LLVM 22.0.0git
AMDGPULowerModuleLDSPass.cpp
Go to the documentation of this file.
1//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass eliminates local data store, LDS, uses from non-kernel functions.
10// LDS is contiguous memory allocated per kernel execution.
11//
12// Background.
13//
14// The programming model is global variables, or equivalently function local
15// static variables, accessible from kernels or other functions. For uses from
16// kernels this is straightforward - assign an integer to the kernel for the
17// memory required by all the variables combined, allocate them within that.
18// For uses from functions there are performance tradeoffs to choose between.
19//
20// This model means the GPU runtime can specify the amount of memory allocated.
21// If this is more than the kernel assumed, the excess can be made available
22// using a language specific feature, which IR represents as a variable with
23// no initializer. This feature is referred to here as "Dynamic LDS" and is
24// lowered slightly differently to the normal case.
25//
26// Consequences of this GPU feature:
27// - memory is limited and exceeding it halts compilation
28// - a global accessed by one kernel exists independent of other kernels
29// - a global exists independent of simultaneous execution of the same kernel
30// - the address of the global may be different from different kernels as they
31// do not alias, which permits only allocating variables they use
32// - if the address is allowed to differ, functions need help to find it
33//
34// Uses from kernels are implemented here by grouping them in a per-kernel
35// struct instance. This duplicates the variables, accurately modelling their
36// aliasing properties relative to a single global representation. It also
37// permits control over alignment via padding.
38//
39// Uses from functions are more complicated and the primary purpose of this
40// IR pass. Several different lowering are chosen between to meet requirements
41// to avoid allocating any LDS where it is not necessary, as that impacts
42// occupancy and may fail the compilation, while not imposing overhead on a
43// feature whose primary advantage over global memory is performance. The basic
44// design goal is to avoid one kernel imposing overhead on another.
45//
46// Implementation.
47//
48// LDS variables with constant annotation or non-undef initializer are passed
49// through unchanged for simplification or error diagnostics in later passes.
50// Non-undef initializers are not yet implemented for LDS.
51//
52// LDS variables that are always allocated at the same address can be found
53// by lookup at that address. Otherwise runtime information/cost is required.
54//
55// The simplest strategy possible is to group all LDS variables in a single
56// struct and allocate that struct in every kernel such that the original
57// variables are always at the same address. LDS is however a limited resource
58// so this strategy is unusable in practice. It is not implemented here.
59//
60// Strategy | Precise allocation | Zero runtime cost | General purpose |
61// --------+--------------------+-------------------+-----------------+
62// Module | No | Yes | Yes |
63// Table | Yes | No | Yes |
64// Kernel | Yes | Yes | No |
65// Hybrid | Yes | Partial | Yes |
66//
67// "Module" spends LDS memory to save cycles. "Table" spends cycles and global
68// memory to save LDS. "Kernel" is as fast as kernel allocation but only works
69// for variables that are known reachable from a single kernel. "Hybrid" picks
70// between all three. When forced to choose between LDS and cycles we minimise
71// LDS use.
72
73// The "module" lowering implemented here finds LDS variables which are used by
74// non-kernel functions and creates a new struct with a field for each of those
75// LDS variables. Variables that are only used from kernels are excluded.
76//
77// The "table" lowering implemented here has three components.
78// First kernels are assigned a unique integer identifier which is available in
79// functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
80// is passed through a specific SGPR, thus works with indirect calls.
81// Second, each kernel allocates LDS variables independent of other kernels and
82// writes the addresses it chose for each variable into an array in consistent
83// order. If the kernel does not allocate a given variable, it writes undef to
84// the corresponding array location. These arrays are written to a constant
85// table in the order matching the kernel unique integer identifier.
86// Third, uses from non-kernel functions are replaced with a table lookup using
87// the intrinsic function to find the address of the variable.
88//
89// "Kernel" lowering is only applicable for variables that are unambiguously
90// reachable from exactly one kernel. For those cases, accesses to the variable
91// can be lowered to ConstantExpr address of a struct instance specific to that
92// one kernel. This is zero cost in space and in compute. It will raise a fatal
93// error on any variable that might be reachable from multiple kernels and is
94// thus most easily used as part of the hybrid lowering strategy.
95//
96// Hybrid lowering is a mixture of the above. It uses the zero cost kernel
97// lowering where it can. It lowers the variable accessed by the greatest
98// number of kernels using the module strategy as that is free for the first
99// variable. Any futher variables that can be lowered with the module strategy
100// without incurring LDS memory overhead are. The remaining ones are lowered
101// via table.
102//
103// Consequences
104// - No heuristics or user controlled magic numbers, hybrid is the right choice
105// - Kernels that don't use functions (or have had them all inlined) are not
106// affected by any lowering for kernels that do.
107// - Kernels that don't make indirect function calls are not affected by those
108// that do.
109// - Variables which are used by lots of kernels, e.g. those injected by a
110// language runtime in most kernels, are expected to have no overhead
111// - Implementations that instantiate templates per-kernel where those templates
112// use LDS are expected to hit the "Kernel" lowering strategy
113// - The runtime properties impose a cost in compiler implementation complexity
114//
115// Dynamic LDS implementation
116// Dynamic LDS is lowered similarly to the "table" strategy above and uses the
117// same intrinsic to identify which kernel is at the root of the dynamic call
118// graph. This relies on the specified behaviour that all dynamic LDS variables
119// alias one another, i.e. are at the same address, with respect to a given
120// kernel. Therefore this pass creates new dynamic LDS variables for each kernel
121// that allocates any dynamic LDS and builds a table of addresses out of those.
122// The AMDGPUPromoteAlloca pass skips kernels that use dynamic LDS.
123// The corresponding optimisation for "kernel" lowering where the table lookup
124// is elided is not implemented.
125//
126//
127// Implementation notes / limitations
128// A single LDS global variable represents an instance per kernel that can reach
129// said variables. This pass essentially specialises said variables per kernel.
130// Handling ConstantExpr during the pass complicated this significantly so now
131// all ConstantExpr uses of LDS variables are expanded to instructions. This
132// may need amending when implementing non-undef initialisers.
133//
134// Lowering is split between this IR pass and the back end. This pass chooses
135// where given variables should be allocated and marks them with metadata,
136// MD_absolute_symbol. The backend places the variables in coincidentally the
137// same location and raises a fatal error if something has gone awry. This works
138// in practice because the only pass between this one and the backend that
139// changes LDS is PromoteAlloca and the changes it makes do not conflict.
140//
141// Addresses are written to constant global arrays based on the same metadata.
142//
143// The backend lowers LDS variables in the order of traversal of the function.
144// This is at odds with the deterministic layout required. The workaround is to
145// allocate the fixed-address variables immediately upon starting the function
146// where they can be placed as intended. This requires a means of mapping from
147// the function to the variables that it allocates. For the module scope lds,
148// this is via metadata indicating whether the variable is not required. If a
149// pass deletes that metadata, a fatal error on disagreement with the absolute
150// symbol metadata will occur. For kernel scope and dynamic, this is by _name_
151// correspondence between the function and the variable. It requires the
152// kernel to have a name (which is only a limitation for tests in practice) and
153// for nothing to rename the corresponding symbols. This is a hazard if the pass
154// is run multiple times during debugging. Alternative schemes considered all
155// involve bespoke metadata.
156//
157// If the name correspondence can be replaced, multiple distinct kernels that
158// have the same memory layout can map to the same kernel id (as the address
159// itself is handled by the absolute symbol metadata) and that will allow more
160// uses of the "kernel" style faster lowering and reduce the size of the lookup
161// tables.
162//
163// There is a test that checks this does not fire for a graphics shader. This
164// lowering is expected to work for graphics if the isKernel test is changed.
165//
166// The current markUsedByKernel is sufficient for PromoteAlloca but is elided
167// before codegen. Replacing this with an equivalent intrinsic which lasts until
168// shortly after the machine function lowering of LDS would help break the name
169// mapping. The other part needed is probably to amend PromoteAlloca to embed
170// the LDS variables it creates in the same struct created here. That avoids the
171// current hazard where a PromoteAlloca LDS variable might be allocated before
172// the kernel scope (and thus error on the address check). Given a new invariant
173// that no LDS variables exist outside of the structs managed here, and an
174// intrinsic that lasts until after the LDS frame lowering, it should be
175// possible to drop the name mapping and fold equivalent memory layouts.
176//
177//===----------------------------------------------------------------------===//
178
179#include "AMDGPU.h"
180#include "AMDGPUMemoryUtils.h"
181#include "AMDGPUTargetMachine.h"
182#include "Utils/AMDGPUBaseInfo.h"
183#include "llvm/ADT/BitVector.h"
184#include "llvm/ADT/DenseMap.h"
185#include "llvm/ADT/DenseSet.h"
186#include "llvm/ADT/STLExtras.h"
191#include "llvm/IR/Constants.h"
192#include "llvm/IR/DerivedTypes.h"
193#include "llvm/IR/Dominators.h"
194#include "llvm/IR/IRBuilder.h"
195#include "llvm/IR/InlineAsm.h"
196#include "llvm/IR/Instructions.h"
197#include "llvm/IR/IntrinsicsAMDGPU.h"
198#include "llvm/IR/MDBuilder.h"
201#include "llvm/Pass.h"
203#include "llvm/Support/Debug.h"
204#include "llvm/Support/Format.h"
209
210#include <vector>
211
212#include <cstdio>
213
214#define DEBUG_TYPE "amdgpu-lower-module-lds"
215
216using namespace llvm;
217using namespace AMDGPU;
218
219namespace {
220
221cl::opt<bool> SuperAlignLDSGlobals(
222 "amdgpu-super-align-lds-globals",
223 cl::desc("Increase alignment of LDS if it is not on align boundary"),
224 cl::init(true), cl::Hidden);
225
226enum class LoweringKind { module, table, kernel, hybrid };
227cl::opt<LoweringKind> LoweringKindLoc(
228 "amdgpu-lower-module-lds-strategy",
229 cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
230 cl::init(LoweringKind::hybrid),
232 clEnumValN(LoweringKind::table, "table", "Lower via table lookup"),
233 clEnumValN(LoweringKind::module, "module", "Lower via module struct"),
235 LoweringKind::kernel, "kernel",
236 "Lower variables reachable from one kernel, otherwise abort"),
237 clEnumValN(LoweringKind::hybrid, "hybrid",
238 "Lower via mixture of above strategies")));
239
240template <typename T> std::vector<T> sortByName(std::vector<T> &&V) {
241 llvm::sort(V, [](const auto *L, const auto *R) {
242 return L->getName() < R->getName();
243 });
244 return {std::move(V)};
245}
246
247class AMDGPULowerModuleLDS {
248 const AMDGPUTargetMachine &TM;
249
250 static void
251 removeLocalVarsFromUsedLists(Module &M,
252 const DenseSet<GlobalVariable *> &LocalVars) {
253 // The verifier rejects used lists containing an inttoptr of a constant
254 // so remove the variables from these lists before replaceAllUsesWith
255 SmallPtrSet<Constant *, 8> LocalVarsSet;
256 for (GlobalVariable *LocalVar : LocalVars)
257 LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts()));
258
260 M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); });
261
262 for (GlobalVariable *LocalVar : LocalVars)
263 LocalVar->removeDeadConstantUsers();
264 }
265
266 static void markUsedByKernel(Function *Func, GlobalVariable *SGV) {
267 // The llvm.amdgcn.module.lds instance is implicitly used by all kernels
268 // that might call a function which accesses a field within it. This is
269 // presently approximated to 'all kernels' if there are any such functions
270 // in the module. This implicit use is redefined as an explicit use here so
271 // that later passes, specifically PromoteAlloca, account for the required
272 // memory without any knowledge of this transform.
273
274 // An operand bundle on llvm.donothing works because the call instruction
275 // survives until after the last pass that needs to account for LDS. It is
276 // better than inline asm as the latter survives until the end of codegen. A
277 // totally robust solution would be a function with the same semantics as
278 // llvm.donothing that takes a pointer to the instance and is lowered to a
279 // no-op after LDS is allocated, but that is not presently necessary.
280
281 // This intrinsic is eliminated shortly before instruction selection. It
282 // does not suffice to indicate to ISel that a given global which is not
283 // immediately used by the kernel must still be allocated by it. An
284 // equivalent target specific intrinsic which lasts until immediately after
285 // codegen would suffice for that, but one would still need to ensure that
286 // the variables are allocated in the anticipated order.
287 BasicBlock *Entry = &Func->getEntryBlock();
288 IRBuilder<> Builder(Entry, Entry->getFirstNonPHIIt());
289
291 Func->getParent(), Intrinsic::donothing, {});
292
293 Value *UseInstance[1] = {
294 Builder.CreateConstInBoundsGEP1_32(SGV->getValueType(), SGV, 0)};
295
296 Builder.CreateCall(
297 Decl, {}, {OperandBundleDefT<Value *>("ExplicitUse", UseInstance)});
298 }
299
300public:
301 AMDGPULowerModuleLDS(const AMDGPUTargetMachine &TM_) : TM(TM_) {}
302
303 struct LDSVariableReplacement {
304 GlobalVariable *SGV = nullptr;
305 DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
306 };
307
308 // remap from lds global to a constantexpr gep to where it has been moved to
309 // for each kernel
310 // an array with an element for each kernel containing where the corresponding
311 // variable was remapped to
312
313 static Constant *getAddressesOfVariablesInKernel(
315 const DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
316 // Create a ConstantArray containing the address of each Variable within the
317 // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
318 // does not allocate it
319 // TODO: Drop the ptrtoint conversion
320
321 Type *I32 = Type::getInt32Ty(Ctx);
322
323 ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
324
326 for (GlobalVariable *GV : Variables) {
327 auto ConstantGepIt = LDSVarsToConstantGEP.find(GV);
328 if (ConstantGepIt != LDSVarsToConstantGEP.end()) {
329 auto *elt = ConstantExpr::getPtrToInt(ConstantGepIt->second, I32);
330 Elements.push_back(elt);
331 } else {
332 Elements.push_back(PoisonValue::get(I32));
333 }
334 }
335 return ConstantArray::get(KernelOffsetsType, Elements);
336 }
337
338 static GlobalVariable *buildLookupTable(
340 ArrayRef<Function *> kernels,
342 if (Variables.empty()) {
343 return nullptr;
344 }
345 LLVMContext &Ctx = M.getContext();
346
347 const size_t NumberVariables = Variables.size();
348 const size_t NumberKernels = kernels.size();
349
350 ArrayType *KernelOffsetsType =
351 ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
352
353 ArrayType *AllKernelsOffsetsType =
354 ArrayType::get(KernelOffsetsType, NumberKernels);
355
356 Constant *Missing = PoisonValue::get(KernelOffsetsType);
357 std::vector<Constant *> overallConstantExprElts(NumberKernels);
358 for (size_t i = 0; i < NumberKernels; i++) {
359 auto Replacement = KernelToReplacement.find(kernels[i]);
360 overallConstantExprElts[i] =
361 (Replacement == KernelToReplacement.end())
362 ? Missing
363 : getAddressesOfVariablesInKernel(
364 Ctx, Variables, Replacement->second.LDSVarsToConstantGEP);
365 }
366
367 Constant *init =
368 ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
369
370 return new GlobalVariable(
371 M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
372 "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
374 }
375
376 void replaceUseWithTableLookup(Module &M, IRBuilder<> &Builder,
377 GlobalVariable *LookupTable,
378 GlobalVariable *GV, Use &U,
379 Value *OptionalIndex) {
380 // Table is a constant array of the same length as OrderedKernels
381 LLVMContext &Ctx = M.getContext();
382 Type *I32 = Type::getInt32Ty(Ctx);
383 auto *I = cast<Instruction>(U.getUser());
384
385 Value *tableKernelIndex = getTableLookupKernelIndex(M, I->getFunction());
386
387 if (auto *Phi = dyn_cast<PHINode>(I)) {
388 BasicBlock *BB = Phi->getIncomingBlock(U);
389 Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
390 } else {
391 Builder.SetInsertPoint(I);
392 }
393
394 SmallVector<Value *, 3> GEPIdx = {
395 ConstantInt::get(I32, 0),
396 tableKernelIndex,
397 };
398 if (OptionalIndex)
399 GEPIdx.push_back(OptionalIndex);
400
401 Value *Address = Builder.CreateInBoundsGEP(
402 LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
403
404 Value *loaded = Builder.CreateLoad(I32, Address);
405
406 Value *replacement =
407 Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
408
409 U.set(replacement);
410 }
411
412 void replaceUsesInInstructionsWithTableLookup(
413 Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
414 GlobalVariable *LookupTable) {
415
416 LLVMContext &Ctx = M.getContext();
417 IRBuilder<> Builder(Ctx);
418 Type *I32 = Type::getInt32Ty(Ctx);
419
420 for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
421 auto *GV = ModuleScopeVariables[Index];
422
423 for (Use &U : make_early_inc_range(GV->uses())) {
424 auto *I = dyn_cast<Instruction>(U.getUser());
425 if (!I)
426 continue;
427
428 replaceUseWithTableLookup(M, Builder, LookupTable, GV, U,
429 ConstantInt::get(I32, Index));
430 }
431 }
432 }
433
434 static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
435 Module &M, LDSUsesInfoTy &LDSUsesInfo,
436 DenseSet<GlobalVariable *> const &VariableSet) {
437
438 DenseSet<Function *> KernelSet;
439
440 if (VariableSet.empty())
441 return KernelSet;
442
443 for (Function &Func : M.functions()) {
444 if (Func.isDeclaration() || !isKernelLDS(&Func))
445 continue;
446 for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
447 if (VariableSet.contains(GV)) {
448 KernelSet.insert(&Func);
449 break;
450 }
451 }
452 }
453
454 return KernelSet;
455 }
456
457 static GlobalVariable *
458 chooseBestVariableForModuleStrategy(const DataLayout &DL,
459 VariableFunctionMap &LDSVars) {
460 // Find the global variable with the most indirect uses from kernels
461
462 struct CandidateTy {
463 GlobalVariable *GV = nullptr;
464 size_t UserCount = 0;
465 size_t Size = 0;
466
467 CandidateTy() = default;
468
469 CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
470 : GV(GV), UserCount(UserCount), Size(AllocSize) {}
471
472 bool operator<(const CandidateTy &Other) const {
473 // Fewer users makes module scope variable less attractive
474 if (UserCount < Other.UserCount) {
475 return true;
476 }
477 if (UserCount > Other.UserCount) {
478 return false;
479 }
480
481 // Bigger makes module scope variable less attractive
482 if (Size < Other.Size) {
483 return false;
484 }
485
486 if (Size > Other.Size) {
487 return true;
488 }
489
490 // Arbitrary but consistent
491 return GV->getName() < Other.GV->getName();
492 }
493 };
494
495 CandidateTy MostUsed;
496
497 for (auto &K : LDSVars) {
498 GlobalVariable *GV = K.first;
499 if (K.second.size() <= 1) {
500 // A variable reachable by only one kernel is best lowered with kernel
501 // strategy
502 continue;
503 }
504 CandidateTy Candidate(
505 GV, K.second.size(),
506 DL.getTypeAllocSize(GV->getValueType()).getFixedValue());
507 if (MostUsed < Candidate)
508 MostUsed = Candidate;
509 }
510
511 return MostUsed.GV;
512 }
513
514 static void recordLDSAbsoluteAddress(Module *M, GlobalVariable *GV,
515 uint32_t Address) {
516 // Write the specified address into metadata where it can be retrieved by
517 // the assembler. Format is a half open range, [Address Address+1)
518 LLVMContext &Ctx = M->getContext();
519 auto *IntTy =
520 M->getDataLayout().getIntPtrType(Ctx, AMDGPUAS::LOCAL_ADDRESS);
521 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address));
522 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address + 1));
523 GV->setMetadata(LLVMContext::MD_absolute_symbol,
524 MDNode::get(Ctx, {MinC, MaxC}));
525 }
526
527 DenseMap<Function *, Value *> tableKernelIndexCache;
528 Value *getTableLookupKernelIndex(Module &M, Function *F) {
529 // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
530 // lowers to a read from a live in register. Emit it once in the entry
531 // block to spare deduplicating it later.
532 auto [It, Inserted] = tableKernelIndexCache.try_emplace(F);
533 if (Inserted) {
534 auto InsertAt = F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
535 IRBuilder<> Builder(&*InsertAt);
536
537 It->second = Builder.CreateIntrinsic(Intrinsic::amdgcn_lds_kernel_id, {});
538 }
539
540 return It->second;
541 }
542
543 static std::vector<Function *> assignLDSKernelIDToEachKernel(
544 Module *M, DenseSet<Function *> const &KernelsThatAllocateTableLDS,
545 DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS) {
546 // Associate kernels in the set with an arbitrary but reproducible order and
547 // annotate them with that order in metadata. This metadata is recognised by
548 // the backend and lowered to a SGPR which can be read from using
549 // amdgcn_lds_kernel_id.
550
551 std::vector<Function *> OrderedKernels;
552 if (!KernelsThatAllocateTableLDS.empty() ||
553 !KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
554
555 for (Function &Func : M->functions()) {
556 if (Func.isDeclaration())
557 continue;
558 if (!isKernelLDS(&Func))
559 continue;
560
561 if (KernelsThatAllocateTableLDS.contains(&Func) ||
562 KernelsThatIndirectlyAllocateDynamicLDS.contains(&Func)) {
563 assert(Func.hasName()); // else fatal error earlier
564 OrderedKernels.push_back(&Func);
565 }
566 }
567
568 // Put them in an arbitrary but reproducible order
569 OrderedKernels = sortByName(std::move(OrderedKernels));
570
571 // Annotate the kernels with their order in this vector
572 LLVMContext &Ctx = M->getContext();
573 IRBuilder<> Builder(Ctx);
574
575 if (OrderedKernels.size() > UINT32_MAX) {
576 // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
577 reportFatalUsageError("unimplemented LDS lowering for > 2**32 kernels");
578 }
579
580 for (size_t i = 0; i < OrderedKernels.size(); i++) {
581 Metadata *AttrMDArgs[1] = {
582 ConstantAsMetadata::get(Builder.getInt32(i)),
583 };
584 OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
585 MDNode::get(Ctx, AttrMDArgs));
586 }
587 }
588 return OrderedKernels;
589 }
590
591 static void partitionVariablesIntoIndirectStrategies(
592 Module &M, LDSUsesInfoTy const &LDSUsesInfo,
593 VariableFunctionMap &LDSToKernelsThatNeedToAccessItIndirectly,
594 DenseSet<GlobalVariable *> &ModuleScopeVariables,
595 DenseSet<GlobalVariable *> &TableLookupVariables,
596 DenseSet<GlobalVariable *> &KernelAccessVariables,
597 DenseSet<GlobalVariable *> &DynamicVariables) {
598
599 GlobalVariable *HybridModuleRoot =
600 LoweringKindLoc != LoweringKind::hybrid
601 ? nullptr
602 : chooseBestVariableForModuleStrategy(
603 M.getDataLayout(), LDSToKernelsThatNeedToAccessItIndirectly);
604
605 DenseSet<Function *> const EmptySet;
606 DenseSet<Function *> const &HybridModuleRootKernels =
607 HybridModuleRoot
608 ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
609 : EmptySet;
610
611 for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
612 // Each iteration of this loop assigns exactly one global variable to
613 // exactly one of the implementation strategies.
614
615 GlobalVariable *GV = K.first;
617 assert(K.second.size() != 0);
618
619 if (AMDGPU::isDynamicLDS(*GV)) {
620 DynamicVariables.insert(GV);
621 continue;
622 }
623
624 switch (LoweringKindLoc) {
625 case LoweringKind::module:
626 ModuleScopeVariables.insert(GV);
627 break;
628
629 case LoweringKind::table:
630 TableLookupVariables.insert(GV);
631 break;
632
633 case LoweringKind::kernel:
634 if (K.second.size() == 1) {
635 KernelAccessVariables.insert(GV);
636 } else {
637 // FIXME: This should use DiagnosticInfo
639 "cannot lower LDS '" + GV->getName() +
640 "' to kernel access as it is reachable from multiple kernels");
641 }
642 break;
643
644 case LoweringKind::hybrid: {
645 if (GV == HybridModuleRoot) {
646 assert(K.second.size() != 1);
647 ModuleScopeVariables.insert(GV);
648 } else if (K.second.size() == 1) {
649 KernelAccessVariables.insert(GV);
650 } else if (K.second == HybridModuleRootKernels) {
651 ModuleScopeVariables.insert(GV);
652 } else {
653 TableLookupVariables.insert(GV);
654 }
655 break;
656 }
657 }
658 }
659
660 // All LDS variables accessed indirectly have now been partitioned into
661 // the distinct lowering strategies.
662 assert(ModuleScopeVariables.size() + TableLookupVariables.size() +
663 KernelAccessVariables.size() + DynamicVariables.size() ==
664 LDSToKernelsThatNeedToAccessItIndirectly.size());
665 }
666
667 static GlobalVariable *lowerModuleScopeStructVariables(
668 Module &M, DenseSet<GlobalVariable *> const &ModuleScopeVariables,
669 DenseSet<Function *> const &KernelsThatAllocateModuleLDS) {
670 // Create a struct to hold the ModuleScopeVariables
671 // Replace all uses of those variables from non-kernel functions with the
672 // new struct instance Replace only the uses from kernel functions that will
673 // allocate this instance. That is a space optimisation - kernels that use a
674 // subset of the module scope struct and do not need to allocate it for
675 // indirect calls will only allocate the subset they use (they do so as part
676 // of the per-kernel lowering).
677 if (ModuleScopeVariables.empty()) {
678 return nullptr;
679 }
680
681 LLVMContext &Ctx = M.getContext();
682
683 LDSVariableReplacement ModuleScopeReplacement =
684 createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
685 ModuleScopeVariables);
686
687 appendToCompilerUsed(M, {static_cast<GlobalValue *>(
689 cast<Constant>(ModuleScopeReplacement.SGV),
690 PointerType::getUnqual(Ctx)))});
691
692 // module.lds will be allocated at zero in any kernel that allocates it
693 recordLDSAbsoluteAddress(&M, ModuleScopeReplacement.SGV, 0);
694
695 // historic
696 removeLocalVarsFromUsedLists(M, ModuleScopeVariables);
697
698 // Replace all uses of module scope variable from non-kernel functions
699 replaceLDSVariablesWithStruct(
700 M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
701 Instruction *I = dyn_cast<Instruction>(U.getUser());
702 if (!I) {
703 return false;
704 }
705 Function *F = I->getFunction();
706 return !isKernelLDS(F);
707 });
708
709 // Replace uses of module scope variable from kernel functions that
710 // allocate the module scope variable, otherwise leave them unchanged
711 // Record on each kernel whether the module scope global is used by it
712
713 for (Function &Func : M.functions()) {
714 if (Func.isDeclaration() || !isKernelLDS(&Func))
715 continue;
716
717 if (KernelsThatAllocateModuleLDS.contains(&Func)) {
718 replaceLDSVariablesWithStruct(
719 M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
720 Instruction *I = dyn_cast<Instruction>(U.getUser());
721 if (!I) {
722 return false;
723 }
724 Function *F = I->getFunction();
725 return F == &Func;
726 });
727
728 markUsedByKernel(&Func, ModuleScopeReplacement.SGV);
729 }
730 }
731
732 return ModuleScopeReplacement.SGV;
733 }
734
736 lowerKernelScopeStructVariables(
737 Module &M, LDSUsesInfoTy &LDSUsesInfo,
738 DenseSet<GlobalVariable *> const &ModuleScopeVariables,
739 DenseSet<Function *> const &KernelsThatAllocateModuleLDS,
740 GlobalVariable *MaybeModuleScopeStruct) {
741
742 // Create a struct for each kernel for the non-module-scope variables.
743
745 for (Function &Func : M.functions()) {
746 if (Func.isDeclaration() || !isKernelLDS(&Func))
747 continue;
748
749 DenseSet<GlobalVariable *> KernelUsedVariables;
750 // Allocating variables that are used directly in this struct to get
751 // alignment aware allocation and predictable frame size.
752 for (auto &v : LDSUsesInfo.direct_access[&Func]) {
753 if (!AMDGPU::isDynamicLDS(*v)) {
754 KernelUsedVariables.insert(v);
755 }
756 }
757
758 // Allocating variables that are accessed indirectly so that a lookup of
759 // this struct instance can find them from nested functions.
760 for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
761 if (!AMDGPU::isDynamicLDS(*v)) {
762 KernelUsedVariables.insert(v);
763 }
764 }
765
766 // Variables allocated in module lds must all resolve to that struct,
767 // not to the per-kernel instance.
768 if (KernelsThatAllocateModuleLDS.contains(&Func)) {
769 for (GlobalVariable *v : ModuleScopeVariables) {
770 KernelUsedVariables.erase(v);
771 }
772 }
773
774 if (KernelUsedVariables.empty()) {
775 // Either used no LDS, or the LDS it used was all in the module struct
776 // or dynamically sized
777 continue;
778 }
779
780 // The association between kernel function and LDS struct is done by
781 // symbol name, which only works if the function in question has a
782 // name This is not expected to be a problem in practice as kernels
783 // are called by name making anonymous ones (which are named by the
784 // backend) difficult to use. This does mean that llvm test cases need
785 // to name the kernels.
786 if (!Func.hasName()) {
787 reportFatalUsageError("anonymous kernels cannot use LDS variables");
788 }
789
790 std::string VarName =
791 (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
792
793 auto Replacement =
794 createLDSVariableReplacement(M, VarName, KernelUsedVariables);
795
796 // If any indirect uses, create a direct use to ensure allocation
797 // TODO: Simpler to unconditionally mark used but that regresses
798 // codegen in test/CodeGen/AMDGPU/noclobber-barrier.ll
799 auto Accesses = LDSUsesInfo.indirect_access.find(&Func);
800 if ((Accesses != LDSUsesInfo.indirect_access.end()) &&
801 !Accesses->second.empty())
802 markUsedByKernel(&Func, Replacement.SGV);
803
804 // remove preserves existing codegen
805 removeLocalVarsFromUsedLists(M, KernelUsedVariables);
806 KernelToReplacement[&Func] = Replacement;
807
808 // Rewrite uses within kernel to the new struct
809 replaceLDSVariablesWithStruct(
810 M, KernelUsedVariables, Replacement, [&Func](Use &U) {
811 Instruction *I = dyn_cast<Instruction>(U.getUser());
812 return I && I->getFunction() == &Func;
813 });
814 }
815 return KernelToReplacement;
816 }
817
818 static GlobalVariable *
819 buildRepresentativeDynamicLDSInstance(Module &M, LDSUsesInfoTy &LDSUsesInfo,
820 Function *func) {
821 // Create a dynamic lds variable with a name associated with the passed
822 // function that has the maximum alignment of any dynamic lds variable
823 // reachable from this kernel. Dynamic LDS is allocated after the static LDS
824 // allocation, possibly after alignment padding. The representative variable
825 // created here has the maximum alignment of any other dynamic variable
826 // reachable by that kernel. All dynamic LDS variables are allocated at the
827 // same address in each kernel in order to provide the documented aliasing
828 // semantics. Setting the alignment here allows this IR pass to accurately
829 // predict the exact constant at which it will be allocated.
830
831 assert(isKernelLDS(func));
832
833 LLVMContext &Ctx = M.getContext();
834 const DataLayout &DL = M.getDataLayout();
835 Align MaxDynamicAlignment(1);
836
837 auto UpdateMaxAlignment = [&MaxDynamicAlignment, &DL](GlobalVariable *GV) {
838 if (AMDGPU::isDynamicLDS(*GV)) {
839 MaxDynamicAlignment =
840 std::max(MaxDynamicAlignment, AMDGPU::getAlign(DL, GV));
841 }
842 };
843
844 for (GlobalVariable *GV : LDSUsesInfo.indirect_access[func]) {
845 UpdateMaxAlignment(GV);
846 }
847
848 for (GlobalVariable *GV : LDSUsesInfo.direct_access[func]) {
849 UpdateMaxAlignment(GV);
850 }
851
852 assert(func->hasName()); // Checked by caller
853 auto *emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
855 M, emptyCharArray, false, GlobalValue::ExternalLinkage, nullptr,
856 Twine("llvm.amdgcn." + func->getName() + ".dynlds"), nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
857 false);
858 N->setAlignment(MaxDynamicAlignment);
859
861 return N;
862 }
863
864 DenseMap<Function *, GlobalVariable *> lowerDynamicLDSVariables(
865 Module &M, LDSUsesInfoTy &LDSUsesInfo,
866 DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS,
867 DenseSet<GlobalVariable *> const &DynamicVariables,
868 std::vector<Function *> const &OrderedKernels) {
869 DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS;
870 if (!KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
871 LLVMContext &Ctx = M.getContext();
872 IRBuilder<> Builder(Ctx);
873 Type *I32 = Type::getInt32Ty(Ctx);
874
875 std::vector<Constant *> newDynamicLDS;
876
877 // Table is built in the same order as OrderedKernels
878 for (auto &func : OrderedKernels) {
879
880 if (KernelsThatIndirectlyAllocateDynamicLDS.contains(func)) {
881 assert(isKernelLDS(func));
882 if (!func->hasName()) {
883 reportFatalUsageError("anonymous kernels cannot use LDS variables");
884 }
885
887 buildRepresentativeDynamicLDSInstance(M, LDSUsesInfo, func);
888
889 KernelToCreatedDynamicLDS[func] = N;
890
891 markUsedByKernel(func, N);
892
893 auto *emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
895 emptyCharArray, N, ConstantInt::get(I32, 0), true);
896 newDynamicLDS.push_back(ConstantExpr::getPtrToInt(GEP, I32));
897 } else {
898 newDynamicLDS.push_back(PoisonValue::get(I32));
899 }
900 }
901 assert(OrderedKernels.size() == newDynamicLDS.size());
902
903 ArrayType *t = ArrayType::get(I32, newDynamicLDS.size());
904 Constant *init = ConstantArray::get(t, newDynamicLDS);
905 GlobalVariable *table = new GlobalVariable(
906 M, t, true, GlobalValue::InternalLinkage, init,
907 "llvm.amdgcn.dynlds.offset.table", nullptr,
909
910 for (GlobalVariable *GV : DynamicVariables) {
911 for (Use &U : make_early_inc_range(GV->uses())) {
912 auto *I = dyn_cast<Instruction>(U.getUser());
913 if (!I)
914 continue;
915 if (isKernelLDS(I->getFunction()))
916 continue;
917
918 replaceUseWithTableLookup(M, Builder, table, GV, U, nullptr);
919 }
920 }
921 }
922 return KernelToCreatedDynamicLDS;
923 }
924
925 bool runOnModule(Module &M) {
926 CallGraph CG = CallGraph(M);
927 bool Changed = superAlignLDSGlobals(M);
928
930
931 Changed = true; // todo: narrow this down
932
933 // For each kernel, what variables does it access directly or through
934 // callees
935 LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
936
937 // For each variable accessed through callees, which kernels access it
938 VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
939 for (auto &K : LDSUsesInfo.indirect_access) {
940 Function *F = K.first;
942 for (GlobalVariable *GV : K.second) {
943 LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
944 }
945 }
946
947 // Partition variables accessed indirectly into the different strategies
948 DenseSet<GlobalVariable *> ModuleScopeVariables;
949 DenseSet<GlobalVariable *> TableLookupVariables;
950 DenseSet<GlobalVariable *> KernelAccessVariables;
951 DenseSet<GlobalVariable *> DynamicVariables;
952 partitionVariablesIntoIndirectStrategies(
953 M, LDSUsesInfo, LDSToKernelsThatNeedToAccessItIndirectly,
954 ModuleScopeVariables, TableLookupVariables, KernelAccessVariables,
955 DynamicVariables);
956
957 // If the kernel accesses a variable that is going to be stored in the
958 // module instance through a call then that kernel needs to allocate the
959 // module instance
960 const DenseSet<Function *> KernelsThatAllocateModuleLDS =
961 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
962 ModuleScopeVariables);
963 const DenseSet<Function *> KernelsThatAllocateTableLDS =
964 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
965 TableLookupVariables);
966
967 const DenseSet<Function *> KernelsThatIndirectlyAllocateDynamicLDS =
968 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
969 DynamicVariables);
970
971 GlobalVariable *MaybeModuleScopeStruct = lowerModuleScopeStructVariables(
972 M, ModuleScopeVariables, KernelsThatAllocateModuleLDS);
973
975 lowerKernelScopeStructVariables(M, LDSUsesInfo, ModuleScopeVariables,
976 KernelsThatAllocateModuleLDS,
977 MaybeModuleScopeStruct);
978
979 // Lower zero cost accesses to the kernel instances just created
980 for (auto &GV : KernelAccessVariables) {
981 auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
982 assert(funcs.size() == 1); // Only one kernel can access it
983 LDSVariableReplacement Replacement =
984 KernelToReplacement[*(funcs.begin())];
985
987 Vec.insert(GV);
988
989 replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
990 return isa<Instruction>(U.getUser());
991 });
992 }
993
994 // The ith element of this vector is kernel id i
995 std::vector<Function *> OrderedKernels =
996 assignLDSKernelIDToEachKernel(&M, KernelsThatAllocateTableLDS,
997 KernelsThatIndirectlyAllocateDynamicLDS);
998
999 if (!KernelsThatAllocateTableLDS.empty()) {
1000 LLVMContext &Ctx = M.getContext();
1001 IRBuilder<> Builder(Ctx);
1002
1003 // The order must be consistent between lookup table and accesses to
1004 // lookup table
1005 auto TableLookupVariablesOrdered =
1006 sortByName(std::vector<GlobalVariable *>(TableLookupVariables.begin(),
1007 TableLookupVariables.end()));
1008
1009 GlobalVariable *LookupTable = buildLookupTable(
1010 M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
1011 replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
1012 LookupTable);
1013 }
1014
1015 DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS =
1016 lowerDynamicLDSVariables(M, LDSUsesInfo,
1017 KernelsThatIndirectlyAllocateDynamicLDS,
1018 DynamicVariables, OrderedKernels);
1019
1020 // Strip amdgpu-no-lds-kernel-id from all functions reachable from the
1021 // kernel. We may have inferred this wasn't used prior to the pass.
1022 // TODO: We could filter out subgraphs that do not access LDS globals.
1023 for (auto *KernelSet : {&KernelsThatIndirectlyAllocateDynamicLDS,
1024 &KernelsThatAllocateTableLDS})
1025 for (Function *F : *KernelSet)
1026 removeFnAttrFromReachable(CG, F, {"amdgpu-no-lds-kernel-id"});
1027
1028 // All kernel frames have been allocated. Calculate and record the
1029 // addresses.
1030 {
1031 const DataLayout &DL = M.getDataLayout();
1032
1033 for (Function &Func : M.functions()) {
1034 if (Func.isDeclaration() || !isKernelLDS(&Func))
1035 continue;
1036
1037 // All three of these are optional. The first variable is allocated at
1038 // zero. They are allocated by AMDGPUMachineFunction as one block.
1039 // Layout:
1040 //{
1041 // module.lds
1042 // alignment padding
1043 // kernel instance
1044 // alignment padding
1045 // dynamic lds variables
1046 //}
1047
1048 const bool AllocateModuleScopeStruct =
1049 MaybeModuleScopeStruct &&
1050 KernelsThatAllocateModuleLDS.contains(&Func);
1051
1052 auto Replacement = KernelToReplacement.find(&Func);
1053 const bool AllocateKernelScopeStruct =
1054 Replacement != KernelToReplacement.end();
1055
1056 const bool AllocateDynamicVariable =
1057 KernelToCreatedDynamicLDS.contains(&Func);
1058
1059 uint32_t Offset = 0;
1060
1061 if (AllocateModuleScopeStruct) {
1062 // Allocated at zero, recorded once on construction, not once per
1063 // kernel
1064 Offset += DL.getTypeAllocSize(MaybeModuleScopeStruct->getValueType());
1065 }
1066
1067 if (AllocateKernelScopeStruct) {
1068 GlobalVariable *KernelStruct = Replacement->second.SGV;
1069 Offset = alignTo(Offset, AMDGPU::getAlign(DL, KernelStruct));
1070 recordLDSAbsoluteAddress(&M, KernelStruct, Offset);
1071 Offset += DL.getTypeAllocSize(KernelStruct->getValueType());
1072 }
1073
1074 // If there is dynamic allocation, the alignment needed is included in
1075 // the static frame size. There may be no reference to the dynamic
1076 // variable in the kernel itself, so without including it here, that
1077 // alignment padding could be missed.
1078 if (AllocateDynamicVariable) {
1079 GlobalVariable *DynamicVariable = KernelToCreatedDynamicLDS[&Func];
1080 Offset = alignTo(Offset, AMDGPU::getAlign(DL, DynamicVariable));
1081 recordLDSAbsoluteAddress(&M, DynamicVariable, Offset);
1082 }
1083
1084 if (Offset != 0) {
1085 (void)TM; // TODO: Account for target maximum LDS
1086 std::string Buffer;
1087 raw_string_ostream SS{Buffer};
1088 SS << format("%u", Offset);
1089
1090 // Instead of explicitly marking kernels that access dynamic variables
1091 // using special case metadata, annotate with min-lds == max-lds, i.e.
1092 // that there is no more space available for allocating more static
1093 // LDS variables. That is the right condition to prevent allocating
1094 // more variables which would collide with the addresses assigned to
1095 // dynamic variables.
1096 if (AllocateDynamicVariable)
1097 SS << format(",%u", Offset);
1098
1099 Func.addFnAttr("amdgpu-lds-size", Buffer);
1100 }
1101 }
1102 }
1103
1104 for (auto &GV : make_early_inc_range(M.globals()))
1106 // probably want to remove from used lists
1108 if (GV.use_empty())
1109 GV.eraseFromParent();
1110 }
1111
1112 return Changed;
1113 }
1114
1115private:
1116 // Increase the alignment of LDS globals if necessary to maximise the chance
1117 // that we can use aligned LDS instructions to access them.
1118 static bool superAlignLDSGlobals(Module &M) {
1119 const DataLayout &DL = M.getDataLayout();
1120 bool Changed = false;
1121 if (!SuperAlignLDSGlobals) {
1122 return Changed;
1123 }
1124
1125 for (auto &GV : M.globals()) {
1127 // Only changing alignment of LDS variables
1128 continue;
1129 }
1130 if (!GV.hasInitializer()) {
1131 // cuda/hip extern __shared__ variable, leave alignment alone
1132 continue;
1133 }
1134
1135 if (GV.isAbsoluteSymbolRef()) {
1136 // If the variable is already allocated, don't change the alignment
1137 continue;
1138 }
1139
1140 Align Alignment = AMDGPU::getAlign(DL, &GV);
1141 TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType());
1142
1143 if (GVSize > 8) {
1144 // We might want to use a b96 or b128 load/store
1145 Alignment = std::max(Alignment, Align(16));
1146 } else if (GVSize > 4) {
1147 // We might want to use a b64 load/store
1148 Alignment = std::max(Alignment, Align(8));
1149 } else if (GVSize > 2) {
1150 // We might want to use a b32 load/store
1151 Alignment = std::max(Alignment, Align(4));
1152 } else if (GVSize > 1) {
1153 // We might want to use a b16 load/store
1154 Alignment = std::max(Alignment, Align(2));
1155 }
1156
1157 if (Alignment != AMDGPU::getAlign(DL, &GV)) {
1158 Changed = true;
1159 GV.setAlignment(Alignment);
1160 }
1161 }
1162 return Changed;
1163 }
1164
1165 static LDSVariableReplacement createLDSVariableReplacement(
1166 Module &M, std::string VarName,
1167 DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
1168 // Create a struct instance containing LDSVarsToTransform and map from those
1169 // variables to ConstantExprGEP
1170 // Variables may be introduced to meet alignment requirements. No aliasing
1171 // metadata is useful for these as they have no uses. Erased before return.
1172
1173 LLVMContext &Ctx = M.getContext();
1174 const DataLayout &DL = M.getDataLayout();
1175 assert(!LDSVarsToTransform.empty());
1176
1178 LayoutFields.reserve(LDSVarsToTransform.size());
1179 {
1180 // The order of fields in this struct depends on the order of
1181 // variables in the argument which varies when changing how they
1182 // are identified, leading to spurious test breakage.
1183 auto Sorted = sortByName(std::vector<GlobalVariable *>(
1184 LDSVarsToTransform.begin(), LDSVarsToTransform.end()));
1185
1186 for (GlobalVariable *GV : Sorted) {
1188 DL.getTypeAllocSize(GV->getValueType()),
1189 AMDGPU::getAlign(DL, GV));
1190 LayoutFields.emplace_back(F);
1191 }
1192 }
1193
1194 performOptimizedStructLayout(LayoutFields);
1195
1196 std::vector<GlobalVariable *> LocalVars;
1197 BitVector IsPaddingField;
1198 LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
1199 IsPaddingField.reserve(LDSVarsToTransform.size());
1200 {
1201 uint64_t CurrentOffset = 0;
1202 for (auto &F : LayoutFields) {
1203 GlobalVariable *FGV =
1204 static_cast<GlobalVariable *>(const_cast<void *>(F.Id));
1205 Align DataAlign = F.Alignment;
1206
1207 uint64_t DataAlignV = DataAlign.value();
1208 if (uint64_t Rem = CurrentOffset % DataAlignV) {
1209 uint64_t Padding = DataAlignV - Rem;
1210
1211 // Append an array of padding bytes to meet alignment requested
1212 // Note (o + (a - (o % a)) ) % a == 0
1213 // (offset + Padding ) % align == 0
1214
1215 Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
1216 LocalVars.push_back(new GlobalVariable(
1217 M, ATy, false, GlobalValue::InternalLinkage,
1219 AMDGPUAS::LOCAL_ADDRESS, false));
1220 IsPaddingField.push_back(true);
1221 CurrentOffset += Padding;
1222 }
1223
1224 LocalVars.push_back(FGV);
1225 IsPaddingField.push_back(false);
1226 CurrentOffset += F.Size;
1227 }
1228 }
1229
1230 std::vector<Type *> LocalVarTypes;
1231 LocalVarTypes.reserve(LocalVars.size());
1232 std::transform(
1233 LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
1234 [](const GlobalVariable *V) -> Type * { return V->getValueType(); });
1235
1236 StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
1237
1238 Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
1239
1240 GlobalVariable *SGV = new GlobalVariable(
1241 M, LDSTy, false, GlobalValue::InternalLinkage, PoisonValue::get(LDSTy),
1243 false);
1244 SGV->setAlignment(StructAlign);
1245
1247 Type *I32 = Type::getInt32Ty(Ctx);
1248 for (size_t I = 0; I < LocalVars.size(); I++) {
1249 GlobalVariable *GV = LocalVars[I];
1250 Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
1251 Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
1252 if (IsPaddingField[I]) {
1253 assert(GV->use_empty());
1254 GV->eraseFromParent();
1255 } else {
1256 Map[GV] = GEP;
1257 }
1258 }
1259 assert(Map.size() == LDSVarsToTransform.size());
1260 return {SGV, std::move(Map)};
1261 }
1262
1263 template <typename PredicateTy>
1264 static void replaceLDSVariablesWithStruct(
1265 Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
1266 const LDSVariableReplacement &Replacement, PredicateTy Predicate) {
1267 LLVMContext &Ctx = M.getContext();
1268 const DataLayout &DL = M.getDataLayout();
1269
1270 // A hack... we need to insert the aliasing info in a predictable order for
1271 // lit tests. Would like to have them in a stable order already, ideally the
1272 // same order they get allocated, which might mean an ordered set container
1273 auto LDSVarsToTransform = sortByName(std::vector<GlobalVariable *>(
1274 LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end()));
1275
1276 // Create alias.scope and their lists. Each field in the new structure
1277 // does not alias with all other fields.
1278 SmallVector<MDNode *> AliasScopes;
1279 SmallVector<Metadata *> NoAliasList;
1280 const size_t NumberVars = LDSVarsToTransform.size();
1281 if (NumberVars > 1) {
1282 MDBuilder MDB(Ctx);
1283 AliasScopes.reserve(NumberVars);
1285 for (size_t I = 0; I < NumberVars; I++) {
1287 AliasScopes.push_back(Scope);
1288 }
1289 NoAliasList.append(&AliasScopes[1], AliasScopes.end());
1290 }
1291
1292 // Replace uses of ith variable with a constantexpr to the corresponding
1293 // field of the instance that will be allocated by AMDGPUMachineFunction
1294 for (size_t I = 0; I < NumberVars; I++) {
1295 GlobalVariable *GV = LDSVarsToTransform[I];
1296 Constant *GEP = Replacement.LDSVarsToConstantGEP.at(GV);
1297
1299
1300 APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
1301 GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
1302 uint64_t Offset = APOff.getZExtValue();
1303
1304 Align A =
1305 commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
1306
1307 if (I)
1308 NoAliasList[I - 1] = AliasScopes[I - 1];
1309 MDNode *NoAlias =
1310 NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
1311 MDNode *AliasScope =
1312 AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
1313
1314 refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
1315 }
1316 }
1317
1318 static void refineUsesAlignmentAndAA(Value *Ptr, Align A,
1319 const DataLayout &DL, MDNode *AliasScope,
1320 MDNode *NoAlias, unsigned MaxDepth = 5) {
1321 if (!MaxDepth || (A == 1 && !AliasScope))
1322 return;
1323
1324 ScopedNoAliasAAResult ScopedNoAlias;
1325
1326 for (User *U : Ptr->users()) {
1327 if (auto *I = dyn_cast<Instruction>(U)) {
1328 if (AliasScope && I->mayReadOrWriteMemory()) {
1329 MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
1330 AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
1331 : AliasScope);
1332 I->setMetadata(LLVMContext::MD_alias_scope, AS);
1333
1334 MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
1335
1336 // Scoped aliases can originate from two different domains.
1337 // First domain would be from LDS domain (created by this pass).
1338 // All entries (LDS vars) into LDS struct will have same domain.
1339
1340 // Second domain could be existing scoped aliases that are the
1341 // results of noalias params and subsequent optimizations that
1342 // may alter thesse sets.
1343
1344 // We need to be careful how we create new alias sets, and
1345 // have right scopes and domains for loads/stores of these new
1346 // LDS variables. We intersect NoAlias set if alias sets belong
1347 // to the same domain. This is the case if we have memcpy using
1348 // LDS variables. Both src and dst of memcpy would belong to
1349 // LDS struct, they donot alias.
1350 // On the other hand, if one of the domains is LDS and other is
1351 // existing domain prior to LDS, we need to have a union of all
1352 // these aliases set to preserve existing aliasing information.
1353
1354 SmallPtrSet<const MDNode *, 16> ExistingDomains, LDSDomains;
1355 ScopedNoAlias.collectScopedDomains(NA, ExistingDomains);
1356 ScopedNoAlias.collectScopedDomains(NoAlias, LDSDomains);
1357 auto Intersection = set_intersection(ExistingDomains, LDSDomains);
1358 if (Intersection.empty()) {
1359 NA = NA ? MDNode::concatenate(NA, NoAlias) : NoAlias;
1360 } else {
1361 NA = NA ? MDNode::intersect(NA, NoAlias) : NoAlias;
1362 }
1363 I->setMetadata(LLVMContext::MD_noalias, NA);
1364 }
1365 }
1366
1367 if (auto *LI = dyn_cast<LoadInst>(U)) {
1368 LI->setAlignment(std::max(A, LI->getAlign()));
1369 continue;
1370 }
1371 if (auto *SI = dyn_cast<StoreInst>(U)) {
1372 if (SI->getPointerOperand() == Ptr)
1373 SI->setAlignment(std::max(A, SI->getAlign()));
1374 continue;
1375 }
1376 if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
1377 // None of atomicrmw operations can work on pointers, but let's
1378 // check it anyway in case it will or we will process ConstantExpr.
1379 if (AI->getPointerOperand() == Ptr)
1380 AI->setAlignment(std::max(A, AI->getAlign()));
1381 continue;
1382 }
1383 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
1384 if (AI->getPointerOperand() == Ptr)
1385 AI->setAlignment(std::max(A, AI->getAlign()));
1386 continue;
1387 }
1388 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
1389 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1390 APInt Off(BitWidth, 0);
1391 if (GEP->getPointerOperand() == Ptr) {
1392 Align GA;
1393 if (GEP->accumulateConstantOffset(DL, Off))
1394 GA = commonAlignment(A, Off.getLimitedValue());
1395 refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
1396 MaxDepth - 1);
1397 }
1398 continue;
1399 }
1400 if (auto *I = dyn_cast<Instruction>(U)) {
1401 if (I->getOpcode() == Instruction::BitCast ||
1402 I->getOpcode() == Instruction::AddrSpaceCast)
1403 refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
1404 }
1405 }
1406 }
1407};
1408
1409class AMDGPULowerModuleLDSLegacy : public ModulePass {
1410public:
1411 const AMDGPUTargetMachine *TM;
1412 static char ID;
1413
1414 AMDGPULowerModuleLDSLegacy(const AMDGPUTargetMachine *TM = nullptr)
1415 : ModulePass(ID), TM(TM) {}
1416
1417 void getAnalysisUsage(AnalysisUsage &AU) const override {
1418 if (!TM)
1420 }
1421
1422 bool runOnModule(Module &M) override {
1423 if (!TM) {
1424 auto &TPC = getAnalysis<TargetPassConfig>();
1425 TM = &TPC.getTM<AMDGPUTargetMachine>();
1426 }
1427
1428 return AMDGPULowerModuleLDS(*TM).runOnModule(M);
1429 }
1430};
1431
1432} // namespace
1433char AMDGPULowerModuleLDSLegacy::ID = 0;
1434
1435char &llvm::AMDGPULowerModuleLDSLegacyPassID = AMDGPULowerModuleLDSLegacy::ID;
1436
1437INITIALIZE_PASS_BEGIN(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE,
1438 "Lower uses of LDS variables from non-kernel functions",
1439 false, false)
1441INITIALIZE_PASS_END(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE,
1442 "Lower uses of LDS variables from non-kernel functions",
1444
1445ModulePass *
1447 return new AMDGPULowerModuleLDSLegacy(TM);
1448}
1449
1452 return AMDGPULowerModuleLDS(TM).runOnModule(M) ? PreservedAnalyses::none()
1454}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
The AMDGPU TargetMachine interface definition for hw codegen targets.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file provides interfaces used to build and manipulate a call graph, which is a very useful tool ...
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
DXIL Forward Handle Accesses
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
#define DEBUG_TYPE
Hexagon Common GEP
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file provides an interface for laying out a sequence of fields as a struct in a way that attempt...
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition PassSupport.h:39
This file contains some templates that are useful if you are working with the STL at all.
This is the interface for a metadata-based scoped no-alias analysis.
This file defines generic set operations that may be used on set's of different types,...
Target-Independent Code Generator Pass Configuration Options pass.
Class for arbitrary precision integers.
Definition APInt.h:78
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
void reserve(unsigned N)
Definition BitVector.h:367
void push_back(bool Val)
Definition BitVector.h:485
The basic data container for the call graph of a Module of IR.
Definition CallGraph.h:72
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
static ConstantAsMetadata * get(Constant *C)
Definition Metadata.h:536
static LLVM_ABI Constant * getPointerBitCastOrAddrSpaceCast(Constant *C, Type *Ty)
Create a BitCast or AddrSpaceCast for a pointer type depending on the address space.
static LLVM_ABI Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition Constants.h:1274
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI void removeDeadConstantUsers() const
If there are any dead constant users dangling off of this constant, remove them.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:248
iterator end()
Definition DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set a particular kind of metadata attachment.
LLVM_ABI bool isAbsoluteSymbolRef() const
Returns whether this is a reference to an absolute symbol.
Definition Globals.cpp:437
PointerType * getType() const
Global values are always pointers.
@ InternalLinkage
Rename collisions when linking (static functions).
Definition GlobalValue.h:60
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
Type * getValueType() const
bool hasInitializer() const
Definitions have initializers, declarations don't.
LLVM_ABI void eraseFromParent()
eraseFromParent - This method unlinks 'this' from the containing module and deletes it.
Definition Globals.cpp:520
void setAlignment(Align Align)
Sets the alignment attribute of the GlobalVariable.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
bool runOnModule(Module &) override
ImmutablePasses are never run.
Definition Pass.h:302
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
MDNode * createAnonymousAliasScope(MDNode *Domain, StringRef Name=StringRef())
Return metadata appropriate for an alias scope root node.
Definition MDBuilder.h:181
MDNode * createAnonymousAliasScopeDomain(StringRef Name=StringRef())
Return metadata appropriate for an alias scope domain node.
Definition MDBuilder.h:174
Metadata node.
Definition Metadata.h:1078
static LLVM_ABI MDNode * getMostGenericAliasScope(MDNode *A, MDNode *B)
static LLVM_ABI MDNode * concatenate(MDNode *A, MDNode *B)
Methods for metadata merging.
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1569
static LLVM_ABI MDNode * intersect(MDNode *A, MDNode *B)
Root of the metadata hierarchy.
Definition Metadata.h:64
ModulePass class - This class is used to implement unstructured interprocedural optimizations and ana...
Definition Pass.h:255
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
A container for an operand bundle being viewed as a set of values rather than a set of uses.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition Analysis.h:115
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
A simple AA result which uses scoped-noalias metadata to answer queries.
static LLVM_ABI void collectScopedDomains(const MDNode *NoAlias, SmallPtrSetImpl< const MDNode * > &Domains)
Collect the set of scoped domains relevant to the noalias scopes.
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:149
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Class to represent struct types.
static LLVM_ABI StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition Type.cpp:619
Target-Independent Code Generator Pass Configuration Options.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:294
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM Value Representation.
Definition Value.h:75
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI void replaceUsesWithIf(Value *New, llvm::function_ref< bool(Use &U)> ShouldReplace)
Go through the uses list for this definition and make each use point to "V" if the callback ShouldRep...
Definition Value.cpp:554
bool use_empty() const
Definition Value.h:346
iterator_range< use_iterator > uses()
Definition Value.h:380
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
size_type size() const
Definition DenseSet.h:87
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
bool erase(const ValueT &V)
Definition DenseSet.h:100
A raw_ostream that writes to an std::string.
Changed
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
bool isDynamicLDS(const GlobalVariable &GV)
void removeFnAttrFromReachable(CallGraph &CG, Function *KernelRoot, ArrayRef< StringRef > FnAttrs)
Strip FnAttr attribute from any functions where we may have introduced its use.
LDSUsesInfoTy getTransitiveUsesOfLDS(const CallGraph &CG, Module &M)
bool isLDSVariableToLower(const GlobalVariable &GV)
bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M)
Align getAlign(const DataLayout &DL, const GlobalVariable *GV)
DenseMap< GlobalVariable *, DenseSet< Function * > > VariableFunctionMap
bool isKernelLDS(const Function *F)
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:532
bool operator<(int64_t V1, const APSInt &V2)
Definition APSInt.h:362
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1622
char & AMDGPULowerModuleLDSLegacyPassID
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
S1Ty set_intersection(const S1Ty &S1, const S2Ty &S2)
set_intersection(A, B) - Return A ^ B
LLVM_ABI void removeFromUsedLists(Module &M, function_ref< bool(Constant *)> ShouldRemove)
Removes global values from the llvm.used and llvm.compiler.used arrays.
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:129
ModulePass * createAMDGPULowerModuleLDSLegacyPass(const AMDGPUTargetMachine *TM=nullptr)
@ Other
Any other memory.
Definition ModRef.h:68
LLVM_ABI void appendToCompilerUsed(Module &M, ArrayRef< GlobalValue * > Values)
Adds global values to the llvm.compiler.used list.
LLVM_ABI std::pair< uint64_t, Align > performOptimizedStructLayout(MutableArrayRef< OptimizedStructLayoutField > Fields)
Compute a layout for a struct containing the given fields, making a best-effort attempt to minimize t...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
AnalysisManager< Module > ModuleAnalysisManager
Convenience typedef for the Module analysis manager.
Definition MIRParser.h:39
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
#define N
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)
const AMDGPUTargetMachine & TM
Definition AMDGPU.h:139
FunctionVariableMap direct_access
FunctionVariableMap indirect_access
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77