LLVM 19.0.0git
AMDGPULowerModuleLDSPass.cpp
Go to the documentation of this file.
1//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass eliminates local data store, LDS, uses from non-kernel functions.
10// LDS is contiguous memory allocated per kernel execution.
11//
12// Background.
13//
14// The programming model is global variables, or equivalently function local
15// static variables, accessible from kernels or other functions. For uses from
16// kernels this is straightforward - assign an integer to the kernel for the
17// memory required by all the variables combined, allocate them within that.
18// For uses from functions there are performance tradeoffs to choose between.
19//
20// This model means the GPU runtime can specify the amount of memory allocated.
21// If this is more than the kernel assumed, the excess can be made available
22// using a language specific feature, which IR represents as a variable with
23// no initializer. This feature is referred to here as "Dynamic LDS" and is
24// lowered slightly differently to the normal case.
25//
26// Consequences of this GPU feature:
27// - memory is limited and exceeding it halts compilation
28// - a global accessed by one kernel exists independent of other kernels
29// - a global exists independent of simultaneous execution of the same kernel
30// - the address of the global may be different from different kernels as they
31// do not alias, which permits only allocating variables they use
32// - if the address is allowed to differ, functions need help to find it
33//
34// Uses from kernels are implemented here by grouping them in a per-kernel
35// struct instance. This duplicates the variables, accurately modelling their
36// aliasing properties relative to a single global representation. It also
37// permits control over alignment via padding.
38//
39// Uses from functions are more complicated and the primary purpose of this
40// IR pass. Several different lowering are chosen between to meet requirements
41// to avoid allocating any LDS where it is not necessary, as that impacts
42// occupancy and may fail the compilation, while not imposing overhead on a
43// feature whose primary advantage over global memory is performance. The basic
44// design goal is to avoid one kernel imposing overhead on another.
45//
46// Implementation.
47//
48// LDS variables with constant annotation or non-undef initializer are passed
49// through unchanged for simplification or error diagnostics in later passes.
50// Non-undef initializers are not yet implemented for LDS.
51//
52// LDS variables that are always allocated at the same address can be found
53// by lookup at that address. Otherwise runtime information/cost is required.
54//
55// The simplest strategy possible is to group all LDS variables in a single
56// struct and allocate that struct in every kernel such that the original
57// variables are always at the same address. LDS is however a limited resource
58// so this strategy is unusable in practice. It is not implemented here.
59//
60// Strategy | Precise allocation | Zero runtime cost | General purpose |
61// --------+--------------------+-------------------+-----------------+
62// Module | No | Yes | Yes |
63// Table | Yes | No | Yes |
64// Kernel | Yes | Yes | No |
65// Hybrid | Yes | Partial | Yes |
66//
67// "Module" spends LDS memory to save cycles. "Table" spends cycles and global
68// memory to save LDS. "Kernel" is as fast as kernel allocation but only works
69// for variables that are known reachable from a single kernel. "Hybrid" picks
70// between all three. When forced to choose between LDS and cycles we minimise
71// LDS use.
72
73// The "module" lowering implemented here finds LDS variables which are used by
74// non-kernel functions and creates a new struct with a field for each of those
75// LDS variables. Variables that are only used from kernels are excluded.
76//
77// The "table" lowering implemented here has three components.
78// First kernels are assigned a unique integer identifier which is available in
79// functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
80// is passed through a specific SGPR, thus works with indirect calls.
81// Second, each kernel allocates LDS variables independent of other kernels and
82// writes the addresses it chose for each variable into an array in consistent
83// order. If the kernel does not allocate a given variable, it writes undef to
84// the corresponding array location. These arrays are written to a constant
85// table in the order matching the kernel unique integer identifier.
86// Third, uses from non-kernel functions are replaced with a table lookup using
87// the intrinsic function to find the address of the variable.
88//
89// "Kernel" lowering is only applicable for variables that are unambiguously
90// reachable from exactly one kernel. For those cases, accesses to the variable
91// can be lowered to ConstantExpr address of a struct instance specific to that
92// one kernel. This is zero cost in space and in compute. It will raise a fatal
93// error on any variable that might be reachable from multiple kernels and is
94// thus most easily used as part of the hybrid lowering strategy.
95//
96// Hybrid lowering is a mixture of the above. It uses the zero cost kernel
97// lowering where it can. It lowers the variable accessed by the greatest
98// number of kernels using the module strategy as that is free for the first
99// variable. Any futher variables that can be lowered with the module strategy
100// without incurring LDS memory overhead are. The remaining ones are lowered
101// via table.
102//
103// Consequences
104// - No heuristics or user controlled magic numbers, hybrid is the right choice
105// - Kernels that don't use functions (or have had them all inlined) are not
106// affected by any lowering for kernels that do.
107// - Kernels that don't make indirect function calls are not affected by those
108// that do.
109// - Variables which are used by lots of kernels, e.g. those injected by a
110// language runtime in most kernels, are expected to have no overhead
111// - Implementations that instantiate templates per-kernel where those templates
112// use LDS are expected to hit the "Kernel" lowering strategy
113// - The runtime properties impose a cost in compiler implementation complexity
114//
115// Dynamic LDS implementation
116// Dynamic LDS is lowered similarly to the "table" strategy above and uses the
117// same intrinsic to identify which kernel is at the root of the dynamic call
118// graph. This relies on the specified behaviour that all dynamic LDS variables
119// alias one another, i.e. are at the same address, with respect to a given
120// kernel. Therefore this pass creates new dynamic LDS variables for each kernel
121// that allocates any dynamic LDS and builds a table of addresses out of those.
122// The AMDGPUPromoteAlloca pass skips kernels that use dynamic LDS.
123// The corresponding optimisation for "kernel" lowering where the table lookup
124// is elided is not implemented.
125//
126//
127// Implementation notes / limitations
128// A single LDS global variable represents an instance per kernel that can reach
129// said variables. This pass essentially specialises said variables per kernel.
130// Handling ConstantExpr during the pass complicated this significantly so now
131// all ConstantExpr uses of LDS variables are expanded to instructions. This
132// may need amending when implementing non-undef initialisers.
133//
134// Lowering is split between this IR pass and the back end. This pass chooses
135// where given variables should be allocated and marks them with metadata,
136// MD_absolute_symbol. The backend places the variables in coincidentally the
137// same location and raises a fatal error if something has gone awry. This works
138// in practice because the only pass between this one and the backend that
139// changes LDS is PromoteAlloca and the changes it makes do not conflict.
140//
141// Addresses are written to constant global arrays based on the same metadata.
142//
143// The backend lowers LDS variables in the order of traversal of the function.
144// This is at odds with the deterministic layout required. The workaround is to
145// allocate the fixed-address variables immediately upon starting the function
146// where they can be placed as intended. This requires a means of mapping from
147// the function to the variables that it allocates. For the module scope lds,
148// this is via metadata indicating whether the variable is not required. If a
149// pass deletes that metadata, a fatal error on disagreement with the absolute
150// symbol metadata will occur. For kernel scope and dynamic, this is by _name_
151// correspondence between the function and the variable. It requires the
152// kernel to have a name (which is only a limitation for tests in practice) and
153// for nothing to rename the corresponding symbols. This is a hazard if the pass
154// is run multiple times during debugging. Alternative schemes considered all
155// involve bespoke metadata.
156//
157// If the name correspondence can be replaced, multiple distinct kernels that
158// have the same memory layout can map to the same kernel id (as the address
159// itself is handled by the absolute symbol metadata) and that will allow more
160// uses of the "kernel" style faster lowering and reduce the size of the lookup
161// tables.
162//
163// There is a test that checks this does not fire for a graphics shader. This
164// lowering is expected to work for graphics if the isKernel test is changed.
165//
166// The current markUsedByKernel is sufficient for PromoteAlloca but is elided
167// before codegen. Replacing this with an equivalent intrinsic which lasts until
168// shortly after the machine function lowering of LDS would help break the name
169// mapping. The other part needed is probably to amend PromoteAlloca to embed
170// the LDS variables it creates in the same struct created here. That avoids the
171// current hazard where a PromoteAlloca LDS variable might be allocated before
172// the kernel scope (and thus error on the address check). Given a new invariant
173// that no LDS variables exist outside of the structs managed here, and an
174// intrinsic that lasts until after the LDS frame lowering, it should be
175// possible to drop the name mapping and fold equivalent memory layouts.
176//
177//===----------------------------------------------------------------------===//
178
179#include "AMDGPU.h"
180#include "AMDGPUTargetMachine.h"
181#include "Utils/AMDGPUBaseInfo.h"
183#include "llvm/ADT/BitVector.h"
184#include "llvm/ADT/DenseMap.h"
185#include "llvm/ADT/DenseSet.h"
186#include "llvm/ADT/STLExtras.h"
190#include "llvm/IR/Constants.h"
191#include "llvm/IR/DerivedTypes.h"
192#include "llvm/IR/IRBuilder.h"
193#include "llvm/IR/InlineAsm.h"
194#include "llvm/IR/Instructions.h"
195#include "llvm/IR/IntrinsicsAMDGPU.h"
196#include "llvm/IR/MDBuilder.h"
199#include "llvm/Pass.h"
201#include "llvm/Support/Debug.h"
202#include "llvm/Support/Format.h"
207
208#include <vector>
209
210#include <cstdio>
211
212#define DEBUG_TYPE "amdgpu-lower-module-lds"
213
214using namespace llvm;
215using namespace AMDGPU;
216
217namespace {
218
219cl::opt<bool> SuperAlignLDSGlobals(
220 "amdgpu-super-align-lds-globals",
221 cl::desc("Increase alignment of LDS if it is not on align boundary"),
222 cl::init(true), cl::Hidden);
223
224enum class LoweringKind { module, table, kernel, hybrid };
225cl::opt<LoweringKind> LoweringKindLoc(
226 "amdgpu-lower-module-lds-strategy",
227 cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
228 cl::init(LoweringKind::hybrid),
230 clEnumValN(LoweringKind::table, "table", "Lower via table lookup"),
231 clEnumValN(LoweringKind::module, "module", "Lower via module struct"),
233 LoweringKind::kernel, "kernel",
234 "Lower variables reachable from one kernel, otherwise abort"),
235 clEnumValN(LoweringKind::hybrid, "hybrid",
236 "Lower via mixture of above strategies")));
237
238template <typename T> std::vector<T> sortByName(std::vector<T> &&V) {
239 llvm::sort(V.begin(), V.end(), [](const auto *L, const auto *R) {
240 return L->getName() < R->getName();
241 });
242 return {std::move(V)};
243}
244
245class AMDGPULowerModuleLDS {
246 const AMDGPUTargetMachine &TM;
247
248 static void
249 removeLocalVarsFromUsedLists(Module &M,
250 const DenseSet<GlobalVariable *> &LocalVars) {
251 // The verifier rejects used lists containing an inttoptr of a constant
252 // so remove the variables from these lists before replaceAllUsesWith
253 SmallPtrSet<Constant *, 8> LocalVarsSet;
254 for (GlobalVariable *LocalVar : LocalVars)
255 LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts()));
256
258 M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); });
259
260 for (GlobalVariable *LocalVar : LocalVars)
261 LocalVar->removeDeadConstantUsers();
262 }
263
264 static void markUsedByKernel(Function *Func, GlobalVariable *SGV) {
265 // The llvm.amdgcn.module.lds instance is implicitly used by all kernels
266 // that might call a function which accesses a field within it. This is
267 // presently approximated to 'all kernels' if there are any such functions
268 // in the module. This implicit use is redefined as an explicit use here so
269 // that later passes, specifically PromoteAlloca, account for the required
270 // memory without any knowledge of this transform.
271
272 // An operand bundle on llvm.donothing works because the call instruction
273 // survives until after the last pass that needs to account for LDS. It is
274 // better than inline asm as the latter survives until the end of codegen. A
275 // totally robust solution would be a function with the same semantics as
276 // llvm.donothing that takes a pointer to the instance and is lowered to a
277 // no-op after LDS is allocated, but that is not presently necessary.
278
279 // This intrinsic is eliminated shortly before instruction selection. It
280 // does not suffice to indicate to ISel that a given global which is not
281 // immediately used by the kernel must still be allocated by it. An
282 // equivalent target specific intrinsic which lasts until immediately after
283 // codegen would suffice for that, but one would still need to ensure that
284 // the variables are allocated in the anticpated order.
285 BasicBlock *Entry = &Func->getEntryBlock();
286 IRBuilder<> Builder(Entry, Entry->getFirstNonPHIIt());
287
288 Function *Decl =
289 Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
290
291 Value *UseInstance[1] = {
292 Builder.CreateConstInBoundsGEP1_32(SGV->getValueType(), SGV, 0)};
293
294 Builder.CreateCall(
295 Decl, {}, {OperandBundleDefT<Value *>("ExplicitUse", UseInstance)});
296 }
297
298public:
299 AMDGPULowerModuleLDS(const AMDGPUTargetMachine &TM_) : TM(TM_) {}
300
301 struct LDSVariableReplacement {
302 GlobalVariable *SGV = nullptr;
303 DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
304 };
305
306 // remap from lds global to a constantexpr gep to where it has been moved to
307 // for each kernel
308 // an array with an element for each kernel containing where the corresponding
309 // variable was remapped to
310
311 static Constant *getAddressesOfVariablesInKernel(
313 const DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
314 // Create a ConstantArray containing the address of each Variable within the
315 // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
316 // does not allocate it
317 // TODO: Drop the ptrtoint conversion
318
319 Type *I32 = Type::getInt32Ty(Ctx);
320
321 ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
322
324 for (size_t i = 0; i < Variables.size(); i++) {
325 GlobalVariable *GV = Variables[i];
326 auto ConstantGepIt = LDSVarsToConstantGEP.find(GV);
327 if (ConstantGepIt != LDSVarsToConstantGEP.end()) {
328 auto elt = ConstantExpr::getPtrToInt(ConstantGepIt->second, I32);
329 Elements.push_back(elt);
330 } else {
331 Elements.push_back(PoisonValue::get(I32));
332 }
333 }
334 return ConstantArray::get(KernelOffsetsType, Elements);
335 }
336
337 static GlobalVariable *buildLookupTable(
339 ArrayRef<Function *> kernels,
341 if (Variables.empty()) {
342 return nullptr;
343 }
344 LLVMContext &Ctx = M.getContext();
345
346 const size_t NumberVariables = Variables.size();
347 const size_t NumberKernels = kernels.size();
348
349 ArrayType *KernelOffsetsType =
350 ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
351
352 ArrayType *AllKernelsOffsetsType =
353 ArrayType::get(KernelOffsetsType, NumberKernels);
354
355 Constant *Missing = PoisonValue::get(KernelOffsetsType);
356 std::vector<Constant *> overallConstantExprElts(NumberKernels);
357 for (size_t i = 0; i < NumberKernels; i++) {
358 auto Replacement = KernelToReplacement.find(kernels[i]);
359 overallConstantExprElts[i] =
360 (Replacement == KernelToReplacement.end())
361 ? Missing
362 : getAddressesOfVariablesInKernel(
363 Ctx, Variables, Replacement->second.LDSVarsToConstantGEP);
364 }
365
366 Constant *init =
367 ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
368
369 return new GlobalVariable(
370 M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
371 "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
373 }
374
375 void replaceUseWithTableLookup(Module &M, IRBuilder<> &Builder,
376 GlobalVariable *LookupTable,
377 GlobalVariable *GV, Use &U,
378 Value *OptionalIndex) {
379 // Table is a constant array of the same length as OrderedKernels
380 LLVMContext &Ctx = M.getContext();
381 Type *I32 = Type::getInt32Ty(Ctx);
382 auto *I = cast<Instruction>(U.getUser());
383
384 Value *tableKernelIndex = getTableLookupKernelIndex(M, I->getFunction());
385
386 if (auto *Phi = dyn_cast<PHINode>(I)) {
387 BasicBlock *BB = Phi->getIncomingBlock(U);
388 Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
389 } else {
390 Builder.SetInsertPoint(I);
391 }
392
393 SmallVector<Value *, 3> GEPIdx = {
394 ConstantInt::get(I32, 0),
395 tableKernelIndex,
396 };
397 if (OptionalIndex)
398 GEPIdx.push_back(OptionalIndex);
399
400 Value *Address = Builder.CreateInBoundsGEP(
401 LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
402
403 Value *loaded = Builder.CreateLoad(I32, Address);
404
405 Value *replacement =
406 Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
407
408 U.set(replacement);
409 }
410
411 void replaceUsesInInstructionsWithTableLookup(
412 Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
413 GlobalVariable *LookupTable) {
414
415 LLVMContext &Ctx = M.getContext();
416 IRBuilder<> Builder(Ctx);
417 Type *I32 = Type::getInt32Ty(Ctx);
418
419 for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
420 auto *GV = ModuleScopeVariables[Index];
421
422 for (Use &U : make_early_inc_range(GV->uses())) {
423 auto *I = dyn_cast<Instruction>(U.getUser());
424 if (!I)
425 continue;
426
427 replaceUseWithTableLookup(M, Builder, LookupTable, GV, U,
428 ConstantInt::get(I32, Index));
429 }
430 }
431 }
432
433 static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
434 Module &M, LDSUsesInfoTy &LDSUsesInfo,
435 DenseSet<GlobalVariable *> const &VariableSet) {
436
437 DenseSet<Function *> KernelSet;
438
439 if (VariableSet.empty())
440 return KernelSet;
441
442 for (Function &Func : M.functions()) {
443 if (Func.isDeclaration() || !isKernelLDS(&Func))
444 continue;
445 for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
446 if (VariableSet.contains(GV)) {
447 KernelSet.insert(&Func);
448 break;
449 }
450 }
451 }
452
453 return KernelSet;
454 }
455
456 static GlobalVariable *
457 chooseBestVariableForModuleStrategy(const DataLayout &DL,
458 VariableFunctionMap &LDSVars) {
459 // Find the global variable with the most indirect uses from kernels
460
461 struct CandidateTy {
462 GlobalVariable *GV = nullptr;
463 size_t UserCount = 0;
464 size_t Size = 0;
465
466 CandidateTy() = default;
467
468 CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
469 : GV(GV), UserCount(UserCount), Size(AllocSize) {}
470
471 bool operator<(const CandidateTy &Other) const {
472 // Fewer users makes module scope variable less attractive
473 if (UserCount < Other.UserCount) {
474 return true;
475 }
476 if (UserCount > Other.UserCount) {
477 return false;
478 }
479
480 // Bigger makes module scope variable less attractive
481 if (Size < Other.Size) {
482 return false;
483 }
484
485 if (Size > Other.Size) {
486 return true;
487 }
488
489 // Arbitrary but consistent
490 return GV->getName() < Other.GV->getName();
491 }
492 };
493
494 CandidateTy MostUsed;
495
496 for (auto &K : LDSVars) {
497 GlobalVariable *GV = K.first;
498 if (K.second.size() <= 1) {
499 // A variable reachable by only one kernel is best lowered with kernel
500 // strategy
501 continue;
502 }
503 CandidateTy Candidate(
504 GV, K.second.size(),
505 DL.getTypeAllocSize(GV->getValueType()).getFixedValue());
506 if (MostUsed < Candidate)
507 MostUsed = Candidate;
508 }
509
510 return MostUsed.GV;
511 }
512
513 static void recordLDSAbsoluteAddress(Module *M, GlobalVariable *GV,
514 uint32_t Address) {
515 // Write the specified address into metadata where it can be retrieved by
516 // the assembler. Format is a half open range, [Address Address+1)
517 LLVMContext &Ctx = M->getContext();
518 auto *IntTy =
519 M->getDataLayout().getIntPtrType(Ctx, AMDGPUAS::LOCAL_ADDRESS);
520 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address));
521 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address + 1));
522 GV->setMetadata(LLVMContext::MD_absolute_symbol,
523 MDNode::get(Ctx, {MinC, MaxC}));
524 }
525
526 DenseMap<Function *, Value *> tableKernelIndexCache;
527 Value *getTableLookupKernelIndex(Module &M, Function *F) {
528 // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
529 // lowers to a read from a live in register. Emit it once in the entry
530 // block to spare deduplicating it later.
531 auto [It, Inserted] = tableKernelIndexCache.try_emplace(F);
532 if (Inserted) {
533 Function *Decl =
534 Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {});
535
536 auto InsertAt = F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
537 IRBuilder<> Builder(&*InsertAt);
538
539 It->second = Builder.CreateCall(Decl, {});
540 }
541
542 return It->second;
543 }
544
545 static std::vector<Function *> assignLDSKernelIDToEachKernel(
546 Module *M, DenseSet<Function *> const &KernelsThatAllocateTableLDS,
547 DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS) {
548 // Associate kernels in the set with an arbirary but reproducible order and
549 // annotate them with that order in metadata. This metadata is recognised by
550 // the backend and lowered to a SGPR which can be read from using
551 // amdgcn_lds_kernel_id.
552
553 std::vector<Function *> OrderedKernels;
554 if (!KernelsThatAllocateTableLDS.empty() ||
555 !KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
556
557 for (Function &Func : M->functions()) {
558 if (Func.isDeclaration())
559 continue;
560 if (!isKernelLDS(&Func))
561 continue;
562
563 if (KernelsThatAllocateTableLDS.contains(&Func) ||
564 KernelsThatIndirectlyAllocateDynamicLDS.contains(&Func)) {
565 assert(Func.hasName()); // else fatal error earlier
566 OrderedKernels.push_back(&Func);
567 }
568 }
569
570 // Put them in an arbitrary but reproducible order
571 OrderedKernels = sortByName(std::move(OrderedKernels));
572
573 // Annotate the kernels with their order in this vector
574 LLVMContext &Ctx = M->getContext();
575 IRBuilder<> Builder(Ctx);
576
577 if (OrderedKernels.size() > UINT32_MAX) {
578 // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
579 report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels");
580 }
581
582 for (size_t i = 0; i < OrderedKernels.size(); i++) {
583 Metadata *AttrMDArgs[1] = {
585 };
586 OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
587 MDNode::get(Ctx, AttrMDArgs));
588 }
589 }
590 return OrderedKernels;
591 }
592
593 static void partitionVariablesIntoIndirectStrategies(
594 Module &M, LDSUsesInfoTy const &LDSUsesInfo,
595 VariableFunctionMap &LDSToKernelsThatNeedToAccessItIndirectly,
596 DenseSet<GlobalVariable *> &ModuleScopeVariables,
597 DenseSet<GlobalVariable *> &TableLookupVariables,
598 DenseSet<GlobalVariable *> &KernelAccessVariables,
599 DenseSet<GlobalVariable *> &DynamicVariables) {
600
601 GlobalVariable *HybridModuleRoot =
602 LoweringKindLoc != LoweringKind::hybrid
603 ? nullptr
604 : chooseBestVariableForModuleStrategy(
605 M.getDataLayout(), LDSToKernelsThatNeedToAccessItIndirectly);
606
607 DenseSet<Function *> const EmptySet;
608 DenseSet<Function *> const &HybridModuleRootKernels =
609 HybridModuleRoot
610 ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
611 : EmptySet;
612
613 for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
614 // Each iteration of this loop assigns exactly one global variable to
615 // exactly one of the implementation strategies.
616
617 GlobalVariable *GV = K.first;
619 assert(K.second.size() != 0);
620
621 if (AMDGPU::isDynamicLDS(*GV)) {
622 DynamicVariables.insert(GV);
623 continue;
624 }
625
626 switch (LoweringKindLoc) {
627 case LoweringKind::module:
628 ModuleScopeVariables.insert(GV);
629 break;
630
631 case LoweringKind::table:
632 TableLookupVariables.insert(GV);
633 break;
634
635 case LoweringKind::kernel:
636 if (K.second.size() == 1) {
637 KernelAccessVariables.insert(GV);
638 } else {
640 "cannot lower LDS '" + GV->getName() +
641 "' to kernel access as it is reachable from multiple kernels");
642 }
643 break;
644
645 case LoweringKind::hybrid: {
646 if (GV == HybridModuleRoot) {
647 assert(K.second.size() != 1);
648 ModuleScopeVariables.insert(GV);
649 } else if (K.second.size() == 1) {
650 KernelAccessVariables.insert(GV);
651 } else if (set_is_subset(K.second, HybridModuleRootKernels)) {
652 ModuleScopeVariables.insert(GV);
653 } else {
654 TableLookupVariables.insert(GV);
655 }
656 break;
657 }
658 }
659 }
660
661 // All LDS variables accessed indirectly have now been partitioned into
662 // the distinct lowering strategies.
663 assert(ModuleScopeVariables.size() + TableLookupVariables.size() +
664 KernelAccessVariables.size() + DynamicVariables.size() ==
665 LDSToKernelsThatNeedToAccessItIndirectly.size());
666 }
667
668 static GlobalVariable *lowerModuleScopeStructVariables(
669 Module &M, DenseSet<GlobalVariable *> const &ModuleScopeVariables,
670 DenseSet<Function *> const &KernelsThatAllocateModuleLDS) {
671 // Create a struct to hold the ModuleScopeVariables
672 // Replace all uses of those variables from non-kernel functions with the
673 // new struct instance Replace only the uses from kernel functions that will
674 // allocate this instance. That is a space optimisation - kernels that use a
675 // subset of the module scope struct and do not need to allocate it for
676 // indirect calls will only allocate the subset they use (they do so as part
677 // of the per-kernel lowering).
678 if (ModuleScopeVariables.empty()) {
679 return nullptr;
680 }
681
682 LLVMContext &Ctx = M.getContext();
683
684 LDSVariableReplacement ModuleScopeReplacement =
685 createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
686 ModuleScopeVariables);
687
688 appendToCompilerUsed(M, {static_cast<GlobalValue *>(
690 cast<Constant>(ModuleScopeReplacement.SGV),
691 PointerType::getUnqual(Ctx)))});
692
693 // module.lds will be allocated at zero in any kernel that allocates it
694 recordLDSAbsoluteAddress(&M, ModuleScopeReplacement.SGV, 0);
695
696 // historic
697 removeLocalVarsFromUsedLists(M, ModuleScopeVariables);
698
699 // Replace all uses of module scope variable from non-kernel functions
700 replaceLDSVariablesWithStruct(
701 M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
702 Instruction *I = dyn_cast<Instruction>(U.getUser());
703 if (!I) {
704 return false;
705 }
706 Function *F = I->getFunction();
707 return !isKernelLDS(F);
708 });
709
710 // Replace uses of module scope variable from kernel functions that
711 // allocate the module scope variable, otherwise leave them unchanged
712 // Record on each kernel whether the module scope global is used by it
713
714 for (Function &Func : M.functions()) {
715 if (Func.isDeclaration() || !isKernelLDS(&Func))
716 continue;
717
718 if (KernelsThatAllocateModuleLDS.contains(&Func)) {
719 replaceLDSVariablesWithStruct(
720 M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
721 Instruction *I = dyn_cast<Instruction>(U.getUser());
722 if (!I) {
723 return false;
724 }
725 Function *F = I->getFunction();
726 return F == &Func;
727 });
728
729 markUsedByKernel(&Func, ModuleScopeReplacement.SGV);
730 }
731 }
732
733 return ModuleScopeReplacement.SGV;
734 }
735
737 lowerKernelScopeStructVariables(
738 Module &M, LDSUsesInfoTy &LDSUsesInfo,
739 DenseSet<GlobalVariable *> const &ModuleScopeVariables,
740 DenseSet<Function *> const &KernelsThatAllocateModuleLDS,
741 GlobalVariable *MaybeModuleScopeStruct) {
742
743 // Create a struct for each kernel for the non-module-scope variables.
744
746 for (Function &Func : M.functions()) {
747 if (Func.isDeclaration() || !isKernelLDS(&Func))
748 continue;
749
750 DenseSet<GlobalVariable *> KernelUsedVariables;
751 // Allocating variables that are used directly in this struct to get
752 // alignment aware allocation and predictable frame size.
753 for (auto &v : LDSUsesInfo.direct_access[&Func]) {
754 if (!AMDGPU::isDynamicLDS(*v)) {
755 KernelUsedVariables.insert(v);
756 }
757 }
758
759 // Allocating variables that are accessed indirectly so that a lookup of
760 // this struct instance can find them from nested functions.
761 for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
762 if (!AMDGPU::isDynamicLDS(*v)) {
763 KernelUsedVariables.insert(v);
764 }
765 }
766
767 // Variables allocated in module lds must all resolve to that struct,
768 // not to the per-kernel instance.
769 if (KernelsThatAllocateModuleLDS.contains(&Func)) {
770 for (GlobalVariable *v : ModuleScopeVariables) {
771 KernelUsedVariables.erase(v);
772 }
773 }
774
775 if (KernelUsedVariables.empty()) {
776 // Either used no LDS, or the LDS it used was all in the module struct
777 // or dynamically sized
778 continue;
779 }
780
781 // The association between kernel function and LDS struct is done by
782 // symbol name, which only works if the function in question has a
783 // name This is not expected to be a problem in practice as kernels
784 // are called by name making anonymous ones (which are named by the
785 // backend) difficult to use. This does mean that llvm test cases need
786 // to name the kernels.
787 if (!Func.hasName()) {
788 report_fatal_error("Anonymous kernels cannot use LDS variables");
789 }
790
791 std::string VarName =
792 (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
793
794 auto Replacement =
795 createLDSVariableReplacement(M, VarName, KernelUsedVariables);
796
797 // If any indirect uses, create a direct use to ensure allocation
798 // TODO: Simpler to unconditionally mark used but that regresses
799 // codegen in test/CodeGen/AMDGPU/noclobber-barrier.ll
800 auto Accesses = LDSUsesInfo.indirect_access.find(&Func);
801 if ((Accesses != LDSUsesInfo.indirect_access.end()) &&
802 !Accesses->second.empty())
803 markUsedByKernel(&Func, Replacement.SGV);
804
805 // remove preserves existing codegen
806 removeLocalVarsFromUsedLists(M, KernelUsedVariables);
807 KernelToReplacement[&Func] = Replacement;
808
809 // Rewrite uses within kernel to the new struct
810 replaceLDSVariablesWithStruct(
811 M, KernelUsedVariables, Replacement, [&Func](Use &U) {
812 Instruction *I = dyn_cast<Instruction>(U.getUser());
813 return I && I->getFunction() == &Func;
814 });
815 }
816 return KernelToReplacement;
817 }
818
819 static GlobalVariable *
820 buildRepresentativeDynamicLDSInstance(Module &M, LDSUsesInfoTy &LDSUsesInfo,
821 Function *func) {
822 // Create a dynamic lds variable with a name associated with the passed
823 // function that has the maximum alignment of any dynamic lds variable
824 // reachable from this kernel. Dynamic LDS is allocated after the static LDS
825 // allocation, possibly after alignment padding. The representative variable
826 // created here has the maximum alignment of any other dynamic variable
827 // reachable by that kernel. All dynamic LDS variables are allocated at the
828 // same address in each kernel in order to provide the documented aliasing
829 // semantics. Setting the alignment here allows this IR pass to accurately
830 // predict the exact constant at which it will be allocated.
831
832 assert(isKernelLDS(func));
833
834 LLVMContext &Ctx = M.getContext();
835 const DataLayout &DL = M.getDataLayout();
836 Align MaxDynamicAlignment(1);
837
838 auto UpdateMaxAlignment = [&MaxDynamicAlignment, &DL](GlobalVariable *GV) {
839 if (AMDGPU::isDynamicLDS(*GV)) {
840 MaxDynamicAlignment =
841 std::max(MaxDynamicAlignment, AMDGPU::getAlign(DL, GV));
842 }
843 };
844
845 for (GlobalVariable *GV : LDSUsesInfo.indirect_access[func]) {
846 UpdateMaxAlignment(GV);
847 }
848
849 for (GlobalVariable *GV : LDSUsesInfo.direct_access[func]) {
850 UpdateMaxAlignment(GV);
851 }
852
853 assert(func->hasName()); // Checked by caller
854 auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
856 M, emptyCharArray, false, GlobalValue::ExternalLinkage, nullptr,
857 Twine("llvm.amdgcn." + func->getName() + ".dynlds"), nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
858 false);
859 N->setAlignment(MaxDynamicAlignment);
860
862 return N;
863 }
864
865 DenseMap<Function *, GlobalVariable *> lowerDynamicLDSVariables(
866 Module &M, LDSUsesInfoTy &LDSUsesInfo,
867 DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS,
868 DenseSet<GlobalVariable *> const &DynamicVariables,
869 std::vector<Function *> const &OrderedKernels) {
870 DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS;
871 if (!KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
872 LLVMContext &Ctx = M.getContext();
873 IRBuilder<> Builder(Ctx);
874 Type *I32 = Type::getInt32Ty(Ctx);
875
876 std::vector<Constant *> newDynamicLDS;
877
878 // Table is built in the same order as OrderedKernels
879 for (auto &func : OrderedKernels) {
880
881 if (KernelsThatIndirectlyAllocateDynamicLDS.contains(func)) {
882 assert(isKernelLDS(func));
883 if (!func->hasName()) {
884 report_fatal_error("Anonymous kernels cannot use LDS variables");
885 }
886
888 buildRepresentativeDynamicLDSInstance(M, LDSUsesInfo, func);
889
890 KernelToCreatedDynamicLDS[func] = N;
891
892 markUsedByKernel(func, N);
893
894 auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
896 emptyCharArray, N, ConstantInt::get(I32, 0), true);
897 newDynamicLDS.push_back(ConstantExpr::getPtrToInt(GEP, I32));
898 } else {
899 newDynamicLDS.push_back(PoisonValue::get(I32));
900 }
901 }
902 assert(OrderedKernels.size() == newDynamicLDS.size());
903
904 ArrayType *t = ArrayType::get(I32, newDynamicLDS.size());
905 Constant *init = ConstantArray::get(t, newDynamicLDS);
906 GlobalVariable *table = new GlobalVariable(
907 M, t, true, GlobalValue::InternalLinkage, init,
908 "llvm.amdgcn.dynlds.offset.table", nullptr,
910
911 for (GlobalVariable *GV : DynamicVariables) {
912 for (Use &U : make_early_inc_range(GV->uses())) {
913 auto *I = dyn_cast<Instruction>(U.getUser());
914 if (!I)
915 continue;
916 if (isKernelLDS(I->getFunction()))
917 continue;
918
919 replaceUseWithTableLookup(M, Builder, table, GV, U, nullptr);
920 }
921 }
922 }
923 return KernelToCreatedDynamicLDS;
924 }
925
926 bool runOnModule(Module &M) {
927 CallGraph CG = CallGraph(M);
928 bool Changed = superAlignLDSGlobals(M);
929
931
932 Changed = true; // todo: narrow this down
933
934 // For each kernel, what variables does it access directly or through
935 // callees
936 LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
937
938 // For each variable accessed through callees, which kernels access it
939 VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
940 for (auto &K : LDSUsesInfo.indirect_access) {
941 Function *F = K.first;
943 for (GlobalVariable *GV : K.second) {
944 LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
945 }
946 }
947
948 // Partition variables accessed indirectly into the different strategies
949 DenseSet<GlobalVariable *> ModuleScopeVariables;
950 DenseSet<GlobalVariable *> TableLookupVariables;
951 DenseSet<GlobalVariable *> KernelAccessVariables;
952 DenseSet<GlobalVariable *> DynamicVariables;
953 partitionVariablesIntoIndirectStrategies(
954 M, LDSUsesInfo, LDSToKernelsThatNeedToAccessItIndirectly,
955 ModuleScopeVariables, TableLookupVariables, KernelAccessVariables,
956 DynamicVariables);
957
958 // If the kernel accesses a variable that is going to be stored in the
959 // module instance through a call then that kernel needs to allocate the
960 // module instance
961 const DenseSet<Function *> KernelsThatAllocateModuleLDS =
962 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
963 ModuleScopeVariables);
964 const DenseSet<Function *> KernelsThatAllocateTableLDS =
965 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
966 TableLookupVariables);
967
968 const DenseSet<Function *> KernelsThatIndirectlyAllocateDynamicLDS =
969 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
970 DynamicVariables);
971
972 GlobalVariable *MaybeModuleScopeStruct = lowerModuleScopeStructVariables(
973 M, ModuleScopeVariables, KernelsThatAllocateModuleLDS);
974
976 lowerKernelScopeStructVariables(M, LDSUsesInfo, ModuleScopeVariables,
977 KernelsThatAllocateModuleLDS,
978 MaybeModuleScopeStruct);
979
980 // Lower zero cost accesses to the kernel instances just created
981 for (auto &GV : KernelAccessVariables) {
982 auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
983 assert(funcs.size() == 1); // Only one kernel can access it
984 LDSVariableReplacement Replacement =
985 KernelToReplacement[*(funcs.begin())];
986
988 Vec.insert(GV);
989
990 replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
991 return isa<Instruction>(U.getUser());
992 });
993 }
994
995 // The ith element of this vector is kernel id i
996 std::vector<Function *> OrderedKernels =
997 assignLDSKernelIDToEachKernel(&M, KernelsThatAllocateTableLDS,
998 KernelsThatIndirectlyAllocateDynamicLDS);
999
1000 if (!KernelsThatAllocateTableLDS.empty()) {
1001 LLVMContext &Ctx = M.getContext();
1002 IRBuilder<> Builder(Ctx);
1003
1004 // The order must be consistent between lookup table and accesses to
1005 // lookup table
1006 auto TableLookupVariablesOrdered =
1007 sortByName(std::vector<GlobalVariable *>(TableLookupVariables.begin(),
1008 TableLookupVariables.end()));
1009
1010 GlobalVariable *LookupTable = buildLookupTable(
1011 M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
1012 replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
1013 LookupTable);
1014
1015 // Strip amdgpu-no-lds-kernel-id from all functions reachable from the
1016 // kernel. We may have inferred this wasn't used prior to the pass.
1017 //
1018 // TODO: We could filter out subgraphs that do not access LDS globals.
1019 for (Function *F : KernelsThatAllocateTableLDS)
1020 removeFnAttrFromReachable(CG, F, {"amdgpu-no-lds-kernel-id"});
1021 }
1022
1023 DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS =
1024 lowerDynamicLDSVariables(M, LDSUsesInfo,
1025 KernelsThatIndirectlyAllocateDynamicLDS,
1026 DynamicVariables, OrderedKernels);
1027
1028 // All kernel frames have been allocated. Calculate and record the
1029 // addresses.
1030 {
1031 const DataLayout &DL = M.getDataLayout();
1032
1033 for (Function &Func : M.functions()) {
1034 if (Func.isDeclaration() || !isKernelLDS(&Func))
1035 continue;
1036
1037 // All three of these are optional. The first variable is allocated at
1038 // zero. They are allocated by AMDGPUMachineFunction as one block.
1039 // Layout:
1040 //{
1041 // module.lds
1042 // alignment padding
1043 // kernel instance
1044 // alignment padding
1045 // dynamic lds variables
1046 //}
1047
1048 const bool AllocateModuleScopeStruct =
1049 MaybeModuleScopeStruct &&
1050 KernelsThatAllocateModuleLDS.contains(&Func);
1051
1052 auto Replacement = KernelToReplacement.find(&Func);
1053 const bool AllocateKernelScopeStruct =
1054 Replacement != KernelToReplacement.end();
1055
1056 const bool AllocateDynamicVariable =
1057 KernelToCreatedDynamicLDS.contains(&Func);
1058
1059 uint32_t Offset = 0;
1060
1061 if (AllocateModuleScopeStruct) {
1062 // Allocated at zero, recorded once on construction, not once per
1063 // kernel
1064 Offset += DL.getTypeAllocSize(MaybeModuleScopeStruct->getValueType());
1065 }
1066
1067 if (AllocateKernelScopeStruct) {
1068 GlobalVariable *KernelStruct = Replacement->second.SGV;
1069 Offset = alignTo(Offset, AMDGPU::getAlign(DL, KernelStruct));
1070 recordLDSAbsoluteAddress(&M, KernelStruct, Offset);
1071 Offset += DL.getTypeAllocSize(KernelStruct->getValueType());
1072 }
1073
1074 // If there is dynamic allocation, the alignment needed is included in
1075 // the static frame size. There may be no reference to the dynamic
1076 // variable in the kernel itself, so without including it here, that
1077 // alignment padding could be missed.
1078 if (AllocateDynamicVariable) {
1079 GlobalVariable *DynamicVariable = KernelToCreatedDynamicLDS[&Func];
1080 Offset = alignTo(Offset, AMDGPU::getAlign(DL, DynamicVariable));
1081 recordLDSAbsoluteAddress(&M, DynamicVariable, Offset);
1082 }
1083
1084 if (Offset != 0) {
1085 (void)TM; // TODO: Account for target maximum LDS
1086 std::string Buffer;
1087 raw_string_ostream SS{Buffer};
1088 SS << format("%u", Offset);
1089
1090 // Instead of explictly marking kernels that access dynamic variables
1091 // using special case metadata, annotate with min-lds == max-lds, i.e.
1092 // that there is no more space available for allocating more static
1093 // LDS variables. That is the right condition to prevent allocating
1094 // more variables which would collide with the addresses assigned to
1095 // dynamic variables.
1096 if (AllocateDynamicVariable)
1097 SS << format(",%u", Offset);
1098
1099 Func.addFnAttr("amdgpu-lds-size", Buffer);
1100 }
1101 }
1102 }
1103
1104 for (auto &GV : make_early_inc_range(M.globals()))
1106 // probably want to remove from used lists
1108 if (GV.use_empty())
1109 GV.eraseFromParent();
1110 }
1111
1112 return Changed;
1113 }
1114
1115private:
1116 // Increase the alignment of LDS globals if necessary to maximise the chance
1117 // that we can use aligned LDS instructions to access them.
1118 static bool superAlignLDSGlobals(Module &M) {
1119 const DataLayout &DL = M.getDataLayout();
1120 bool Changed = false;
1121 if (!SuperAlignLDSGlobals) {
1122 return Changed;
1123 }
1124
1125 for (auto &GV : M.globals()) {
1127 // Only changing alignment of LDS variables
1128 continue;
1129 }
1130 if (!GV.hasInitializer()) {
1131 // cuda/hip extern __shared__ variable, leave alignment alone
1132 continue;
1133 }
1134
1135 Align Alignment = AMDGPU::getAlign(DL, &GV);
1136 TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType());
1137
1138 if (GVSize > 8) {
1139 // We might want to use a b96 or b128 load/store
1140 Alignment = std::max(Alignment, Align(16));
1141 } else if (GVSize > 4) {
1142 // We might want to use a b64 load/store
1143 Alignment = std::max(Alignment, Align(8));
1144 } else if (GVSize > 2) {
1145 // We might want to use a b32 load/store
1146 Alignment = std::max(Alignment, Align(4));
1147 } else if (GVSize > 1) {
1148 // We might want to use a b16 load/store
1149 Alignment = std::max(Alignment, Align(2));
1150 }
1151
1152 if (Alignment != AMDGPU::getAlign(DL, &GV)) {
1153 Changed = true;
1154 GV.setAlignment(Alignment);
1155 }
1156 }
1157 return Changed;
1158 }
1159
1160 static LDSVariableReplacement createLDSVariableReplacement(
1161 Module &M, std::string VarName,
1162 DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
1163 // Create a struct instance containing LDSVarsToTransform and map from those
1164 // variables to ConstantExprGEP
1165 // Variables may be introduced to meet alignment requirements. No aliasing
1166 // metadata is useful for these as they have no uses. Erased before return.
1167
1168 LLVMContext &Ctx = M.getContext();
1169 const DataLayout &DL = M.getDataLayout();
1170 assert(!LDSVarsToTransform.empty());
1171
1173 LayoutFields.reserve(LDSVarsToTransform.size());
1174 {
1175 // The order of fields in this struct depends on the order of
1176 // varables in the argument which varies when changing how they
1177 // are identified, leading to spurious test breakage.
1178 auto Sorted = sortByName(std::vector<GlobalVariable *>(
1179 LDSVarsToTransform.begin(), LDSVarsToTransform.end()));
1180
1181 for (GlobalVariable *GV : Sorted) {
1183 DL.getTypeAllocSize(GV->getValueType()),
1184 AMDGPU::getAlign(DL, GV));
1185 LayoutFields.emplace_back(F);
1186 }
1187 }
1188
1189 performOptimizedStructLayout(LayoutFields);
1190
1191 std::vector<GlobalVariable *> LocalVars;
1192 BitVector IsPaddingField;
1193 LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
1194 IsPaddingField.reserve(LDSVarsToTransform.size());
1195 {
1196 uint64_t CurrentOffset = 0;
1197 for (size_t I = 0; I < LayoutFields.size(); I++) {
1198 GlobalVariable *FGV = static_cast<GlobalVariable *>(
1199 const_cast<void *>(LayoutFields[I].Id));
1200 Align DataAlign = LayoutFields[I].Alignment;
1201
1202 uint64_t DataAlignV = DataAlign.value();
1203 if (uint64_t Rem = CurrentOffset % DataAlignV) {
1204 uint64_t Padding = DataAlignV - Rem;
1205
1206 // Append an array of padding bytes to meet alignment requested
1207 // Note (o + (a - (o % a)) ) % a == 0
1208 // (offset + Padding ) % align == 0
1209
1210 Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
1211 LocalVars.push_back(new GlobalVariable(
1212 M, ATy, false, GlobalValue::InternalLinkage,
1214 AMDGPUAS::LOCAL_ADDRESS, false));
1215 IsPaddingField.push_back(true);
1216 CurrentOffset += Padding;
1217 }
1218
1219 LocalVars.push_back(FGV);
1220 IsPaddingField.push_back(false);
1221 CurrentOffset += LayoutFields[I].Size;
1222 }
1223 }
1224
1225 std::vector<Type *> LocalVarTypes;
1226 LocalVarTypes.reserve(LocalVars.size());
1227 std::transform(
1228 LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
1229 [](const GlobalVariable *V) -> Type * { return V->getValueType(); });
1230
1231 StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
1232
1233 Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
1234
1235 GlobalVariable *SGV = new GlobalVariable(
1236 M, LDSTy, false, GlobalValue::InternalLinkage, PoisonValue::get(LDSTy),
1238 false);
1239 SGV->setAlignment(StructAlign);
1240
1242 Type *I32 = Type::getInt32Ty(Ctx);
1243 for (size_t I = 0; I < LocalVars.size(); I++) {
1244 GlobalVariable *GV = LocalVars[I];
1245 Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
1246 Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
1247 if (IsPaddingField[I]) {
1248 assert(GV->use_empty());
1249 GV->eraseFromParent();
1250 } else {
1251 Map[GV] = GEP;
1252 }
1253 }
1254 assert(Map.size() == LDSVarsToTransform.size());
1255 return {SGV, std::move(Map)};
1256 }
1257
1258 template <typename PredicateTy>
1259 static void replaceLDSVariablesWithStruct(
1260 Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
1261 const LDSVariableReplacement &Replacement, PredicateTy Predicate) {
1262 LLVMContext &Ctx = M.getContext();
1263 const DataLayout &DL = M.getDataLayout();
1264
1265 // A hack... we need to insert the aliasing info in a predictable order for
1266 // lit tests. Would like to have them in a stable order already, ideally the
1267 // same order they get allocated, which might mean an ordered set container
1268 auto LDSVarsToTransform = sortByName(std::vector<GlobalVariable *>(
1269 LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end()));
1270
1271 // Create alias.scope and their lists. Each field in the new structure
1272 // does not alias with all other fields.
1273 SmallVector<MDNode *> AliasScopes;
1274 SmallVector<Metadata *> NoAliasList;
1275 const size_t NumberVars = LDSVarsToTransform.size();
1276 if (NumberVars > 1) {
1277 MDBuilder MDB(Ctx);
1278 AliasScopes.reserve(NumberVars);
1280 for (size_t I = 0; I < NumberVars; I++) {
1282 AliasScopes.push_back(Scope);
1283 }
1284 NoAliasList.append(&AliasScopes[1], AliasScopes.end());
1285 }
1286
1287 // Replace uses of ith variable with a constantexpr to the corresponding
1288 // field of the instance that will be allocated by AMDGPUMachineFunction
1289 for (size_t I = 0; I < NumberVars; I++) {
1290 GlobalVariable *GV = LDSVarsToTransform[I];
1291 Constant *GEP = Replacement.LDSVarsToConstantGEP.at(GV);
1292
1293 GV->replaceUsesWithIf(GEP, Predicate);
1294
1295 APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
1296 GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
1297 uint64_t Offset = APOff.getZExtValue();
1298
1299 Align A =
1300 commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
1301
1302 if (I)
1303 NoAliasList[I - 1] = AliasScopes[I - 1];
1304 MDNode *NoAlias =
1305 NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
1306 MDNode *AliasScope =
1307 AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
1308
1309 refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
1310 }
1311 }
1312
1313 static void refineUsesAlignmentAndAA(Value *Ptr, Align A,
1314 const DataLayout &DL, MDNode *AliasScope,
1315 MDNode *NoAlias, unsigned MaxDepth = 5) {
1316 if (!MaxDepth || (A == 1 && !AliasScope))
1317 return;
1318
1319 for (User *U : Ptr->users()) {
1320 if (auto *I = dyn_cast<Instruction>(U)) {
1321 if (AliasScope && I->mayReadOrWriteMemory()) {
1322 MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
1323 AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
1324 : AliasScope);
1325 I->setMetadata(LLVMContext::MD_alias_scope, AS);
1326
1327 MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
1328 NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias);
1329 I->setMetadata(LLVMContext::MD_noalias, NA);
1330 }
1331 }
1332
1333 if (auto *LI = dyn_cast<LoadInst>(U)) {
1334 LI->setAlignment(std::max(A, LI->getAlign()));
1335 continue;
1336 }
1337 if (auto *SI = dyn_cast<StoreInst>(U)) {
1338 if (SI->getPointerOperand() == Ptr)
1339 SI->setAlignment(std::max(A, SI->getAlign()));
1340 continue;
1341 }
1342 if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
1343 // None of atomicrmw operations can work on pointers, but let's
1344 // check it anyway in case it will or we will process ConstantExpr.
1345 if (AI->getPointerOperand() == Ptr)
1346 AI->setAlignment(std::max(A, AI->getAlign()));
1347 continue;
1348 }
1349 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
1350 if (AI->getPointerOperand() == Ptr)
1351 AI->setAlignment(std::max(A, AI->getAlign()));
1352 continue;
1353 }
1354 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
1355 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1356 APInt Off(BitWidth, 0);
1357 if (GEP->getPointerOperand() == Ptr) {
1358 Align GA;
1359 if (GEP->accumulateConstantOffset(DL, Off))
1360 GA = commonAlignment(A, Off.getLimitedValue());
1361 refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
1362 MaxDepth - 1);
1363 }
1364 continue;
1365 }
1366 if (auto *I = dyn_cast<Instruction>(U)) {
1367 if (I->getOpcode() == Instruction::BitCast ||
1368 I->getOpcode() == Instruction::AddrSpaceCast)
1369 refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
1370 }
1371 }
1372 }
1373};
1374
1375class AMDGPULowerModuleLDSLegacy : public ModulePass {
1376public:
1377 const AMDGPUTargetMachine *TM;
1378 static char ID;
1379
1380 AMDGPULowerModuleLDSLegacy(const AMDGPUTargetMachine *TM_ = nullptr)
1381 : ModulePass(ID), TM(TM_) {
1383 }
1384
1385 void getAnalysisUsage(AnalysisUsage &AU) const override {
1386 if (!TM)
1388 }
1389
1390 bool runOnModule(Module &M) override {
1391 if (!TM) {
1392 auto &TPC = getAnalysis<TargetPassConfig>();
1393 TM = &TPC.getTM<AMDGPUTargetMachine>();
1394 }
1395
1396 return AMDGPULowerModuleLDS(*TM).runOnModule(M);
1397 }
1398};
1399
1400} // namespace
1401char AMDGPULowerModuleLDSLegacy::ID = 0;
1402
1403char &llvm::AMDGPULowerModuleLDSLegacyPassID = AMDGPULowerModuleLDSLegacy::ID;
1404
1405INITIALIZE_PASS_BEGIN(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE,
1406 "Lower uses of LDS variables from non-kernel functions",
1407 false, false)
1409INITIALIZE_PASS_END(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE,
1410 "Lower uses of LDS variables from non-kernel functions",
1412
1413ModulePass *
1415 return new AMDGPULowerModuleLDSLegacy(TM);
1416}
1417
1420 return AMDGPULowerModuleLDS(TM).runOnModule(M) ? PreservedAnalyses::none()
1422}
aarch64 promote const
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Lower uses of LDS variables from non kernel functions
#define DEBUG_TYPE
AMDGPU promote alloca to vector or LDS
The AMDGPU TargetMachine interface definition for hw codegen targets.
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file provides interfaces used to build and manipulate a call graph, which is a very useful tool ...
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:686
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Given that RA is a live propagate it s liveness to any other values it uses(according to Uses). void DeadArgumentEliminationPass
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
uint64_t Size
std::optional< std::vector< StOtherPiece > > Other
Definition: ELFYAML.cpp:1293
Hexagon Common GEP
static const unsigned MaxDepth
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file provides an interface for laying out a sequence of fields as a struct in a way that attempt...
const char LLVMTargetMachineRef TM
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:59
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file defines generic set operations that may be used on set's of different types,...
Target-Independent Code Generator Pass Configuration Options pass.
Class for arbitrary precision integers.
Definition: APInt.h:77
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1499
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:160
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:414
void reserve(unsigned N)
Definition: BitVector.h:348
void push_back(bool Val)
Definition: BitVector.h:466
The basic data container for the call graph of a Module of IR.
Definition: CallGraph.h:72
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1292
static ConstantAsMetadata * get(Constant *C)
Definition: Metadata.h:528
static Constant * getPointerBitCastOrAddrSpaceCast(Constant *C, Type *Ty)
Create a BitCast or AddrSpaceCast for a pointer type depending on the address space.
Definition: Constants.cpp:2192
static Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2217
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition: Constants.h:1240
This is an important base class in LLVM.
Definition: Constant.h:41
void removeDeadConstantUsers() const
If there are any dead constant users dangling off of this constant, remove them.
Definition: Constants.cpp:723
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&... Args)
Definition: DenseMap.h:235
iterator end()
Definition: DenseMap.h:84
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:145
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:220
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
void setMetadata(unsigned KindID, MDNode *Node)
Set a particular kind of metadata attachment.
Definition: Metadata.cpp:1487
void setAlignment(Align Align)
Sets the alignment attribute of the GlobalObject.
Definition: Globals.cpp:137
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:294
@ InternalLinkage
Rename collisions when linking (static functions).
Definition: GlobalValue.h:59
@ ExternalLinkage
Externally visible function.
Definition: GlobalValue.h:52
Type * getValueType() const
Definition: GlobalValue.h:296
bool hasInitializer() const
Definitions have initializers, declarations don't.
void eraseFromParent()
eraseFromParent - This method unlinks 'this' from the containing module and deletes it.
Definition: Globals.cpp:481
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2120
Value * CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0, const Twine &Name="")
Definition: IRBuilder.h:1887
Value * CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Definition: IRBuilder.h:1872
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:484
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Definition: IRBuilder.h:1788
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:178
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args=std::nullopt, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2410
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2664
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
MDNode * createAnonymousAliasScope(MDNode *Domain, StringRef Name=StringRef())
Return metadata appropriate for an alias scope root node.
Definition: MDBuilder.h:174
MDNode * createAnonymousAliasScopeDomain(StringRef Name=StringRef())
Return metadata appropriate for an alias scope domain node.
Definition: MDBuilder.h:167
Metadata node.
Definition: Metadata.h:1067
static MDNode * getMostGenericAliasScope(MDNode *A, MDNode *B)
Definition: Metadata.cpp:1135
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1541
static MDNode * intersect(MDNode *A, MDNode *B)
Definition: Metadata.cpp:1122
Root of the metadata hierarchy.
Definition: Metadata.h:62
ModulePass class - This class is used to implement unstructured interprocedural optimizations and ana...
Definition: Pass.h:251
virtual bool runOnModule(Module &M)=0
runOnModule - Virtual method overriden by subclasses to process the module being operated on.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
A container for an operand bundle being viewed as a set of values rather than a set of uses.
Definition: InstrTypes.h:1189
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1814
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition: Analysis.h:114
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:412
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:344
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:479
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:950
void reserve(size_type N)
Definition: SmallVector.h:676
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:696
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
Class to represent struct types.
Definition: DerivedTypes.h:216
static StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition: Type.cpp:513
Target-Independent Code Generator Pass Configuration Options.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static IntegerType * getInt8Ty(LLVMContext &C)
static IntegerType * getInt32Ty(LLVMContext &C)
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
LLVM Value Representation.
Definition: Value.h:74
void replaceUsesWithIf(Value *New, llvm::function_ref< bool(Use &U)> ShouldReplace)
Go through the uses list for this definition and make each use point to "V" if the callback ShouldRep...
Definition: Value.cpp:542
bool use_empty() const
Definition: Value.h:344
iterator_range< use_iterator > uses()
Definition: Value.h:376
bool hasName() const
Definition: Value.h:261
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
size_type size() const
Definition: DenseSet.h:81
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition: DenseSet.h:185
bool erase(const ValueT &V)
Definition: DenseSet.h:101
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
bool isDynamicLDS(const GlobalVariable &GV)
void removeFnAttrFromReachable(CallGraph &CG, Function *KernelRoot, ArrayRef< StringRef > FnAttrs)
Strip FnAttr attribute from any functions where we may have introduced its use.
LDSUsesInfoTy getTransitiveUsesOfLDS(const CallGraph &CG, Module &M)
bool isLDSVariableToLower(const GlobalVariable &GV)
bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M)
Align getAlign(const DataLayout &DL, const GlobalVariable *GV)
bool isKernelLDS(const Function *F)
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1484
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:711
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
bool operator<(int64_t V1, const APSInt &V2)
Definition: APSInt.h:361
bool set_is_subset(const S1Ty &S1, const S2Ty &S2)
set_is_subset(A, B) - Return true iff A in B
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:656
void initializeAMDGPULowerModuleLDSLegacyPass(PassRegistry &)
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1647
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
char & AMDGPULowerModuleLDSLegacyPassID
void removeFromUsedLists(Module &M, function_ref< bool(Constant *)> ShouldRemove)
Removes global values from the llvm.used and llvm.compiler.used arrays.
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition: Format.h:125
ModulePass * createAMDGPULowerModuleLDSLegacyPass(const AMDGPUTargetMachine *TM=nullptr)
void appendToCompilerUsed(Module &M, ArrayRef< GlobalValue * > Values)
Adds global values to the llvm.compiler.used list.
std::pair< uint64_t, Align > performOptimizedStructLayout(MutableArrayRef< OptimizedStructLayoutField > Fields)
Compute a layout for a struct containing the given fields, making a best-effort attempt to minimize t...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition: Alignment.h:212
#define N
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)
const AMDGPUTargetMachine & TM
Definition: AMDGPU.h:134
FunctionVariableMap direct_access
FunctionVariableMap indirect_access
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85