LLVM 17.0.0git
MCExpr.cpp
Go to the documentation of this file.
1//===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/MC/MCExpr.h"
10#include "llvm/ADT/Statistic.h"
12#include "llvm/Config/llvm-config.h"
14#include "llvm/MC/MCAsmInfo.h"
15#include "llvm/MC/MCAsmLayout.h"
16#include "llvm/MC/MCAssembler.h"
17#include "llvm/MC/MCContext.h"
19#include "llvm/MC/MCSymbol.h"
20#include "llvm/MC/MCValue.h"
23#include "llvm/Support/Debug.h"
26#include <cassert>
27#include <cstdint>
28
29using namespace llvm;
30
31#define DEBUG_TYPE "mcexpr"
32
33namespace {
34namespace stats {
35
36STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");
37
38} // end namespace stats
39} // end anonymous namespace
40
41void MCExpr::print(raw_ostream &OS, const MCAsmInfo *MAI, bool InParens) const {
42 switch (getKind()) {
43 case MCExpr::Target:
44 return cast<MCTargetExpr>(this)->printImpl(OS, MAI);
45 case MCExpr::Constant: {
46 auto Value = cast<MCConstantExpr>(*this).getValue();
47 auto PrintInHex = cast<MCConstantExpr>(*this).useHexFormat();
48 auto SizeInBytes = cast<MCConstantExpr>(*this).getSizeInBytes();
49 if (Value < 0 && MAI && !MAI->supportsSignedData())
50 PrintInHex = true;
51 if (PrintInHex)
52 switch (SizeInBytes) {
53 default:
54 OS << "0x" << Twine::utohexstr(Value);
55 break;
56 case 1:
57 OS << format("0x%02" PRIx64, Value);
58 break;
59 case 2:
60 OS << format("0x%04" PRIx64, Value);
61 break;
62 case 4:
63 OS << format("0x%08" PRIx64, Value);
64 break;
65 case 8:
66 OS << format("0x%016" PRIx64, Value);
67 break;
68 }
69 else
70 OS << Value;
71 return;
72 }
73 case MCExpr::SymbolRef: {
74 const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
75 const MCSymbol &Sym = SRE.getSymbol();
76 // Parenthesize names that start with $ so that they don't look like
77 // absolute names.
78 bool UseParens = MAI && MAI->useParensForDollarSignNames() && !InParens &&
79 !Sym.getName().empty() && Sym.getName()[0] == '$';
80
81 if (UseParens) {
82 OS << '(';
83 Sym.print(OS, MAI);
84 OS << ')';
85 } else
86 Sym.print(OS, MAI);
87
88 const MCSymbolRefExpr::VariantKind Kind = SRE.getKind();
89 if (Kind != MCSymbolRefExpr::VK_None) {
90 if (MAI && MAI->useParensForSymbolVariant()) // ARM
91 OS << '(' << MCSymbolRefExpr::getVariantKindName(Kind) << ')';
92 else
93 OS << '@' << MCSymbolRefExpr::getVariantKindName(Kind);
94 }
95
96 return;
97 }
98
99 case MCExpr::Unary: {
100 const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
101 switch (UE.getOpcode()) {
102 case MCUnaryExpr::LNot: OS << '!'; break;
103 case MCUnaryExpr::Minus: OS << '-'; break;
104 case MCUnaryExpr::Not: OS << '~'; break;
105 case MCUnaryExpr::Plus: OS << '+'; break;
106 }
107 bool Binary = UE.getSubExpr()->getKind() == MCExpr::Binary;
108 if (Binary) OS << "(";
109 UE.getSubExpr()->print(OS, MAI);
110 if (Binary) OS << ")";
111 return;
112 }
113
114 case MCExpr::Binary: {
115 const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
116
117 // Only print parens around the LHS if it is non-trivial.
118 if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
119 BE.getLHS()->print(OS, MAI);
120 } else {
121 OS << '(';
122 BE.getLHS()->print(OS, MAI);
123 OS << ')';
124 }
125
126 switch (BE.getOpcode()) {
128 // Print "X-42" instead of "X+-42".
129 if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
130 if (RHSC->getValue() < 0) {
131 OS << RHSC->getValue();
132 return;
133 }
134 }
135
136 OS << '+';
137 break;
138 case MCBinaryExpr::AShr: OS << ">>"; break;
139 case MCBinaryExpr::And: OS << '&'; break;
140 case MCBinaryExpr::Div: OS << '/'; break;
141 case MCBinaryExpr::EQ: OS << "=="; break;
142 case MCBinaryExpr::GT: OS << '>'; break;
143 case MCBinaryExpr::GTE: OS << ">="; break;
144 case MCBinaryExpr::LAnd: OS << "&&"; break;
145 case MCBinaryExpr::LOr: OS << "||"; break;
146 case MCBinaryExpr::LShr: OS << ">>"; break;
147 case MCBinaryExpr::LT: OS << '<'; break;
148 case MCBinaryExpr::LTE: OS << "<="; break;
149 case MCBinaryExpr::Mod: OS << '%'; break;
150 case MCBinaryExpr::Mul: OS << '*'; break;
151 case MCBinaryExpr::NE: OS << "!="; break;
152 case MCBinaryExpr::Or: OS << '|'; break;
153 case MCBinaryExpr::OrNot: OS << '!'; break;
154 case MCBinaryExpr::Shl: OS << "<<"; break;
155 case MCBinaryExpr::Sub: OS << '-'; break;
156 case MCBinaryExpr::Xor: OS << '^'; break;
157 }
158
159 // Only print parens around the LHS if it is non-trivial.
160 if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
161 BE.getRHS()->print(OS, MAI);
162 } else {
163 OS << '(';
164 BE.getRHS()->print(OS, MAI);
165 OS << ')';
166 }
167 return;
168 }
169 }
170
171 llvm_unreachable("Invalid expression kind!");
172}
173
174#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
176 dbgs() << *this;
177 dbgs() << '\n';
178}
179#endif
180
181/* *** */
182
184 const MCExpr *RHS, MCContext &Ctx,
185 SMLoc Loc) {
186 return new (Ctx) MCBinaryExpr(Opc, LHS, RHS, Loc);
187}
188
190 MCContext &Ctx, SMLoc Loc) {
191 return new (Ctx) MCUnaryExpr(Opc, Expr, Loc);
192}
193
195 bool PrintInHex,
196 unsigned SizeInBytes) {
197 return new (Ctx) MCConstantExpr(Value, PrintInHex, SizeInBytes);
198}
199
200/* *** */
201
202MCSymbolRefExpr::MCSymbolRefExpr(const MCSymbol *Symbol, VariantKind Kind,
203 const MCAsmInfo *MAI, SMLoc Loc)
204 : MCExpr(MCExpr::SymbolRef, Loc,
205 encodeSubclassData(Kind, MAI->hasSubsectionsViaSymbols())),
206 Symbol(Symbol) {
207 assert(Symbol);
208}
209
211 VariantKind Kind,
212 MCContext &Ctx, SMLoc Loc) {
213 return new (Ctx) MCSymbolRefExpr(Sym, Kind, Ctx.getAsmInfo(), Loc);
214}
215
217 MCContext &Ctx) {
218 return create(Ctx.getOrCreateSymbol(Name), Kind, Ctx);
219}
220
222 switch (Kind) {
223 case VK_Invalid: return "<<invalid>>";
224 case VK_None: return "<<none>>";
225
226 case VK_DTPOFF: return "DTPOFF";
227 case VK_DTPREL: return "DTPREL";
228 case VK_GOT: return "GOT";
229 case VK_GOTOFF: return "GOTOFF";
230 case VK_GOTREL: return "GOTREL";
231 case VK_PCREL: return "PCREL";
232 case VK_GOTPCREL: return "GOTPCREL";
233 case VK_GOTPCREL_NORELAX: return "GOTPCREL_NORELAX";
234 case VK_GOTTPOFF: return "GOTTPOFF";
235 case VK_INDNTPOFF: return "INDNTPOFF";
236 case VK_NTPOFF: return "NTPOFF";
237 case VK_GOTNTPOFF: return "GOTNTPOFF";
238 case VK_PLT: return "PLT";
239 case VK_TLSGD: return "TLSGD";
240 case VK_TLSLD: return "TLSLD";
241 case VK_TLSLDM: return "TLSLDM";
242 case VK_TPOFF: return "TPOFF";
243 case VK_TPREL: return "TPREL";
244 case VK_TLSCALL: return "tlscall";
245 case VK_TLSDESC: return "tlsdesc";
246 case VK_TLVP: return "TLVP";
247 case VK_TLVPPAGE: return "TLVPPAGE";
248 case VK_TLVPPAGEOFF: return "TLVPPAGEOFF";
249 case VK_PAGE: return "PAGE";
250 case VK_PAGEOFF: return "PAGEOFF";
251 case VK_GOTPAGE: return "GOTPAGE";
252 case VK_GOTPAGEOFF: return "GOTPAGEOFF";
253 case VK_SECREL: return "SECREL32";
254 case VK_SIZE: return "SIZE";
255 case VK_WEAKREF: return "WEAKREF";
256 case VK_X86_ABS8: return "ABS8";
257 case VK_X86_PLTOFF: return "PLTOFF";
258 case VK_ARM_NONE: return "none";
259 case VK_ARM_GOT_PREL: return "GOT_PREL";
260 case VK_ARM_TARGET1: return "target1";
261 case VK_ARM_TARGET2: return "target2";
262 case VK_ARM_PREL31: return "prel31";
263 case VK_ARM_SBREL: return "sbrel";
264 case VK_ARM_TLSLDO: return "tlsldo";
265 case VK_ARM_TLSDESCSEQ: return "tlsdescseq";
266 case VK_AVR_NONE: return "none";
267 case VK_AVR_LO8: return "lo8";
268 case VK_AVR_HI8: return "hi8";
269 case VK_AVR_HLO8: return "hlo8";
270 case VK_AVR_DIFF8: return "diff8";
271 case VK_AVR_DIFF16: return "diff16";
272 case VK_AVR_DIFF32: return "diff32";
273 case VK_AVR_PM: return "pm";
274 case VK_PPC_LO: return "l";
275 case VK_PPC_HI: return "h";
276 case VK_PPC_HA: return "ha";
277 case VK_PPC_HIGH: return "high";
278 case VK_PPC_HIGHA: return "higha";
279 case VK_PPC_HIGHER: return "higher";
280 case VK_PPC_HIGHERA: return "highera";
281 case VK_PPC_HIGHEST: return "highest";
282 case VK_PPC_HIGHESTA: return "highesta";
283 case VK_PPC_GOT_LO: return "got@l";
284 case VK_PPC_GOT_HI: return "got@h";
285 case VK_PPC_GOT_HA: return "got@ha";
286 case VK_PPC_TOCBASE: return "tocbase";
287 case VK_PPC_TOC: return "toc";
288 case VK_PPC_TOC_LO: return "toc@l";
289 case VK_PPC_TOC_HI: return "toc@h";
290 case VK_PPC_TOC_HA: return "toc@ha";
291 case VK_PPC_U: return "u";
292 case VK_PPC_L: return "l";
293 case VK_PPC_DTPMOD: return "dtpmod";
294 case VK_PPC_TPREL_LO: return "tprel@l";
295 case VK_PPC_TPREL_HI: return "tprel@h";
296 case VK_PPC_TPREL_HA: return "tprel@ha";
297 case VK_PPC_TPREL_HIGH: return "tprel@high";
298 case VK_PPC_TPREL_HIGHA: return "tprel@higha";
299 case VK_PPC_TPREL_HIGHER: return "tprel@higher";
300 case VK_PPC_TPREL_HIGHERA: return "tprel@highera";
301 case VK_PPC_TPREL_HIGHEST: return "tprel@highest";
302 case VK_PPC_TPREL_HIGHESTA: return "tprel@highesta";
303 case VK_PPC_DTPREL_LO: return "dtprel@l";
304 case VK_PPC_DTPREL_HI: return "dtprel@h";
305 case VK_PPC_DTPREL_HA: return "dtprel@ha";
306 case VK_PPC_DTPREL_HIGH: return "dtprel@high";
307 case VK_PPC_DTPREL_HIGHA: return "dtprel@higha";
308 case VK_PPC_DTPREL_HIGHER: return "dtprel@higher";
309 case VK_PPC_DTPREL_HIGHERA: return "dtprel@highera";
310 case VK_PPC_DTPREL_HIGHEST: return "dtprel@highest";
311 case VK_PPC_DTPREL_HIGHESTA: return "dtprel@highesta";
312 case VK_PPC_GOT_TPREL: return "got@tprel";
313 case VK_PPC_GOT_TPREL_LO: return "got@tprel@l";
314 case VK_PPC_GOT_TPREL_HI: return "got@tprel@h";
315 case VK_PPC_GOT_TPREL_HA: return "got@tprel@ha";
316 case VK_PPC_GOT_DTPREL: return "got@dtprel";
317 case VK_PPC_GOT_DTPREL_LO: return "got@dtprel@l";
318 case VK_PPC_GOT_DTPREL_HI: return "got@dtprel@h";
319 case VK_PPC_GOT_DTPREL_HA: return "got@dtprel@ha";
320 case VK_PPC_TLS: return "tls";
321 case VK_PPC_GOT_TLSGD: return "got@tlsgd";
322 case VK_PPC_GOT_TLSGD_LO: return "got@tlsgd@l";
323 case VK_PPC_GOT_TLSGD_HI: return "got@tlsgd@h";
324 case VK_PPC_GOT_TLSGD_HA: return "got@tlsgd@ha";
325 case VK_PPC_TLSGD: return "tlsgd";
326 case VK_PPC_AIX_TLSGD:
327 return "gd";
329 return "m";
330 case VK_PPC_GOT_TLSLD: return "got@tlsld";
331 case VK_PPC_GOT_TLSLD_LO: return "got@tlsld@l";
332 case VK_PPC_GOT_TLSLD_HI: return "got@tlsld@h";
333 case VK_PPC_GOT_TLSLD_HA: return "got@tlsld@ha";
334 case VK_PPC_GOT_PCREL:
335 return "got@pcrel";
337 return "got@tlsgd@pcrel";
339 return "got@tlsld@pcrel";
341 return "got@tprel@pcrel";
342 case VK_PPC_TLS_PCREL:
343 return "tls@pcrel";
344 case VK_PPC_TLSLD: return "tlsld";
345 case VK_PPC_LOCAL: return "local";
346 case VK_PPC_NOTOC: return "notoc";
347 case VK_PPC_PCREL_OPT: return "<<invalid>>";
348 case VK_COFF_IMGREL32: return "IMGREL";
349 case VK_Hexagon_LO16: return "LO16";
350 case VK_Hexagon_HI16: return "HI16";
351 case VK_Hexagon_GPREL: return "GPREL";
352 case VK_Hexagon_GD_GOT: return "GDGOT";
353 case VK_Hexagon_LD_GOT: return "LDGOT";
354 case VK_Hexagon_GD_PLT: return "GDPLT";
355 case VK_Hexagon_LD_PLT: return "LDPLT";
356 case VK_Hexagon_IE: return "IE";
357 case VK_Hexagon_IE_GOT: return "IEGOT";
358 case VK_WASM_TYPEINDEX: return "TYPEINDEX";
359 case VK_WASM_MBREL: return "MBREL";
360 case VK_WASM_TLSREL: return "TLSREL";
361 case VK_WASM_TBREL: return "TBREL";
362 case VK_WASM_GOT_TLS: return "GOT@TLS";
363 case VK_AMDGPU_GOTPCREL32_LO: return "gotpcrel32@lo";
364 case VK_AMDGPU_GOTPCREL32_HI: return "gotpcrel32@hi";
365 case VK_AMDGPU_REL32_LO: return "rel32@lo";
366 case VK_AMDGPU_REL32_HI: return "rel32@hi";
367 case VK_AMDGPU_REL64: return "rel64";
368 case VK_AMDGPU_ABS32_LO: return "abs32@lo";
369 case VK_AMDGPU_ABS32_HI: return "abs32@hi";
370 case VK_VE_HI32: return "hi";
371 case VK_VE_LO32: return "lo";
372 case VK_VE_PC_HI32: return "pc_hi";
373 case VK_VE_PC_LO32: return "pc_lo";
374 case VK_VE_GOT_HI32: return "got_hi";
375 case VK_VE_GOT_LO32: return "got_lo";
376 case VK_VE_GOTOFF_HI32: return "gotoff_hi";
377 case VK_VE_GOTOFF_LO32: return "gotoff_lo";
378 case VK_VE_PLT_HI32: return "plt_hi";
379 case VK_VE_PLT_LO32: return "plt_lo";
380 case VK_VE_TLS_GD_HI32: return "tls_gd_hi";
381 case VK_VE_TLS_GD_LO32: return "tls_gd_lo";
382 case VK_VE_TPOFF_HI32: return "tpoff_hi";
383 case VK_VE_TPOFF_LO32: return "tpoff_lo";
384 }
385 llvm_unreachable("Invalid variant kind");
386}
387
390 return StringSwitch<VariantKind>(Name.lower())
391 .Case("dtprel", VK_DTPREL)
392 .Case("dtpoff", VK_DTPOFF)
393 .Case("got", VK_GOT)
394 .Case("gotoff", VK_GOTOFF)
395 .Case("gotrel", VK_GOTREL)
396 .Case("pcrel", VK_PCREL)
397 .Case("gotpcrel", VK_GOTPCREL)
398 .Case("gotpcrel_norelax", VK_GOTPCREL_NORELAX)
399 .Case("gottpoff", VK_GOTTPOFF)
400 .Case("indntpoff", VK_INDNTPOFF)
401 .Case("ntpoff", VK_NTPOFF)
402 .Case("gotntpoff", VK_GOTNTPOFF)
403 .Case("plt", VK_PLT)
404 .Case("tlscall", VK_TLSCALL)
405 .Case("tlsdesc", VK_TLSDESC)
406 .Case("tlsgd", VK_TLSGD)
407 .Case("tlsld", VK_TLSLD)
408 .Case("tlsldm", VK_TLSLDM)
409 .Case("tpoff", VK_TPOFF)
410 .Case("tprel", VK_TPREL)
411 .Case("tlvp", VK_TLVP)
412 .Case("tlvppage", VK_TLVPPAGE)
413 .Case("tlvppageoff", VK_TLVPPAGEOFF)
414 .Case("page", VK_PAGE)
415 .Case("pageoff", VK_PAGEOFF)
416 .Case("gotpage", VK_GOTPAGE)
417 .Case("gotpageoff", VK_GOTPAGEOFF)
418 .Case("imgrel", VK_COFF_IMGREL32)
419 .Case("secrel32", VK_SECREL)
420 .Case("size", VK_SIZE)
421 .Case("abs8", VK_X86_ABS8)
422 .Case("pltoff", VK_X86_PLTOFF)
423 .Case("l", VK_PPC_LO)
424 .Case("h", VK_PPC_HI)
425 .Case("ha", VK_PPC_HA)
426 .Case("high", VK_PPC_HIGH)
427 .Case("higha", VK_PPC_HIGHA)
428 .Case("higher", VK_PPC_HIGHER)
429 .Case("highera", VK_PPC_HIGHERA)
430 .Case("highest", VK_PPC_HIGHEST)
431 .Case("highesta", VK_PPC_HIGHESTA)
432 .Case("got@l", VK_PPC_GOT_LO)
433 .Case("got@h", VK_PPC_GOT_HI)
434 .Case("got@ha", VK_PPC_GOT_HA)
435 .Case("local", VK_PPC_LOCAL)
436 .Case("tocbase", VK_PPC_TOCBASE)
437 .Case("toc", VK_PPC_TOC)
438 .Case("toc@l", VK_PPC_TOC_LO)
439 .Case("toc@h", VK_PPC_TOC_HI)
440 .Case("toc@ha", VK_PPC_TOC_HA)
441 .Case("u", VK_PPC_U)
442 .Case("l", VK_PPC_L)
443 .Case("tls", VK_PPC_TLS)
444 .Case("dtpmod", VK_PPC_DTPMOD)
445 .Case("tprel@l", VK_PPC_TPREL_LO)
446 .Case("tprel@h", VK_PPC_TPREL_HI)
447 .Case("tprel@ha", VK_PPC_TPREL_HA)
448 .Case("tprel@high", VK_PPC_TPREL_HIGH)
449 .Case("tprel@higha", VK_PPC_TPREL_HIGHA)
450 .Case("tprel@higher", VK_PPC_TPREL_HIGHER)
451 .Case("tprel@highera", VK_PPC_TPREL_HIGHERA)
452 .Case("tprel@highest", VK_PPC_TPREL_HIGHEST)
453 .Case("tprel@highesta", VK_PPC_TPREL_HIGHESTA)
454 .Case("dtprel@l", VK_PPC_DTPREL_LO)
455 .Case("dtprel@h", VK_PPC_DTPREL_HI)
456 .Case("dtprel@ha", VK_PPC_DTPREL_HA)
457 .Case("dtprel@high", VK_PPC_DTPREL_HIGH)
458 .Case("dtprel@higha", VK_PPC_DTPREL_HIGHA)
459 .Case("dtprel@higher", VK_PPC_DTPREL_HIGHER)
460 .Case("dtprel@highera", VK_PPC_DTPREL_HIGHERA)
461 .Case("dtprel@highest", VK_PPC_DTPREL_HIGHEST)
462 .Case("dtprel@highesta", VK_PPC_DTPREL_HIGHESTA)
463 .Case("got@tprel", VK_PPC_GOT_TPREL)
464 .Case("got@tprel@l", VK_PPC_GOT_TPREL_LO)
465 .Case("got@tprel@h", VK_PPC_GOT_TPREL_HI)
466 .Case("got@tprel@ha", VK_PPC_GOT_TPREL_HA)
467 .Case("got@dtprel", VK_PPC_GOT_DTPREL)
468 .Case("got@dtprel@l", VK_PPC_GOT_DTPREL_LO)
469 .Case("got@dtprel@h", VK_PPC_GOT_DTPREL_HI)
470 .Case("got@dtprel@ha", VK_PPC_GOT_DTPREL_HA)
471 .Case("got@tlsgd", VK_PPC_GOT_TLSGD)
472 .Case("got@tlsgd@l", VK_PPC_GOT_TLSGD_LO)
473 .Case("got@tlsgd@h", VK_PPC_GOT_TLSGD_HI)
474 .Case("got@tlsgd@ha", VK_PPC_GOT_TLSGD_HA)
475 .Case("got@tlsld", VK_PPC_GOT_TLSLD)
476 .Case("got@tlsld@l", VK_PPC_GOT_TLSLD_LO)
477 .Case("got@tlsld@h", VK_PPC_GOT_TLSLD_HI)
478 .Case("got@tlsld@ha", VK_PPC_GOT_TLSLD_HA)
479 .Case("got@pcrel", VK_PPC_GOT_PCREL)
480 .Case("got@tlsgd@pcrel", VK_PPC_GOT_TLSGD_PCREL)
481 .Case("got@tlsld@pcrel", VK_PPC_GOT_TLSLD_PCREL)
482 .Case("got@tprel@pcrel", VK_PPC_GOT_TPREL_PCREL)
483 .Case("tls@pcrel", VK_PPC_TLS_PCREL)
484 .Case("notoc", VK_PPC_NOTOC)
485 .Case("gdgot", VK_Hexagon_GD_GOT)
486 .Case("gdplt", VK_Hexagon_GD_PLT)
487 .Case("iegot", VK_Hexagon_IE_GOT)
488 .Case("ie", VK_Hexagon_IE)
489 .Case("ldgot", VK_Hexagon_LD_GOT)
490 .Case("ldplt", VK_Hexagon_LD_PLT)
491 .Case("none", VK_ARM_NONE)
492 .Case("got_prel", VK_ARM_GOT_PREL)
493 .Case("target1", VK_ARM_TARGET1)
494 .Case("target2", VK_ARM_TARGET2)
495 .Case("prel31", VK_ARM_PREL31)
496 .Case("sbrel", VK_ARM_SBREL)
497 .Case("tlsldo", VK_ARM_TLSLDO)
498 .Case("lo8", VK_AVR_LO8)
499 .Case("hi8", VK_AVR_HI8)
500 .Case("hlo8", VK_AVR_HLO8)
501 .Case("typeindex", VK_WASM_TYPEINDEX)
502 .Case("tbrel", VK_WASM_TBREL)
503 .Case("mbrel", VK_WASM_MBREL)
504 .Case("tlsrel", VK_WASM_TLSREL)
505 .Case("got@tls", VK_WASM_GOT_TLS)
506 .Case("gotpcrel32@lo", VK_AMDGPU_GOTPCREL32_LO)
507 .Case("gotpcrel32@hi", VK_AMDGPU_GOTPCREL32_HI)
508 .Case("rel32@lo", VK_AMDGPU_REL32_LO)
509 .Case("rel32@hi", VK_AMDGPU_REL32_HI)
510 .Case("rel64", VK_AMDGPU_REL64)
511 .Case("abs32@lo", VK_AMDGPU_ABS32_LO)
512 .Case("abs32@hi", VK_AMDGPU_ABS32_HI)
513 .Case("hi", VK_VE_HI32)
514 .Case("lo", VK_VE_LO32)
515 .Case("pc_hi", VK_VE_PC_HI32)
516 .Case("pc_lo", VK_VE_PC_LO32)
517 .Case("got_hi", VK_VE_GOT_HI32)
518 .Case("got_lo", VK_VE_GOT_LO32)
519 .Case("gotoff_hi", VK_VE_GOTOFF_HI32)
520 .Case("gotoff_lo", VK_VE_GOTOFF_LO32)
521 .Case("plt_hi", VK_VE_PLT_HI32)
522 .Case("plt_lo", VK_VE_PLT_LO32)
523 .Case("tls_gd_hi", VK_VE_TLS_GD_HI32)
524 .Case("tls_gd_lo", VK_VE_TLS_GD_LO32)
525 .Case("tpoff_hi", VK_VE_TPOFF_HI32)
526 .Case("tpoff_lo", VK_VE_TPOFF_LO32)
528}
529
530/* *** */
531
532void MCTargetExpr::anchor() {}
533
534/* *** */
535
536bool MCExpr::evaluateAsAbsolute(int64_t &Res) const {
537 return evaluateAsAbsolute(Res, nullptr, nullptr, nullptr, false);
538}
539
540bool MCExpr::evaluateAsAbsolute(int64_t &Res,
541 const MCAsmLayout &Layout) const {
542 return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, nullptr, false);
543}
544
545bool MCExpr::evaluateAsAbsolute(int64_t &Res,
546 const MCAsmLayout &Layout,
547 const SectionAddrMap &Addrs) const {
548 // Setting InSet causes us to absolutize differences across sections and that
549 // is what the MachO writer uses Addrs for.
550 return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, &Addrs, true);
551}
552
553bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
554 return evaluateAsAbsolute(Res, &Asm, nullptr, nullptr, false);
555}
556
557bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm) const {
558 return evaluateAsAbsolute(Res, Asm, nullptr, nullptr, false);
559}
560
562 const MCAsmLayout &Layout) const {
563 return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, nullptr,
564 true);
565}
566
567bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
568 const MCAsmLayout *Layout,
569 const SectionAddrMap *Addrs, bool InSet) const {
571
572 // Fast path constants.
573 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
574 Res = CE->getValue();
575 return true;
576 }
577
578 bool IsRelocatable =
579 evaluateAsRelocatableImpl(Value, Asm, Layout, nullptr, Addrs, InSet);
580
581 // Record the current value.
582 Res = Value.getConstant();
583
584 return IsRelocatable && Value.isAbsolute();
585}
586
587/// Helper method for \see EvaluateSymbolAdd().
589 const MCAssembler *Asm, const MCAsmLayout *Layout,
590 const SectionAddrMap *Addrs, bool InSet, const MCSymbolRefExpr *&A,
591 const MCSymbolRefExpr *&B, int64_t &Addend) {
592 if (!A || !B)
593 return;
594
595 const MCSymbol &SA = A->getSymbol();
596 const MCSymbol &SB = B->getSymbol();
597
598 if (SA.isUndefined() || SB.isUndefined())
599 return;
600
601 if (!Asm->getWriter().isSymbolRefDifferenceFullyResolved(*Asm, A, B, InSet))
602 return;
603
604 auto FinalizeFolding = [&]() {
605 // Pointers to Thumb symbols need to have their low-bit set to allow
606 // for interworking.
607 if (Asm->isThumbFunc(&SA))
608 Addend |= 1;
609
610 // If symbol is labeled as micromips, we set low-bit to ensure
611 // correct offset in .gcc_except_table
612 if (Asm->getBackend().isMicroMips(&SA))
613 Addend |= 1;
614
615 // Clear the symbol expr pointers to indicate we have folded these
616 // operands.
617 A = B = nullptr;
618 };
619
620 const MCFragment *FA = SA.getFragment();
621 const MCFragment *FB = SB.getFragment();
622 // If both symbols are in the same fragment, return the difference of their
623 // offsets
624 if (FA == FB && !SA.isVariable() && !SA.isUnset() && !SB.isVariable() &&
625 !SB.isUnset()) {
626 Addend += SA.getOffset() - SB.getOffset();
627 return FinalizeFolding();
628 }
629
630 const MCSection &SecA = *FA->getParent();
631 const MCSection &SecB = *FB->getParent();
632
633 if ((&SecA != &SecB) && !Addrs)
634 return;
635
636 if (Layout) {
637 // One of the symbol involved is part of a fragment being laid out. Quit now
638 // to avoid a self loop.
639 if (!Layout->canGetFragmentOffset(FA) || !Layout->canGetFragmentOffset(FB))
640 return;
641
642 // Eagerly evaluate when layout is finalized.
643 Addend += Layout->getSymbolOffset(A->getSymbol()) -
644 Layout->getSymbolOffset(B->getSymbol());
645 if (Addrs && (&SecA != &SecB))
646 Addend += (Addrs->lookup(&SecA) - Addrs->lookup(&SecB));
647
648 FinalizeFolding();
649 } else {
650 // When layout is not finalized, our ability to resolve differences between
651 // symbols is limited to specific cases where the fragments between two
652 // symbols (including the fragments the symbols are defined in) are
653 // fixed-size fragments so the difference can be calculated. For example,
654 // this is important when the Subtarget is changed and a new MCDataFragment
655 // is created in the case of foo: instr; .arch_extension ext; instr .if . -
656 // foo.
657 if (SA.isVariable() || SA.isUnset() || SB.isVariable() || SB.isUnset() ||
658 FA->getKind() != MCFragment::FT_Data ||
659 FB->getKind() != MCFragment::FT_Data ||
661 return;
662 // Try to find a constant displacement from FA to FB, add the displacement
663 // between the offset in FA of SA and the offset in FB of SB.
664 int64_t Displacement = SA.getOffset() - SB.getOffset();
665 for (auto FI = FB->getIterator(), FE = SecA.end(); FI != FE; ++FI) {
666 if (&*FI == FA) {
667 Addend += Displacement;
668 return FinalizeFolding();
669 }
670
671 if (FI->getKind() != MCFragment::FT_Data)
672 return;
673 Displacement += cast<MCDataFragment>(FI)->getContents().size();
674 }
675 }
676}
677
678/// Evaluate the result of an add between (conceptually) two MCValues.
679///
680/// This routine conceptually attempts to construct an MCValue:
681/// Result = (Result_A - Result_B + Result_Cst)
682/// from two MCValue's LHS and RHS where
683/// Result = LHS + RHS
684/// and
685/// Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
686///
687/// This routine attempts to aggressively fold the operands such that the result
688/// is representable in an MCValue, but may not always succeed.
689///
690/// \returns True on success, false if the result is not representable in an
691/// MCValue.
692
693/// NOTE: It is really important to have both the Asm and Layout arguments.
694/// They might look redundant, but this function can be used before layout
695/// is done (see the object streamer for example) and having the Asm argument
696/// lets us avoid relaxations early.
697static bool
699 const SectionAddrMap *Addrs, bool InSet, const MCValue &LHS,
700 const MCSymbolRefExpr *RHS_A, const MCSymbolRefExpr *RHS_B,
701 int64_t RHS_Cst, MCValue &Res) {
702 // FIXME: This routine (and other evaluation parts) are *incredibly* sloppy
703 // about dealing with modifiers. This will ultimately bite us, one day.
704 const MCSymbolRefExpr *LHS_A = LHS.getSymA();
705 const MCSymbolRefExpr *LHS_B = LHS.getSymB();
706 int64_t LHS_Cst = LHS.getConstant();
707
708 // Fold the result constant immediately.
709 int64_t Result_Cst = LHS_Cst + RHS_Cst;
710
711 assert((!Layout || Asm) &&
712 "Must have an assembler object if layout is given!");
713
714 // If we have a layout, we can fold resolved differences.
715 if (Asm) {
716 // First, fold out any differences which are fully resolved. By
717 // reassociating terms in
718 // Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
719 // we have the four possible differences:
720 // (LHS_A - LHS_B),
721 // (LHS_A - RHS_B),
722 // (RHS_A - LHS_B),
723 // (RHS_A - RHS_B).
724 // Since we are attempting to be as aggressive as possible about folding, we
725 // attempt to evaluate each possible alternative.
726 AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, LHS_B,
727 Result_Cst);
728 AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, RHS_B,
729 Result_Cst);
730 AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, LHS_B,
731 Result_Cst);
732 AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, RHS_B,
733 Result_Cst);
734 }
735
736 // We can't represent the addition or subtraction of two symbols.
737 if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
738 return false;
739
740 // At this point, we have at most one additive symbol and one subtractive
741 // symbol -- find them.
742 const MCSymbolRefExpr *A = LHS_A ? LHS_A : RHS_A;
743 const MCSymbolRefExpr *B = LHS_B ? LHS_B : RHS_B;
744
745 Res = MCValue::get(A, B, Result_Cst);
746 return true;
747}
748
750 const MCAsmLayout *Layout,
751 const MCFixup *Fixup) const {
752 MCAssembler *Assembler = Layout ? &Layout->getAssembler() : nullptr;
753 return evaluateAsRelocatableImpl(Res, Assembler, Layout, Fixup, nullptr,
754 false);
755}
756
757bool MCExpr::evaluateAsValue(MCValue &Res, const MCAsmLayout &Layout) const {
758 MCAssembler *Assembler = &Layout.getAssembler();
759 return evaluateAsRelocatableImpl(Res, Assembler, &Layout, nullptr, nullptr,
760 true);
761}
762
763static bool canExpand(const MCSymbol &Sym, bool InSet) {
764 const MCExpr *Expr = Sym.getVariableValue();
765 const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr);
766 if (Inner) {
767 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF)
768 return false;
769 }
770
771 if (InSet)
772 return true;
773 return !Sym.isInSection();
774}
775
777 const MCAsmLayout *Layout,
778 const MCFixup *Fixup,
779 const SectionAddrMap *Addrs,
780 bool InSet) const {
781 ++stats::MCExprEvaluate;
782
783 switch (getKind()) {
784 case Target:
785 return cast<MCTargetExpr>(this)->evaluateAsRelocatableImpl(Res, Layout,
786 Fixup);
787
788 case Constant:
789 Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
790 return true;
791
792 case SymbolRef: {
793 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
794 const MCSymbol &Sym = SRE->getSymbol();
795 const auto Kind = SRE->getKind();
796
797 // Evaluate recursively if this is a variable.
798 if (Sym.isVariable() && (Kind == MCSymbolRefExpr::VK_None || Layout) &&
799 canExpand(Sym, InSet)) {
800 bool IsMachO = SRE->hasSubsectionsViaSymbols();
802 Res, Asm, Layout, Fixup, Addrs, InSet || IsMachO)) {
803 if (Kind != MCSymbolRefExpr::VK_None) {
804 if (Res.isAbsolute()) {
805 Res = MCValue::get(SRE, nullptr, 0);
806 return true;
807 }
808 // If the reference has a variant kind, we can only handle expressions
809 // which evaluate exactly to a single unadorned symbol. Attach the
810 // original VariantKind to SymA of the result.
811 if (Res.getRefKind() != MCSymbolRefExpr::VK_None || !Res.getSymA() ||
812 Res.getSymB() || Res.getConstant())
813 return false;
814 Res =
816 Kind, Asm->getContext()),
817 Res.getSymB(), Res.getConstant(), Res.getRefKind());
818 }
819 if (!IsMachO)
820 return true;
821
822 const MCSymbolRefExpr *A = Res.getSymA();
823 const MCSymbolRefExpr *B = Res.getSymB();
824 // FIXME: This is small hack. Given
825 // a = b + 4
826 // .long a
827 // the OS X assembler will completely drop the 4. We should probably
828 // include it in the relocation or produce an error if that is not
829 // possible.
830 // Allow constant expressions.
831 if (!A && !B)
832 return true;
833 // Allows aliases with zero offset.
834 if (Res.getConstant() == 0 && (!A || !B))
835 return true;
836 }
837 }
838
839 Res = MCValue::get(SRE, nullptr, 0);
840 return true;
841 }
842
843 case Unary: {
844 const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
846
847 if (!AUE->getSubExpr()->evaluateAsRelocatableImpl(Value, Asm, Layout, Fixup,
848 Addrs, InSet))
849 return false;
850
851 switch (AUE->getOpcode()) {
853 if (!Value.isAbsolute())
854 return false;
855 Res = MCValue::get(!Value.getConstant());
856 break;
858 /// -(a - b + const) ==> (b - a - const)
859 if (Value.getSymA() && !Value.getSymB())
860 return false;
861
862 // The cast avoids undefined behavior if the constant is INT64_MIN.
863 Res = MCValue::get(Value.getSymB(), Value.getSymA(),
864 -(uint64_t)Value.getConstant());
865 break;
866 case MCUnaryExpr::Not:
867 if (!Value.isAbsolute())
868 return false;
869 Res = MCValue::get(~Value.getConstant());
870 break;
872 Res = Value;
873 break;
874 }
875
876 return true;
877 }
878
879 case Binary: {
880 const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
881 MCValue LHSValue, RHSValue;
882
883 if (!ABE->getLHS()->evaluateAsRelocatableImpl(LHSValue, Asm, Layout, Fixup,
884 Addrs, InSet) ||
885 !ABE->getRHS()->evaluateAsRelocatableImpl(RHSValue, Asm, Layout, Fixup,
886 Addrs, InSet)) {
887 // Check if both are Target Expressions, see if we can compare them.
888 if (const MCTargetExpr *L = dyn_cast<MCTargetExpr>(ABE->getLHS()))
889 if (const MCTargetExpr *R = cast<MCTargetExpr>(ABE->getRHS())) {
890 switch (ABE->getOpcode()) {
891 case MCBinaryExpr::EQ:
892 Res = MCValue::get((L->isEqualTo(R)) ? -1 : 0);
893 return true;
894 case MCBinaryExpr::NE:
895 Res = MCValue::get((R->isEqualTo(R)) ? 0 : -1);
896 return true;
897 default: break;
898 }
899 }
900 return false;
901 }
902
903 // We only support a few operations on non-constant expressions, handle
904 // those first.
905 if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
906 switch (ABE->getOpcode()) {
907 default:
908 return false;
910 // Negate RHS and add.
911 // The cast avoids undefined behavior if the constant is INT64_MIN.
912 return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
913 RHSValue.getSymB(), RHSValue.getSymA(),
914 -(uint64_t)RHSValue.getConstant(), Res);
915
917 return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
918 RHSValue.getSymA(), RHSValue.getSymB(),
919 RHSValue.getConstant(), Res);
920 }
921 }
922
923 // FIXME: We need target hooks for the evaluation. It may be limited in
924 // width, and gas defines the result of comparisons differently from
925 // Apple as.
926 int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
927 int64_t Result = 0;
928 auto Op = ABE->getOpcode();
929 switch (Op) {
930 case MCBinaryExpr::AShr: Result = LHS >> RHS; break;
931 case MCBinaryExpr::Add: Result = LHS + RHS; break;
932 case MCBinaryExpr::And: Result = LHS & RHS; break;
935 // Handle division by zero. gas just emits a warning and keeps going,
936 // we try to be stricter.
937 // FIXME: Currently the caller of this function has no way to understand
938 // we're bailing out because of 'division by zero'. Therefore, it will
939 // emit a 'expected relocatable expression' error. It would be nice to
940 // change this code to emit a better diagnostic.
941 if (RHS == 0)
942 return false;
943 if (ABE->getOpcode() == MCBinaryExpr::Div)
944 Result = LHS / RHS;
945 else
946 Result = LHS % RHS;
947 break;
948 case MCBinaryExpr::EQ: Result = LHS == RHS; break;
949 case MCBinaryExpr::GT: Result = LHS > RHS; break;
950 case MCBinaryExpr::GTE: Result = LHS >= RHS; break;
951 case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
952 case MCBinaryExpr::LOr: Result = LHS || RHS; break;
953 case MCBinaryExpr::LShr: Result = uint64_t(LHS) >> uint64_t(RHS); break;
954 case MCBinaryExpr::LT: Result = LHS < RHS; break;
955 case MCBinaryExpr::LTE: Result = LHS <= RHS; break;
956 case MCBinaryExpr::Mul: Result = LHS * RHS; break;
957 case MCBinaryExpr::NE: Result = LHS != RHS; break;
958 case MCBinaryExpr::Or: Result = LHS | RHS; break;
959 case MCBinaryExpr::OrNot: Result = LHS | ~RHS; break;
960 case MCBinaryExpr::Shl: Result = uint64_t(LHS) << uint64_t(RHS); break;
961 case MCBinaryExpr::Sub: Result = LHS - RHS; break;
962 case MCBinaryExpr::Xor: Result = LHS ^ RHS; break;
963 }
964
965 switch (Op) {
966 default:
967 Res = MCValue::get(Result);
968 break;
969 case MCBinaryExpr::EQ:
970 case MCBinaryExpr::GT:
972 case MCBinaryExpr::LT:
974 case MCBinaryExpr::NE:
975 // A comparison operator returns a -1 if true and 0 if false.
976 Res = MCValue::get(Result ? -1 : 0);
977 break;
978 }
979
980 return true;
981 }
982 }
983
984 llvm_unreachable("Invalid assembly expression kind!");
985}
986
988 switch (getKind()) {
989 case Target:
990 // We never look through target specific expressions.
991 return cast<MCTargetExpr>(this)->findAssociatedFragment();
992
993 case Constant:
995
996 case SymbolRef: {
997 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
998 const MCSymbol &Sym = SRE->getSymbol();
999 return Sym.getFragment();
1000 }
1001
1002 case Unary:
1003 return cast<MCUnaryExpr>(this)->getSubExpr()->findAssociatedFragment();
1004
1005 case Binary: {
1006 const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
1007 MCFragment *LHS_F = BE->getLHS()->findAssociatedFragment();
1008 MCFragment *RHS_F = BE->getRHS()->findAssociatedFragment();
1009
1010 // If either is absolute, return the other.
1012 return RHS_F;
1014 return LHS_F;
1015
1016 // Not always correct, but probably the best we can do without more context.
1017 if (BE->getOpcode() == MCBinaryExpr::Sub)
1019
1020 // Otherwise, return the first non-null fragment.
1021 return LHS_F ? LHS_F : RHS_F;
1022 }
1023 }
1024
1025 llvm_unreachable("Invalid assembly expression kind!");
1026}
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:492
std::string Name
static bool canExpand(const MCSymbol &Sym, bool InSet)
Definition: MCExpr.cpp:763
static bool EvaluateSymbolicAdd(const MCAssembler *Asm, const MCAsmLayout *Layout, const SectionAddrMap *Addrs, bool InSet, const MCValue &LHS, const MCSymbolRefExpr *RHS_A, const MCSymbolRefExpr *RHS_B, int64_t RHS_Cst, MCValue &Res)
Evaluate the result of an add between (conceptually) two MCValues.
Definition: MCExpr.cpp:698
static void AttemptToFoldSymbolOffsetDifference(const MCAssembler *Asm, const MCAsmLayout *Layout, const SectionAddrMap *Addrs, bool InSet, const MCSymbolRefExpr *&A, const MCSymbolRefExpr *&B, int64_t &Addend)
Helper method for.
Definition: MCExpr.cpp:588
PowerPC TLS Dynamic Call Fixup
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
Value * RHS
Value * LHS
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:197
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition: MCAsmInfo.h:56
bool useParensForSymbolVariant() const
Definition: MCAsmInfo.h:809
bool useParensForDollarSignNames() const
Definition: MCAsmInfo.h:810
Encapsulates the layout of an assembly file at a particular point in time.
Definition: MCAsmLayout.h:28
bool getSymbolOffset(const MCSymbol &S, uint64_t &Val) const
Get the offset of the given symbol, as computed in the current layout.
Definition: MCFragment.cpp:152
bool canGetFragmentOffset(const MCFragment *F) const
Definition: MCFragment.cpp:51
MCAssembler & getAssembler() const
Get the assembler object this is a layout for.
Definition: MCAsmLayout.h:50
Binary assembler expressions.
Definition: MCExpr.h:481
const MCExpr * getLHS() const
Get the left-hand side expression of the binary operator.
Definition: MCExpr.h:628
const MCExpr * getRHS() const
Get the right-hand side expression of the binary operator.
Definition: MCExpr.h:631
Opcode getOpcode() const
Get the kind of this binary expression.
Definition: MCExpr.h:625
static const MCBinaryExpr * create(Opcode Op, const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx, SMLoc Loc=SMLoc())
Definition: MCExpr.cpp:183
@ Div
Signed division.
Definition: MCExpr.h:486
@ Shl
Shift left.
Definition: MCExpr.h:503
@ AShr
Arithmetic shift right.
Definition: MCExpr.h:504
@ LShr
Logical shift right.
Definition: MCExpr.h:505
@ GTE
Signed greater than or equal comparison (result is either 0 or some target-specific non-zero value).
Definition: MCExpr.h:490
@ EQ
Equality comparison.
Definition: MCExpr.h:487
@ Sub
Subtraction.
Definition: MCExpr.h:506
@ Mul
Multiplication.
Definition: MCExpr.h:499
@ GT
Signed greater than comparison (result is either 0 or some target-specific non-zero value)
Definition: MCExpr.h:488
@ Mod
Signed remainder.
Definition: MCExpr.h:498
@ And
Bitwise and.
Definition: MCExpr.h:485
@ Or
Bitwise or.
Definition: MCExpr.h:501
@ Xor
Bitwise exclusive or.
Definition: MCExpr.h:507
@ OrNot
Bitwise or not.
Definition: MCExpr.h:502
@ LAnd
Logical and.
Definition: MCExpr.h:492
@ LOr
Logical or.
Definition: MCExpr.h:493
@ LT
Signed less than comparison (result is either 0 or some target-specific non-zero value).
Definition: MCExpr.h:494
@ Add
Addition.
Definition: MCExpr.h:484
@ LTE
Signed less than or equal comparison (result is either 0 or some target-specific non-zero value).
Definition: MCExpr.h:496
@ NE
Inequality comparison.
Definition: MCExpr.h:500
static const MCConstantExpr * create(int64_t Value, MCContext &Ctx, bool PrintInHex=false, unsigned SizeInBytes=0)
Definition: MCExpr.cpp:194
Context object for machine code objects.
Definition: MCContext.h:76
const MCAsmInfo * getAsmInfo() const
Definition: MCContext.h:446
MCSymbol * getOrCreateSymbol(const Twine &Name)
Lookup the symbol inside with the specified Name.
Definition: MCContext.cpp:201
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:35
@ Unary
Unary expressions.
Definition: MCExpr.h:41
@ Constant
Constant expressions.
Definition: MCExpr.h:39
@ SymbolRef
References to labels and assigned expressions.
Definition: MCExpr.h:40
@ Target
Target specific expression.
Definition: MCExpr.h:42
@ Binary
Binary expressions.
Definition: MCExpr.h:38
bool evaluateKnownAbsolute(int64_t &Res, const MCAsmLayout &Layout) const
Definition: MCExpr.cpp:561
bool evaluateAsRelocatable(MCValue &Res, const MCAsmLayout *Layout, const MCFixup *Fixup) const
Try to evaluate the expression to a relocatable value, i.e.
Definition: MCExpr.cpp:749
bool evaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm, const MCAsmLayout *Layout, const MCFixup *Fixup, const SectionAddrMap *Addrs, bool InSet) const
Definition: MCExpr.cpp:776
void print(raw_ostream &OS, const MCAsmInfo *MAI, bool InParens=false) const
Definition: MCExpr.cpp:41
MCFragment * findAssociatedFragment() const
Find the "associated section" for this expression, which is currently defined as the absolute section...
Definition: MCExpr.cpp:987
bool evaluateAsValue(MCValue &Res, const MCAsmLayout &Layout) const
Try to evaluate the expression to the form (a - b + constant) where neither a nor b are variables.
Definition: MCExpr.cpp:757
void dump() const
Definition: MCExpr.cpp:175
ExprKind getKind() const
Definition: MCExpr.h:81
Encode information on a single operation to perform on a byte sequence (e.g., an encoded instruction)...
Definition: MCFixup.h:71
FragmentType getKind() const
Definition: MCFragment.h:93
MCSection * getParent() const
Definition: MCFragment.h:95
unsigned getSubsectionNumber() const
Definition: MCFragment.h:111
Instances of this class represent a uniqued identifier for a section in the current translation unit.
Definition: MCSection.h:39
iterator end()
Definition: MCSection.h:188
Represent a reference to a symbol from inside an expression.
Definition: MCExpr.h:192
const MCSymbol & getSymbol() const
Definition: MCExpr.h:399
static StringRef getVariantKindName(VariantKind Kind)
Definition: MCExpr.cpp:221
static VariantKind getVariantKindForName(StringRef Name)
Definition: MCExpr.cpp:389
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx)
Definition: MCExpr.h:386
VariantKind getKind() const
Definition: MCExpr.h:401
bool hasSubsectionsViaSymbols() const
Definition: MCExpr.h:405
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
const MCExpr * getVariableValue(bool SetUsed=true) const
getVariableValue - Get the value for variable symbols.
Definition: MCSymbol.h:303
void print(raw_ostream &OS, const MCAsmInfo *MAI) const
print - Print the value to the stream OS.
Definition: MCSymbol.cpp:58
bool isInSection() const
isInSection - Check if this symbol is defined in some section (i.e., it is defined but not absolute).
Definition: MCSymbol.h:252
StringRef getName() const
getName - Get the symbol name.
Definition: MCSymbol.h:203
bool isVariable() const
isVariable - Check if this is a variable symbol.
Definition: MCSymbol.h:298
bool isUndefined(bool SetUsed=true) const
isUndefined - Check if this symbol undefined (i.e., implicitly defined).
Definition: MCSymbol.h:257
static MCFragment * AbsolutePseudoFragment
Definition: MCSymbol.h:66
bool isUnset() const
Definition: MCSymbol.h:323
uint64_t getOffset() const
Definition: MCSymbol.h:325
MCFragment * getFragment(bool SetUsed=true) const
Definition: MCSymbol.h:395
This is an extension point for target-specific MCExpr subclasses to implement.
Definition: MCExpr.h:645
Unary assembler expressions.
Definition: MCExpr.h:425
Opcode getOpcode() const
Get the kind of this unary expression.
Definition: MCExpr.h:468
static const MCUnaryExpr * create(Opcode Op, const MCExpr *Expr, MCContext &Ctx, SMLoc Loc=SMLoc())
Definition: MCExpr.cpp:189
@ Minus
Unary minus.
Definition: MCExpr.h:429
@ Plus
Unary plus.
Definition: MCExpr.h:431
@ Not
Bitwise negation.
Definition: MCExpr.h:430
@ LNot
Logical negation.
Definition: MCExpr.h:428
const MCExpr * getSubExpr() const
Get the child of this unary expression.
Definition: MCExpr.h:471
This represents an "assembler immediate".
Definition: MCValue.h:36
int64_t getConstant() const
Definition: MCValue.h:43
uint32_t getRefKind() const
Definition: MCValue.h:46
static MCValue get(const MCSymbolRefExpr *SymA, const MCSymbolRefExpr *SymB=nullptr, int64_t Val=0, uint32_t RefKind=0)
Definition: MCValue.h:59
const MCSymbolRefExpr * getSymB() const
Definition: MCValue.h:45
const MCSymbolRefExpr * getSymA() const
Definition: MCValue.h:44
bool isAbsolute() const
Is this an absolute (as opposed to relocatable) value.
Definition: MCValue.h:49
Represents a location in source code.
Definition: SMLoc.h:23
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:134
A switch()-like statement whose cases are string literals.
Definition: StringSwitch.h:44
StringSwitch & Case(StringLiteral S, T Value)
Definition: StringSwitch.h:69
R Default(T Value)
Definition: StringSwitch.h:182
static Twine utohexstr(const uint64_t &Val)
Definition: Twine.h:404
LLVM Value Representation.
Definition: Value.h:74
self_iterator getIterator()
Definition: ilist_node.h:82
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition: Format.h:124