 int TempCost;
728 SchedGroup *BestGroup = nullptr;
729 int BestGroupID = -1;
730 auto &SyncPipeline = CurrPipeline[CurrSyncGroupIdx];
731 LLVM_DEBUG(dbgs() << "Fitting SU(" << CurrSU.first->NodeNum
732 << ") in Pipeline # " << CurrSyncGroupIdx << "\n");
733
734 // Since we have added the potential SchedGroups from bottom up, but
735 // traversed the DAG from top down, parse over the groups from last to
736 // first. If we fail to do this for the greedy algorithm, the solution will
737 // likely not be good in more complex cases.
738 for (; I != E; ++I) {
739 std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
740 int CandSGID = *I;
741 SchedGroup *Match = llvm::find_if(SyncPipeline, [CandSGID](SchedGroup &SG) {
742 return SG.getSGID() == CandSGID;
743 });
744 assert(Match);
745
746 LLVM_DEBUG(dbgs() << "Trying SGID # " << CandSGID << " with Mask "
747 << (int)Match->getMask() << "\n");
748
749 if (Match->isFull()) {
750 LLVM_DEBUG(dbgs() << "SGID # " << CandSGID << " is full\n");
751 continue;
752 }
753 if (!Match->allowedByRules(CurrSU.first, SyncPipeline)) {
754 LLVM_DEBUG(dbgs() << "SGID # " << CandSGID << " has conflicting rule\n");
755 continue;
756 }
757 TempCost = addEdges(SyncPipeline, CurrSU.first, CandSGID, AddedEdges);
758 LLVM_DEBUG(dbgs() << "Cost of Group " << TempCost << "\n");
759 if (TempCost < BestNodeCost || BestNodeCost == -1) {
760 BestGroup = Match;
761 BestNodeCost = TempCost;
762 BestGroupID = CandSGID;
763 }
764 removeEdges(AddedEdges);
765 if (BestNodeCost == 0)
766 break;
767 }
768
769 if (BestGroupID != -1) {
770 BestGroup->add(*CurrSU.first);
771 addEdges(SyncPipeline, CurrSU.first, BestGroupID, AddedEdges);
772 LLVM_DEBUG(dbgs() << "Best Group has ID: " << BestGroupID << " and Mask"
773 << (int)BestGroup->getMask() << "\n");
774 BestCost += TempCost;
775 } else
776 BestCost += MissPenalty;
777
778 CurrPipeline[CurrSyncGroupIdx] = SyncPipeline;
779}
780
781bool PipelineSolver::solveGreedy() {
782 BestCost = 0;
783 std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
784
785 while (static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size()) {
786 SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
787 IsBottomUp
788 ? greedyFind(AddedEdges, CurrSU.second.rbegin(), CurrSU.second.rend())
789 : greedyFind(AddedEdges, CurrSU.second.begin(), CurrSU.second.end());
790 advancePosition();
791 }
792 BestPipeline = CurrPipeline;
793 removeEdges(AddedEdges);
794 return false;
795}
796
797unsigned PipelineSolver::computeProblemSize() {
798 unsigned ProblemSize = 0;
799 for (auto &PipeConflicts : PipelineInstrs) {
800 ProblemSize += PipeConflicts.size();
801 }
802
803 return ProblemSize;
804}
805
806void PipelineSolver::solve() {
807 if (!NeedsSolver)
808 return;
809
810 unsigned ProblemSize = computeProblemSize();
811 assert(ProblemSize > 0);
812
813 bool BelowCutoff = (CutoffForExact > 0) && ProblemSize <= CutoffForExact;
814 MissPenalty = (ProblemSize / 2) + 1;
815
816 LLVM_DEBUG(DAG->dump());
817 if (EnableExactSolver || BelowCutoff) {
818 LLVM_DEBUG(dbgs() << "Starting Greedy pipeline solver\n");
819 solveGreedy();
820 reset();
821 LLVM_DEBUG(dbgs() << "Greedy produced best cost of " << BestCost << "\n");
822 if (BestCost > 0) {
823 LLVM_DEBUG(dbgs() << "Starting EXACT pipeline solver\n");
824 solveExact();
825 LLVM_DEBUG(dbgs() << "Exact produced best cost of " << BestCost << "\n");
826 }
827 } else { // Use the Greedy Algorithm by default
828 LLVM_DEBUG(dbgs() << "Starting GREEDY pipeline solver\n");
829 solveGreedy();
830 }
831
832 makePipeline();
833 LLVM_DEBUG(dbgs() << "After applying mutation\n");
834 LLVM_DEBUG(DAG->dump());
835}
836
837enum IGLPStrategyID : int {
838 MFMASmallGemmOptID = 0,
839 MFMASmallGemmSingleWaveOptID = 1,
840 MFMAExpInterleave = 2
841};
842
843// Implement a IGLP scheduling strategy.
844class IGLPStrategy {
845protected:
847
848 const SIInstrInfo *TII;
849
850public:
851 /// Add SchedGroups to \p SyncedSchedGroups to implement this Strategy.
852 virtual bool applyIGLPStrategy(
854 DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
856
857 // Returns true if this strategy should be applied to a ScheduleDAG.
858 virtual bool shouldApplyStrategy(ScheduleDAGInstrs *DAG,
860
861 bool IsBottomUp = 1;
862
863 IGLPStrategy(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
864 : DAG(DAG), TII(TII) {}
865
866 virtual ~IGLPStrategy() = default;
867};
868
869class MFMASmallGemmOpt final : public IGLPStrategy {
870private:
871public:
872 bool applyIGLPStrategy(
874 DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
876
877 bool shouldApplyStrategy(ScheduleDAGInstrs *DAG,
879 return true;
880 }
881
882 MFMASmallGemmOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
883 : IGLPStrategy(DAG, TII) {
884 IsBottomUp = 1;
885 }
886};
887
888bool MFMASmallGemmOpt::applyIGLPStrategy(
890 DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
892 // Count the number of MFMA instructions.
893 unsigned MFMACount = 0;
894 for (const MachineInstr &I : *DAG)
895 if (TII->isMFMAorWMMA(I))
896 ++MFMACount;
897
898 const unsigned PipelineSyncID = 0;
899 SchedGroup *SG = nullptr;
900 for (unsigned I = 0; I < MFMACount * 3; ++I) {
901 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
902 SchedGroupMask::DS, 2, PipelineSyncID, DAG, TII);
903 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
904
905 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
906 SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
907 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
908 }
909
910 return true;
911}
912
913class MFMAExpInterleaveOpt final : public IGLPStrategy {
914private:
915 // The count of TRANS SUs involved in the interleaved pipeline
916 static unsigned TransPipeCount;
917 // The count of MFMA SUs involved in the interleaved pipeline
918 static unsigned MFMAPipeCount;
919 // The count of Add SUs involved in the interleaved pipeline
920 static unsigned AddPipeCount;
921 // The number of transitive MFMA successors for each TRANS SU
922 static unsigned MFMAEnablement;
923 // The number of transitive TRANS predecessors for each MFMA SU
924 static unsigned ExpRequirement;
925 // The count of independent "chains" of MFMA instructions in the pipeline
926 static unsigned MFMAChains;
927 // The length of each independent "chain" of MFMA instructions
928 static unsigned MFMAChainLength;
929 // Whether or not the pipeline has V_CVT instructions
930 static bool HasCvt;
931 // Whether or not there are instructions between the TRANS instruction and
932 // V_CVT
933 static bool HasChainBetweenCvt;
934 // The first occuring DS_READ which feeds an MFMA chain
935 static std::optional<unsigned> FirstPipeDSR;
936 // The MFMAPipe SUs with no MFMA predecessors
937 SmallVector<SUnit *, 4> MFMAChainSeeds;
938 // Compute the heuristics for the pipeline, returning whether or not the DAG
939 // is well formatted for the mutation
940 bool analyzeDAG(const SIInstrInfo *TII);
941
942 /// Whether or not the instruction is a transitive predecessor of an MFMA
943 /// instruction
944 class IsPipeExp final : public InstructionRule {
945 public:
946 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
947 SmallVectorImpl<SchedGroup> &SyncPipe) override {
948
949 auto DAG = SyncPipe[0].DAG;
950
951 if (Cache->empty()) {
952 auto I = DAG->SUnits.rbegin();
953 auto E = DAG->SUnits.rend();
954 for (; I != E; I++) {
955 if (TII->isMFMAorWMMA(*I->getInstr()))
956 Cache->push_back(&*I);
957 }
958 if (Cache->empty())
959 return false;
960 }
961
962 auto Reaches = (std::any_of(
963 Cache->begin(), Cache->end(), [&SU, &DAG](SUnit *TargetSU) {
964 return DAG->IsReachable(TargetSU, const_cast<SUnit *>(SU));
965 }));
966
967 return Reaches;
968 }
969 IsPipeExp(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
970 : InstructionRule(TII, SGID, NeedsCache) {}
971 };
972
973 /// Whether or not the instruction is a transitive predecessor of the
974 /// \p Number th MFMA of the MFMAs occuring after a TRANS instruction
975 class EnablesNthMFMA final : public InstructionRule {
976 private:
977 unsigned Number = 1;
978
979 public:
980 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
981 SmallVectorImpl<SchedGroup> &SyncPipe) override {
982 bool FoundTrans = false;
983 unsigned Counter = 1;
984 auto DAG = SyncPipe[0].DAG;
985
986 if (Cache->empty()) {
988
989 auto I = DAG->SUnits.begin();
990 auto E = DAG->SUnits.end();
991 for (; I != E; I++) {
992 if (FoundTrans && TII->isMFMAorWMMA(*I->getInstr())) {
993 if (Counter == Number) {
994 Cache->push_back(&*I);
995 break;
996 }
997 ++Counter;
998 }
999 if (!FoundTrans && TII->isTRANS(I->getInstr()->getOpcode()))
1000 FoundTrans = true;
1001 }
1002 if (Cache->empty())
1003 return false;
1004 }
1005
1006 return DAG->IsReachable((*Cache)[0], const_cast<SUnit *>(SU));
1007 }
1008
1009 EnablesNthMFMA(unsigned Number, const SIInstrInfo *TII, unsigned SGID,
1010 bool NeedsCache = false)
1011 : InstructionRule(TII, SGID, NeedsCache), Number(Number) {}
1012 };
1013
1014 /// Whether or not the instruction enables the exact MFMA that is the \p
1015 /// Number th MFMA in the chain starting with \p ChainSeed
1016 class EnablesNthMFMAInChain final : public InstructionRule {
1017 private:
1018 unsigned Number = 1;
1019 SUnit *ChainSeed;
1020
1021 public:
1022 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1023 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1024 auto DAG = SyncPipe[0].DAG;
1025
1026 if (!SU || !TII->isMFMAorWMMA(*ChainSeed->getInstr()))
1027 return false;
1028
1029 if (Cache->empty()) {
1030 auto TempSU = ChainSeed;
1031 auto Depth = Number;
1032 while (Depth > 0) {
1033 --Depth;
1034 bool Found = false;
1035 for (auto &Succ : TempSU->Succs) {
1036 if (TII->isMFMAorWMMA(*Succ.getSUnit()->getInstr())) {
1037 TempSU = Succ.getSUnit();
1038 Found = true;
1039 break;
1040 }
1041 }
1042 if (!Found)
1043 return false;
1044 }
1045
1046 Cache->push_back(TempSU);
1047 }
1048 // If we failed to find the instruction to be placed into the cache, we
1049 // would have already exited.
1050 assert(!Cache->empty());
1051
1052 return DAG->IsReachable((*Cache)[0], const_cast<SUnit *>(SU));
1053 }
1054
1055 EnablesNthMFMAInChain(unsigned Number, SUnit *ChainSeed,
1056 const SIInstrInfo *TII, unsigned SGID,
1057 bool NeedsCache = false)
1058 : InstructionRule(TII, SGID, NeedsCache), Number(Number),
1059 ChainSeed(ChainSeed) {}
1060 };
1061
1062 /// Whether or not the instruction has less than \p Size immediate successors.
1063 /// If \p HasIntermediary is true, this tests also whether all successors of
1064 /// the SUnit have less than \p Size successors.
1065 class LessThanNSuccs final : public InstructionRule {
1066 private:
1067 unsigned Size = 1;
1068 bool HasIntermediary = false;
1069
1070 public:
1071 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1072 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1073 if (!SyncPipe.size())
1074 return false;
1075
1076 auto SuccSize = std::count_if(
1077 SU->Succs.begin(), SU->Succs.end(),
1078 [](const SDep &Succ) { return Succ.getKind() == SDep::Data; });
1079 if (SuccSize >= Size)
1080 return false;
1081
1082 if (HasIntermediary) {
1083 for (auto Succ : SU->Succs) {
1084 auto SuccSize = std::count_if(
1085 Succ.getSUnit()->Succs.begin(), Succ.getSUnit()->Succs.end(),
1086 [](const SDep &SuccSucc) {
1087 return SuccSucc.getKind() == SDep::Data;
1088 });
1089 if (SuccSize >= Size)
1090 return false;
1091 }
1092 }
1093
1094 return true;
1095 }
1096 LessThanNSuccs(unsigned Size, const SIInstrInfo *TII, unsigned SGID,
1097 bool HasIntermediary = false, bool NeedsCache = false)
1098 : InstructionRule(TII, SGID, NeedsCache), Size(Size),
1099 HasIntermediary(HasIntermediary) {}
1100 };
1101
1102 /// Whether or not the instruction has greater than or equal to \p Size
1103 /// immediate successors. If \p HasIntermediary is true, this tests also
1104 /// whether all successors of the SUnit have greater than or equal to \p Size
1105 /// successors.
1106 class GreaterThanOrEqualToNSuccs final : public InstructionRule {
1107 private:
1108 unsigned Size = 1;
1109 bool HasIntermediary = false;
1110
1111 public:
1112 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1113 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1114 if (!SyncPipe.size())
1115 return false;
1116
1117 auto SuccSize = std::count_if(
1118 SU->Succs.begin(), SU->Succs.end(),
1119 [](const SDep &Succ) { return Succ.getKind() == SDep::Data; });
1120 if (SuccSize >= Size)
1121 return true;
1122
1123 if (HasIntermediary) {
1124 for (auto Succ : SU->Succs) {
1125 auto SuccSize = std::count_if(
1126 Succ.getSUnit()->Succs.begin(), Succ.getSUnit()->Succs.end(),
1127 [](const SDep &SuccSucc) {
1128 return SuccSucc.getKind() == SDep::Data;
1129 });
1130 if (SuccSize >= Size)
1131 return true;
1132 }
1133 }
1134
1135 return false;
1136 }
1137 GreaterThanOrEqualToNSuccs(unsigned Size, const SIInstrInfo *TII,
1138 unsigned SGID, bool HasIntermediary = false,
1139 bool NeedsCache = false)
1140 : InstructionRule(TII, SGID, NeedsCache), Size(Size),
1141 HasIntermediary(HasIntermediary) {}
1142 };
1143
1144 // Whether or not the instruction is a relevant V_CVT instruction.
1145 class IsCvt final : public InstructionRule {
1146 public:
1147 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1148 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1149 auto Opc = SU->getInstr()->getOpcode();
1150 return Opc == AMDGPU::V_CVT_F16_F32_e32 ||
1151 Opc == AMDGPU::V_CVT_I32_F32_e32;
1152 }
1153 IsCvt(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
1154 : InstructionRule(TII, SGID, NeedsCache) {}
1155 };
1156
1157 // Whether or not the instruction is FMA_F32.
1158 class IsFMA final : public InstructionRule {
1159 public:
1160 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1161 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1162 return SU->getInstr()->getOpcode() == AMDGPU::V_FMA_F32_e64 ||
1163 SU->getInstr()->getOpcode() == AMDGPU::V_PK_FMA_F32;
1164 }
1165 IsFMA(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
1166 : InstructionRule(TII, SGID, NeedsCache) {}
1167 };
1168
1169 // Whether or not the instruction is a V_ADD_F32 instruction.
1170 class IsPipeAdd final : public InstructionRule {
1171 public:
1172 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1173 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1174 return SU->getInstr()->getOpcode() == AMDGPU::V_ADD_F32_e32;
1175 }
1176 IsPipeAdd(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
1177 : InstructionRule(TII, SGID, NeedsCache) {}
1178 };
1179
1180 /// Whether or not the instruction is an immediate RAW successor
1181 /// of the SchedGroup \p Distance steps before.
1182 class IsSuccOfPrevNthGroup final : public InstructionRule {
1183 private:
1184 unsigned Distance = 1;
1185
1186 public:
1187 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1188 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1189 SchedGroup *OtherGroup = nullptr;
1190 if (!SyncPipe.size())
1191 return false;
1192
1193 for (auto &PipeSG : SyncPipe) {
1194 if ((unsigned)PipeSG.getSGID() == SGID - Distance)
1195 OtherGroup = &PipeSG;
1196 }
1197
1198 if (!OtherGroup)
1199 return false;
1200 if (!OtherGroup->Collection.size())
1201 return true;
1202
1203 for (auto &OtherEle : OtherGroup->Collection) {
1204 for (auto &Succ : OtherEle->Succs) {
1205 if (Succ.getSUnit() == SU && Succ.getKind() == SDep::Data)
1206 return true;
1207 }
1208 }
1209
1210 return false;
1211 }
1212 IsSuccOfPrevNthGroup(unsigned Distance, const SIInstrInfo *TII,
1213 unsigned SGID, bool NeedsCache = false)
1214 : InstructionRule(TII, SGID, NeedsCache), Distance(Distance) {}
1215 };
1216
1217 /// Whether or not the instruction is a transitive successor of any
1218 /// instruction the the SchedGroup \p Distance steps before.
1219 class IsReachableFromPrevNthGroup final : public InstructionRule {
1220 private:
1221 unsigned Distance = 1;
1222
1223 public:
1224 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1225 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1226 SchedGroup *OtherGroup = nullptr;
1227 if (!SyncPipe.size())
1228 return false;
1229
1230 for (auto &PipeSG : SyncPipe) {
1231 if ((unsigned)PipeSG.getSGID() == SGID - Distance)
1232 OtherGroup = &PipeSG;
1233 }
1234
1235 if (!OtherGroup)
1236 return false;
1237 if (!OtherGroup->Collection.size())
1238 return true;
1239
1240 auto DAG = SyncPipe[0].DAG;
1241
1242 for (auto &OtherEle : OtherGroup->Collection)
1243 if (DAG->IsReachable(const_cast<SUnit *>(SU), OtherEle))
1244 return true;
1245
1246 return false;
1247 }
1248 IsReachableFromPrevNthGroup(unsigned Distance, const SIInstrInfo *TII,
1249 unsigned SGID, bool NeedsCache = false)
1250 : InstructionRule(TII, SGID, NeedsCache), Distance(Distance) {}
1251 };
1252
1253 /// Whether or not the instruction occurs after the SU with NodeNUm \p Number
1254 class OccursAtOrAfterNode final : public InstructionRule {
1255 private:
1256 unsigned Number = 1;
1257
1258 public:
1259 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1260 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1261
1262 return SU->NodeNum >= Number;
1263 }
1264 OccursAtOrAfterNode(unsigned Number, const SIInstrInfo *TII, unsigned SGID,
1265 bool NeedsCache = false)
1266 : InstructionRule(TII, SGID, NeedsCache), Number(Number) {}
1267 };
1268
1269 /// Whether or not the SU is exactly the \p Number th MFMA in the chain
1270 /// starting with \p ChainSeed
1271 class IsExactMFMA final : public InstructionRule {
1272 private:
1273 unsigned Number = 1;
1274 SUnit *ChainSeed;
1275
1276 public:
1277 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1278 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1279 if (!SU || !TII->isMFMAorWMMA(*ChainSeed->getInstr()))
1280 return false;
1281
1282 if (Cache->empty()) {
1283 auto TempSU = ChainSeed;
1284 auto Depth = Number;
1285 while (Depth > 0) {
1286 --Depth;
1287 bool Found = false;
1288 for (auto &Succ : TempSU->Succs) {
1289 if (TII->isMFMAorWMMA(*Succ.getSUnit()->getInstr())) {
1290 TempSU = Succ.getSUnit();
1291 Found = true;
1292 break;
1293 }
1294 }
1295 if (!Found) {
1296 return false;
1297 }
1298 }
1299 Cache->push_back(TempSU);
1300 }
1301 // If we failed to find the instruction to be placed into the cache, we
1302 // would have already exited.
1303 assert(!Cache->empty());
1304
1305 return (*Cache)[0] == SU;
1306 }
1307
1308 IsExactMFMA(unsigned Number, SUnit *ChainSeed, const SIInstrInfo *TII,
1309 unsigned SGID, bool NeedsCache = false)
1310 : InstructionRule(TII, SGID, NeedsCache), Number(Number),
1311 ChainSeed(ChainSeed) {}
1312 };
1313
1314 // Whether the instruction occurs after the first TRANS instruction. This
1315 // implies the instruction can not be a predecessor of the first TRANS
1316 // insruction
1317 class OccursAfterExp final : public InstructionRule {
1318 public:
1319 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1320 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1321
1322 SmallVector<SUnit *, 12> Worklist;
1323 auto DAG = SyncPipe[0].DAG;
1324 if (Cache->empty()) {
1325 for (auto &SU : DAG->SUnits)
1326 if (TII->isTRANS(SU.getInstr()->getOpcode())) {
1327 Cache->push_back(&SU);
1328 break;
1329 }
1330 if (Cache->empty())
1331 return false;
1332 }
1333
1334 return SU->NodeNum > (*Cache)[0]->NodeNum;
1335 }
1336
1337 OccursAfterExp(const SIInstrInfo *TII, unsigned SGID,
1338 bool NeedsCache = false)
1339 : InstructionRule(TII, SGID, NeedsCache) {}
1340 };
1341
1342public:
1343 bool applyIGLPStrategy(
1345 DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
1347
1348 bool shouldApplyStrategy(ScheduleDAGInstrs *DAG,
1350
1351 MFMAExpInterleaveOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
1352 : IGLPStrategy(DAG, TII) {
1353 IsBottomUp = 0;
1354 }
1355};
1356
1357unsigned MFMAExpInterleaveOpt::TransPipeCount = 0;
1358unsigned MFMAExpInterleaveOpt::MFMAPipeCount = 0;
1359unsigned MFMAExpInterleaveOpt::AddPipeCount = 0;
1360unsigned MFMAExpInterleaveOpt::MFMAEnablement = 0;
1361unsigned MFMAExpInterleaveOpt::ExpRequirement = 0;
1362unsigned MFMAExpInterleaveOpt::MFMAChains = 0;
1363unsigned MFMAExpInterleaveOpt::MFMAChainLength = 0;
1364bool MFMAExpInterleaveOpt::HasCvt = false;
1365bool MFMAExpInterleaveOpt::HasChainBetweenCvt = false;
1366std::optional<unsigned> MFMAExpInterleaveOpt::FirstPipeDSR = std::nullopt;
1367
1368bool MFMAExpInterleaveOpt::analyzeDAG(const SIInstrInfo *TII) {
1369 SmallVector<SUnit *, 10> ExpPipeCands;
1370 SmallVector<SUnit *, 10> MFMAPipeCands;
1371 SmallVector<SUnit *, 10> MFMAPipeSUs;
1374
1375 auto isBitPack = [](unsigned Opc) {
1376 return Opc == AMDGPU::V_PACK_B32_F16_e64 || Opc == AMDGPU::V_PERM_B32_e64;
1377 };
1378
1379 auto isCvt = [](unsigned Opc) {
1380 return Opc == AMDGPU::V_CVT_F16_F32_e32 || Opc == AMDGPU::V_CVT_I32_F32_e32;
1381 };
1382
1383 auto isAdd = [](unsigned Opc) { return Opc == AMDGPU::V_ADD_F32_e32; };
1384
1385 AddPipeCount = 0;
1386 for (SUnit &SU : DAG->SUnits) {
1387 auto Opc = SU.getInstr()->getOpcode();
1388 if (TII->isTRANS(Opc)) {
1389 // Avoid counting a potential bonus V_EXP which all the MFMA depend on
1390 if (SU.Succs.size() >= 7)
1391 continue;
1392 for (auto &Succ : SU.Succs) {
1393 if (Succ.getSUnit()->Succs.size() >= 7)
1394 continue;
1395 }
1396 ExpPipeCands.push_back(&SU);
1397 }
1398
1399 if (TII->isMFMAorWMMA(*SU.getInstr()))
1400 MFMAPipeCands.push_back(&SU);
1401
1402 if (isBitPack(Opc))
1403 PackSUs.push_back(&SU);
1404
1405 if (isCvt(Opc))
1406 CvtSUs.push_back(&SU);
1407
1408 if (isAdd(Opc))
1409 ++AddPipeCount;
1410 }
1411
1412 if (!(PackSUs.size() && MFMAPipeCands.size() && ExpPipeCands.size()))
1413 return false;
1414
1415 TransPipeCount = 0;
1416
1417 std::optional<SUnit *> TempMFMA;
1418 std::optional<SUnit *> TempExp;
1419 // Count the number of EXPs that reach an MFMA
1420 for (auto &PredSU : ExpPipeCands) {
1421 for (auto &SuccSU : MFMAPipeCands) {
1422 if (DAG->IsReachable(SuccSU, PredSU)) {
1423 if (!TempExp) {
1424 TempExp = PredSU;
1425 TempMFMA = SuccSU;
1426 }
1427 MFMAPipeSUs.push_back(SuccSU);
1428 ++TransPipeCount;
1429 break;
1430 }
1431 }
1432 }
1433
1434 if (!(TempExp && TempMFMA))
1435 return false;
1436
1437 HasChainBetweenCvt =
1438 std::find_if((*TempExp)->Succs.begin(), (*TempExp)->Succs.end(),
1439 [&isCvt](SDep &Succ) {
1440 return isCvt(Succ.getSUnit()->getInstr()->getOpcode());
1441 }) == (*TempExp)->Succs.end();
1442
1443 // Count the number of MFMAs that are reached by an EXP
1444 for (auto &SuccSU : MFMAPipeCands) {
1445 if (MFMAPipeSUs.size() &&
1446 std::find_if(MFMAPipeSUs.begin(), MFMAPipeSUs.end(),
1447 [&SuccSU](SUnit *PotentialMatch) {
1448 return PotentialMatch->NodeNum == SuccSU->NodeNum;
1449 }) != MFMAPipeSUs.end())
1450 continue;
1451
1452 for (auto &PredSU : ExpPipeCands) {
1453 if (DAG->IsReachable(SuccSU, PredSU)) {
1454 MFMAPipeSUs.push_back(SuccSU);
1455 break;
1456 }
1457 }
1458 }
1459
1460 MFMAPipeCount = MFMAPipeSUs.size();
1461
1462 assert(TempExp && TempMFMA);
1463 assert(MFMAPipeCount > 0);
1464
1465 std::optional<SUnit *> TempCvt;
1466 for (auto &SuccSU : CvtSUs) {
1467 if (DAG->IsReachable(SuccSU, *TempExp)) {
1468 TempCvt = SuccSU;
1469 break;
1470 }
1471 }
1472
1473 HasCvt = false;
1474 if (TempCvt.has_value()) {
1475 for (auto &SuccSU : MFMAPipeSUs) {
1476 if (DAG->IsReachable(SuccSU, *TempCvt)) {
1477 HasCvt = true;
1478 break;
1479 }
1480 }
1481 }
1482
1483 MFMAChains = 0;
1484 for (auto &MFMAPipeSU : MFMAPipeSUs) {
1485 if (is_contained(MFMAChainSeeds, MFMAPipeSU))
1486 continue;
1487 if (!std::any_of(MFMAPipeSU->Preds.begin(), MFMAPipeSU->Preds.end(),
1488 [&TII](SDep &Succ) {
1489 return TII->isMFMAorWMMA(*Succ.getSUnit()->getInstr());
1490 })) {
1491 MFMAChainSeeds.push_back(MFMAPipeSU);
1492 ++MFMAChains;
1493 }
1494 }
1495
1496 if (!MFMAChains)
1497 return false;
1498
1499 for (auto Pred : MFMAChainSeeds[0]->Preds) {
1500 if (TII->isDS(Pred.getSUnit()->getInstr()->getOpcode()) &&
1501 Pred.getSUnit()->getInstr()->mayLoad())
1502 FirstPipeDSR = Pred.getSUnit()->NodeNum;
1503 }
1504
1505 MFMAChainLength = MFMAPipeCount / MFMAChains;
1506
1507 // The number of bit pack operations that depend on a single V_EXP
1508 unsigned PackSuccCount = std::count_if(
1509 PackSUs.begin(), PackSUs.end(), [this, &TempExp](SUnit *VPack) {
1510 return DAG->IsReachable(VPack, *TempExp);
1511 });
1512
1513 // The number of bit pack operations an MFMA depends on
1514 unsigned PackPredCount =
1515 std::count_if((*TempMFMA)->Preds.begin(), (*TempMFMA)->Preds.end(),
1516 [&isBitPack](SDep &Pred) {
1517 auto Opc = Pred.getSUnit()->getInstr()->getOpcode();
1518 return isBitPack(Opc);
1519 });
1520
1521 auto PackPred =
1522 std::find_if((*TempMFMA)->Preds.begin(), (*TempMFMA)->Preds.end(),
1523 [&isBitPack](SDep &Pred) {
1524 auto Opc = Pred.getSUnit()->getInstr()->getOpcode();
1525 return isBitPack(Opc);
1526 });
1527
1528 if (PackPred == (*TempMFMA)->Preds.end())
1529 return false;
1530
1531 MFMAEnablement = 0;
1532 ExpRequirement = 0;
1533 // How many MFMAs depend on a single bit pack operation
1534 MFMAEnablement =
1535 std::count_if(PackPred->getSUnit()->Succs.begin(),
1536 PackPred->getSUnit()->Succs.end(), [&TII](SDep &Succ) {
1537 return TII->isMFMAorWMMA(*Succ.getSUnit()->getInstr());
1538 });
1539
1540 // The number of MFMAs that depend on a single V_EXP
1541 MFMAEnablement *= PackSuccCount;
1542
1543 // The number of V_EXPs required to resolve all dependencies for an MFMA
1544 ExpRequirement =
1545 std::count_if(ExpPipeCands.begin(), ExpPipeCands.end(),
1546 [this, &PackPred](SUnit *ExpBase) {
1547 return DAG->IsReachable(PackPred->getSUnit(), ExpBase);
1548 });
1549
1550 ExpRequirement *= PackPredCount;
1551 return true;
1552}
1553
1554bool MFMAExpInterleaveOpt::shouldApplyStrategy(ScheduleDAGInstrs *DAG,
1556 const GCNSubtarget &ST = DAG->MF.getSubtarget<GCNSubtarget>();
1557 const SIInstrInfo *TII = ST.getInstrInfo();
1558
1559 if (Phase != AMDGPU::SchedulingPhase::PostRA)
1560 MFMAChainSeeds.clear();
1561 if (Phase != AMDGPU::SchedulingPhase::PostRA && !analyzeDAG(TII))
1562 return false;
1563
1564 return true;
1565}
1566
1567bool MFMAExpInterleaveOpt::applyIGLPStrategy(
1569 DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
1571
1572 bool IsSmallKernelType =
1573 MFMAEnablement == 2 && ExpRequirement == 4 && TransPipeCount == 32;
1574 bool IsLargeKernelType =
1575 MFMAEnablement == 4 && ExpRequirement == 4 && TransPipeCount == 64;
1576
1577 if (!(IsSmallKernelType || IsLargeKernelType))
1578 return false;
1579
1580 const GCNSubtarget &ST = DAG->MF.getSubtarget<GCNSubtarget>();
1581 const SIInstrInfo *TII = ST.getInstrInfo();
1582
1583 unsigned PipelineSyncID = 0;
1584 SchedGroup *SG = nullptr;
1585
1586 unsigned MFMAChain = 0;
1587 unsigned PositionInChain = 0;
1588 unsigned CurrMFMAForTransPosition = 0;
1589
1590 auto incrementTransPosition = [&MFMAChain, &PositionInChain,
1591 &CurrMFMAForTransPosition]() {
1592 CurrMFMAForTransPosition += MFMAEnablement;
1593 PositionInChain = (CurrMFMAForTransPosition / MFMAChains);
1594 MFMAChain = CurrMFMAForTransPosition % MFMAChains;
1595 };
1596
1597 auto getNextTransPositionInChain = [&CurrMFMAForTransPosition]() {
1598 auto TempMFMAForTrans = CurrMFMAForTransPosition + MFMAEnablement;
1599 return (TempMFMAForTrans / MFMAChains);
1600 };
1601
1602 auto getNextTransMFMAChain = [&CurrMFMAForTransPosition]() {
1603 auto TempMFMAForTrans = CurrMFMAForTransPosition + MFMAEnablement;
1604 return TempMFMAForTrans % MFMAChains;
1605 };
1606
1607 unsigned CurrMFMAPosition = 0;
1608 unsigned MFMAChainForMFMA = 0;
1609 unsigned PositionInChainForMFMA = 0;
1610
1611 auto incrementMFMAPosition = [&CurrMFMAPosition, &MFMAChainForMFMA,
1612 &PositionInChainForMFMA]() {
1613 ++CurrMFMAPosition;
1614 MFMAChainForMFMA = CurrMFMAPosition % MFMAChains;
1615 PositionInChainForMFMA = CurrMFMAPosition / MFMAChains;
1616 };
1617
1618 bool IsPostRA = Phase == AMDGPU::SchedulingPhase::PostRA;
1619 assert(IsPostRA || MFMAChainSeeds.size() == MFMAChains);
1620
1621 bool UsesFMA = IsSmallKernelType || !IsPostRA;
1622 bool UsesDSRead = IsLargeKernelType && !IsPostRA && FirstPipeDSR;
1623 bool UsesCvt = HasCvt && (IsSmallKernelType || !IsPostRA);
1624 bool UsesVALU = IsSmallKernelType;
1625
1626 // PHASE 1: "Prefetch"
1627 if (UsesFMA) {
1628 // First Round FMA
1629 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1630 SchedGroupMask::VALU, ExpRequirement, PipelineSyncID, DAG, TII);
1631 if (!IsPostRA && MFMAChains) {
1632 SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
1633 PositionInChain, MFMAChainSeeds[MFMAChain], TII, SG->getSGID(),
1634 true));
1635 } else
1636 SG->addRule(
1637 std::make_shared<EnablesNthMFMA>(1, TII, SG->getSGID(), true));
1638 SG->addRule(std::make_shared<IsFMA>(TII, SG->getSGID()));
1639 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1640
1641 // Second Round FMA
1642 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1643 SchedGroupMask::VALU, ExpRequirement, PipelineSyncID, DAG, TII);
1644 if (!IsPostRA && MFMAChains) {
1645 SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
1646 getNextTransPositionInChain(),
1647 MFMAChainSeeds[getNextTransMFMAChain()], TII, SG->getSGID(), true));
1648 } else
1649 SG->addRule(std::make_shared<EnablesNthMFMA>(MFMAEnablement + 1, TII,
1650 SG->getSGID(), true));
1651 SG->addRule(std::make_shared<IsFMA>(TII, SG->getSGID()));
1652 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1653 }
1654
1655 if (UsesDSRead) {
1656 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1657 SchedGroupMask::DS_READ, 2, PipelineSyncID, DAG, TII);
1658 SG->addRule(std::make_shared<OccursAtOrAfterNode>(*FirstPipeDSR, TII,
1659 SG->getSGID()));
1660 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1661 }
1662
1663 // First Round EXP
1664 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1665 SchedGroupMask::TRANS, ExpRequirement, PipelineSyncID, DAG, TII);
1666 if (!IsPostRA && MFMAChains)
1667 SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
1668 PositionInChain, MFMAChainSeeds[MFMAChain], TII, SG->getSGID(), true));
1669 else
1670 SG->addRule(std::make_shared<EnablesNthMFMA>(1, TII, SG->getSGID(), true));
1671 SG->addRule(std::make_shared<IsPipeExp>(TII, SG->getSGID(), true));
1672 SG->addRule(std::make_shared<LessThanNSuccs>(8, TII, SG->getSGID(),
1673 HasChainBetweenCvt));
1674 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1675
1676 incrementTransPosition();
1677
1678 // First Round CVT, Third Round FMA, Second Round EXP; interleaved
1679 for (unsigned I = 0; I < ExpRequirement; I++) {
1680 // First Round CVT
1681 if (UsesCvt) {
1682 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1683 SchedGroupMask::VALU, 1, PipelineSyncID, DAG, TII);
1684 SG->addRule(std::make_shared<IsCvt>(TII, SG->getSGID()));
1685 if (HasChainBetweenCvt)
1686 SG->addRule(std::make_shared<IsReachableFromPrevNthGroup>(
1687 1 + (2 + UsesFMA) * I, TII, SG->getSGID()));
1688 else
1689 SG->addRule(std::make_shared<IsSuccOfPrevNthGroup>(
1690 1 + (2 + UsesFMA) * I, TII, SG->getSGID()));
1691 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1692 }
1693
1694 // Third Round FMA
1695 if (UsesFMA) {
1696 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1697 SchedGroupMask::VALU, 1, PipelineSyncID, DAG, TII);
1698 if (!IsPostRA && MFMAChains) {
1699 SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
1700 getNextTransPositionInChain(),
1701 MFMAChainSeeds[getNextTransMFMAChain()], TII, SG->getSGID(), true));
1702 } else
1703 SG->addRule(std::make_shared<EnablesNthMFMA>(2 * MFMAEnablement + 1,
1704 TII, SG->getSGID(), true));
1705 SG->addRule(std::make_shared<IsFMA>(TII, SG->getSGID()));
1706 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1707 }
1708
1709 // Second Round EXP
1710 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1711 SchedGroupMask::TRANS, 1, PipelineSyncID, DAG, TII);
1712 if (!IsPostRA && MFMAChains)
1713 SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
1714 PositionInChain, MFMAChainSeeds[MFMAChain], TII, SG->getSGID(),
1715 true));
1716 else
1717 SG->addRule(std::make_shared<EnablesNthMFMA>(MFMAEnablement + 1, TII,
1718 SG->getSGID(), true));
1719 SG->addRule(std::make_shared<IsPipeExp>(TII, SG->getSGID(), true));
1720 SG->addRule(std::make_shared<LessThanNSuccs>(8, TII, SG->getSGID(),
1721 HasChainBetweenCvt));
1722 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1723 }
1724
1725 // The "extra" EXP which enables all MFMA
1726 // TODO: UsesExtraExp
1727 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1728 SchedGroupMask::TRANS, 1, PipelineSyncID, DAG, TII);
1729 SG->addRule(std::make_shared<IsPipeExp>(TII, SG->getSGID(), true));
1730 SG->addRule(std::make_shared<GreaterThanOrEqualToNSuccs>(
1731 8, TII, SG->getSGID(), HasChainBetweenCvt));
1732 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1733
1734 // PHASE 2: Main Interleave Loop
1735
1736 // The number of MFMAs per iteration
1737 unsigned MFMARatio =
1738 MFMAEnablement > ExpRequirement ? MFMAEnablement / ExpRequirement : 1;
1739 // The number of Exps per iteration
1740 unsigned ExpRatio =
1741 MFMAEnablement > ExpRequirement ? 1 : ExpRequirement / MFMAEnablement;
1742 // The reamaining Exps
1743 unsigned RemainingExp = TransPipeCount > (2 * ExpRequirement)
1744 ? TransPipeCount - (2 * ExpRequirement)
1745 : 0;
1746 unsigned ExpLoopCount = RemainingExp / ExpRatio;
1747 // In loop MFMAs
1748 unsigned MFMAInLoop = MFMAPipeCount > (MFMAEnablement * 2)
1749 ? MFMAPipeCount - (MFMAEnablement * 2)
1750 : 0;
1751 unsigned MFMALoopCount = MFMAInLoop / MFMARatio;
1752 unsigned VALUOps =
1753 AddPipeCount < MFMAPipeCount ? 1 : AddPipeCount / MFMAPipeCount;
1754 unsigned LoopSize = std::min(ExpLoopCount, MFMALoopCount);
1755
1756 for (unsigned I = 0; I < LoopSize; I++) {
1757 if (!(I * ExpRatio % ExpRequirement))
1758 incrementTransPosition();
1759
1760 // Round N MFMA
1761 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1762 SchedGroupMask::MFMA, MFMARatio, PipelineSyncID, DAG, TII);
1763 if (!IsPostRA && MFMAChains)
1764 SG->addRule(std::make_shared<IsExactMFMA>(
1765 PositionInChainForMFMA, MFMAChainSeeds[MFMAChainForMFMA], TII,
1766 SG->getSGID(), true));
1767 else
1768 SG->addRule(std::make_shared<OccursAfterExp>(TII, SG->getSGID(), true));
1769 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1770 incrementMFMAPosition();
1771
1772 if (UsesVALU) {
1773 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1774 SchedGroupMask::VALU, VALUOps, PipelineSyncID, DAG, TII);
1775 SG->addRule(std::make_shared<IsPipeAdd>(TII, SG->getSGID()));
1776 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1777 }
1778
1779 if (UsesDSRead && !(I % 4)) {
1780 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1781 SchedGroupMask::DS_READ, 2, PipelineSyncID, DAG, TII);
1782 SG->addRule(std::make_shared<OccursAtOrAfterNode>(*FirstPipeDSR, TII,
1783 SG->getSGID()));
1784 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1785 }
1786
1787 // CVT, EXP, FMA Interleaving
1788 for (unsigned J = 0; J < ExpRatio; J++) {
1789 auto MFMAOffset = (1 + UsesVALU) * MFMARatio * (I + 1);
1790 auto MaxMFMAOffset =
1791 (1 + UsesVALU) * ExpRequirement * MFMARatio / ExpRatio;
1792
1793 // Round N + 1 CVT
1794 if (UsesCvt) {
1795 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1796 SchedGroupMask::VALU, 1, PipelineSyncID, DAG, TII);
1797 SG->addRule(std::make_shared<IsCvt>(TII, SG->getSGID()));
1798 auto BaseDiff = (2 + UsesFMA) * (ExpRequirement - 1) + 1;
1799 auto DSROffset = I / 4 + 1;
1800 auto MaxDSROffset = MaxMFMAOffset / 4;
1801 // TODO: UsesExtraExp
1802 auto ExpOffset = I * ExpRatio + J >= ExpRequirement ? 0 : 1;
1803 auto CurrentOffset = UsesDSRead * std::min(MaxDSROffset, DSROffset) +
1804 std::min(MaxMFMAOffset, MFMAOffset) + BaseDiff +
1805 ExpOffset;
1806 if (HasChainBetweenCvt)
1807 SG->addRule(std::make_shared<IsReachableFromPrevNthGroup>(
1808 CurrentOffset, TII, SG->getSGID()));
1809 else
1810 SG->addRule(std::make_shared<IsSuccOfPrevNthGroup>(CurrentOffset, TII,
1811 SG->getSGID()));
1812 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1813 }
1814
1815 // Round N + 3 FMA
1816 if (UsesFMA) {
1817 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1818 SchedGroupMask::VALU, 1, PipelineSyncID, DAG, TII);
1819 if (!IsPostRA && MFMAChains)
1820 SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
1821 getNextTransPositionInChain(),
1822 MFMAChainSeeds[getNextTransMFMAChain()], TII, SG->getSGID(),
1823 true));
1824 else
1825 SG->addRule(std::make_shared<EnablesNthMFMA>(
1826 (((I * ExpRatio + J) / ExpRequirement) + 3) * MFMAEnablement + 1,
1827 TII, SG->getSGID(), true));
1828 SG->addRule(std::make_shared<IsFMA>(TII, SG->getSGID()));
1829 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1830 }
1831
1832 // Round N + 2 Exp
1833 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1834 SchedGroupMask::TRANS, 1, PipelineSyncID, DAG, TII);
1835 if (!IsPostRA && MFMAChains)
1836 SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
1837 PositionInChain, MFMAChainSeeds[MFMAChain], TII, SG->getSGID(),
1838 true));
1839 else
1840 SG->addRule(std::make_shared<EnablesNthMFMA>(
1841 (((I * ExpRatio + J) / ExpRequirement) + 2) * MFMAEnablement + 1,
1842 TII, SG->getSGID(), true));
1843 SG->addRule(std::make_shared<IsPipeExp>(TII, SG->getSGID(), true));
1844 SG->addRule(std::make_shared<LessThanNSuccs>(8, TII, SG->getSGID(),
1845 HasChainBetweenCvt));
1846 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1847 }
1848 }
1849
1850 // PHASE 3: Remaining MFMAs
1851 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
1852 SchedGroupMask::MFMA, MFMAEnablement * 2, PipelineSyncID, DAG, TII);
1853 SG->addRule(std::make_shared<OccursAfterExp>(TII, SG->getSGID(), true));
1854 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
1855 return true;
1856}
1857
1858class MFMASmallGemmSingleWaveOpt final : public IGLPStrategy {
1859private:
1860 // Whether the DS_READ is a predecessor of first four MFMA in region
1861 class EnablesInitialMFMA final : public InstructionRule {
1862 public:
1863 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1864 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1865 if (!SyncPipe.size())
1866 return false;
1867 int MFMAsFound = 0;
1868 if (!Cache->size()) {
1869 for (auto &Elt : SyncPipe[0].DAG->SUnits) {
1870 if (TII->isMFMAorWMMA(*Elt.getInstr())) {
1871 ++MFMAsFound;
1872 if (MFMAsFound > 4)
1873 break;
1874 Cache->push_back(&Elt);
1875 }
1876 }
1877 }
1878
1879 assert(Cache->size());
1880 auto DAG = SyncPipe[0].DAG;
1881 for (auto &Elt : *Cache) {
1882 if (DAG->IsReachable(Elt, const_cast<SUnit *>(SU)))
1883 return true;
1884 }
1885 return false;
1886 }
1887
1888 EnablesInitialMFMA(const SIInstrInfo *TII, unsigned SGID,
1889 bool NeedsCache = false)
1890 : InstructionRule(TII, SGID, NeedsCache) {}
1891 };
1892
1893 // Whether the MI is a V_PERM and is a predecessor of a common DS_WRITE
1894 class IsPermForDSW final : public InstructionRule {
1895 public:
1896 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1897 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1898 auto MI = SU->getInstr();
1899 if (MI->getOpcode() != AMDGPU::V_PERM_B32_e64)
1900 return false;
1901
1902 bool FitsInGroup = false;
1903 // Does the VALU have a DS_WRITE successor
1904 if (!Collection.size()) {
1905 for (auto &Succ : SU->Succs) {
1906 SUnit *SuccUnit = Succ.getSUnit();
1907 if (TII->isDS(*SuccUnit->getInstr()) &&
1908 SuccUnit->getInstr()->mayStore()) {
1909 Cache->push_back(SuccUnit);
1910 FitsInGroup = true;
1911 }
1912 }
1913 return FitsInGroup;
1914 }
1915
1916 assert(Cache->size());
1917
1918 // Does the VALU have a DS_WRITE successor that is the same as other
1919 // VALU already in the group. The V_PERMs will all share 1 DS_W succ
1920 return llvm::any_of(*Cache, [&SU](SUnit *Elt) {
1921 return llvm::any_of(SU->Succs, [&Elt](const SDep &ThisSucc) {
1922 return ThisSucc.getSUnit() == Elt;
1923 });
1924 });
1925 }
1926
1927 IsPermForDSW(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
1928 : InstructionRule(TII, SGID, NeedsCache) {}
1929 };
1930
1931 // Whether the SU is a successor of any element in previous SchedGroup
1932 class IsSuccOfPrevGroup final : public InstructionRule {
1933 public:
1934 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1935 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1936 SchedGroup *OtherGroup = nullptr;
1937 for (auto &PipeSG : SyncPipe) {
1938 if ((unsigned)PipeSG.getSGID() == SGID - 1) {
1939 OtherGroup = &PipeSG;
1940 }
1941 }
1942
1943 if (!OtherGroup)
1944 return false;
1945 if (!OtherGroup->Collection.size())
1946 return true;
1947
1948 // Does the previous VALU have this DS_Write as a successor
1949 return (std::any_of(OtherGroup->Collection.begin(),
1950 OtherGroup->Collection.end(), [&SU](SUnit *Elt) {
1951 return std::any_of(Elt->Succs.begin(),
1952 Elt->Succs.end(),
1953 [&SU](SDep &Succ) {
1954 return Succ.getSUnit() == SU;
1955 });
1956 }));
1957 }
1958 IsSuccOfPrevGroup(const SIInstrInfo *TII, unsigned SGID,
1959 bool NeedsCache = false)
1960 : InstructionRule(TII, SGID, NeedsCache) {}
1961 };
1962
1963 // Whether the combined load width of group is 128 bits
1964 class VMEMSize final : public InstructionRule {
1965 public:
1966 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
1967 SmallVectorImpl<SchedGroup> &SyncPipe) override {
1968 auto MI = SU->getInstr();
1969 if (MI->getOpcode() == TargetOpcode::BUNDLE)
1970 return false;
1971 if (!Collection.size())
1972 return true;
1973
1974 int NumBits = 0;
1975
1976 auto TRI = TII->getRegisterInfo();
1977 auto &MRI = MI->getParent()->getParent()->getRegInfo();
1978 for (auto &Elt : Collection) {
1979 auto Op = Elt->getInstr()->getOperand(0);
1980 auto Size =
1981 TRI.getRegSizeInBits(*TRI.getRegClassForOperandReg(MRI, Op));
1982 NumBits += Size;
1983 }
1984
1985 if (NumBits < 128) {
1986 assert(TII->isVMEM(*MI) && MI->mayLoad());
1987 if (NumBits + TRI.getRegSizeInBits(*TRI.getRegClassForOperandReg(
1988 MRI, MI->getOperand(0))) <=
1989 128)
1990 return true;
1991 }
1992
1993 return false;
1994 }
1995
1996 VMEMSize(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
1997 : InstructionRule(TII, SGID, NeedsCache) {}
1998 };
1999
2000 /// Whether the SU shares a V_PERM predecessor with any SU in the SchedGroup
2001 /// that is \p Distance steps away
2002 class SharesPredWithPrevNthGroup final : public InstructionRule {
2003 private:
2004 unsigned Distance = 1;
2005
2006 public:
2007 bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
2008 SmallVectorImpl<SchedGroup> &SyncPipe) override {
2009 SchedGroup *OtherGroup = nullptr;
2010 if (!SyncPipe.size())
2011 return false;
2012
2013 if (!Cache->size()) {
2014
2015 for (auto &PipeSG : SyncPipe) {
2016 if ((unsigned)PipeSG.getSGID() == SGID - Distance) {
2017 OtherGroup = &PipeSG;
2018 }
2019 }
2020
2021 if (!OtherGroup)
2022 return false;
2023 if (!OtherGroup->Collection.size())
2024 return true;
2025
2026 for (auto &OtherEle : OtherGroup->Collection) {
2027 for (auto &Pred : OtherEle->Preds) {
2028 if (Pred.getSUnit()->getInstr()->getOpcode() ==
2029 AMDGPU::V_PERM_B32_e64)
2030 Cache->push_back(Pred.getSUnit());
2031 }
2032 }
2033
2034 // If the other group has no PERM preds, then this group won't share any
2035 if (!Cache->size())
2036 return false;
2037 }
2038
2039 auto DAG = SyncPipe[0].DAG;
2040 // Does the previous DS_WRITE share a V_PERM predecessor with this
2041 // VMEM_READ
2042 return llvm::any_of(*Cache, [&SU, &DAG](SUnit *Elt) {
2043 return DAG->IsReachable(const_cast<SUnit *>(SU), Elt);
2044 });
2045 }
2046 SharesPredWithPrevNthGroup(unsigned Distance, const SIInstrInfo *TII,
2047 unsigned SGID, bool NeedsCache = false)
2048 : InstructionRule(TII, SGID, NeedsCache), Distance(Distance) {}
2049 };
2050
2051public:
2052 bool applyIGLPStrategy(
2054 DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
2056
2057 bool shouldApplyStrategy(ScheduleDAGInstrs *DAG,
2058 AMDGPU::SchedulingPhase Phase) override {
2059 return true;
2060 }
2061
2062 MFMASmallGemmSingleWaveOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
2063 : IGLPStrategy(DAG, TII) {
2064 IsBottomUp = 0;
2065 }
2066};
2067
2068static unsigned DSWCount = 0;
2069static unsigned DSWWithPermCount = 0;
2070static unsigned DSWWithSharedVMEMCount = 0;
2071
2072bool MFMASmallGemmSingleWaveOpt::applyIGLPStrategy(
2074 DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
2076 unsigned MFMACount = 0;
2077 unsigned DSRCount = 0;
2078
2079 bool IsInitial = Phase == AMDGPU::SchedulingPhase::Initial;
2080
2081 assert((!IsInitial || (DSWCount == 0 && DSWWithPermCount == 0 &&
2082 DSWWithSharedVMEMCount == 0)) &&
2083 "DSWCounters should be zero in pre-RA scheduling!");
2084 SmallVector<SUnit *, 6> DSWithPerms;
2085 for (auto &SU : DAG->SUnits) {
2086 auto I = SU.getInstr();
2087 if (TII->isMFMAorWMMA(*I))
2088 ++MFMACount;
2089 else if (TII->isDS(*I)) {
2090 if (I->mayLoad())
2091 ++DSRCount;
2092 else if (I->mayStore() && IsInitial) {
2093 ++DSWCount;
2094 for (auto Pred : SU.Preds) {
2095 if (Pred.getSUnit()->getInstr()->getOpcode() ==
2096 AMDGPU::V_PERM_B32_e64) {
2097 DSWithPerms.push_back(&SU);
2098 break;
2099 }
2100 }
2101 }
2102 }
2103 }
2104
2105 if (IsInitial) {
2106 DSWWithPermCount = DSWithPerms.size();
2107 auto I = DSWithPerms.begin();
2108 auto E = DSWithPerms.end();
2109
2110 // Get the count of DS_WRITES with V_PERM predecessors which
2111 // have loop carried dependencies (WAR) on the same VMEM_READs.
2112 // We consider partial overlap as a miss -- in other words,
2113 // for a given DS_W, we only consider another DS_W as matching
2114 // if there is a corresponding (in terms of the VMEM_R it uses) V_PERM pred
2115 // for every V_PERM pred of this DS_W.
2118 for (; I != E; I++) {
2119 SUnit *Cand = nullptr;
2120 bool MissedAny = false;
2121 for (auto &Pred : (*I)->Preds) {
2122 if (Pred.getSUnit()->getInstr()->getOpcode() != AMDGPU::V_PERM_B32_e64)
2123 continue;
2124
2125 if (Cand && llvm::is_contained(Counted, Cand))
2126 break;
2127
2128 for (auto &Succ : Pred.getSUnit()->Succs) {
2129 auto MI = Succ.getSUnit()->getInstr();
2130 if (!TII->isVMEM(*MI) || !MI->mayLoad())
2131 continue;
2132
2133 if (MissedAny || !VMEMLookup.size()) {
2134 MissedAny = true;
2135 VMEMLookup[MI] = *I;
2136 continue;
2137 }
2138
2139 if (!VMEMLookup.contains(MI)) {
2140 MissedAny = true;
2141 VMEMLookup[MI] = *I;
2142 continue;
2143 }
2144
2145 Cand = VMEMLookup[MI];
2146 if (llvm::is_contained(Counted, Cand)) {
2147 MissedAny = true;
2148 break;
2149 }
2150 }
2151 }
2152 if (!MissedAny && Cand) {
2153 DSWWithSharedVMEMCount += 2;
2154 Counted.push_back(Cand);
2155 Counted.push_back(*I);
2156 }
2157 }
2158 }
2159
2160 assert(DSWWithSharedVMEMCount <= DSWWithPermCount);
2161 SchedGroup *SG;
2162 unsigned PipelineSyncID = 0;
2163 // For kernels with V_PERM, there are enough VALU to mix in between MFMAs
2164 if (DSWWithPermCount) {
2165 for (unsigned I = 0; I < MFMACount; I++) {
2166 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2167 SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
2168 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2169
2170 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2171 SchedGroupMask::VALU, 2, PipelineSyncID, DAG, TII);
2172 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2173 }
2174 }
2175
2176 PipelineSyncID = 1;
2177 // Phase 1: Break up DS_READ and MFMA clusters.
2178 // First DS_READ to make ready initial MFMA, then interleave MFMA with DS_READ
2179 // prefetch
2180
2181 // Make ready initial MFMA
2182 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2183 SchedGroupMask::DS_READ, 4, PipelineSyncID, DAG, TII);
2184 SG->addRule(std::make_shared<EnablesInitialMFMA>(TII, SG->getSGID(), true));
2185 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2186
2187 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2188 SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
2189 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2190
2191 // Interleave MFMA with DS_READ prefetch
2192 for (unsigned I = 0; I < DSRCount - 4; ++I) {
2193 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2194 SchedGroupMask::DS_READ, 1, PipelineSyncID, DAG, TII);
2195 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2196
2197 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2198 SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
2199 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2200 }
2201
2202 // Phase 2a: Loop carried dependency with V_PERM
2203 // Schedule VPerm & DS_WRITE as closely as possible to the VMEM_READ they
2204 // depend on. Interleave MFMA to keep XDL unit busy throughout.
2205 for (unsigned I = 0; I < DSWWithPermCount - DSWWithSharedVMEMCount; ++I) {
2206 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2207 SchedGroupMask::VALU, 4, PipelineSyncID, DAG, TII);
2208 SG->addRule(std::make_shared<IsPermForDSW>(TII, SG->getSGID(), true));
2209 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2210
2211 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2212 SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
2213 SG->addRule(std::make_shared<IsSuccOfPrevGroup>(TII, SG->getSGID()));
2214 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2215
2216 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2217 SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
2218 SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
2219 1, TII, SG->getSGID(), true));
2220 SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID()));
2221 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2222
2223 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2224 SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
2225 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2226
2227 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2228 SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
2229 SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
2230 3, TII, SG->getSGID(), true));
2231 SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID()));
2232 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2233
2234 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2235 SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
2236 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2237 }
2238
2239 // Phase 2b: Loop carried dependency without V_PERM
2240 // Schedule DS_WRITE as closely as possible to the VMEM_READ they depend on.
2241 // Interleave MFMA to keep XDL unit busy throughout.
2242 for (unsigned I = 0; I < DSWCount - DSWWithPermCount; I++) {
2243 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2244 SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
2245 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2246
2247 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2248 SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
2249 SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID()));
2250 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2251
2252 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2253 SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
2254 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2255 }
2256
2257 // Phase 2c: Loop carried dependency with V_PERM, VMEM_READs are
2258 // ultimately used by two DS_WRITE
2259 // Schedule VPerm & DS_WRITE as closely as possible to the VMEM_READ they
2260 // depend on. Interleave MFMA to keep XDL unit busy throughout.
2261
2262 for (unsigned I = 0; I < DSWWithSharedVMEMCount; ++I) {
2263 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2264 SchedGroupMask::VALU, 4, PipelineSyncID, DAG, TII);
2265 SG->addRule(std::make_shared<IsPermForDSW>(TII, SG->getSGID(), true));
2266 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2267
2268 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2269 SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
2270 SG->addRule(std::make_shared<IsSuccOfPrevGroup>(TII, SG->getSGID()));
2271 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2272
2273 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2274 SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
2275 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2276
2277 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2278 SchedGroupMask::VALU, 4, PipelineSyncID, DAG, TII);
2279 SG->addRule(std::make_shared<IsPermForDSW>(TII, SG->getSGID(), true));
2280 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2281
2282 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2283 SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
2284 SG->addRule(std::make_shared<IsSuccOfPrevGroup>(TII, SG->getSGID()));
2285 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2286
2287 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2288 SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
2289 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2290
2291 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2292 SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
2293 SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
2294 2, TII, SG->getSGID(), true));
2295 SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID()));
2296 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2297
2298 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2299 SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
2300 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2301
2302 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2303 SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
2304 SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
2305 4, TII, SG->getSGID(), true));
2306 SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID()));
2307 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2308
2309 SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
2310 SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
2311 SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
2312 }
2313
2314 return true;
2315}
2316
2317static std::unique_ptr<IGLPStrategy>
2318createIGLPStrategy(IGLPStrategyID ID, ScheduleDAGInstrs *DAG,
2319 const SIInstrInfo *TII) {
2320 switch (ID) {
2321 case MFMASmallGemmOptID:
2322 return std::make_unique<MFMASmallGemmOpt>(DAG, TII);
2323 case MFMASmallGemmSingleWaveOptID:
2324 return std::make_unique<MFMASmallGemmSingleWaveOpt>(DAG, TII);
2325 case MFMAExpInterleave:
2326 return std::make_unique<MFMAExpInterleaveOpt>(DAG, TII);
2327 }
2328
2329 llvm_unreachable("Unknown IGLPStrategyID");
2330}
2331
2332class IGroupLPDAGMutation : public ScheduleDAGMutation {
2333private:
2334 const SIInstrInfo *TII;
2335
2336 ScheduleDAGMI *DAG;
2337
2338 // Organize lists of SchedGroups by their SyncID. SchedGroups /
2339 // SCHED_GROUP_BARRIERs with different SyncIDs will have no edges added
2340 // between then.
2342
2343 // Used to track instructions that can be mapped to multiple sched groups
2345
2346 // Add DAG edges that enforce SCHED_BARRIER ordering.
2347 void addSchedBarrierEdges(SUnit &SU);
2348
2349 // Use a SCHED_BARRIER's mask to identify instruction SchedGroups that should
2350 // not be reordered accross the SCHED_BARRIER. This is used for the base
2351 // SCHED_BARRIER, and not SCHED_GROUP_BARRIER. The difference is that
2352 // SCHED_BARRIER will always block all instructions that can be classified
2353 // into a particular SchedClass, whereas SCHED_GROUP_BARRIER has a fixed size
2354 // and may only synchronize with some SchedGroups. Returns the inverse of
2355 // Mask. SCHED_BARRIER's mask describes which instruction types should be
2356 // allowed to be scheduled across it. Invert the mask to get the
2357 // SchedGroupMask of instructions that should be barred.
2358 SchedGroupMask invertSchedBarrierMask(SchedGroupMask Mask) const;
2359
2360 // Create SchedGroups for a SCHED_GROUP_BARRIER.
2361 void initSchedGroupBarrierPipelineStage(
2362 std::vector<SUnit>::reverse_iterator RIter);
2363
2364 bool initIGLPOpt(SUnit &SU);
2365
2366public:
2367 void apply(ScheduleDAGInstrs *DAGInstrs) override;
2368
2369 // The order in which the PipelineSolver should process the candidate
2370 // SchedGroup for a PipelineInstr. BOTTOM_UP will try to add SUs to the last
2371 // created SchedGroup first, and will consider that as the ultimate
2372 // predecessor group when linking. TOP_DOWN instead links and processes the
2373 // first created SchedGroup first.
2374 bool IsBottomUp = 1;
2375
2376 // The scheduling phase this application of IGLP corresponds with.
2378
2379 IGroupLPDAGMutation() = default;
2380 IGroupLPDAGMutation(AMDGPU::SchedulingPhase Phase) : Phase(Phase) {}
2381};
2382
2383unsigned SchedGroup::NumSchedGroups = 0;
2384
2385bool SchedGroup::tryAddEdge(SUnit *A, SUnit *B) {
2386 if (A != B && DAG->canAddEdge(B, A)) {
2387 DAG->addEdge(B, SDep(A, SDep::Artificial));
2388 return true;
2389 }
2390 return false;
2391}
2392
2393bool SchedGroup::canAddMI(const MachineInstr &MI) const {
2394 bool Result = false;
2395 if (MI.isMetaInstruction())
2396 Result = false;
2397
2398 else if (((SGMask & SchedGroupMask::ALU) != SchedGroupMask::NONE) &&
2399 (TII->isVALU(MI) || TII->isMFMAorWMMA(MI) || TII->isSALU(MI) ||
2400 TII->isTRANS(MI)))
2401 Result = true;
2402
2403 else if (((SGMask & SchedGroupMask::VALU) != SchedGroupMask::NONE) &&
2404 TII->isVALU(MI) && !TII->isMFMAorWMMA(MI) && !TII->isTRANS(MI))
2405 Result = true;
2406
2407 else if (((SGMask & SchedGroupMask::SALU) != SchedGroupMask::NONE) &&
2408 TII->isSALU(MI))
2409 Result = true;
2410
2411 else if (((SGMask & SchedGroupMask::MFMA) != SchedGroupMask::NONE) &&
2412 TII->isMFMAorWMMA(MI))
2413 Result = true;
2414
2415 else if (((SGMask & SchedGroupMask::VMEM) != SchedGroupMask::NONE) &&
2416 (TII->isVMEM(MI) || (TII->isFLAT(MI) && !TII->isDS(MI))))
2417 Result = true;
2418
2419 else if (((SGMask & SchedGroupMask::VMEM_READ) != SchedGroupMask::NONE) &&
2420 MI.mayLoad() &&
2421 (TII->isVMEM(MI) || (TII->isFLAT(MI) && !TII->isDS(MI))))
2422 Result = true;
2423
2424 else if (((SGMask & SchedGroupMask::VMEM_WRITE) != SchedGroupMask::NONE) &&
2425 MI.mayStore() &&
2426 (TII->isVMEM(MI) || (TII->isFLAT(MI) && !TII->isDS(MI))))
2427 Result = true;
2428
2429 else if (((SGMask & SchedGroupMask::DS) != SchedGroupMask::NONE) &&
2430 TII->isDS(MI))
2431 Result = true;
2432
2433 else if (((SGMask & SchedGroupMask::DS_READ) != SchedGroupMask::NONE) &&
2434 MI.mayLoad() && TII->isDS(MI))
2435 Result = true;
2436
2437 else if (((SGMask & SchedGroupMask::DS_WRITE) != SchedGroupMask::NONE) &&
2438 MI.mayStore() && TII->isDS(MI))
2439 Result = true;
2440
2441 else if (((SGMask & SchedGroupMask::TRANS) != SchedGroupMask::NONE) &&
2442 TII->isTRANS(MI))
2443 Result = true;
2444
2445 LLVM_DEBUG(
2446 dbgs() << "For SchedGroup with mask " << format_hex((int)SGMask, 10, true)
2447 << (Result ? " could classify " : " unable to classify ") << MI);
2448
2449 return Result;
2450}
2451
2452int SchedGroup::link(SUnit &SU, bool MakePred,
2453 std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges) {
2454 int MissedEdges = 0;
2455 for (auto *A : Collection) {
2456 SUnit *B = &SU;
2457 if (A == B || A->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER)
2458 continue;
2459 if (MakePred)
2460 std::swap(A, B);
2461
2462 if (DAG->IsReachable(B, A))
2463 continue;
2464
2465 // tryAddEdge returns false if there is a dependency that makes adding
2466 // the A->B edge impossible, otherwise it returns true;
2467 bool Added = tryAddEdge(A, B);
2468 if (Added)
2469 AddedEdges.push_back(std::pair(A, B));
2470 else
2471 ++MissedEdges;
2472 }
2473
2474 return MissedEdges;
2475}
2476
2477void SchedGroup::link(SUnit &SU, bool MakePred) {
2478 for (auto *A : Collection) {
2479 SUnit *B = &SU;
2480 if (A->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER)
2481 continue;
2482 if (MakePred)
2483 std::swap(A, B);
2484
2485 tryAddEdge(A, B);
2486 }
2487}
2488
2489void SchedGroup::link(SUnit &SU,
2490 function_ref<bool(const SUnit *A, const SUnit *B)> P) {
2491 for (auto *A : Collection) {
2492 SUnit *B = &SU;
2493 if (P(A, B))
2494 std::swap(A, B);
2495
2496 tryAddEdge(A, B);
2497 }
2498}
2499
2500void SchedGroup::link(SchedGroup &OtherGroup) {
2501 for (auto *B : OtherGroup.Collection)
2502 link(*B);
2503}
2504
2505bool SchedGroup::canAddSU(SUnit &SU) const {
2506 MachineInstr &MI = *SU.getInstr();
2507 if (MI.getOpcode() != TargetOpcode::BUNDLE)
2508 return canAddMI(MI);
2509
2510 // Special case for bundled MIs.
2511 const MachineBasicBlock *MBB = MI.getParent();
2512 MachineBasicBlock::instr_iterator B = MI.getIterator(), E = ++B;
2513 while (E != MBB->end() && E->isBundledWithPred())
2514 ++E;
2515
2516 // Return true if all of the bundled MIs can be added to this group.
2517 return std::all_of(B, E, [this](MachineInstr &MI) { return canAddMI(MI); });
2518}
2519
2520void SchedGroup::initSchedGroup() {
2521 for (auto &SU : DAG->SUnits) {
2522 if (isFull())
2523 break;
2524
2525 if (canAddSU(SU))
2526 add(SU);
2527 }
2528}
2529
2530void SchedGroup::initSchedGroup(std::vector<SUnit>::reverse_iterator RIter,
2531 SUnitsToCandidateSGsMap &SyncedInstrs) {
2532 SUnit &InitSU = *RIter;
2533 for (auto E = DAG->SUnits.rend(); RIter != E; ++RIter) {
2534 auto &SU = *RIter;
2535 if (isFull())
2536 break;
2537
2538 if (canAddSU(SU))
2539 SyncedInstrs[&SU].push_back(SGID);
2540 }
2541
2542 add(InitSU);
2543 assert(MaxSize);
2544 (*MaxSize)++;
2545}
2546
2547void SchedGroup::initSchedGroup(SUnitsToCandidateSGsMap &SyncedInstrs) {
2548 auto I = DAG->SUnits.rbegin();
2549 auto E = DAG->SUnits.rend();
2550 for (; I != E; ++I) {
2551 auto &SU = *I;
2552 if (isFull())
2553 break;
2554 if (canAddSU(SU))
2555 SyncedInstrs[&SU].push_back(SGID);
2556 }
2557}
2558
2559void IGroupLPDAGMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
2560 const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
2561 if (!TSchedModel || DAGInstrs->SUnits.empty())
2562 return;
2563
2564 LLVM_DEBUG(dbgs() << "Applying IGroupLPDAGMutation...\n");
2565 const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
2566 TII = ST.getInstrInfo();
2567 DAG = static_cast<ScheduleDAGMI *>(DAGInstrs);
2568 SyncedSchedGroups.clear();
2569 SyncedInstrs.clear();
2570 bool FoundSB = false;
2571 bool FoundIGLP = false;
2572 bool ShouldApplyIGLP = false;
2573 for (auto R = DAG->SUnits.rbegin(), E = DAG->SUnits.rend(); R != E; ++R) {
2574 unsigned Opc = R->getInstr()->getOpcode();
2575 // SCHED_[GROUP_]BARRIER and IGLP are mutually exclusive.
2576 if (Opc == AMDGPU::SCHED_BARRIER) {
2577 addSchedBarrierEdges(*R);
2578 FoundSB = true;
2579 } else if (Opc == AMDGPU::SCHED_GROUP_BARRIER) {
2580 initSchedGroupBarrierPipelineStage(R);
2581 FoundSB = true;
2582 } else if (Opc == AMDGPU::IGLP_OPT) {
2583 resetEdges(*R, DAG);
2584 if (!FoundSB && !FoundIGLP) {
2585 FoundIGLP = true;
2586 ShouldApplyIGLP = initIGLPOpt(*R);
2587 }
2588 }
2589 }
2590
2591 if (FoundSB || (FoundIGLP && ShouldApplyIGLP)) {
2592 PipelineSolver PS(SyncedSchedGroups, SyncedInstrs, DAG, IsBottomUp);
2593 // PipelineSolver performs the mutation by adding the edges it
2594 // determined as the best
2595 PS.solve();
2596 return;
2597 }
2598}
2599
2600void IGroupLPDAGMutation::addSchedBarrierEdges(SUnit &SchedBarrier) {
2601 MachineInstr &MI = *SchedBarrier.getInstr();
2602 assert(MI.getOpcode() == AMDGPU::SCHED_BARRIER);
2603 // Remove all existing edges from the SCHED_BARRIER that were added due to the
2604 // instruction having side effects.
2605 resetEdges(SchedBarrier, DAG);
2606 LLVM_DEBUG(dbgs() << "Building SchedGroup for SchedBarrier with Mask: "
2607 << MI.getOperand(0).getImm() << "\n");
2608 auto InvertedMask =
2609 invertSchedBarrierMask((SchedGroupMask)MI.getOperand(0).getImm());
2610 SchedGroup SG(InvertedMask, std::nullopt, DAG, TII);
2611 SG.initSchedGroup();
2612
2613 // Preserve original instruction ordering relative to the SCHED_BARRIER.
2614 SG.link(
2615 SchedBarrier,
2616 (function_ref<bool(const SUnit *A, const SUnit *B)>)[](
2617 const SUnit *A, const SUnit *B) { return A->NodeNum > B->NodeNum; });
2618}
2619
2620SchedGroupMask
2621IGroupLPDAGMutation::invertSchedBarrierMask(SchedGroupMask Mask) const {
2622 // Invert mask and erase bits for types of instructions that are implied to be
2623 // allowed past the SCHED_BARRIER.
2624 SchedGroupMask InvertedMask = ~Mask;
2625
2626 // ALU implies VALU, SALU, MFMA, TRANS.
2627 if ((InvertedMask & SchedGroupMask::ALU) == SchedGroupMask::NONE)
2628 InvertedMask &= ~SchedGroupMask::VALU & ~SchedGroupMask::SALU &
2629 ~SchedGroupMask::MFMA & ~SchedGroupMask::TRANS;
2630 // VALU, SALU, MFMA, TRANS implies ALU.
2631 else if ((InvertedMask & SchedGroupMask::VALU) == SchedGroupMask::NONE ||
2632 (InvertedMask & SchedGroupMask::SALU) == SchedGroupMask::NONE ||
2633 (InvertedMask & SchedGroupMask::MFMA) == SchedGroupMask::NONE ||
2634 (InvertedMask & SchedGroupMask::TRANS) == SchedGroupMask::NONE)
2635 InvertedMask &= ~SchedGroupMask::ALU;
2636
2637 // VMEM implies VMEM_READ, VMEM_WRITE.
2638 if ((InvertedMask & SchedGroupMask::VMEM) == SchedGroupMask::NONE)
2639 InvertedMask &= ~SchedGroupMask::VMEM_READ & ~SchedGroupMask::VMEM_WRITE;
2640 // VMEM_READ, VMEM_WRITE implies VMEM.
2641 else if ((InvertedMask & SchedGroupMask::VMEM_READ) == SchedGroupMask::NONE ||
2642 (InvertedMask & SchedGroupMask::VMEM_WRITE) == SchedGroupMask::NONE)
2643 InvertedMask &= ~SchedGroupMask::VMEM;
2644
2645 // DS implies DS_READ, DS_WRITE.
2646 if ((InvertedMask & SchedGroupMask::DS) == SchedGroupMask::NONE)
2647 InvertedMask &= ~SchedGroupMask::DS_READ & ~SchedGroupMask::DS_WRITE;
2648 // DS_READ, DS_WRITE implies DS.
2649 else if ((InvertedMask & SchedGroupMask::DS_READ) == SchedGroupMask::NONE ||
2650 (InvertedMask & SchedGroupMask::DS_WRITE) == SchedGroupMask::NONE)
2651 InvertedMask &= ~SchedGroupMask::DS;
2652
2653 LLVM_DEBUG(dbgs() << "After Inverting, SchedGroup Mask: " << (int)InvertedMask
2654 << "\n");
2655
2656 return InvertedMask;
2657}
2658
2659void IGroupLPDAGMutation::initSchedGroupBarrierPipelineStage(
2660 std::vector<SUnit>::reverse_iterator RIter) {
2661 // Remove all existing edges from the SCHED_GROUP_BARRIER that were added due
2662 // to the instruction having side effects.
2663 resetEdges(*RIter, DAG);
2664 MachineInstr &SGB = *RIter->getInstr();
2665 assert(SGB.getOpcode() == AMDGPU::SCHED_GROUP_BARRIER);
2666 int32_t SGMask = SGB.getOperand(0).getImm();
2667 int32_t Size = SGB.getOperand(1).getImm();
2668 int32_t SyncID = SGB.getOperand(2).getImm();
2669
2670 auto &SG = SyncedSchedGroups[SyncID].emplace_back((SchedGroupMask)SGMask,
2671 Size, SyncID, DAG, TII);
2672
2673 SG.initSchedGroup(RIter, SyncedInstrs[SG.getSyncID()]);
2674}
2675
2676bool IGroupLPDAGMutation::initIGLPOpt(SUnit &SU) {
2677 IGLPStrategyID StrategyID =
2678 (IGLPStrategyID)SU.getInstr()->getOperand(0).getImm();
2679 auto S = createIGLPStrategy(StrategyID, DAG, TII);
2680 if (!S->shouldApplyStrategy(DAG, Phase))
2681 return false;
2682
2683 IsBottomUp = S->IsBottomUp;
2684 return S->applyIGLPStrategy(SyncedInstrs, SyncedSchedGroups, Phase);
2685}
2686
2687} // namespace
2688
2689namespace llvm {
2690
2691/// \p Phase specifes whether or not this is a reentry into the
2692/// IGroupLPDAGMutation. Since there may be multiple scheduling passes on the
2693/// same scheduling region (e.g. pre and post-RA scheduling / multiple
2694/// scheduling "phases"), we can reenter this mutation framework more than once
2695/// for a given region.
2696std::unique_ptr<ScheduleDAGMutation>
2698 return std::make_unique<IGroupLPDAGMutation>(Phase);
2699}
2700
2701} // end namespace llvm
unsigned const MachineRegisterInfo * MRI
aarch64 falkor hwpf fix Falkor HW Prefetch Fix Late Phase
MachineBasicBlock & MBB
Provides AMDGPU specific target descriptions.
The AMDGPU TargetMachine interface definition for hw codegen targets.
#define LLVM_MARK_AS_BITMASK_ENUM(LargestValue)
LLVM_MARK_AS_BITMASK_ENUM lets you opt in an individual enum type so you can perform bitwise operatio...
Definition: BitmaskEnum.h:42
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
uint64_t Size
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
#define P(N)
uint32_t Number
Definition: Profile.cpp:47
Interface definition for SIInstrInfo.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:191
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
This class represents an Operation in the Expression.
unsigned size() const
Definition: DenseMap.h:99
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:145
Instructions::iterator instr_iterator
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:569
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:579
int64_t getImm() const
Scheduling dependency.
Definition: ScheduleDAG.h:49
SUnit * getSUnit() const
Definition: ScheduleDAG.h:498
@ Data
Regular data dependence (aka true-dependence).
Definition: ScheduleDAG.h:53
@ Artificial
Arbitrary strong DAG edge (no real dependence).
Definition: ScheduleDAG.h:72
Scheduling unit. This is a node in the scheduling DAG.
Definition: ScheduleDAG.h:242
unsigned NodeNum
Entry # of node in the node vector.
Definition: ScheduleDAG.h:270
void removePred(const SDep &D)
Removes the specified edge as a pred of the current node if it exists.
SmallVector< SDep, 4 > Succs
All sunit successors.
Definition: ScheduleDAG.h:263
SmallVector< SDep, 4 > Preds
All sunit predecessors.
Definition: ScheduleDAG.h:262
MachineInstr * getInstr() const
Returns the representative MachineInstr for this SUnit.
Definition: ScheduleDAG.h:390
A ScheduleDAG for scheduling lists of MachineInstr.
const TargetSchedModel * getSchedModel() const
Gets the machine model for instruction scheduling.
bool addEdge(SUnit *SuccSU, const SDep &PredDep)
Add a DAG edge to the given SU with the given predecessor dependence data.
bool IsReachable(SUnit *SU, SUnit *TargetSU)
IsReachable - Checks if SU is reachable from TargetSU.
bool canAddEdge(SUnit *SuccSU, SUnit *PredSU)
True if an edge can be added from PredSU to SuccSU without creating a cycle.
void dump() const override
ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...
Mutate the DAG as a postpass after normal DAG building.
virtual void apply(ScheduleDAGInstrs *DAG)=0
std::vector< SUnit > SUnits
The scheduling units.
Definition: ScheduleDAG.h:579
MachineFunction & MF
Machine function.
Definition: ScheduleDAG.h:577
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
Provide an instruction scheduling machine model to CodeGen passes.
An efficient, type-erasing, non-owning reference to a callable.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1680
std::unique_ptr< ScheduleDAGMutation > createIGroupLPDAGMutation(AMDGPU::SchedulingPhase Phase)
Phase specifes whether or not this is a reentry into the IGroupLPDAGMutation.
@ NONE
Definition: Attributor.h:6425
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)
format_hex - Output N as a fixed width hexadecimal.
Definition: Format.h:187
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1749
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1879
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860