LLVM 20.0.0git
MipsAsmBackend.cpp
Go to the documentation of this file.
1//===-- MipsAsmBackend.cpp - Mips Asm Backend ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the MipsAsmBackend class.
10//
11//===----------------------------------------------------------------------===//
12//
13
19#include "llvm/ADT/STLExtras.h"
22#include "llvm/MC/MCAssembler.h"
23#include "llvm/MC/MCContext.h"
30#include "llvm/MC/MCValue.h"
32#include "llvm/Support/Format.h"
35
36using namespace llvm;
37
38// Prepare value for the target space for it
40 MCContext &Ctx) {
41
42 unsigned Kind = Fixup.getKind();
43
44 // Add/subtract and shift
45 switch (Kind) {
46 default:
47 return 0;
48 case FK_Data_2:
65 Value &= 0xffff;
66 break;
67 case FK_DTPRel_4:
68 case FK_DTPRel_8:
69 case FK_TPRel_4:
70 case FK_TPRel_8:
71 case FK_GPRel_4:
72 case FK_Data_4:
73 case FK_Data_8:
76 break;
78 // The displacement is then divided by 4 to give us an 18 bit
79 // address range. Forcing a signed division because Value can be negative.
80 Value = (int64_t)Value / 4;
81 // We now check if Value can be encoded as a 16-bit signed immediate.
82 if (!isInt<16>(Value)) {
83 Ctx.reportError(Fixup.getLoc(), "out of range PC16 fixup");
84 return 0;
85 }
86 break;
89 // Forcing a signed division because Value can be negative.
90 Value = (int64_t)Value / 4;
91 // We now check if Value can be encoded as a 19-bit signed immediate.
92 if (!isInt<19>(Value)) {
93 Ctx.reportError(Fixup.getLoc(), "out of range PC19 fixup");
94 return 0;
95 }
96 break;
98 // So far we are only using this type for jumps.
99 // The displacement is then divided by 4 to give us an 28 bit
100 // address range.
101 Value >>= 2;
102 break;
110 // Get the 2nd 16-bits. Also add 1 if bit 15 is 1.
111 Value = ((Value + 0x8000) >> 16) & 0xffff;
112 break;
115 // Get the 3rd 16-bits.
116 Value = ((Value + 0x80008000LL) >> 32) & 0xffff;
117 break;
120 // Get the 4th 16-bits.
121 Value = ((Value + 0x800080008000LL) >> 48) & 0xffff;
122 break;
124 Value >>= 1;
125 break;
127 Value -= 4;
128 // Forcing a signed division because Value can be negative.
129 Value = (int64_t) Value / 2;
130 // We now check if Value can be encoded as a 7-bit signed immediate.
131 if (!isInt<7>(Value)) {
132 Ctx.reportError(Fixup.getLoc(), "out of range PC7 fixup");
133 return 0;
134 }
135 break;
137 Value -= 2;
138 // Forcing a signed division because Value can be negative.
139 Value = (int64_t) Value / 2;
140 // We now check if Value can be encoded as a 10-bit signed immediate.
141 if (!isInt<10>(Value)) {
142 Ctx.reportError(Fixup.getLoc(), "out of range PC10 fixup");
143 return 0;
144 }
145 break;
147 Value -= 4;
148 // Forcing a signed division because Value can be negative.
149 Value = (int64_t)Value / 2;
150 // We now check if Value can be encoded as a 16-bit signed immediate.
151 if (!isInt<16>(Value)) {
152 Ctx.reportError(Fixup.getLoc(), "out of range PC16 fixup");
153 return 0;
154 }
155 break;
157 // Forcing a signed division because Value can be negative.
158 Value = (int64_t)Value / 8;
159 // We now check if Value can be encoded as a 18-bit signed immediate.
160 if (!isInt<18>(Value)) {
161 Ctx.reportError(Fixup.getLoc(), "out of range PC18 fixup");
162 return 0;
163 }
164 break;
166 // Check alignment.
167 if ((Value & 7)) {
168 Ctx.reportError(Fixup.getLoc(), "out of range PC18 fixup");
169 }
170 // Forcing a signed division because Value can be negative.
171 Value = (int64_t)Value / 8;
172 // We now check if Value can be encoded as a 18-bit signed immediate.
173 if (!isInt<18>(Value)) {
174 Ctx.reportError(Fixup.getLoc(), "out of range PC18 fixup");
175 return 0;
176 }
177 break;
179 // Forcing a signed division because Value can be negative.
180 Value = (int64_t) Value / 4;
181 // We now check if Value can be encoded as a 21-bit signed immediate.
182 if (!isInt<21>(Value)) {
183 Ctx.reportError(Fixup.getLoc(), "out of range PC21 fixup");
184 return 0;
185 }
186 break;
188 // Forcing a signed division because Value can be negative.
189 Value = (int64_t) Value / 4;
190 // We now check if Value can be encoded as a 26-bit signed immediate.
191 if (!isInt<26>(Value)) {
192 Ctx.reportError(Fixup.getLoc(), "out of range PC26 fixup");
193 return 0;
194 }
195 break;
197 // Forcing a signed division because Value can be negative.
198 Value = (int64_t)Value / 2;
199 // We now check if Value can be encoded as a 26-bit signed immediate.
200 if (!isInt<26>(Value)) {
201 Ctx.reportError(Fixup.getLoc(), "out of range PC26 fixup");
202 return 0;
203 }
204 break;
206 // Forcing a signed division because Value can be negative.
207 Value = (int64_t)Value / 2;
208 // We now check if Value can be encoded as a 21-bit signed immediate.
209 if (!isInt<21>(Value)) {
210 Ctx.reportError(Fixup.getLoc(), "out of range PC21 fixup");
211 return 0;
212 }
213 break;
214 }
215
216 return Value;
217}
218
219std::unique_ptr<MCObjectTargetWriter>
221 return createMipsELFObjectWriter(TheTriple, IsN32);
222}
223
224// Little-endian fixup data byte ordering:
225// mips32r2: a | b | x | x
226// microMIPS: x | x | a | b
227
228static bool needsMMLEByteOrder(unsigned Kind) {
229 return Kind != Mips::fixup_MICROMIPS_PC10_S1 &&
232}
233
234// Calculate index for microMIPS specific little endian byte order
235static unsigned calculateMMLEIndex(unsigned i) {
236 assert(i <= 3 && "Index out of range!");
237
238 return (1 - i / 2) * 2 + i % 2;
239}
240
241/// ApplyFixup - Apply the \p Value for given \p Fixup into the provided
242/// data fragment, at the offset specified by the fixup and following the
243/// fixup kind as appropriate.
245 const MCValue &Target,
247 bool IsResolved,
248 const MCSubtargetInfo *STI) const {
249 MCFixupKind Kind = Fixup.getKind();
250 MCContext &Ctx = Asm.getContext();
252
253 if (!Value)
254 return; // Doesn't change encoding.
255
256 // Where do we start in the object
257 unsigned Offset = Fixup.getOffset();
258 // Number of bytes we need to fixup
259 unsigned NumBytes = (getFixupKindInfo(Kind).TargetSize + 7) / 8;
260 // Used to point to big endian bytes
261 unsigned FullSize;
262
263 switch ((unsigned)Kind) {
264 case FK_Data_2:
267 FullSize = 2;
268 break;
269 case FK_Data_8:
271 FullSize = 8;
272 break;
273 case FK_Data_4:
274 default:
275 FullSize = 4;
276 break;
277 }
278
279 // Grab current value, if any, from bits.
280 uint64_t CurVal = 0;
281
282 bool microMipsLEByteOrder = needsMMLEByteOrder((unsigned) Kind);
283
284 for (unsigned i = 0; i != NumBytes; ++i) {
286 ? (microMipsLEByteOrder ? calculateMMLEIndex(i) : i)
287 : (FullSize - 1 - i);
288 CurVal |= (uint64_t)((uint8_t)Data[Offset + Idx]) << (i*8);
289 }
290
291 uint64_t Mask = ((uint64_t)(-1) >>
292 (64 - getFixupKindInfo(Kind).TargetSize));
293 CurVal |= Value & Mask;
294
295 // Write out the fixed up bytes back to the code/data bits.
296 for (unsigned i = 0; i != NumBytes; ++i) {
298 ? (microMipsLEByteOrder ? calculateMMLEIndex(i) : i)
299 : (FullSize - 1 - i);
300 Data[Offset + Idx] = (uint8_t)((CurVal >> (i*8)) & 0xff);
301 }
302}
303
304std::optional<MCFixupKind> MipsAsmBackend::getFixupKind(StringRef Name) const {
306 .Case("BFD_RELOC_NONE", ELF::R_MIPS_NONE)
307 .Case("BFD_RELOC_16", ELF::R_MIPS_16)
308 .Case("BFD_RELOC_32", ELF::R_MIPS_32)
309 .Case("BFD_RELOC_64", ELF::R_MIPS_64)
310 .Default(-1u);
311 if (Type != -1u)
312 return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
313
315 .Case("R_MIPS_NONE", FK_NONE)
316 .Case("R_MIPS_32", FK_Data_4)
317 .Case("R_MIPS_CALL_HI16", (MCFixupKind)Mips::fixup_Mips_CALL_HI16)
318 .Case("R_MIPS_CALL_LO16", (MCFixupKind)Mips::fixup_Mips_CALL_LO16)
319 .Case("R_MIPS_CALL16", (MCFixupKind)Mips::fixup_Mips_CALL16)
320 .Case("R_MIPS_GOT16", (MCFixupKind)Mips::fixup_Mips_GOT)
321 .Case("R_MIPS_GOT_PAGE", (MCFixupKind)Mips::fixup_Mips_GOT_PAGE)
322 .Case("R_MIPS_GOT_OFST", (MCFixupKind)Mips::fixup_Mips_GOT_OFST)
323 .Case("R_MIPS_GOT_DISP", (MCFixupKind)Mips::fixup_Mips_GOT_DISP)
324 .Case("R_MIPS_GOT_HI16", (MCFixupKind)Mips::fixup_Mips_GOT_HI16)
325 .Case("R_MIPS_GOT_LO16", (MCFixupKind)Mips::fixup_Mips_GOT_LO16)
326 .Case("R_MIPS_TLS_GOTTPREL", (MCFixupKind)Mips::fixup_Mips_GOTTPREL)
327 .Case("R_MIPS_TLS_DTPREL_HI16", (MCFixupKind)Mips::fixup_Mips_DTPREL_HI)
328 .Case("R_MIPS_TLS_DTPREL_LO16", (MCFixupKind)Mips::fixup_Mips_DTPREL_LO)
329 .Case("R_MIPS_TLS_GD", (MCFixupKind)Mips::fixup_Mips_TLSGD)
330 .Case("R_MIPS_TLS_LDM", (MCFixupKind)Mips::fixup_Mips_TLSLDM)
331 .Case("R_MIPS_TLS_TPREL_HI16", (MCFixupKind)Mips::fixup_Mips_TPREL_HI)
332 .Case("R_MIPS_TLS_TPREL_LO16", (MCFixupKind)Mips::fixup_Mips_TPREL_LO)
333 .Case("R_MICROMIPS_CALL16", (MCFixupKind)Mips::fixup_MICROMIPS_CALL16)
334 .Case("R_MICROMIPS_GOT_DISP", (MCFixupKind)Mips::fixup_MICROMIPS_GOT_DISP)
335 .Case("R_MICROMIPS_GOT_PAGE", (MCFixupKind)Mips::fixup_MICROMIPS_GOT_PAGE)
336 .Case("R_MICROMIPS_GOT_OFST", (MCFixupKind)Mips::fixup_MICROMIPS_GOT_OFST)
337 .Case("R_MICROMIPS_GOT16", (MCFixupKind)Mips::fixup_MICROMIPS_GOT16)
338 .Case("R_MICROMIPS_TLS_GOTTPREL",
340 .Case("R_MICROMIPS_TLS_DTPREL_HI16",
342 .Case("R_MICROMIPS_TLS_DTPREL_LO16",
344 .Case("R_MICROMIPS_TLS_GD", (MCFixupKind)Mips::fixup_MICROMIPS_TLS_GD)
345 .Case("R_MICROMIPS_TLS_LDM", (MCFixupKind)Mips::fixup_MICROMIPS_TLS_LDM)
346 .Case("R_MICROMIPS_TLS_TPREL_HI16",
348 .Case("R_MICROMIPS_TLS_TPREL_LO16",
350 .Case("R_MIPS_JALR", (MCFixupKind)Mips::fixup_Mips_JALR)
351 .Case("R_MICROMIPS_JALR", (MCFixupKind)Mips::fixup_MICROMIPS_JALR)
353}
354
356getFixupKindInfo(MCFixupKind Kind) const {
357 const static MCFixupKindInfo LittleEndianInfos[] = {
358 // This table *must* be in same the order of fixup_* kinds in
359 // MipsFixupKinds.h.
360 //
361 // name offset bits flags
362 { "fixup_Mips_16", 0, 16, 0 },
363 { "fixup_Mips_32", 0, 32, 0 },
364 { "fixup_Mips_REL32", 0, 32, 0 },
365 { "fixup_Mips_26", 0, 26, 0 },
366 { "fixup_Mips_HI16", 0, 16, 0 },
367 { "fixup_Mips_LO16", 0, 16, 0 },
368 { "fixup_Mips_GPREL16", 0, 16, 0 },
369 { "fixup_Mips_LITERAL", 0, 16, 0 },
370 { "fixup_Mips_GOT", 0, 16, 0 },
371 { "fixup_Mips_PC16", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
372 { "fixup_Mips_CALL16", 0, 16, 0 },
373 { "fixup_Mips_GPREL32", 0, 32, 0 },
374 { "fixup_Mips_SHIFT5", 6, 5, 0 },
375 { "fixup_Mips_SHIFT6", 6, 5, 0 },
376 { "fixup_Mips_64", 0, 64, 0 },
377 { "fixup_Mips_TLSGD", 0, 16, 0 },
378 { "fixup_Mips_GOTTPREL", 0, 16, 0 },
379 { "fixup_Mips_TPREL_HI", 0, 16, 0 },
380 { "fixup_Mips_TPREL_LO", 0, 16, 0 },
381 { "fixup_Mips_TLSLDM", 0, 16, 0 },
382 { "fixup_Mips_DTPREL_HI", 0, 16, 0 },
383 { "fixup_Mips_DTPREL_LO", 0, 16, 0 },
384 { "fixup_Mips_Branch_PCRel", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
385 { "fixup_Mips_GPOFF_HI", 0, 16, 0 },
386 { "fixup_MICROMIPS_GPOFF_HI",0, 16, 0 },
387 { "fixup_Mips_GPOFF_LO", 0, 16, 0 },
388 { "fixup_MICROMIPS_GPOFF_LO",0, 16, 0 },
389 { "fixup_Mips_GOT_PAGE", 0, 16, 0 },
390 { "fixup_Mips_GOT_OFST", 0, 16, 0 },
391 { "fixup_Mips_GOT_DISP", 0, 16, 0 },
392 { "fixup_Mips_HIGHER", 0, 16, 0 },
393 { "fixup_MICROMIPS_HIGHER", 0, 16, 0 },
394 { "fixup_Mips_HIGHEST", 0, 16, 0 },
395 { "fixup_MICROMIPS_HIGHEST", 0, 16, 0 },
396 { "fixup_Mips_GOT_HI16", 0, 16, 0 },
397 { "fixup_Mips_GOT_LO16", 0, 16, 0 },
398 { "fixup_Mips_CALL_HI16", 0, 16, 0 },
399 { "fixup_Mips_CALL_LO16", 0, 16, 0 },
400 { "fixup_Mips_PC18_S3", 0, 18, MCFixupKindInfo::FKF_IsPCRel },
401 { "fixup_MIPS_PC19_S2", 0, 19, MCFixupKindInfo::FKF_IsPCRel },
402 { "fixup_MIPS_PC21_S2", 0, 21, MCFixupKindInfo::FKF_IsPCRel },
403 { "fixup_MIPS_PC26_S2", 0, 26, MCFixupKindInfo::FKF_IsPCRel },
404 { "fixup_MIPS_PCHI16", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
405 { "fixup_MIPS_PCLO16", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
406 { "fixup_MICROMIPS_26_S1", 0, 26, 0 },
407 { "fixup_MICROMIPS_HI16", 0, 16, 0 },
408 { "fixup_MICROMIPS_LO16", 0, 16, 0 },
409 { "fixup_MICROMIPS_GOT16", 0, 16, 0 },
410 { "fixup_MICROMIPS_PC7_S1", 0, 7, MCFixupKindInfo::FKF_IsPCRel },
411 { "fixup_MICROMIPS_PC10_S1", 0, 10, MCFixupKindInfo::FKF_IsPCRel },
412 { "fixup_MICROMIPS_PC16_S1", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
413 { "fixup_MICROMIPS_PC26_S1", 0, 26, MCFixupKindInfo::FKF_IsPCRel },
414 { "fixup_MICROMIPS_PC19_S2", 0, 19, MCFixupKindInfo::FKF_IsPCRel },
415 { "fixup_MICROMIPS_PC18_S3", 0, 18, MCFixupKindInfo::FKF_IsPCRel },
416 { "fixup_MICROMIPS_PC21_S1", 0, 21, MCFixupKindInfo::FKF_IsPCRel },
417 { "fixup_MICROMIPS_CALL16", 0, 16, 0 },
418 { "fixup_MICROMIPS_GOT_DISP", 0, 16, 0 },
419 { "fixup_MICROMIPS_GOT_PAGE", 0, 16, 0 },
420 { "fixup_MICROMIPS_GOT_OFST", 0, 16, 0 },
421 { "fixup_MICROMIPS_TLS_GD", 0, 16, 0 },
422 { "fixup_MICROMIPS_TLS_LDM", 0, 16, 0 },
423 { "fixup_MICROMIPS_TLS_DTPREL_HI16", 0, 16, 0 },
424 { "fixup_MICROMIPS_TLS_DTPREL_LO16", 0, 16, 0 },
425 { "fixup_MICROMIPS_GOTTPREL", 0, 16, 0 },
426 { "fixup_MICROMIPS_TLS_TPREL_HI16", 0, 16, 0 },
427 { "fixup_MICROMIPS_TLS_TPREL_LO16", 0, 16, 0 },
428 { "fixup_Mips_SUB", 0, 64, 0 },
429 { "fixup_MICROMIPS_SUB", 0, 64, 0 },
430 { "fixup_Mips_JALR", 0, 32, 0 },
431 { "fixup_MICROMIPS_JALR", 0, 32, 0 }
432 };
433 static_assert(std::size(LittleEndianInfos) == Mips::NumTargetFixupKinds,
434 "Not all MIPS little endian fixup kinds added!");
435
436 const static MCFixupKindInfo BigEndianInfos[] = {
437 // This table *must* be in same the order of fixup_* kinds in
438 // MipsFixupKinds.h.
439 //
440 // name offset bits flags
441 { "fixup_Mips_16", 16, 16, 0 },
442 { "fixup_Mips_32", 0, 32, 0 },
443 { "fixup_Mips_REL32", 0, 32, 0 },
444 { "fixup_Mips_26", 6, 26, 0 },
445 { "fixup_Mips_HI16", 16, 16, 0 },
446 { "fixup_Mips_LO16", 16, 16, 0 },
447 { "fixup_Mips_GPREL16", 16, 16, 0 },
448 { "fixup_Mips_LITERAL", 16, 16, 0 },
449 { "fixup_Mips_GOT", 16, 16, 0 },
450 { "fixup_Mips_PC16", 16, 16, MCFixupKindInfo::FKF_IsPCRel },
451 { "fixup_Mips_CALL16", 16, 16, 0 },
452 { "fixup_Mips_GPREL32", 0, 32, 0 },
453 { "fixup_Mips_SHIFT5", 21, 5, 0 },
454 { "fixup_Mips_SHIFT6", 21, 5, 0 },
455 { "fixup_Mips_64", 0, 64, 0 },
456 { "fixup_Mips_TLSGD", 16, 16, 0 },
457 { "fixup_Mips_GOTTPREL", 16, 16, 0 },
458 { "fixup_Mips_TPREL_HI", 16, 16, 0 },
459 { "fixup_Mips_TPREL_LO", 16, 16, 0 },
460 { "fixup_Mips_TLSLDM", 16, 16, 0 },
461 { "fixup_Mips_DTPREL_HI", 16, 16, 0 },
462 { "fixup_Mips_DTPREL_LO", 16, 16, 0 },
463 { "fixup_Mips_Branch_PCRel",16, 16, MCFixupKindInfo::FKF_IsPCRel },
464 { "fixup_Mips_GPOFF_HI", 16, 16, 0 },
465 { "fixup_MICROMIPS_GPOFF_HI", 16, 16, 0 },
466 { "fixup_Mips_GPOFF_LO", 16, 16, 0 },
467 { "fixup_MICROMIPS_GPOFF_LO", 16, 16, 0 },
468 { "fixup_Mips_GOT_PAGE", 16, 16, 0 },
469 { "fixup_Mips_GOT_OFST", 16, 16, 0 },
470 { "fixup_Mips_GOT_DISP", 16, 16, 0 },
471 { "fixup_Mips_HIGHER", 16, 16, 0 },
472 { "fixup_MICROMIPS_HIGHER", 16, 16, 0 },
473 { "fixup_Mips_HIGHEST", 16, 16, 0 },
474 { "fixup_MICROMIPS_HIGHEST",16, 16, 0 },
475 { "fixup_Mips_GOT_HI16", 16, 16, 0 },
476 { "fixup_Mips_GOT_LO16", 16, 16, 0 },
477 { "fixup_Mips_CALL_HI16", 16, 16, 0 },
478 { "fixup_Mips_CALL_LO16", 16, 16, 0 },
479 { "fixup_Mips_PC18_S3", 14, 18, MCFixupKindInfo::FKF_IsPCRel },
480 { "fixup_MIPS_PC19_S2", 13, 19, MCFixupKindInfo::FKF_IsPCRel },
481 { "fixup_MIPS_PC21_S2", 11, 21, MCFixupKindInfo::FKF_IsPCRel },
482 { "fixup_MIPS_PC26_S2", 6, 26, MCFixupKindInfo::FKF_IsPCRel },
483 { "fixup_MIPS_PCHI16", 16, 16, MCFixupKindInfo::FKF_IsPCRel },
484 { "fixup_MIPS_PCLO16", 16, 16, MCFixupKindInfo::FKF_IsPCRel },
485 { "fixup_MICROMIPS_26_S1", 6, 26, 0 },
486 { "fixup_MICROMIPS_HI16", 16, 16, 0 },
487 { "fixup_MICROMIPS_LO16", 16, 16, 0 },
488 { "fixup_MICROMIPS_GOT16", 16, 16, 0 },
489 { "fixup_MICROMIPS_PC7_S1", 9, 7, MCFixupKindInfo::FKF_IsPCRel },
490 { "fixup_MICROMIPS_PC10_S1", 6, 10, MCFixupKindInfo::FKF_IsPCRel },
491 { "fixup_MICROMIPS_PC16_S1",16, 16, MCFixupKindInfo::FKF_IsPCRel },
492 { "fixup_MICROMIPS_PC26_S1", 6, 26, MCFixupKindInfo::FKF_IsPCRel },
493 { "fixup_MICROMIPS_PC19_S2",13, 19, MCFixupKindInfo::FKF_IsPCRel },
494 { "fixup_MICROMIPS_PC18_S3",14, 18, MCFixupKindInfo::FKF_IsPCRel },
495 { "fixup_MICROMIPS_PC21_S1",11, 21, MCFixupKindInfo::FKF_IsPCRel },
496 { "fixup_MICROMIPS_CALL16", 16, 16, 0 },
497 { "fixup_MICROMIPS_GOT_DISP", 16, 16, 0 },
498 { "fixup_MICROMIPS_GOT_PAGE", 16, 16, 0 },
499 { "fixup_MICROMIPS_GOT_OFST", 16, 16, 0 },
500 { "fixup_MICROMIPS_TLS_GD", 16, 16, 0 },
501 { "fixup_MICROMIPS_TLS_LDM", 16, 16, 0 },
502 { "fixup_MICROMIPS_TLS_DTPREL_HI16", 16, 16, 0 },
503 { "fixup_MICROMIPS_TLS_DTPREL_LO16", 16, 16, 0 },
504 { "fixup_MICROMIPS_GOTTPREL", 16, 16, 0 },
505 { "fixup_MICROMIPS_TLS_TPREL_HI16", 16, 16, 0 },
506 { "fixup_MICROMIPS_TLS_TPREL_LO16", 16, 16, 0 },
507 { "fixup_Mips_SUB", 0, 64, 0 },
508 { "fixup_MICROMIPS_SUB", 0, 64, 0 },
509 { "fixup_Mips_JALR", 0, 32, 0 },
510 { "fixup_MICROMIPS_JALR", 0, 32, 0 }
511 };
512 static_assert(std::size(BigEndianInfos) == Mips::NumTargetFixupKinds,
513 "Not all MIPS big endian fixup kinds added!");
514
515 if (Kind >= FirstLiteralRelocationKind)
517 if (Kind < FirstTargetFixupKind)
519
520 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
521 "Invalid kind!");
522
524 return LittleEndianInfos[Kind - FirstTargetFixupKind];
525 return BigEndianInfos[Kind - FirstTargetFixupKind];
526}
527
528/// WriteNopData - Write an (optimal) nop sequence of Count bytes
529/// to the given output. If the target cannot generate such a sequence,
530/// it should return an error.
531///
532/// \return - True on success.
534 const MCSubtargetInfo *STI) const {
535 // Check for a less than instruction size number of bytes
536 // FIXME: 16 bit instructions are not handled yet here.
537 // We shouldn't be using a hard coded number for instruction size.
538
539 // If the count is not 4-byte aligned, we must be writing data into the text
540 // section (otherwise we have unaligned instructions, and thus have far
541 // bigger problems), so just write zeros instead.
542 OS.write_zeros(Count);
543 return true;
544}
545
547 const MCFixup &Fixup,
548 const MCValue &Target,
549 const MCSubtargetInfo *STI) {
550 if (Fixup.getKind() >= FirstLiteralRelocationKind)
551 return true;
552 const unsigned FixupKind = Fixup.getKind();
553 switch (FixupKind) {
554 default:
555 return false;
556 // All these relocations require special processing
557 // at linking time. Delegate this work to a linker.
588 return true;
589 }
590}
591
593 if (const auto *ElfSym = dyn_cast<const MCSymbolELF>(Sym)) {
594 if (ElfSym->getOther() & ELF::STO_MIPS_MICROMIPS)
595 return true;
596 }
597 return false;
598}
599
601 const MCSubtargetInfo &STI,
602 const MCRegisterInfo &MRI,
603 const MCTargetOptions &Options) {
605 STI.getCPU(), Options);
606 return new MipsAsmBackend(T, MRI, STI.getTargetTriple(), STI.getCPU(),
607 ABI.IsN32());
608}
unsigned const MachineRegisterInfo * MRI
static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target, uint64_t Value, MCContext &Ctx, const Triple &TheTriple, bool IsResolved)
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
std::string Name
Symbol * Sym
Definition: ELF_riscv.cpp:479
static LVOptions Options
Definition: LVOptions.cpp:25
static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value, MCContext &Ctx)
static unsigned calculateMMLEIndex(unsigned i)
static bool needsMMLEByteOrder(unsigned Kind)
PowerPC TLS Dynamic Call Fixup
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
Generic interface to target specific assembler backends.
Definition: MCAsmBackend.h:42
const llvm::endianness Endian
Definition: MCAsmBackend.h:51
virtual const MCFixupKindInfo & getFixupKindInfo(MCFixupKind Kind) const
Get information on a fixup kind.
virtual std::optional< MCFixupKind > getFixupKind(StringRef Name) const
Map a relocation name used in .reloc to a fixup kind.
Context object for machine code objects.
Definition: MCContext.h:83
void reportError(SMLoc L, const Twine &Msg)
Definition: MCContext.cpp:1067
Encode information on a single operation to perform on a byte sequence (e.g., an encoded instruction)...
Definition: MCFixup.h:71
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
Generic base class for all target subtargets.
const Triple & getTargetTriple() const
StringRef getCPU() const
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
This represents an "assembler immediate".
Definition: MCValue.h:36
static MipsABIInfo computeTargetABI(const Triple &TT, StringRef CPU, const MCTargetOptions &Options)
Definition: MipsABIInfo.cpp:57
bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, const MCSubtargetInfo *STI) override
Hook to check if a relocation is needed for some target specific reason.
unsigned getNumFixupKinds() const override
Get the number of target specific fixup kinds.
bool writeNopData(raw_ostream &OS, uint64_t Count, const MCSubtargetInfo *STI) const override
WriteNopData - Write an (optimal) nop sequence of Count bytes to the given output.
void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, MutableArrayRef< char > Data, uint64_t Value, bool IsResolved, const MCSubtargetInfo *STI) const override
ApplyFixup - Apply the Value for given Fixup into the provided data fragment, at the offset specified...
std::optional< MCFixupKind > getFixupKind(StringRef Name) const override
Map a relocation name used in .reloc to a fixup kind.
const MCFixupKindInfo & getFixupKindInfo(MCFixupKind Kind) const override
Get information on a fixup kind.
std::unique_ptr< MCObjectTargetWriter > createObjectTargetWriter() const override
bool isMicroMips(const MCSymbol *Sym) const override
Check whether a given symbol has been flagged with MICROMIPS flag.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:307
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
A switch()-like statement whose cases are string literals.
Definition: StringSwitch.h:44
StringSwitch & Case(StringLiteral S, T Value)
Definition: StringSwitch.h:69
R Default(T Value)
Definition: StringSwitch.h:182
Target - Wrapper for Target specific information.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:74
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
raw_ostream & write_zeros(unsigned NumZeros)
write_zeros - Insert 'NumZeros' nulls.
@ STO_MIPS_MICROMIPS
Definition: ELF.h:591
@ fixup_MICROMIPS_TLS_TPREL_LO16
@ fixup_Mips_DTPREL_HI
@ fixup_MICROMIPS_PC7_S1
@ fixup_MICROMIPS_GOT_PAGE
@ fixup_MICROMIPS_PC16_S1
@ fixup_MICROMIPS_HIGHER
@ fixup_MICROMIPS_TLS_TPREL_HI16
@ fixup_MICROMIPS_PC21_S1
@ fixup_MICROMIPS_GPOFF_LO
@ fixup_MICROMIPS_PC19_S2
@ fixup_MICROMIPS_CALL16
@ fixup_MICROMIPS_TLS_LDM
@ fixup_MICROMIPS_GOT_OFST
@ fixup_MICROMIPS_TLS_DTPREL_HI16
@ fixup_MICROMIPS_PC10_S1
@ fixup_MICROMIPS_TLS_GD
@ fixup_MICROMIPS_HIGHEST
@ fixup_MICROMIPS_GOT_DISP
@ fixup_Mips_DTPREL_LO
@ fixup_MICROMIPS_PC18_S3
@ fixup_MICROMIPS_PC26_S1
@ fixup_MICROMIPS_GOTTPREL
@ fixup_MICROMIPS_TLS_DTPREL_LO16
@ fixup_MICROMIPS_GPOFF_HI
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
std::unique_ptr< MCObjectTargetWriter > createMipsELFObjectWriter(const Triple &TT, bool IsN32)
MCFixupKind
Extensible enumeration to represent the type of a fixup.
Definition: MCFixup.h:21
@ FirstTargetFixupKind
Definition: MCFixup.h:45
@ FirstLiteralRelocationKind
The range [FirstLiteralRelocationKind, MaxTargetFixupKind) is used for relocations coming from ....
Definition: MCFixup.h:50
@ FK_Data_8
A eight-byte fixup.
Definition: MCFixup.h:26
@ FK_Data_4
A four-byte fixup.
Definition: MCFixup.h:25
@ FK_DTPRel_4
A four-byte dtp relative fixup.
Definition: MCFixup.h:36
@ FK_DTPRel_8
A eight-byte dtp relative fixup.
Definition: MCFixup.h:37
@ FK_NONE
A no-op fixup.
Definition: MCFixup.h:22
@ FK_TPRel_4
A four-byte tp relative fixup.
Definition: MCFixup.h:38
@ FK_GPRel_4
A four-byte gp relative fixup.
Definition: MCFixup.h:34
@ FK_TPRel_8
A eight-byte tp relative fixup.
Definition: MCFixup.h:39
@ FK_Data_2
A two-byte fixup.
Definition: MCFixup.h:24
@ Default
The result values are uniform if and only if all operands are uniform.
MCAsmBackend * createMipsAsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options)
Target independent information on a fixup kind.
@ FKF_IsPCRel
Is this fixup kind PCrelative? This is used by the assembler backend to evaluate fixup values in a ta...
unsigned TargetSize
The number of bits written by this fixup.