LLVM 20.0.0git
R600MCCodeEmitter.cpp
Go to the documentation of this file.
1//===- R600MCCodeEmitter.cpp - Code Emitter for R600->Cayman GPU families -===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10///
11/// The R600 code emitter produces machine code that can be executed
12/// directly on the GPU device.
13//
14//===----------------------------------------------------------------------===//
15
17#include "R600Defines.h"
19#include "llvm/MC/MCContext.h"
20#include "llvm/MC/MCInst.h"
21#include "llvm/MC/MCInstrInfo.h"
25
26using namespace llvm;
27
28namespace {
29
30class R600MCCodeEmitter : public MCCodeEmitter {
31 const MCRegisterInfo &MRI;
32 const MCInstrInfo &MCII;
33
34public:
35 R600MCCodeEmitter(const MCInstrInfo &mcii, const MCRegisterInfo &mri)
36 : MRI(mri), MCII(mcii) {}
37 R600MCCodeEmitter(const R600MCCodeEmitter &) = delete;
38 R600MCCodeEmitter &operator=(const R600MCCodeEmitter &) = delete;
39
40 /// Encode the instruction and write it to the OS.
43 const MCSubtargetInfo &STI) const override;
44
45 /// \returns the encoding for an MCOperand.
46 uint64_t getMachineOpValue(const MCInst &MI, const MCOperand &MO,
48 const MCSubtargetInfo &STI) const;
49
50private:
51 void emit(uint32_t value, SmallVectorImpl<char> &CB) const;
52 void emit(uint64_t value, SmallVectorImpl<char> &CB) const;
53
54 unsigned getHWReg(MCRegister Reg) const;
55
56 uint64_t getBinaryCodeForInstr(const MCInst &MI,
58 const MCSubtargetInfo &STI) const;
59};
60
61} // end anonymous namespace
62
68};
69
70enum FCInstr {
78};
79
81 MCContext &Ctx) {
82 return new R600MCCodeEmitter(MCII, *Ctx.getRegisterInfo());
83}
84
85void R600MCCodeEmitter::encodeInstruction(const MCInst &MI,
88 const MCSubtargetInfo &STI) const {
89 const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
90 if (MI.getOpcode() == R600::RETURN ||
91 MI.getOpcode() == R600::FETCH_CLAUSE ||
92 MI.getOpcode() == R600::ALU_CLAUSE ||
93 MI.getOpcode() == R600::BUNDLE ||
94 MI.getOpcode() == R600::KILL) {
95 return;
96 }
97 if (IS_VTX(Desc)) {
98 uint64_t InstWord01 = getBinaryCodeForInstr(MI, Fixups, STI);
99 uint32_t InstWord2 = MI.getOperand(2).getImm(); // Offset
100 if (!(STI.hasFeature(R600::FeatureCaymanISA))) {
101 InstWord2 |= 1 << 19; // Mega-Fetch bit
102 }
103
104 emit(InstWord01, CB);
105 emit(InstWord2, CB);
106 emit((uint32_t)0, CB);
107 } else if (IS_TEX(Desc)) {
108 int64_t Sampler = MI.getOperand(14).getImm();
109
110 int64_t SrcSelect[4] = {
111 MI.getOperand(2).getImm(), MI.getOperand(3).getImm(),
112 MI.getOperand(4).getImm(), MI.getOperand(5).getImm()};
113 int64_t Offsets[3] = {MI.getOperand(6).getImm() & 0x1F,
114 MI.getOperand(7).getImm() & 0x1F,
115 MI.getOperand(8).getImm() & 0x1F};
116
117 uint64_t Word01 = getBinaryCodeForInstr(MI, Fixups, STI);
118 uint32_t Word2 = Sampler << 15 | SrcSelect[ELEMENT_X] << 20 |
119 SrcSelect[ELEMENT_Y] << 23 | SrcSelect[ELEMENT_Z] << 26 |
120 SrcSelect[ELEMENT_W] << 29 | Offsets[0] << 0 |
121 Offsets[1] << 5 | Offsets[2] << 10;
122
123 emit(Word01, CB);
124 emit(Word2, CB);
125 emit((uint32_t)0, CB);
126 } else {
127 uint64_t Inst = getBinaryCodeForInstr(MI, Fixups, STI);
128 if ((STI.hasFeature(R600::FeatureR600ALUInst)) &&
129 ((Desc.TSFlags & R600_InstFlag::OP1) ||
130 Desc.TSFlags & R600_InstFlag::OP2)) {
131 uint64_t ISAOpCode = Inst & (0x3FFULL << 39);
132 Inst &= ~(0x3FFULL << 39);
133 Inst |= ISAOpCode << 1;
134 }
135 emit(Inst, CB);
136 }
137}
138
139void R600MCCodeEmitter::emit(uint32_t Value, SmallVectorImpl<char> &CB) const {
141}
142
143void R600MCCodeEmitter::emit(uint64_t Value, SmallVectorImpl<char> &CB) const {
145}
146
147unsigned R600MCCodeEmitter::getHWReg(MCRegister Reg) const {
148 return MRI.getEncodingValue(Reg) & HW_REG_MASK;
149}
150
151uint64_t R600MCCodeEmitter::getMachineOpValue(const MCInst &MI,
152 const MCOperand &MO,
154 const MCSubtargetInfo &STI) const {
155 if (MO.isReg()) {
156 if (HAS_NATIVE_OPERANDS(MCII.get(MI.getOpcode()).TSFlags))
157 return MRI.getEncodingValue(MO.getReg());
158 return getHWReg(MO.getReg());
159 }
160
161 if (MO.isExpr()) {
162 // We put rodata at the end of code section, then map the entire
163 // code secetion as vtx buf. Thus the section relative address is the
164 // correct one.
165 // Each R600 literal instruction has two operands
166 // We can't easily get the order of the current one, so compare against
167 // the first one and adjust offset.
168 const unsigned offset = (&MO == &MI.getOperand(0)) ? 0 : 4;
169 Fixups.push_back(MCFixup::create(offset, MO.getExpr(), FK_SecRel_4, MI.getLoc()));
170 return 0;
171 }
172
173 assert(MO.isImm());
174 return MO.getImm();
175}
176
177#include "R600GenMCCodeEmitter.inc"
unsigned const MachineRegisterInfo * MRI
Given that RA is a live value
static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr)
IRTranslator LLVM IR MI
#define HAS_NATIVE_OPERANDS(Flags)
Definition: R600Defines.h:50
#define IS_VTX(desc)
Definition: R600Defines.h:59
#define HW_REG_MASK
Defines for extracting register information from register encoding.
Definition: R600Defines.h:53
#define IS_TEX(desc)
Definition: R600Defines.h:60
@ ELEMENT_W
@ ELEMENT_Y
@ ELEMENT_Z
@ ELEMENT_X
@ FC_ENDLOOP
@ FC_IF_PREDICATE
@ FC_BGNLOOP
@ FC_CONTINUE
@ FC_ELSE
@ FC_BREAK_PREDICATE
@ FC_ENDIF
Provides R600 specific target descriptions.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
MCCodeEmitter - Generic instruction encoding interface.
Definition: MCCodeEmitter.h:21
virtual void encodeInstruction(const MCInst &Inst, SmallVectorImpl< char > &CB, SmallVectorImpl< MCFixup > &Fixups, const MCSubtargetInfo &STI) const =0
Encode the given Inst to bytes and append to CB.
MCCodeEmitter & operator=(const MCCodeEmitter &)=delete
Context object for machine code objects.
Definition: MCContext.h:83
const MCRegisterInfo * getRegisterInfo() const
Definition: MCContext.h:414
static MCFixup create(uint32_t Offset, const MCExpr *Value, MCFixupKind Kind, SMLoc Loc=SMLoc())
Definition: MCFixup.h:87
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:185
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:26
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:37
int64_t getImm() const
Definition: MCInst.h:81
bool isImm() const
Definition: MCInst.h:63
bool isReg() const
Definition: MCInst.h:62
MCRegister getReg() const
Returns the register number.
Definition: MCInst.h:70
const MCExpr * getExpr() const
Definition: MCInst.h:115
bool isExpr() const
Definition: MCInst.h:66
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
Generic base class for all target subtargets.
bool hasFeature(unsigned Feature) const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
LLVM Value Representation.
Definition: Value.h:74
Offsets
Offsets in bytes from the start of the input buffer.
Definition: SIInstrInfo.h:1600
void write(void *memory, value_type value, endianness endian)
Write a value to memory with a particular endianness.
Definition: Endian.h:92
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
MCCodeEmitter * createR600MCCodeEmitter(const MCInstrInfo &MCII, MCContext &Ctx)
@ FK_SecRel_4
A four-byte section relative fixup.
Definition: MCFixup.h:42
Description of the encoding of one expression Op.