LLVM  8.0.0svn
NVPTXAsmPrinter.cpp
Go to the documentation of this file.
1 //===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to NVPTX assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "NVPTXAsmPrinter.h"
19 #include "NVPTX.h"
20 #include "NVPTXMCExpr.h"
22 #include "NVPTXRegisterInfo.h"
23 #include "NVPTXSubtarget.h"
24 #include "NVPTXTargetMachine.h"
25 #include "NVPTXUtilities.h"
26 #include "cl_common_defines.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/DenseSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Triple.h"
36 #include "llvm/ADT/Twine.h"
38 #include "llvm/CodeGen/Analysis.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugInfo.h"
57 #include "llvm/IR/DebugLoc.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalValue.h"
61 #include "llvm/IR/GlobalVariable.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/MC/MCExpr.h"
69 #include "llvm/MC/MCInst.h"
70 #include "llvm/MC/MCInstrDesc.h"
71 #include "llvm/MC/MCStreamer.h"
72 #include "llvm/MC/MCSymbol.h"
73 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/Path.h"
83 #include <cassert>
84 #include <cstdint>
85 #include <cstring>
86 #include <new>
87 #include <string>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 #define DEPOTNAME "__local_depot"
94 
95 /// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
96 /// depends.
97 static void
100  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
101  Globals.insert(GV);
102  else {
103  if (const User *U = dyn_cast<User>(V)) {
104  for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
105  DiscoverDependentGlobals(U->getOperand(i), Globals);
106  }
107  }
108  }
109 }
110 
111 /// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
112 /// instances to be emitted, but only after any dependents have been added
113 /// first.s
114 static void
119  // Have we already visited this one?
120  if (Visited.count(GV))
121  return;
122 
123  // Do we have a circular dependency?
124  if (!Visiting.insert(GV).second)
125  report_fatal_error("Circular dependency found in global variable set");
126 
127  // Make sure we visit all dependents first
129  for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
130  DiscoverDependentGlobals(GV->getOperand(i), Others);
131 
133  E = Others.end();
134  I != E; ++I)
135  VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
136 
137  // Now we can visit ourself
138  Order.push_back(GV);
139  Visited.insert(GV);
140  Visiting.erase(GV);
141 }
142 
143 void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
144  MCInst Inst;
145  lowerToMCInst(MI, Inst);
146  EmitToStreamer(*OutStreamer, Inst);
147 }
148 
149 // Handle symbol backtracking for targets that do not support image handles
150 bool NVPTXAsmPrinter::lowerImageHandleOperand(const MachineInstr *MI,
151  unsigned OpNo, MCOperand &MCOp) {
152  const MachineOperand &MO = MI->getOperand(OpNo);
153  const MCInstrDesc &MCID = MI->getDesc();
154 
155  if (MCID.TSFlags & NVPTXII::IsTexFlag) {
156  // This is a texture fetch, so operand 4 is a texref and operand 5 is
157  // a samplerref
158  if (OpNo == 4 && MO.isImm()) {
159  lowerImageHandleSymbol(MO.getImm(), MCOp);
160  return true;
161  }
162  if (OpNo == 5 && MO.isImm() && !(MCID.TSFlags & NVPTXII::IsTexModeUnifiedFlag)) {
163  lowerImageHandleSymbol(MO.getImm(), MCOp);
164  return true;
165  }
166 
167  return false;
168  } else if (MCID.TSFlags & NVPTXII::IsSuldMask) {
169  unsigned VecSize =
170  1 << (((MCID.TSFlags & NVPTXII::IsSuldMask) >> NVPTXII::IsSuldShift) - 1);
171 
172  // For a surface load of vector size N, the Nth operand will be the surfref
173  if (OpNo == VecSize && MO.isImm()) {
174  lowerImageHandleSymbol(MO.getImm(), MCOp);
175  return true;
176  }
177 
178  return false;
179  } else if (MCID.TSFlags & NVPTXII::IsSustFlag) {
180  // This is a surface store, so operand 0 is a surfref
181  if (OpNo == 0 && MO.isImm()) {
182  lowerImageHandleSymbol(MO.getImm(), MCOp);
183  return true;
184  }
185 
186  return false;
187  } else if (MCID.TSFlags & NVPTXII::IsSurfTexQueryFlag) {
188  // This is a query, so operand 1 is a surfref/texref
189  if (OpNo == 1 && MO.isImm()) {
190  lowerImageHandleSymbol(MO.getImm(), MCOp);
191  return true;
192  }
193 
194  return false;
195  }
196 
197  return false;
198 }
199 
200 void NVPTXAsmPrinter::lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp) {
201  // Ewwww
202  TargetMachine &TM = const_cast<TargetMachine&>(MF->getTarget());
203  NVPTXTargetMachine &nvTM = static_cast<NVPTXTargetMachine&>(TM);
205  const char *Sym = MFI->getImageHandleSymbol(Index);
206  std::string *SymNamePtr =
207  nvTM.getManagedStrPool()->getManagedString(Sym);
208  MCOp = GetSymbolRef(OutContext.getOrCreateSymbol(StringRef(*SymNamePtr)));
209 }
210 
211 void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
212  OutMI.setOpcode(MI->getOpcode());
213  // Special: Do not mangle symbol operand of CALL_PROTOTYPE
214  if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
215  const MachineOperand &MO = MI->getOperand(0);
216  OutMI.addOperand(GetSymbolRef(
218  return;
219  }
220 
221  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
222  const MachineOperand &MO = MI->getOperand(i);
223 
224  MCOperand MCOp;
225  if (!nvptxSubtarget->hasImageHandles()) {
226  if (lowerImageHandleOperand(MI, i, MCOp)) {
227  OutMI.addOperand(MCOp);
228  continue;
229  }
230  }
231 
232  if (lowerOperand(MO, MCOp))
233  OutMI.addOperand(MCOp);
234  }
235 }
236 
237 bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO,
238  MCOperand &MCOp) {
239  switch (MO.getType()) {
240  default: llvm_unreachable("unknown operand type");
242  MCOp = MCOperand::createReg(encodeVirtualRegister(MO.getReg()));
243  break;
245  MCOp = MCOperand::createImm(MO.getImm());
246  break;
249  MO.getMBB()->getSymbol(), OutContext));
250  break;
253  break;
255  MCOp = GetSymbolRef(getSymbol(MO.getGlobal()));
256  break;
258  const ConstantFP *Cnt = MO.getFPImm();
259  const APFloat &Val = Cnt->getValueAPF();
260 
261  switch (Cnt->getType()->getTypeID()) {
262  default: report_fatal_error("Unsupported FP type"); break;
263  case Type::HalfTyID:
264  MCOp = MCOperand::createExpr(
266  break;
267  case Type::FloatTyID:
268  MCOp = MCOperand::createExpr(
270  break;
271  case Type::DoubleTyID:
272  MCOp = MCOperand::createExpr(
274  break;
275  }
276  break;
277  }
278  }
279  return true;
280 }
281 
282 unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
284  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
285 
286  DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
287  unsigned RegNum = RegMap[Reg];
288 
289  // Encode the register class in the upper 4 bits
290  // Must be kept in sync with NVPTXInstPrinter::printRegName
291  unsigned Ret = 0;
292  if (RC == &NVPTX::Int1RegsRegClass) {
293  Ret = (1 << 28);
294  } else if (RC == &NVPTX::Int16RegsRegClass) {
295  Ret = (2 << 28);
296  } else if (RC == &NVPTX::Int32RegsRegClass) {
297  Ret = (3 << 28);
298  } else if (RC == &NVPTX::Int64RegsRegClass) {
299  Ret = (4 << 28);
300  } else if (RC == &NVPTX::Float32RegsRegClass) {
301  Ret = (5 << 28);
302  } else if (RC == &NVPTX::Float64RegsRegClass) {
303  Ret = (6 << 28);
304  } else if (RC == &NVPTX::Float16RegsRegClass) {
305  Ret = (7 << 28);
306  } else if (RC == &NVPTX::Float16x2RegsRegClass) {
307  Ret = (8 << 28);
308  } else {
309  report_fatal_error("Bad register class");
310  }
311 
312  // Insert the vreg number
313  Ret |= (RegNum & 0x0FFFFFFF);
314  return Ret;
315  } else {
316  // Some special-use registers are actually physical registers.
317  // Encode this as the register class ID of 0 and the real register ID.
318  return Reg & 0x0FFFFFFF;
319  }
320 }
321 
323  const MCExpr *Expr;
325  OutContext);
326  return MCOperand::createExpr(Expr);
327 }
328 
329 void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
330  const DataLayout &DL = getDataLayout();
331  const TargetLowering *TLI = nvptxSubtarget->getTargetLowering();
332 
333  Type *Ty = F->getReturnType();
334 
335  bool isABI = (nvptxSubtarget->getSmVersion() >= 20);
336 
337  if (Ty->getTypeID() == Type::VoidTyID)
338  return;
339 
340  O << " (";
341 
342  if (isABI) {
343  if (Ty->isFloatingPointTy() || (Ty->isIntegerTy() && !Ty->isIntegerTy(128))) {
344  unsigned size = 0;
345  if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
346  size = ITy->getBitWidth();
347  } else {
348  assert(Ty->isFloatingPointTy() && "Floating point type expected here");
349  size = Ty->getPrimitiveSizeInBits();
350  }
351  // PTX ABI requires all scalar return values to be at least 32
352  // bits in size. fp16 normally uses .b16 as its storage type in
353  // PTX, so its size must be adjusted here, too.
354  if (size < 32)
355  size = 32;
356 
357  O << ".param .b" << size << " func_retval0";
358  } else if (isa<PointerType>(Ty)) {
359  O << ".param .b" << TLI->getPointerTy(DL).getSizeInBits()
360  << " func_retval0";
361  } else if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
362  unsigned totalsz = DL.getTypeAllocSize(Ty);
363  unsigned retAlignment = 0;
364  if (!getAlign(*F, 0, retAlignment))
365  retAlignment = DL.getABITypeAlignment(Ty);
366  O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
367  << "]";
368  } else
369  llvm_unreachable("Unknown return type");
370  } else {
371  SmallVector<EVT, 16> vtparts;
372  ComputeValueVTs(*TLI, DL, Ty, vtparts);
373  unsigned idx = 0;
374  for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
375  unsigned elems = 1;
376  EVT elemtype = vtparts[i];
377  if (vtparts[i].isVector()) {
378  elems = vtparts[i].getVectorNumElements();
379  elemtype = vtparts[i].getVectorElementType();
380  }
381 
382  for (unsigned j = 0, je = elems; j != je; ++j) {
383  unsigned sz = elemtype.getSizeInBits();
384  if (elemtype.isInteger() && (sz < 32))
385  sz = 32;
386  O << ".reg .b" << sz << " func_retval" << idx;
387  if (j < je - 1)
388  O << ", ";
389  ++idx;
390  }
391  if (i < e - 1)
392  O << ", ";
393  }
394  }
395  O << ") ";
396 }
397 
398 void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
399  raw_ostream &O) {
400  const Function &F = MF.getFunction();
401  printReturnValStr(&F, O);
402 }
403 
404 // Return true if MBB is the header of a loop marked with
405 // llvm.loop.unroll.disable.
406 // TODO: consider "#pragma unroll 1" which is equivalent to "#pragma nounroll".
407 bool NVPTXAsmPrinter::isLoopHeaderOfNoUnroll(
408  const MachineBasicBlock &MBB) const {
409  MachineLoopInfo &LI = getAnalysis<MachineLoopInfo>();
410  // We insert .pragma "nounroll" only to the loop header.
411  if (!LI.isLoopHeader(&MBB))
412  return false;
413 
414  // llvm.loop.unroll.disable is marked on the back edges of a loop. Therefore,
415  // we iterate through each back edge of the loop with header MBB, and check
416  // whether its metadata contains llvm.loop.unroll.disable.
417  for (auto I = MBB.pred_begin(); I != MBB.pred_end(); ++I) {
418  const MachineBasicBlock *PMBB = *I;
419  if (LI.getLoopFor(PMBB) != LI.getLoopFor(&MBB)) {
420  // Edges from other loops to MBB are not back edges.
421  continue;
422  }
423  if (const BasicBlock *PBB = PMBB->getBasicBlock()) {
424  if (MDNode *LoopID =
425  PBB->getTerminator()->getMetadata(LLVMContext::MD_loop)) {
426  if (GetUnrollMetadata(LoopID, "llvm.loop.unroll.disable"))
427  return true;
428  }
429  }
430  }
431  return false;
432 }
433 
434 void NVPTXAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
436  if (isLoopHeaderOfNoUnroll(MBB))
437  OutStreamer->EmitRawText(StringRef("\t.pragma \"nounroll\";\n"));
438 }
439 
440 void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
441  SmallString<128> Str;
442  raw_svector_ostream O(Str);
443 
444  if (!GlobalsEmitted) {
445  emitGlobals(*MF->getFunction().getParent());
446  GlobalsEmitted = true;
447  }
448 
449  // Set up
450  MRI = &MF->getRegInfo();
451  F = &MF->getFunction();
452  emitLinkageDirective(F, O);
453  if (isKernelFunction(*F))
454  O << ".entry ";
455  else {
456  O << ".func ";
457  printReturnValStr(*MF, O);
458  }
459 
460  CurrentFnSym->print(O, MAI);
461 
462  emitFunctionParamList(*MF, O);
463 
464  if (isKernelFunction(*F))
465  emitKernelFunctionDirectives(*F, O);
466 
467  OutStreamer->EmitRawText(O.str());
468 
469  VRegMapping.clear();
470  // Emit open brace for function body.
471  OutStreamer->EmitRawText(StringRef("{\n"));
472  setAndEmitFunctionVirtualRegisters(*MF);
473 }
474 
476  nvptxSubtarget = &F.getSubtarget<NVPTXSubtarget>();
478  // Emit closing brace for the body of function F.
479  // The closing brace must be emitted here because we need to emit additional
480  // debug labels/data after the last basic block.
481  // We need to emit the closing brace here because we don't have function that
482  // finished emission of the function body.
483  OutStreamer->EmitRawText(StringRef("}\n"));
484  return Result;
485 }
486 
487 void NVPTXAsmPrinter::EmitFunctionBodyStart() {
488  SmallString<128> Str;
489  raw_svector_ostream O(Str);
490  emitDemotedVars(&MF->getFunction(), O);
491  OutStreamer->EmitRawText(O.str());
492 }
493 
494 void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
495  VRegMapping.clear();
496 }
497 
499  SmallString<128> Str;
501  return OutContext.getOrCreateSymbol(Str);
502 }
503 
504 void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
505  unsigned RegNo = MI->getOperand(0).getReg();
507  OutStreamer->AddComment(Twine("implicit-def: ") +
508  getVirtualRegisterName(RegNo));
509  } else {
510  OutStreamer->AddComment(Twine("implicit-def: ") +
511  nvptxSubtarget->getRegisterInfo()->getName(RegNo));
512  }
513  OutStreamer->AddBlankLine();
514 }
515 
516 void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
517  raw_ostream &O) const {
518  // If the NVVM IR has some of reqntid* specified, then output
519  // the reqntid directive, and set the unspecified ones to 1.
520  // If none of reqntid* is specified, don't output reqntid directive.
521  unsigned reqntidx, reqntidy, reqntidz;
522  bool specified = false;
523  if (!getReqNTIDx(F, reqntidx))
524  reqntidx = 1;
525  else
526  specified = true;
527  if (!getReqNTIDy(F, reqntidy))
528  reqntidy = 1;
529  else
530  specified = true;
531  if (!getReqNTIDz(F, reqntidz))
532  reqntidz = 1;
533  else
534  specified = true;
535 
536  if (specified)
537  O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz
538  << "\n";
539 
540  // If the NVVM IR has some of maxntid* specified, then output
541  // the maxntid directive, and set the unspecified ones to 1.
542  // If none of maxntid* is specified, don't output maxntid directive.
543  unsigned maxntidx, maxntidy, maxntidz;
544  specified = false;
545  if (!getMaxNTIDx(F, maxntidx))
546  maxntidx = 1;
547  else
548  specified = true;
549  if (!getMaxNTIDy(F, maxntidy))
550  maxntidy = 1;
551  else
552  specified = true;
553  if (!getMaxNTIDz(F, maxntidz))
554  maxntidz = 1;
555  else
556  specified = true;
557 
558  if (specified)
559  O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz
560  << "\n";
561 
562  unsigned mincta;
563  if (getMinCTASm(F, mincta))
564  O << ".minnctapersm " << mincta << "\n";
565 
566  unsigned maxnreg;
567  if (getMaxNReg(F, maxnreg))
568  O << ".maxnreg " << maxnreg << "\n";
569 }
570 
571 std::string
573  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
574 
575  std::string Name;
576  raw_string_ostream NameStr(Name);
577 
578  VRegRCMap::const_iterator I = VRegMapping.find(RC);
579  assert(I != VRegMapping.end() && "Bad register class");
580  const DenseMap<unsigned, unsigned> &RegMap = I->second;
581 
582  VRegMap::const_iterator VI = RegMap.find(Reg);
583  assert(VI != RegMap.end() && "Bad virtual register");
584  unsigned MappedVR = VI->second;
585 
586  NameStr << getNVPTXRegClassStr(RC) << MappedVR;
587 
588  NameStr.flush();
589  return Name;
590 }
591 
592 void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
593  raw_ostream &O) {
594  O << getVirtualRegisterName(vr);
595 }
596 
597 void NVPTXAsmPrinter::printVecModifiedImmediate(
598  const MachineOperand &MO, const char *Modifier, raw_ostream &O) {
599  static const char vecelem[] = { '0', '1', '2', '3', '0', '1', '2', '3' };
600  int Imm = (int) MO.getImm();
601  if (0 == strcmp(Modifier, "vecelem"))
602  O << "_" << vecelem[Imm];
603  else if (0 == strcmp(Modifier, "vecv4comm1")) {
604  if ((Imm < 0) || (Imm > 3))
605  O << "//";
606  } else if (0 == strcmp(Modifier, "vecv4comm2")) {
607  if ((Imm < 4) || (Imm > 7))
608  O << "//";
609  } else if (0 == strcmp(Modifier, "vecv4pos")) {
610  if (Imm < 0)
611  Imm = 0;
612  O << "_" << vecelem[Imm % 4];
613  } else if (0 == strcmp(Modifier, "vecv2comm1")) {
614  if ((Imm < 0) || (Imm > 1))
615  O << "//";
616  } else if (0 == strcmp(Modifier, "vecv2comm2")) {
617  if ((Imm < 2) || (Imm > 3))
618  O << "//";
619  } else if (0 == strcmp(Modifier, "vecv2pos")) {
620  if (Imm < 0)
621  Imm = 0;
622  O << "_" << vecelem[Imm % 2];
623  } else
624  llvm_unreachable("Unknown Modifier on immediate operand");
625 }
626 
627 void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
628  emitLinkageDirective(F, O);
629  if (isKernelFunction(*F))
630  O << ".entry ";
631  else
632  O << ".func ";
633  printReturnValStr(F, O);
634  getSymbol(F)->print(O, MAI);
635  O << "\n";
636  emitFunctionParamList(F, O);
637  O << ";\n";
638 }
639 
640 static bool usedInGlobalVarDef(const Constant *C) {
641  if (!C)
642  return false;
643 
644  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
645  return GV->getName() != "llvm.used";
646  }
647 
648  for (const User *U : C->users())
649  if (const Constant *C = dyn_cast<Constant>(U))
650  if (usedInGlobalVarDef(C))
651  return true;
652 
653  return false;
654 }
655 
656 static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
657  if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
658  if (othergv->getName() == "llvm.used")
659  return true;
660  }
661 
662  if (const Instruction *instr = dyn_cast<Instruction>(U)) {
663  if (instr->getParent() && instr->getParent()->getParent()) {
664  const Function *curFunc = instr->getParent()->getParent();
665  if (oneFunc && (curFunc != oneFunc))
666  return false;
667  oneFunc = curFunc;
668  return true;
669  } else
670  return false;
671  }
672 
673  for (const User *UU : U->users())
674  if (!usedInOneFunc(UU, oneFunc))
675  return false;
676 
677  return true;
678 }
679 
680 /* Find out if a global variable can be demoted to local scope.
681  * Currently, this is valid for CUDA shared variables, which have local
682  * scope and global lifetime. So the conditions to check are :
683  * 1. Is the global variable in shared address space?
684  * 2. Does it have internal linkage?
685  * 3. Is the global variable referenced only in one function?
686  */
687 static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
688  if (!gv->hasInternalLinkage())
689  return false;
690  PointerType *Pty = gv->getType();
692  return false;
693 
694  const Function *oneFunc = nullptr;
695 
696  bool flag = usedInOneFunc(gv, oneFunc);
697  if (!flag)
698  return false;
699  if (!oneFunc)
700  return false;
701  f = oneFunc;
702  return true;
703 }
704 
705 static bool useFuncSeen(const Constant *C,
707  for (const User *U : C->users()) {
708  if (const Constant *cu = dyn_cast<Constant>(U)) {
709  if (useFuncSeen(cu, seenMap))
710  return true;
711  } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
712  const BasicBlock *bb = I->getParent();
713  if (!bb)
714  continue;
715  const Function *caller = bb->getParent();
716  if (!caller)
717  continue;
718  if (seenMap.find(caller) != seenMap.end())
719  return true;
720  }
721  }
722  return false;
723 }
724 
725 void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
727  for (Module::const_iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
728  const Function *F = &*FI;
729 
730  if (F->isDeclaration()) {
731  if (F->use_empty())
732  continue;
733  if (F->getIntrinsicID())
734  continue;
735  emitDeclaration(F, O);
736  continue;
737  }
738  for (const User *U : F->users()) {
739  if (const Constant *C = dyn_cast<Constant>(U)) {
740  if (usedInGlobalVarDef(C)) {
741  // The use is in the initialization of a global variable
742  // that is a function pointer, so print a declaration
743  // for the original function
744  emitDeclaration(F, O);
745  break;
746  }
747  // Emit a declaration of this function if the function that
748  // uses this constant expr has already been seen.
749  if (useFuncSeen(C, seenMap)) {
750  emitDeclaration(F, O);
751  break;
752  }
753  }
754 
755  if (!isa<Instruction>(U))
756  continue;
757  const Instruction *instr = cast<Instruction>(U);
758  const BasicBlock *bb = instr->getParent();
759  if (!bb)
760  continue;
761  const Function *caller = bb->getParent();
762  if (!caller)
763  continue;
764 
765  // If a caller has already been seen, then the caller is
766  // appearing in the module before the callee. so print out
767  // a declaration for the callee.
768  if (seenMap.find(caller) != seenMap.end()) {
769  emitDeclaration(F, O);
770  break;
771  }
772  }
773  seenMap[F] = true;
774  }
775 }
776 
778  if (!GV) return true;
779  const ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
780  if (!InitList) return true; // Not an array; we don't know how to parse.
781  return InitList->getNumOperands() == 0;
782 }
783 
785  // Construct a default subtarget off of the TargetMachine defaults. The
786  // rest of NVPTX isn't friendly to change subtargets per function and
787  // so the default TargetMachine will have all of the options.
788  const Triple &TT = TM.getTargetTriple();
789  StringRef CPU = TM.getTargetCPU();
791  const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
792  const NVPTXSubtarget STI(TT, CPU, FS, NTM);
793 
794  if (M.alias_size()) {
795  report_fatal_error("Module has aliases, which NVPTX does not support.");
796  return true; // error
797  }
798  if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_ctors"))) {
800  "Module has a nontrivial global ctor, which NVPTX does not support.");
801  return true; // error
802  }
803  if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_dtors"))) {
805  "Module has a nontrivial global dtor, which NVPTX does not support.");
806  return true; // error
807  }
808 
809  SmallString<128> Str1;
810  raw_svector_ostream OS1(Str1);
811 
812  // We need to call the parent's one explicitly.
814 
815  // Emit header before any dwarf directives are emitted below.
816  emitHeader(M, OS1, STI);
817  OutStreamer->EmitRawText(OS1.str());
818 
819  // Emit module-level inline asm if it exists.
820  if (!M.getModuleInlineAsm().empty()) {
821  OutStreamer->AddComment("Start of file scope inline assembly");
822  OutStreamer->AddBlankLine();
823  OutStreamer->EmitRawText(StringRef(M.getModuleInlineAsm()));
824  OutStreamer->AddBlankLine();
825  OutStreamer->AddComment("End of file scope inline assembly");
826  OutStreamer->AddBlankLine();
827  }
828 
829  GlobalsEmitted = false;
830 
831  return Result;
832 }
833 
834 void NVPTXAsmPrinter::emitGlobals(const Module &M) {
835  SmallString<128> Str2;
836  raw_svector_ostream OS2(Str2);
837 
838  emitDeclarations(M, OS2);
839 
840  // As ptxas does not support forward references of globals, we need to first
841  // sort the list of module-level globals in def-use order. We visit each
842  // global variable in order, and ensure that we emit it *after* its dependent
843  // globals. We use a little extra memory maintaining both a set and a list to
844  // have fast searches while maintaining a strict ordering.
848 
849  // Visit each global variable, in order
850  for (const GlobalVariable &I : M.globals())
851  VisitGlobalVariableForEmission(&I, Globals, GVVisited, GVVisiting);
852 
853  assert(GVVisited.size() == M.getGlobalList().size() &&
854  "Missed a global variable");
855  assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
856 
857  // Print out module-level global variables in proper order
858  for (unsigned i = 0, e = Globals.size(); i != e; ++i)
859  printModuleLevelGV(Globals[i], OS2);
860 
861  OS2 << '\n';
862 
863  OutStreamer->EmitRawText(OS2.str());
864 }
865 
866 void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O,
867  const NVPTXSubtarget &STI) {
868  O << "//\n";
869  O << "// Generated by LLVM NVPTX Back-End\n";
870  O << "//\n";
871  O << "\n";
872 
873  unsigned PTXVersion = STI.getPTXVersion();
874  O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
875 
876  O << ".target ";
877  O << STI.getTargetName();
878 
879  const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
880  if (NTM.getDrvInterface() == NVPTX::NVCL)
881  O << ", texmode_independent";
882 
883  // FIXME: remove comment once debug info is properly supported.
884  if (MMI && MMI->hasDebugInfo())
885  O << "//, debug";
886 
887  O << "\n";
888 
889  O << ".address_size ";
890  if (NTM.is64Bit())
891  O << "64";
892  else
893  O << "32";
894  O << "\n";
895 
896  O << "\n";
897 }
898 
900  bool HasDebugInfo = MMI && MMI->hasDebugInfo();
901 
902  // If we did not emit any functions, then the global declarations have not
903  // yet been emitted.
904  if (!GlobalsEmitted) {
905  emitGlobals(M);
906  GlobalsEmitted = true;
907  }
908 
909  // XXX Temproarily remove global variables so that doFinalization() will not
910  // emit them again (global variables are emitted at beginning).
911 
912  Module::GlobalListType &global_list = M.getGlobalList();
913  int i, n = global_list.size();
914  GlobalVariable **gv_array = new GlobalVariable *[n];
915 
916  // first, back-up GlobalVariable in gv_array
917  i = 0;
918  for (Module::global_iterator I = global_list.begin(), E = global_list.end();
919  I != E; ++I)
920  gv_array[i++] = &*I;
921 
922  // second, empty global_list
923  while (!global_list.empty())
924  global_list.remove(global_list.begin());
925 
926  // call doFinalization
927  bool ret = AsmPrinter::doFinalization(M);
928 
929  // now we restore global variables
930  for (i = 0; i < n; i++)
931  global_list.insert(global_list.end(), gv_array[i]);
932 
934 
935  delete[] gv_array;
936  // FIXME: remove comment once debug info is properly supported.
937  // Close the last emitted section
938  if (HasDebugInfo)
939  OutStreamer->EmitRawText("//\t}");
940 
941  return ret;
942 
943  //bool Result = AsmPrinter::doFinalization(M);
944  // Instead of calling the parents doFinalization, we may
945  // clone parents doFinalization and customize here.
946  // Currently, we if NVISA out the EmitGlobals() in
947  // parent's doFinalization, which is too intrusive.
948  //
949  // Same for the doInitialization.
950  //return Result;
951 }
952 
953 // This function emits appropriate linkage directives for
954 // functions and global variables.
955 //
956 // extern function declaration -> .extern
957 // extern function definition -> .visible
958 // external global variable with init -> .visible
959 // external without init -> .extern
960 // appending -> not allowed, assert.
961 // for any linkage other than
962 // internal, private, linker_private,
963 // linker_private_weak, linker_private_weak_def_auto,
964 // we emit -> .weak.
965 
966 void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
967  raw_ostream &O) {
968  if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA) {
969  if (V->hasExternalLinkage()) {
970  if (isa<GlobalVariable>(V)) {
971  const GlobalVariable *GVar = cast<GlobalVariable>(V);
972  if (GVar) {
973  if (GVar->hasInitializer())
974  O << ".visible ";
975  else
976  O << ".extern ";
977  }
978  } else if (V->isDeclaration())
979  O << ".extern ";
980  else
981  O << ".visible ";
982  } else if (V->hasAppendingLinkage()) {
983  std::string msg;
984  msg.append("Error: ");
985  msg.append("Symbol ");
986  if (V->hasName())
987  msg.append(V->getName());
988  msg.append("has unsupported appending linkage type");
989  llvm_unreachable(msg.c_str());
990  } else if (!V->hasInternalLinkage() &&
991  !V->hasPrivateLinkage()) {
992  O << ".weak ";
993  }
994  }
995 }
996 
997 void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
998  raw_ostream &O,
999  bool processDemoted) {
1000  // Skip meta data
1001  if (GVar->hasSection()) {
1002  if (GVar->getSection() == "llvm.metadata")
1003  return;
1004  }
1005 
1006  // Skip LLVM intrinsic global variables
1007  if (GVar->getName().startswith("llvm.") ||
1008  GVar->getName().startswith("nvvm."))
1009  return;
1010 
1011  const DataLayout &DL = getDataLayout();
1012 
1013  // GlobalVariables are always constant pointers themselves.
1014  PointerType *PTy = GVar->getType();
1015  Type *ETy = GVar->getValueType();
1016 
1017  if (GVar->hasExternalLinkage()) {
1018  if (GVar->hasInitializer())
1019  O << ".visible ";
1020  else
1021  O << ".extern ";
1022  } else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() ||
1024  GVar->hasCommonLinkage()) {
1025  O << ".weak ";
1026  }
1027 
1028  if (isTexture(*GVar)) {
1029  O << ".global .texref " << getTextureName(*GVar) << ";\n";
1030  return;
1031  }
1032 
1033  if (isSurface(*GVar)) {
1034  O << ".global .surfref " << getSurfaceName(*GVar) << ";\n";
1035  return;
1036  }
1037 
1038  if (GVar->isDeclaration()) {
1039  // (extern) declarations, no definition or initializer
1040  // Currently the only known declaration is for an automatic __local
1041  // (.shared) promoted to global.
1042  emitPTXGlobalVariable(GVar, O);
1043  O << ";\n";
1044  return;
1045  }
1046 
1047  if (isSampler(*GVar)) {
1048  O << ".global .samplerref " << getSamplerName(*GVar);
1049 
1050  const Constant *Initializer = nullptr;
1051  if (GVar->hasInitializer())
1052  Initializer = GVar->getInitializer();
1053  const ConstantInt *CI = nullptr;
1054  if (Initializer)
1055  CI = dyn_cast<ConstantInt>(Initializer);
1056  if (CI) {
1057  unsigned sample = CI->getZExtValue();
1058 
1059  O << " = { ";
1060 
1061  for (int i = 0,
1062  addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
1063  i < 3; i++) {
1064  O << "addr_mode_" << i << " = ";
1065  switch (addr) {
1066  case 0:
1067  O << "wrap";
1068  break;
1069  case 1:
1070  O << "clamp_to_border";
1071  break;
1072  case 2:
1073  O << "clamp_to_edge";
1074  break;
1075  case 3:
1076  O << "wrap";
1077  break;
1078  case 4:
1079  O << "mirror";
1080  break;
1081  }
1082  O << ", ";
1083  }
1084  O << "filter_mode = ";
1085  switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
1086  case 0:
1087  O << "nearest";
1088  break;
1089  case 1:
1090  O << "linear";
1091  break;
1092  case 2:
1093  llvm_unreachable("Anisotropic filtering is not supported");
1094  default:
1095  O << "nearest";
1096  break;
1097  }
1098  if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
1099  O << ", force_unnormalized_coords = 1";
1100  }
1101  O << " }";
1102  }
1103 
1104  O << ";\n";
1105  return;
1106  }
1107 
1108  if (GVar->hasPrivateLinkage()) {
1109  if (strncmp(GVar->getName().data(), "unrollpragma", 12) == 0)
1110  return;
1111 
1112  // FIXME - need better way (e.g. Metadata) to avoid generating this global
1113  if (strncmp(GVar->getName().data(), "filename", 8) == 0)
1114  return;
1115  if (GVar->use_empty())
1116  return;
1117  }
1118 
1119  const Function *demotedFunc = nullptr;
1120  if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
1121  O << "// " << GVar->getName() << " has been demoted\n";
1122  if (localDecls.find(demotedFunc) != localDecls.end())
1123  localDecls[demotedFunc].push_back(GVar);
1124  else {
1125  std::vector<const GlobalVariable *> temp;
1126  temp.push_back(GVar);
1127  localDecls[demotedFunc] = temp;
1128  }
1129  return;
1130  }
1131 
1132  O << ".";
1133  emitPTXAddressSpace(PTy->getAddressSpace(), O);
1134 
1135  if (isManaged(*GVar)) {
1136  O << " .attribute(.managed)";
1137  }
1138 
1139  if (GVar->getAlignment() == 0)
1140  O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
1141  else
1142  O << " .align " << GVar->getAlignment();
1143 
1144  if (ETy->isFloatingPointTy() || ETy->isPointerTy() ||
1145  (ETy->isIntegerTy() && ETy->getScalarSizeInBits() <= 64)) {
1146  O << " .";
1147  // Special case: ABI requires that we use .u8 for predicates
1148  if (ETy->isIntegerTy(1))
1149  O << "u8";
1150  else
1151  O << getPTXFundamentalTypeStr(ETy, false);
1152  O << " ";
1153  getSymbol(GVar)->print(O, MAI);
1154 
1155  // Ptx allows variable initilization only for constant and global state
1156  // spaces.
1157  if (GVar->hasInitializer()) {
1158  if ((PTy->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
1159  (PTy->getAddressSpace() == ADDRESS_SPACE_CONST)) {
1160  const Constant *Initializer = GVar->getInitializer();
1161  // 'undef' is treated as there is no value specified.
1162  if (!Initializer->isNullValue() && !isa<UndefValue>(Initializer)) {
1163  O << " = ";
1164  printScalarConstant(Initializer, O);
1165  }
1166  } else {
1167  // The frontend adds zero-initializer to device and constant variables
1168  // that don't have an initial value, and UndefValue to shared
1169  // variables, so skip warning for this case.
1170  if (!GVar->getInitializer()->isNullValue() &&
1171  !isa<UndefValue>(GVar->getInitializer())) {
1172  report_fatal_error("initial value of '" + GVar->getName() +
1173  "' is not allowed in addrspace(" +
1174  Twine(PTy->getAddressSpace()) + ")");
1175  }
1176  }
1177  }
1178  } else {
1179  unsigned int ElementSize = 0;
1180 
1181  // Although PTX has direct support for struct type and array type and
1182  // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
1183  // targets that support these high level field accesses. Structs, arrays
1184  // and vectors are lowered into arrays of bytes.
1185  switch (ETy->getTypeID()) {
1186  case Type::IntegerTyID: // Integers larger than 64 bits
1187  case Type::StructTyID:
1188  case Type::ArrayTyID:
1189  case Type::VectorTyID:
1190  ElementSize = DL.getTypeStoreSize(ETy);
1191  // Ptx allows variable initilization only for constant and
1192  // global state spaces.
1193  if (((PTy->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
1194  (PTy->getAddressSpace() == ADDRESS_SPACE_CONST)) &&
1195  GVar->hasInitializer()) {
1196  const Constant *Initializer = GVar->getInitializer();
1197  if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
1198  AggBuffer aggBuffer(ElementSize, O, *this);
1199  bufferAggregateConstant(Initializer, &aggBuffer);
1200  if (aggBuffer.numSymbols) {
1201  if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit()) {
1202  O << " .u64 ";
1203  getSymbol(GVar)->print(O, MAI);
1204  O << "[";
1205  O << ElementSize / 8;
1206  } else {
1207  O << " .u32 ";
1208  getSymbol(GVar)->print(O, MAI);
1209  O << "[";
1210  O << ElementSize / 4;
1211  }
1212  O << "]";
1213  } else {
1214  O << " .b8 ";
1215  getSymbol(GVar)->print(O, MAI);
1216  O << "[";
1217  O << ElementSize;
1218  O << "]";
1219  }
1220  O << " = {";
1221  aggBuffer.print();
1222  O << "}";
1223  } else {
1224  O << " .b8 ";
1225  getSymbol(GVar)->print(O, MAI);
1226  if (ElementSize) {
1227  O << "[";
1228  O << ElementSize;
1229  O << "]";
1230  }
1231  }
1232  } else {
1233  O << " .b8 ";
1234  getSymbol(GVar)->print(O, MAI);
1235  if (ElementSize) {
1236  O << "[";
1237  O << ElementSize;
1238  O << "]";
1239  }
1240  }
1241  break;
1242  default:
1243  llvm_unreachable("type not supported yet");
1244  }
1245  }
1246  O << ";\n";
1247 }
1248 
1249 void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
1250  if (localDecls.find(f) == localDecls.end())
1251  return;
1252 
1253  std::vector<const GlobalVariable *> &gvars = localDecls[f];
1254 
1255  for (unsigned i = 0, e = gvars.size(); i != e; ++i) {
1256  O << "\t// demoted variable\n\t";
1257  printModuleLevelGV(gvars[i], O, true);
1258  }
1259 }
1260 
1261 void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
1262  raw_ostream &O) const {
1263  switch (AddressSpace) {
1264  case ADDRESS_SPACE_LOCAL:
1265  O << "local";
1266  break;
1267  case ADDRESS_SPACE_GLOBAL:
1268  O << "global";
1269  break;
1270  case ADDRESS_SPACE_CONST:
1271  O << "const";
1272  break;
1273  case ADDRESS_SPACE_SHARED:
1274  O << "shared";
1275  break;
1276  default:
1277  report_fatal_error("Bad address space found while emitting PTX: " +
1279  break;
1280  }
1281 }
1282 
1283 std::string
1284 NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type *Ty, bool useB4PTR) const {
1285  switch (Ty->getTypeID()) {
1286  default:
1287  llvm_unreachable("unexpected type");
1288  break;
1289  case Type::IntegerTyID: {
1290  unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
1291  if (NumBits == 1)
1292  return "pred";
1293  else if (NumBits <= 64) {
1294  std::string name = "u";
1295  return name + utostr(NumBits);
1296  } else {
1297  llvm_unreachable("Integer too large");
1298  break;
1299  }
1300  break;
1301  }
1302  case Type::HalfTyID:
1303  // fp16 is stored as .b16 for compatibility with pre-sm_53 PTX assembly.
1304  return "b16";
1305  case Type::FloatTyID:
1306  return "f32";
1307  case Type::DoubleTyID:
1308  return "f64";
1309  case Type::PointerTyID:
1310  if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit())
1311  if (useB4PTR)
1312  return "b64";
1313  else
1314  return "u64";
1315  else if (useB4PTR)
1316  return "b32";
1317  else
1318  return "u32";
1319  }
1320  llvm_unreachable("unexpected type");
1321  return nullptr;
1322 }
1323 
1324 void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
1325  raw_ostream &O) {
1326  const DataLayout &DL = getDataLayout();
1327 
1328  // GlobalVariables are always constant pointers themselves.
1329  Type *ETy = GVar->getValueType();
1330 
1331  O << ".";
1332  emitPTXAddressSpace(GVar->getType()->getAddressSpace(), O);
1333  if (GVar->getAlignment() == 0)
1334  O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
1335  else
1336  O << " .align " << GVar->getAlignment();
1337 
1338  // Special case for i128
1339  if (ETy->isIntegerTy(128)) {
1340  O << " .b8 ";
1341  getSymbol(GVar)->print(O, MAI);
1342  O << "[16]";
1343  return;
1344  }
1345 
1346  if (ETy->isFloatingPointTy() || ETy->isIntOrPtrTy()) {
1347  O << " .";
1348  O << getPTXFundamentalTypeStr(ETy);
1349  O << " ";
1350  getSymbol(GVar)->print(O, MAI);
1351  return;
1352  }
1353 
1354  int64_t ElementSize = 0;
1355 
1356  // Although PTX has direct support for struct type and array type and LLVM IR
1357  // is very similar to PTX, the LLVM CodeGen does not support for targets that
1358  // support these high level field accesses. Structs and arrays are lowered
1359  // into arrays of bytes.
1360  switch (ETy->getTypeID()) {
1361  case Type::StructTyID:
1362  case Type::ArrayTyID:
1363  case Type::VectorTyID:
1364  ElementSize = DL.getTypeStoreSize(ETy);
1365  O << " .b8 ";
1366  getSymbol(GVar)->print(O, MAI);
1367  O << "[";
1368  if (ElementSize) {
1369  O << ElementSize;
1370  }
1371  O << "]";
1372  break;
1373  default:
1374  llvm_unreachable("type not supported yet");
1375  }
1376 }
1377 
1378 static unsigned int getOpenCLAlignment(const DataLayout &DL, Type *Ty) {
1379  if (Ty->isSingleValueType())
1380  return DL.getPrefTypeAlignment(Ty);
1381 
1382  auto *ATy = dyn_cast<ArrayType>(Ty);
1383  if (ATy)
1384  return getOpenCLAlignment(DL, ATy->getElementType());
1385 
1386  auto *STy = dyn_cast<StructType>(Ty);
1387  if (STy) {
1388  unsigned int alignStruct = 1;
1389  // Go through each element of the struct and find the
1390  // largest alignment.
1391  for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1392  Type *ETy = STy->getElementType(i);
1393  unsigned int align = getOpenCLAlignment(DL, ETy);
1394  if (align > alignStruct)
1395  alignStruct = align;
1396  }
1397  return alignStruct;
1398  }
1399 
1400  auto *FTy = dyn_cast<FunctionType>(Ty);
1401  if (FTy)
1402  return DL.getPointerPrefAlignment();
1403  return DL.getPrefTypeAlignment(Ty);
1404 }
1405 
1406 void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
1407  int paramIndex, raw_ostream &O) {
1408  getSymbol(I->getParent())->print(O, MAI);
1409  O << "_param_" << paramIndex;
1410 }
1411 
1412 void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
1413  const DataLayout &DL = getDataLayout();
1414  const AttributeList &PAL = F->getAttributes();
1415  const TargetLowering *TLI = nvptxSubtarget->getTargetLowering();
1417  unsigned paramIndex = 0;
1418  bool first = true;
1419  bool isKernelFunc = isKernelFunction(*F);
1420  bool isABI = (nvptxSubtarget->getSmVersion() >= 20);
1421  MVT thePointerTy = TLI->getPointerTy(DL);
1422 
1423  if (F->arg_empty()) {
1424  O << "()\n";
1425  return;
1426  }
1427 
1428  O << "(\n";
1429 
1430  for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
1431  Type *Ty = I->getType();
1432 
1433  if (!first)
1434  O << ",\n";
1435 
1436  first = false;
1437 
1438  // Handle image/sampler parameters
1439  if (isKernelFunction(*F)) {
1440  if (isSampler(*I) || isImage(*I)) {
1441  if (isImage(*I)) {
1442  std::string sname = I->getName();
1443  if (isImageWriteOnly(*I) || isImageReadWrite(*I)) {
1444  if (nvptxSubtarget->hasImageHandles())
1445  O << "\t.param .u64 .ptr .surfref ";
1446  else
1447  O << "\t.param .surfref ";
1448  CurrentFnSym->print(O, MAI);
1449  O << "_param_" << paramIndex;
1450  }
1451  else { // Default image is read_only
1452  if (nvptxSubtarget->hasImageHandles())
1453  O << "\t.param .u64 .ptr .texref ";
1454  else
1455  O << "\t.param .texref ";
1456  CurrentFnSym->print(O, MAI);
1457  O << "_param_" << paramIndex;
1458  }
1459  } else {
1460  if (nvptxSubtarget->hasImageHandles())
1461  O << "\t.param .u64 .ptr .samplerref ";
1462  else
1463  O << "\t.param .samplerref ";
1464  CurrentFnSym->print(O, MAI);
1465  O << "_param_" << paramIndex;
1466  }
1467  continue;
1468  }
1469  }
1470 
1471  if (!PAL.hasParamAttribute(paramIndex, Attribute::ByVal)) {
1472  if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1473  // Just print .param .align <a> .b8 .param[size];
1474  // <a> = PAL.getparamalignment
1475  // size = typeallocsize of element type
1476  unsigned align = PAL.getParamAlignment(paramIndex);
1477  if (align == 0)
1478  align = DL.getABITypeAlignment(Ty);
1479 
1480  unsigned sz = DL.getTypeAllocSize(Ty);
1481  O << "\t.param .align " << align << " .b8 ";
1482  printParamName(I, paramIndex, O);
1483  O << "[" << sz << "]";
1484 
1485  continue;
1486  }
1487  // Just a scalar
1488  auto *PTy = dyn_cast<PointerType>(Ty);
1489  if (isKernelFunc) {
1490  if (PTy) {
1491  // Special handling for pointer arguments to kernel
1492  O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
1493 
1494  if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() !=
1495  NVPTX::CUDA) {
1496  Type *ETy = PTy->getElementType();
1497  int addrSpace = PTy->getAddressSpace();
1498  switch (addrSpace) {
1499  default:
1500  O << ".ptr ";
1501  break;
1502  case ADDRESS_SPACE_CONST:
1503  O << ".ptr .const ";
1504  break;
1505  case ADDRESS_SPACE_SHARED:
1506  O << ".ptr .shared ";
1507  break;
1508  case ADDRESS_SPACE_GLOBAL:
1509  O << ".ptr .global ";
1510  break;
1511  }
1512  O << ".align " << (int)getOpenCLAlignment(DL, ETy) << " ";
1513  }
1514  printParamName(I, paramIndex, O);
1515  continue;
1516  }
1517 
1518  // non-pointer scalar to kernel func
1519  O << "\t.param .";
1520  // Special case: predicate operands become .u8 types
1521  if (Ty->isIntegerTy(1))
1522  O << "u8";
1523  else
1524  O << getPTXFundamentalTypeStr(Ty);
1525  O << " ";
1526  printParamName(I, paramIndex, O);
1527  continue;
1528  }
1529  // Non-kernel function, just print .param .b<size> for ABI
1530  // and .reg .b<size> for non-ABI
1531  unsigned sz = 0;
1532  if (isa<IntegerType>(Ty)) {
1533  sz = cast<IntegerType>(Ty)->getBitWidth();
1534  if (sz < 32)
1535  sz = 32;
1536  } else if (isa<PointerType>(Ty))
1537  sz = thePointerTy.getSizeInBits();
1538  else if (Ty->isHalfTy())
1539  // PTX ABI requires all scalar parameters to be at least 32
1540  // bits in size. fp16 normally uses .b16 as its storage type
1541  // in PTX, so its size must be adjusted here, too.
1542  sz = 32;
1543  else
1544  sz = Ty->getPrimitiveSizeInBits();
1545  if (isABI)
1546  O << "\t.param .b" << sz << " ";
1547  else
1548  O << "\t.reg .b" << sz << " ";
1549  printParamName(I, paramIndex, O);
1550  continue;
1551  }
1552 
1553  // param has byVal attribute. So should be a pointer
1554  auto *PTy = dyn_cast<PointerType>(Ty);
1555  assert(PTy && "Param with byval attribute should be a pointer type");
1556  Type *ETy = PTy->getElementType();
1557 
1558  if (isABI || isKernelFunc) {
1559  // Just print .param .align <a> .b8 .param[size];
1560  // <a> = PAL.getparamalignment
1561  // size = typeallocsize of element type
1562  unsigned align = PAL.getParamAlignment(paramIndex);
1563  if (align == 0)
1564  align = DL.getABITypeAlignment(ETy);
1565  // Work around a bug in ptxas. When PTX code takes address of
1566  // byval parameter with alignment < 4, ptxas generates code to
1567  // spill argument into memory. Alas on sm_50+ ptxas generates
1568  // SASS code that fails with misaligned access. To work around
1569  // the problem, make sure that we align byval parameters by at
1570  // least 4. Matching change must be made in LowerCall() where we
1571  // prepare parameters for the call.
1572  //
1573  // TODO: this will need to be undone when we get to support multi-TU
1574  // device-side compilation as it breaks ABI compatibility with nvcc.
1575  // Hopefully ptxas bug is fixed by then.
1576  if (!isKernelFunc && align < 4)
1577  align = 4;
1578  unsigned sz = DL.getTypeAllocSize(ETy);
1579  O << "\t.param .align " << align << " .b8 ";
1580  printParamName(I, paramIndex, O);
1581  O << "[" << sz << "]";
1582  continue;
1583  } else {
1584  // Split the ETy into constituent parts and
1585  // print .param .b<size> <name> for each part.
1586  // Further, if a part is vector, print the above for
1587  // each vector element.
1588  SmallVector<EVT, 16> vtparts;
1589  ComputeValueVTs(*TLI, DL, ETy, vtparts);
1590  for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
1591  unsigned elems = 1;
1592  EVT elemtype = vtparts[i];
1593  if (vtparts[i].isVector()) {
1594  elems = vtparts[i].getVectorNumElements();
1595  elemtype = vtparts[i].getVectorElementType();
1596  }
1597 
1598  for (unsigned j = 0, je = elems; j != je; ++j) {
1599  unsigned sz = elemtype.getSizeInBits();
1600  if (elemtype.isInteger() && (sz < 32))
1601  sz = 32;
1602  O << "\t.reg .b" << sz << " ";
1603  printParamName(I, paramIndex, O);
1604  if (j < je - 1)
1605  O << ",\n";
1606  ++paramIndex;
1607  }
1608  if (i < e - 1)
1609  O << ",\n";
1610  }
1611  --paramIndex;
1612  continue;
1613  }
1614  }
1615 
1616  O << "\n)\n";
1617 }
1618 
1619 void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
1620  raw_ostream &O) {
1621  const Function &F = MF.getFunction();
1622  emitFunctionParamList(&F, O);
1623 }
1624 
1625 void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
1626  const MachineFunction &MF) {
1627  SmallString<128> Str;
1628  raw_svector_ostream O(Str);
1629 
1630  // Map the global virtual register number to a register class specific
1631  // virtual register number starting from 1 with that class.
1633  //unsigned numRegClasses = TRI->getNumRegClasses();
1634 
1635  // Emit the Fake Stack Object
1636  const MachineFrameInfo &MFI = MF.getFrameInfo();
1637  int NumBytes = (int) MFI.getStackSize();
1638  if (NumBytes) {
1639  O << "\t.local .align " << MFI.getMaxAlignment() << " .b8 \t" << DEPOTNAME
1640  << getFunctionNumber() << "[" << NumBytes << "];\n";
1641  if (static_cast<const NVPTXTargetMachine &>(MF.getTarget()).is64Bit()) {
1642  O << "\t.reg .b64 \t%SP;\n";
1643  O << "\t.reg .b64 \t%SPL;\n";
1644  } else {
1645  O << "\t.reg .b32 \t%SP;\n";
1646  O << "\t.reg .b32 \t%SPL;\n";
1647  }
1648  }
1649 
1650  // Go through all virtual registers to establish the mapping between the
1651  // global virtual
1652  // register number and the per class virtual register number.
1653  // We use the per class virtual register number in the ptx output.
1654  unsigned int numVRs = MRI->getNumVirtRegs();
1655  for (unsigned i = 0; i < numVRs; i++) {
1656  unsigned int vr = TRI->index2VirtReg(i);
1657  const TargetRegisterClass *RC = MRI->getRegClass(vr);
1658  DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
1659  int n = regmap.size();
1660  regmap.insert(std::make_pair(vr, n + 1));
1661  }
1662 
1663  // Emit register declarations
1664  // @TODO: Extract out the real register usage
1665  // O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
1666  // O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
1667  // O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
1668  // O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
1669  // O << "\t.reg .s64 %rd<" << NVPTXNumRegisters << ">;\n";
1670  // O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
1671  // O << "\t.reg .f64 %fd<" << NVPTXNumRegisters << ">;\n";
1672 
1673  // Emit declaration of the virtual registers or 'physical' registers for
1674  // each register class
1675  for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
1676  const TargetRegisterClass *RC = TRI->getRegClass(i);
1677  DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
1678  std::string rcname = getNVPTXRegClassName(RC);
1679  std::string rcStr = getNVPTXRegClassStr(RC);
1680  int n = regmap.size();
1681 
1682  // Only declare those registers that may be used.
1683  if (n) {
1684  O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
1685  << ">;\n";
1686  }
1687  }
1688 
1689  OutStreamer->EmitRawText(O.str());
1690 }
1691 
1692 void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
1693  APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
1694  bool ignored;
1695  unsigned int numHex;
1696  const char *lead;
1697 
1698  if (Fp->getType()->getTypeID() == Type::FloatTyID) {
1699  numHex = 8;
1700  lead = "0f";
1702  } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
1703  numHex = 16;
1704  lead = "0d";
1706  } else
1707  llvm_unreachable("unsupported fp type");
1708 
1709  APInt API = APF.bitcastToAPInt();
1710  O << lead << format_hex_no_prefix(API.getZExtValue(), numHex, /*Upper=*/true);
1711 }
1712 
1713 void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
1714  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1715  O << CI->getValue();
1716  return;
1717  }
1718  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
1719  printFPConstant(CFP, O);
1720  return;
1721  }
1722  if (isa<ConstantPointerNull>(CPV)) {
1723  O << "0";
1724  return;
1725  }
1726  if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1727  bool IsNonGenericPointer = false;
1728  if (GVar->getType()->getAddressSpace() != 0) {
1729  IsNonGenericPointer = true;
1730  }
1731  if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
1732  O << "generic(";
1733  getSymbol(GVar)->print(O, MAI);
1734  O << ")";
1735  } else {
1736  getSymbol(GVar)->print(O, MAI);
1737  }
1738  return;
1739  }
1740  if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1741  const Value *v = Cexpr->stripPointerCasts();
1742  PointerType *PTy = dyn_cast<PointerType>(Cexpr->getType());
1743  bool IsNonGenericPointer = false;
1744  if (PTy && PTy->getAddressSpace() != 0) {
1745  IsNonGenericPointer = true;
1746  }
1747  if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
1748  if (EmitGeneric && !isa<Function>(v) && !IsNonGenericPointer) {
1749  O << "generic(";
1750  getSymbol(GVar)->print(O, MAI);
1751  O << ")";
1752  } else {
1753  getSymbol(GVar)->print(O, MAI);
1754  }
1755  return;
1756  } else {
1757  lowerConstant(CPV)->print(O, MAI);
1758  return;
1759  }
1760  }
1761  llvm_unreachable("Not scalar type found in printScalarConstant()");
1762 }
1763 
1764 // These utility functions assure we get the right sequence of bytes for a given
1765 // type even for big-endian machines
1766 template <typename T> static void ConvertIntToBytes(unsigned char *p, T val) {
1767  int64_t vp = (int64_t)val;
1768  for (unsigned i = 0; i < sizeof(T); ++i) {
1769  p[i] = (unsigned char)vp;
1770  vp >>= 8;
1771  }
1772 }
1773 static void ConvertFloatToBytes(unsigned char *p, float val) {
1774  int32_t *vp = (int32_t *)&val;
1775  for (unsigned i = 0; i < sizeof(int32_t); ++i) {
1776  p[i] = (unsigned char)*vp;
1777  *vp >>= 8;
1778  }
1779 }
1780 static void ConvertDoubleToBytes(unsigned char *p, double val) {
1781  int64_t *vp = (int64_t *)&val;
1782  for (unsigned i = 0; i < sizeof(int64_t); ++i) {
1783  p[i] = (unsigned char)*vp;
1784  *vp >>= 8;
1785  }
1786 }
1787 
1788 void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
1789  AggBuffer *aggBuffer) {
1790  const DataLayout &DL = getDataLayout();
1791 
1792  if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
1793  int s = DL.getTypeAllocSize(CPV->getType());
1794  if (s < Bytes)
1795  s = Bytes;
1796  aggBuffer->addZeros(s);
1797  return;
1798  }
1799 
1800  unsigned char ptr[8];
1801  switch (CPV->getType()->getTypeID()) {
1802 
1803  case Type::IntegerTyID: {
1804  Type *ETy = CPV->getType();
1805  if (ETy == Type::getInt8Ty(CPV->getContext())) {
1806  unsigned char c = (unsigned char)cast<ConstantInt>(CPV)->getZExtValue();
1807  ConvertIntToBytes<>(ptr, c);
1808  aggBuffer->addBytes(ptr, 1, Bytes);
1809  } else if (ETy == Type::getInt16Ty(CPV->getContext())) {
1810  short int16 = (short)cast<ConstantInt>(CPV)->getZExtValue();
1811  ConvertIntToBytes<>(ptr, int16);
1812  aggBuffer->addBytes(ptr, 2, Bytes);
1813  } else if (ETy == Type::getInt32Ty(CPV->getContext())) {
1814  if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1815  int int32 = (int)(constInt->getZExtValue());
1816  ConvertIntToBytes<>(ptr, int32);
1817  aggBuffer->addBytes(ptr, 4, Bytes);
1818  break;
1819  } else if (const auto *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1820  if (const auto *constInt = dyn_cast_or_null<ConstantInt>(
1821  ConstantFoldConstant(Cexpr, DL))) {
1822  int int32 = (int)(constInt->getZExtValue());
1823  ConvertIntToBytes<>(ptr, int32);
1824  aggBuffer->addBytes(ptr, 4, Bytes);
1825  break;
1826  }
1827  if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1828  Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1829  aggBuffer->addSymbol(v, Cexpr->getOperand(0));
1830  aggBuffer->addZeros(4);
1831  break;
1832  }
1833  }
1834  llvm_unreachable("unsupported integer const type");
1835  } else if (ETy == Type::getInt64Ty(CPV->getContext())) {
1836  if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1837  long long int64 = (long long)(constInt->getZExtValue());
1838  ConvertIntToBytes<>(ptr, int64);
1839  aggBuffer->addBytes(ptr, 8, Bytes);
1840  break;
1841  } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1842  if (const auto *constInt = dyn_cast_or_null<ConstantInt>(
1843  ConstantFoldConstant(Cexpr, DL))) {
1844  long long int64 = (long long)(constInt->getZExtValue());
1845  ConvertIntToBytes<>(ptr, int64);
1846  aggBuffer->addBytes(ptr, 8, Bytes);
1847  break;
1848  }
1849  if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1850  Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1851  aggBuffer->addSymbol(v, Cexpr->getOperand(0));
1852  aggBuffer->addZeros(8);
1853  break;
1854  }
1855  }
1856  llvm_unreachable("unsupported integer const type");
1857  } else
1858  llvm_unreachable("unsupported integer const type");
1859  break;
1860  }
1861  case Type::HalfTyID:
1862  case Type::FloatTyID:
1863  case Type::DoubleTyID: {
1864  const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
1865  Type *Ty = CFP->getType();
1866  if (Ty == Type::getHalfTy(CPV->getContext())) {
1867  APInt API = CFP->getValueAPF().bitcastToAPInt();
1868  uint16_t float16 = API.getLoBits(16).getZExtValue();
1869  ConvertIntToBytes<>(ptr, float16);
1870  aggBuffer->addBytes(ptr, 2, Bytes);
1871  } else if (Ty == Type::getFloatTy(CPV->getContext())) {
1872  float float32 = (float) CFP->getValueAPF().convertToFloat();
1873  ConvertFloatToBytes(ptr, float32);
1874  aggBuffer->addBytes(ptr, 4, Bytes);
1875  } else if (Ty == Type::getDoubleTy(CPV->getContext())) {
1876  double float64 = CFP->getValueAPF().convertToDouble();
1877  ConvertDoubleToBytes(ptr, float64);
1878  aggBuffer->addBytes(ptr, 8, Bytes);
1879  } else {
1880  llvm_unreachable("unsupported fp const type");
1881  }
1882  break;
1883  }
1884  case Type::PointerTyID: {
1885  if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1886  aggBuffer->addSymbol(GVar, GVar);
1887  } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1888  const Value *v = Cexpr->stripPointerCasts();
1889  aggBuffer->addSymbol(v, Cexpr);
1890  }
1891  unsigned int s = DL.getTypeAllocSize(CPV->getType());
1892  aggBuffer->addZeros(s);
1893  break;
1894  }
1895 
1896  case Type::ArrayTyID:
1897  case Type::VectorTyID:
1898  case Type::StructTyID: {
1899  if (isa<ConstantAggregate>(CPV) || isa<ConstantDataSequential>(CPV)) {
1900  int ElementSize = DL.getTypeAllocSize(CPV->getType());
1901  bufferAggregateConstant(CPV, aggBuffer);
1902  if (Bytes > ElementSize)
1903  aggBuffer->addZeros(Bytes - ElementSize);
1904  } else if (isa<ConstantAggregateZero>(CPV))
1905  aggBuffer->addZeros(Bytes);
1906  else
1907  llvm_unreachable("Unexpected Constant type");
1908  break;
1909  }
1910 
1911  default:
1912  llvm_unreachable("unsupported type");
1913  }
1914 }
1915 
1916 void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
1917  AggBuffer *aggBuffer) {
1918  const DataLayout &DL = getDataLayout();
1919  int Bytes;
1920 
1921  // Integers of arbitrary width
1922  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1923  APInt Val = CI->getValue();
1924  for (unsigned I = 0, E = DL.getTypeAllocSize(CPV->getType()); I < E; ++I) {
1925  uint8_t Byte = Val.getLoBits(8).getZExtValue();
1926  aggBuffer->addBytes(&Byte, 1, 1);
1927  Val.lshrInPlace(8);
1928  }
1929  return;
1930  }
1931 
1932  // Old constants
1933  if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
1934  if (CPV->getNumOperands())
1935  for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
1936  bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
1937  return;
1938  }
1939 
1940  if (const ConstantDataSequential *CDS =
1941  dyn_cast<ConstantDataSequential>(CPV)) {
1942  if (CDS->getNumElements())
1943  for (unsigned i = 0; i < CDS->getNumElements(); ++i)
1944  bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
1945  aggBuffer);
1946  return;
1947  }
1948 
1949  if (isa<ConstantStruct>(CPV)) {
1950  if (CPV->getNumOperands()) {
1951  StructType *ST = cast<StructType>(CPV->getType());
1952  for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
1953  if (i == (e - 1))
1954  Bytes = DL.getStructLayout(ST)->getElementOffset(0) +
1955  DL.getTypeAllocSize(ST) -
1956  DL.getStructLayout(ST)->getElementOffset(i);
1957  else
1958  Bytes = DL.getStructLayout(ST)->getElementOffset(i + 1) -
1959  DL.getStructLayout(ST)->getElementOffset(i);
1960  bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
1961  }
1962  }
1963  return;
1964  }
1965  llvm_unreachable("unsupported constant type in printAggregateConstant()");
1966 }
1967 
1968 /// lowerConstantForGV - Return an MCExpr for the given Constant. This is mostly
1969 /// a copy from AsmPrinter::lowerConstant, except customized to only handle
1970 /// expressions that are representable in PTX and create
1971 /// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions.
1972 const MCExpr *
1973 NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV, bool ProcessingGeneric) {
1974  MCContext &Ctx = OutContext;
1975 
1976  if (CV->isNullValue() || isa<UndefValue>(CV))
1977  return MCConstantExpr::create(0, Ctx);
1978 
1979  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1980  return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1981 
1982  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
1983  const MCSymbolRefExpr *Expr =
1985  if (ProcessingGeneric) {
1986  return NVPTXGenericMCSymbolRefExpr::create(Expr, Ctx);
1987  } else {
1988  return Expr;
1989  }
1990  }
1991 
1992  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1993  if (!CE) {
1994  llvm_unreachable("Unknown constant value to lower!");
1995  }
1996 
1997  switch (CE->getOpcode()) {
1998  default:
1999  // If the code isn't optimized, there may be outstanding folding
2000  // opportunities. Attempt to fold the expression using DataLayout as a
2001  // last resort before giving up.
2003  if (C && C != CE)
2004  return lowerConstantForGV(C, ProcessingGeneric);
2005 
2006  // Otherwise report the problem to the user.
2007  {
2008  std::string S;
2009  raw_string_ostream OS(S);
2010  OS << "Unsupported expression in static initializer: ";
2011  CE->printAsOperand(OS, /*PrintType=*/false,
2012  !MF ? nullptr : MF->getFunction().getParent());
2013  report_fatal_error(OS.str());
2014  }
2015 
2016  case Instruction::AddrSpaceCast: {
2017  // Strip the addrspacecast and pass along the operand
2018  PointerType *DstTy = cast<PointerType>(CE->getType());
2019  if (DstTy->getAddressSpace() == 0) {
2020  return lowerConstantForGV(cast<const Constant>(CE->getOperand(0)), true);
2021  }
2022  std::string S;
2023  raw_string_ostream OS(S);
2024  OS << "Unsupported expression in static initializer: ";
2025  CE->printAsOperand(OS, /*PrintType=*/ false,
2026  !MF ? nullptr : MF->getFunction().getParent());
2027  report_fatal_error(OS.str());
2028  }
2029 
2030  case Instruction::GetElementPtr: {
2031  const DataLayout &DL = getDataLayout();
2032 
2033  // Generate a symbolic expression for the byte address
2034  APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
2035  cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
2036 
2037  const MCExpr *Base = lowerConstantForGV(CE->getOperand(0),
2038  ProcessingGeneric);
2039  if (!OffsetAI)
2040  return Base;
2041 
2042  int64_t Offset = OffsetAI.getSExtValue();
2043  return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2044  Ctx);
2045  }
2046 
2047  case Instruction::Trunc:
2048  // We emit the value and depend on the assembler to truncate the generated
2049  // expression properly. This is important for differences between
2050  // blockaddress labels. Since the two labels are in the same function, it
2051  // is reasonable to treat their delta as a 32-bit value.
2053  case Instruction::BitCast:
2054  return lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
2055 
2056  case Instruction::IntToPtr: {
2057  const DataLayout &DL = getDataLayout();
2058 
2059  // Handle casts to pointers by changing them into casts to the appropriate
2060  // integer type. This promotes constant folding and simplifies this code.
2061  Constant *Op = CE->getOperand(0);
2063  false/*ZExt*/);
2064  return lowerConstantForGV(Op, ProcessingGeneric);
2065  }
2066 
2067  case Instruction::PtrToInt: {
2068  const DataLayout &DL = getDataLayout();
2069 
2070  // Support only foldable casts to/from pointers that can be eliminated by
2071  // changing the pointer to the appropriately sized integer type.
2072  Constant *Op = CE->getOperand(0);
2073  Type *Ty = CE->getType();
2074 
2075  const MCExpr *OpExpr = lowerConstantForGV(Op, ProcessingGeneric);
2076 
2077  // We can emit the pointer value into this slot if the slot is an
2078  // integer slot equal to the size of the pointer.
2079  if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2080  return OpExpr;
2081 
2082  // Otherwise the pointer is smaller than the resultant integer, mask off
2083  // the high bits so we are sure to get a proper truncation if the input is
2084  // a constant expr.
2085  unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2086  const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2087  return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2088  }
2089 
2090  // The MC library also has a right-shift operator, but it isn't consistently
2091  // signed or unsigned between different targets.
2092  case Instruction::Add: {
2093  const MCExpr *LHS = lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
2094  const MCExpr *RHS = lowerConstantForGV(CE->getOperand(1), ProcessingGeneric);
2095  switch (CE->getOpcode()) {
2096  default: llvm_unreachable("Unknown binary operator constant cast expr");
2097  case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2098  }
2099  }
2100  }
2101 }
2102 
2103 // Copy of MCExpr::print customized for NVPTX
2104 void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) {
2105  switch (Expr.getKind()) {
2106  case MCExpr::Target:
2107  return cast<MCTargetExpr>(&Expr)->printImpl(OS, MAI);
2108  case MCExpr::Constant:
2109  OS << cast<MCConstantExpr>(Expr).getValue();
2110  return;
2111 
2112  case MCExpr::SymbolRef: {
2113  const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(Expr);
2114  const MCSymbol &Sym = SRE.getSymbol();
2115  Sym.print(OS, MAI);
2116  return;
2117  }
2118 
2119  case MCExpr::Unary: {
2120  const MCUnaryExpr &UE = cast<MCUnaryExpr>(Expr);
2121  switch (UE.getOpcode()) {
2122  case MCUnaryExpr::LNot: OS << '!'; break;
2123  case MCUnaryExpr::Minus: OS << '-'; break;
2124  case MCUnaryExpr::Not: OS << '~'; break;
2125  case MCUnaryExpr::Plus: OS << '+'; break;
2126  }
2127  printMCExpr(*UE.getSubExpr(), OS);
2128  return;
2129  }
2130 
2131  case MCExpr::Binary: {
2132  const MCBinaryExpr &BE = cast<MCBinaryExpr>(Expr);
2133 
2134  // Only print parens around the LHS if it is non-trivial.
2135  if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS()) ||
2136  isa<NVPTXGenericMCSymbolRefExpr>(BE.getLHS())) {
2137  printMCExpr(*BE.getLHS(), OS);
2138  } else {
2139  OS << '(';
2140  printMCExpr(*BE.getLHS(), OS);
2141  OS<< ')';
2142  }
2143 
2144  switch (BE.getOpcode()) {
2145  case MCBinaryExpr::Add:
2146  // Print "X-42" instead of "X+-42".
2147  if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
2148  if (RHSC->getValue() < 0) {
2149  OS << RHSC->getValue();
2150  return;
2151  }
2152  }
2153 
2154  OS << '+';
2155  break;
2156  default: llvm_unreachable("Unhandled binary operator");
2157  }
2158 
2159  // Only print parens around the LHS if it is non-trivial.
2160  if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
2161  printMCExpr(*BE.getRHS(), OS);
2162  } else {
2163  OS << '(';
2164  printMCExpr(*BE.getRHS(), OS);
2165  OS << ')';
2166  }
2167  return;
2168  }
2169  }
2170 
2171  llvm_unreachable("Invalid expression kind!");
2172 }
2173 
2174 /// PrintAsmOperand - Print out an operand for an inline asm expression.
2175 ///
2176 bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
2177  unsigned AsmVariant,
2178  const char *ExtraCode, raw_ostream &O) {
2179  if (ExtraCode && ExtraCode[0]) {
2180  if (ExtraCode[1] != 0)
2181  return true; // Unknown modifier.
2182 
2183  switch (ExtraCode[0]) {
2184  default:
2185  // See if this is a generic print operand
2186  return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
2187  case 'r':
2188  break;
2189  }
2190  }
2191 
2192  printOperand(MI, OpNo, O);
2193 
2194  return false;
2195 }
2196 
2197 bool NVPTXAsmPrinter::PrintAsmMemoryOperand(
2198  const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant,
2199  const char *ExtraCode, raw_ostream &O) {
2200  if (ExtraCode && ExtraCode[0])
2201  return true; // Unknown modifier
2202 
2203  O << '[';
2204  printMemOperand(MI, OpNo, O);
2205  O << ']';
2206 
2207  return false;
2208 }
2209 
2210 void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
2211  raw_ostream &O, const char *Modifier) {
2212  const MachineOperand &MO = MI->getOperand(opNum);
2213  switch (MO.getType()) {
2216  if (MO.getReg() == NVPTX::VRDepot)
2217  O << DEPOTNAME << getFunctionNumber();
2218  else
2220  } else {
2221  emitVirtualRegister(MO.getReg(), O);
2222  }
2223  return;
2224 
2226  if (!Modifier)
2227  O << MO.getImm();
2228  else if (strstr(Modifier, "vec") == Modifier)
2229  printVecModifiedImmediate(MO, Modifier, O);
2230  else
2232  "Don't know how to handle modifier on immediate operand");
2233  return;
2234 
2236  printFPConstant(MO.getFPImm(), O);
2237  break;
2238 
2240  getSymbol(MO.getGlobal())->print(O, MAI);
2241  break;
2242 
2244  MO.getMBB()->getSymbol()->print(O, MAI);
2245  return;
2246 
2247  default:
2248  llvm_unreachable("Operand type not supported.");
2249  }
2250 }
2251 
2252 void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
2253  raw_ostream &O, const char *Modifier) {
2254  printOperand(MI, opNum, O);
2255 
2256  if (Modifier && strcmp(Modifier, "add") == 0) {
2257  O << ", ";
2258  printOperand(MI, opNum + 1, O);
2259  } else {
2260  if (MI->getOperand(opNum + 1).isImm() &&
2261  MI->getOperand(opNum + 1).getImm() == 0)
2262  return; // don't print ',0' or '+0'
2263  O << "+";
2264  printOperand(MI, opNum + 1, O);
2265  }
2266 }
2267 
2268 // Force static initialization.
2272 }
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
uint64_t CallInst * C
StringRef getSection() const
Get the custom section of this global if it has one.
Definition: GlobalObject.h:90
unsigned getAlignment() const
Definition: GlobalObject.h:59
unsigned getPTXVersion() const
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
StringRef getTargetFeatureString() const
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static Type * getDoubleTy(LLVMContext &C)
Definition: Type.cpp:165
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
Definition: Constants.h:1199
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1557
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
Bitwise negation.
Definition: MCExpr.h:364
MachineBasicBlock * getMBB() const
std::unique_ptr< MCStreamer > OutStreamer
This is the MCStreamer object for the file we are generating.
Definition: AsmPrinter.h:93
bool hasDebugInfo() const
Returns true if valid debug info is present.
MCSymbol * GetExternalSymbolSymbol(StringRef Sym) const
Return the MCSymbol for the specified ExternalSymbol.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx)
Definition: MCExpr.h:322
bool getAlign(const Function &F, unsigned index, unsigned &align)
bool hasPrivateLinkage() const
Definition: GlobalValue.h:435
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:139
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
bool getMaxNReg(const Function &F, unsigned &x)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:42
static unsigned index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:64
#define LLVM_FALLTHROUGH
Definition: Compiler.h:86
unsigned getPointerPrefAlignment(unsigned AS=0) const
Return target&#39;s alignment for stack-based pointers FIXME: The defaults need to be removed once all of...
Definition: DataLayout.cpp:620
2: 32-bit floating point type
Definition: Type.h:59
bool doFinalization(Module &M) override
Shut down the asmprinter.
MCContext & OutContext
This is the context for the output file that we are streaming.
Definition: AsmPrinter.h:88
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
static MCOperand createExpr(const MCExpr *Val)
Definition: MCInst.h:137
Implements a dense probed hash-table based set.
Definition: DenseSet.h:221
const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
Definition: DataLayout.cpp:588
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:163
unsigned getReg() const
getReg - Returns the register number.
static bool isVirtualRegister(unsigned Reg)
Return true if the specified register number is in the virtual register namespace.
bool isTexture(const Value &val)
unsigned Reg
bool hasAvailableExternallyLinkage() const
Definition: GlobalValue.h:423
Opcode getOpcode() const
Get the kind of this unary expression.
Definition: MCExpr.h:403
float convertToFloat() const
Definition: APFloat.h:1098
const GlobalVariable * getNamedGlobal(StringRef Name) const
Return the global variable in the module with the specified name, of arbitrary type.
Definition: Module.h:396
const MCExpr * getLHS() const
Get the left-hand side expression of the binary operator.
Definition: MCExpr.h:563
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:714
Unary plus.
Definition: MCExpr.h:365
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:510
MachineBasicBlock reference.
arg_iterator arg_end()
Definition: Function.h:680
13: Structures
Definition: Type.h:73
unsigned const TargetRegisterInfo * TRI
Metadata node.
Definition: Metadata.h:864
static const MCBinaryExpr * createAnd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:465
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:141
F(f)
MachineFunction * MF
The current machine function.
Definition: AsmPrinter.h:96
1: 16-bit floating point type
Definition: Type.h:58
const GlobalListType & getGlobalList() const
Get the Module&#39;s list of global variables (constant).
Definition: Module.h:511
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:177
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:230
15: Pointers
Definition: Type.h:75
static IntegerType * getInt16Ty(LLVMContext &C)
Definition: Type.cpp:175
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition: StringRef.h:128
const TargetRegisterClass * getRegClass(unsigned i) const
Returns the register class associated with the enumeration value.
static const NVPTXFloatMCExpr * createConstantFPSingle(const APFloat &Flt, MCContext &Ctx)
Definition: NVPTXMCExpr.h:49
bool hasImageHandles() const
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:191
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
static void DiscoverDependentGlobals(const Value *V, DenseSet< const GlobalVariable *> &Globals)
DiscoverDependentGlobals - Return a set of GlobalVariables on which V depends.
const MCSymbol * getFunctionFrameSymbol() const override
Return symbol for the function pseudo stack if the stack frame is not a register based.
static Constant * getIntegerCast(Constant *C, Type *Ty, bool isSigned)
Create a ZExt, Bitcast or Trunc for integer -> integer casts.
Definition: Constants.cpp:1590
APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
Definition: APInt.cpp:516
static MCOperand createReg(unsigned Reg)
Definition: MCInst.h:116
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
static Type * getFloatTy(LLVMContext &C)
Definition: Type.cpp:164
unsigned getPointerTypeSizeInBits(Type *) const
Layout pointer size, in bits, based on the type.
Definition: DataLayout.cpp:638
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:138
bool isFloatingPointTy() const
Return true if this is one of the six floating-point types.
Definition: Type.h:162
static bool usedInOneFunc(const User *U, Function const *&oneFunc)
const ConstantFP * getFPImm() const
unsigned getNumOperands() const
Access to explicit operands of the instruction.
Definition: MachineInstr.h:412
Class to represent struct types.
Definition: DerivedTypes.h:201
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
void clearAnnotationCache(const Module *Mod)
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:36
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
Name of external global symbol.
This file contains the simple types necessary to represent the attributes associated with functions a...
Represent a reference to a symbol from inside an expression.
Definition: MCExpr.h:166
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted...
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
static const NVPTXFloatMCExpr * createConstantFPDouble(const APFloat &Flt, MCContext &Ctx)
Definition: NVPTXMCExpr.h:54
const char * getSymbolName() const
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition: APInt.h:978
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
This file implements a class to represent arbitrary precision integral constant values and operations...
bool hasCommonLinkage() const
Definition: GlobalValue.h:440
Target & getTheNVPTXTarget64()
unsigned getNumRegClasses() const
bool getMaxNTIDz(const Function &F, unsigned &z)
unsigned getSizeInBits() const
Context object for machine code objects.
Definition: MCContext.h:63
bool hasExternalLinkage() const
Definition: GlobalValue.h:422
Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Attempt to fold the constant using the specified DataLayout.
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool startswith(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition: StringRef.h:267
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:85
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:885
Class to represent function types.
Definition: DerivedTypes.h:103
unsigned getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:292
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1569
bool isKernelFunction(const Function &F)
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:406
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
bool isSurface(const Value &val)
bool runOnMachineFunction(MachineFunction &MF) override
Emit the specified function out to the OutStreamer.
Definition: AsmPrinter.h:292
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition: APFloat.cpp:4444
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
Definition: Constants.h:570
const MCExpr * getRHS() const
Get the right-hand side expression of the binary operator.
Definition: MCExpr.h:566
bool arg_empty() const
Definition: Function.h:699
#define T
Unary assembler expressions.
Definition: MCExpr.h:359
Class to represent array types.
Definition: DerivedTypes.h:369
bool getMaxNTIDx(const Function &F, unsigned &x)
std::string getTextureName(const Value &val)
ManagedStringPool * getManagedStrPool() const
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
Definition: Type.h:212
bool runOnMachineFunction(MachineFunction &F) override
Emit the specified function out to the OutStreamer.
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:224
RegisterAsmPrinter - Helper template for registering a target specific assembly printer, for use in the target machine initialization function.
static const fltSemantics & IEEEdouble() LLVM_READNONE
Definition: APFloat.cpp:123
StringRef getTargetCPU() const
#define DEPOTNAME
static const MCBinaryExpr * createAdd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:460
bool hasLinkOnceLinkage() const
Definition: GlobalValue.h:426
bool isSampler(const Value &val)
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< uint64_t > *Offsets=nullptr, uint64_t StartingOffset=0)
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition: Analysis.cpp:84
Unary expressions.
Definition: MCExpr.h:42
MachineModuleInfo * MMI
This is a pointer to the current MachineModuleInfo.
Definition: AsmPrinter.h:99
Value * getOperand(unsigned i) const
Definition: User.h:170
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:161
static const NVPTXGenericMCSymbolRefExpr * create(const MCSymbolRefExpr *SymExpr, MCContext &Ctx)
Definition: NVPTXMCExpr.cpp:55
Class to represent pointers.
Definition: DerivedTypes.h:467
bool hasAppendingLinkage() const
Definition: GlobalValue.h:433
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:146
11: Arbitrary bit width integers
Definition: Type.h:71
Target & getTheNVPTXTarget32()
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space...
Definition: DataLayout.cpp:742
0: type with no size
Definition: Type.h:57
Address of a global value.
static bool isEmptyXXStructor(GlobalVariable *GV)
Type * getReturnType() const
Returns the type of the ret val.
Definition: Function.h:169
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
void print(raw_ostream &OS, const MCAsmInfo *MAI, bool InParens=false) const
Definition: MCExpr.cpp:42
unsigned const MachineRegisterInfo * MRI
MCSymbol * CurrentFnSym
The symbol for the current function.
Definition: AsmPrinter.h:112
MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
Machine Value Type.
bool hasName() const
Definition: Value.h:251
LLVM Basic Block Representation.
Definition: BasicBlock.h:59
const MCAsmInfo * MAI
Target Asm Printer information.
Definition: AsmPrinter.h:84
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
const char * getImageHandleSymbol(unsigned Idx) const
Returns the symbol name at the given index.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
static bool is64Bit(const char *name)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:224
static MCOperand GetSymbolRef(const MachineOperand &MO, const MCSymbol *Symbol, HexagonAsmPrinter &Printer, bool MustExtend)
const GlobalValue * getGlobal() const
const NVPTXTargetLowering * getTargetLowering() const override
virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &OS)
Print the specified operand of MI, an INLINEASM instruction, using the specified assembler variant...
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:264
size_t alias_size() const
Definition: Module.h:611
double convertToDouble() const
Definition: APFloat.h:1097
TargetMachine & TM
Target machine description.
Definition: AsmPrinter.h:81
std::string getTargetName() const
unsigned getPrefTypeAlignment(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Definition: DataLayout.cpp:732
This file declares a class to represent arbitrary precision floating point values and provide a varie...
unsigned getMaxAlignment() const
Return the alignment in bytes that this function must be aligned to, which is greater than the defaul...
bool hasInternalLinkage() const
Definition: GlobalValue.h:434
bool isHalfTy() const
Return true if this is &#39;half&#39;, a 16-bit IEEE fp type.
Definition: Type.h:144
static const char * getRegisterName(unsigned RegNo)
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const Triple & getTargetTriple() const
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:495
arg_iterator arg_begin()
Definition: Function.h:671
NVPTX::DrvInterface getDrvInterface() const
unsigned size() const
Definition: DenseMap.h:96
Logical negation.
Definition: MCExpr.h:362
Extended Value Type.
Definition: ValueTypes.h:34
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs, and aliases.
Definition: Value.cpp:539
Binary assembler expressions.
Definition: MCExpr.h:416
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
size_t size() const
Definition: SmallVector.h:53
std::string getVirtualRegisterName(unsigned) const
void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
Definition: AsmWriter.cpp:4172
std::string & str()
Flushes the stream contents to the target string and returns the string&#39;s reference.
Definition: raw_ostream.h:499
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool getMaxNTIDy(const Function &F, unsigned &y)
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
bool getReqNTIDx(const Function &F, unsigned &x)
unsigned first
bool hasWeakLinkage() const
Definition: GlobalValue.h:430
const APFloat & getValueAPF() const
Definition: Constants.h:299
bool isImage(const Value &val)
14: Arrays
Definition: Type.h:74
bool getReqNTIDz(const Function &F, unsigned &z)
unsigned getFunctionNumber() const
Return a unique ID for the current function.
Definition: AsmPrinter.cpp:206
static Type * getHalfTy(LLVMContext &C)
Definition: Type.cpp:163
static const fltSemantics & IEEEsingle() LLVM_READNONE
Definition: APFloat.cpp:120
static void printMemOperand(raw_ostream &OS, const MachineMemOperand &MMO, const MachineFunction *MF, const Module *M, const MachineFrameInfo *MFI, const TargetInstrInfo *TII, LLVMContext &Ctx)
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:192
bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const
Equivalent to hasAttribute(ArgNo + FirstArgIndex, Kind).
void setOpcode(unsigned Op)
Definition: MCInst.h:173
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
auto size(R &&Range, typename std::enable_if< std::is_same< typename std::iterator_traits< decltype(Range.begin())>::iterator_category, std::random_access_iterator_tag >::value, void >::type *=nullptr) -> decltype(std::distance(Range.begin(), Range.end()))
Get the size of a range.
Definition: STLExtras.h:1023
static void ConvertFloatToBytes(unsigned char *p, float val)
std::string * getManagedString(const char *S)
16: SIMD &#39;packed&#39; format, or other vector type
Definition: Type.h:76
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
MCSymbol * getSymbol(const GlobalValue *GV) const
Definition: AsmPrinter.cpp:428
const MCSymbol & getSymbol() const
Definition: MCExpr.h:335
ExprKind getKind() const
Definition: MCExpr.h:73
virtual const MCExpr * lowerConstant(const Constant *CV)
Lower the specified LLVM Constant to an MCExpr.
MachineOperand class - Representation of each machine instruction operand.
bool hasSection() const
Check if this global has a custom object file section.
Definition: GlobalObject.h:82
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
Module.h This file contains the declarations for the Module class.
bool isVector(MCInstrInfo const &MCII, MCInst const &MCI)
AddressSpace
Definition: NVPTXBaseInfo.h:22
unsigned getABITypeAlignment(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
Definition: DataLayout.cpp:722
bool isImageReadWrite(const Value &val)
bool isAggregateType() const
Return true if the type is an aggregate type.
Definition: Type.h:258
void EmitToStreamer(MCStreamer &S, const MCInst &Inst)
Definition: AsmPrinter.cpp:229
bool doInitialization(Module &M) override
Set up the AsmPrinter when we are working on a new module.
StringRef str()
Return a StringRef for the vector contents.
Definition: raw_ostream.h:535
std::string getSurfaceName(const Value &val)
const char * getName(unsigned RegNo) const
static void VisitGlobalVariableForEmission(const GlobalVariable *GV, SmallVectorImpl< const GlobalVariable *> &Order, DenseSet< const GlobalVariable *> &Visited, DenseSet< const GlobalVariable *> &Visiting)
VisitGlobalVariableForEmission - Add GV to the list of GlobalVariable instances to be emitted...
std::string utostr(uint64_t X, bool isNeg=false)
Definition: StringExtras.h:224
int64_t getImm() const
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition: Function.h:194
const Function & getFunction() const
Return the LLVM function that this machine code represents.
std::string getSamplerName(const Value &val)
Class for arbitrary precision integers.
Definition: APInt.h:70
ConstantArray - Constant Array Declarations.
Definition: Constants.h:410
bool isManaged(const Value &val)
bool getReqNTIDy(const Function &F, unsigned &y)
iterator_range< user_iterator > users()
Definition: Value.h:400
MDNode * GetUnrollMetadata(MDNode *LoopID, StringRef Name)
Given an llvm.loop loop id metadata node, returns the loop hint metadata node with the given name (fo...
Definition: LoopUnroll.cpp:886
uint64_t getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:428
Representation of each machine instruction.
Definition: MachineInstr.h:64
pointer remove(iterator &IT)
Definition: ilist.h:251
static bool isPhysicalRegister(unsigned Reg)
Return true if the specified register number is in the physical register namespace.
static bool printOperand(raw_ostream &OS, const SelectionDAG *G, const SDValue Value)
unsigned getParamAlignment(unsigned ArgNo) const
Return the alignment for the specified function parameter.
NVPTXTargetMachine.
bool doInitialization(Module &M) override
Set up the AsmPrinter when we are working on a new module.
Definition: AsmPrinter.cpp:246
iterator insert(iterator where, pointer New)
Definition: ilist.h:228
iterator end()
Definition: Module.h:587
const Function * getParent() const
Definition: Argument.h:42
std::string getNVPTXRegClassStr(TargetRegisterClass const *RC)
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:543
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:176
MCSymbol * getOrCreateSymbol(const Twine &Name)
Lookup the symbol inside with the specified Name.
Definition: MCContext.cpp:123
virtual void EmitBasicBlockStart(const MachineBasicBlock &MBB) const
Targets can override this to emit stuff at the start of a basic block.
static bool usedInGlobalVarDef(const Constant *C)
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:224
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:108
FormattedNumber format_hex_no_prefix(uint64_t N, unsigned Width, bool Upper=false)
format_hex_no_prefix - Output N as a fixed width hexadecimal.
Definition: Format.h:199
MCSymbol * getSymbol() const
Return the MCSymbol for this basic block.
#define I(x, y, z)
Definition: MD5.cpp:58
std::string getNVPTXRegClassName(TargetRegisterClass const *RC)
iterator begin()
Definition: Module.h:585
iterator end()
Definition: DenseMap.h:79
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
virtual void print(raw_ostream &OS, const Module *M) const
print - Print out the internal state of the pass.
Definition: Pass.cpp:124
References to labels and assigned expressions.
Definition: MCExpr.h:41
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
Type * getValueType() const
Definition: GlobalValue.h:276
Unary minus.
Definition: MCExpr.h:363
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:91
static const NVPTXFloatMCExpr * createConstantFPHalf(const APFloat &Flt, MCContext &Ctx)
Definition: NVPTXMCExpr.h:44
static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f)
const std::string & getModuleInlineAsm() const
Get any module-scope inline assembly blocks.
Definition: Module.h:247
Opcode getOpcode() const
Get the kind of this binary expression.
Definition: MCExpr.h:560
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:206
3: 64-bit floating point type
Definition: Type.h:60
static unsigned int getOpenCLAlignment(const DataLayout &DL, Type *Ty)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool useFuncSeen(const Constant *C, DenseMap< const Function *, bool > &seenMap)
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:483
const MCExpr * getSubExpr() const
Get the child of this unary expression.
Definition: MCExpr.h:406
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
Definition: Type.h:250
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:115
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:566
LLVM Value Representation.
Definition: Value.h:73
bool isLoopHeader(const MachineBasicBlock *BB) const
True if the block is a loop header node.
static const char * name
Floating-point immediate operand.
uint64_t getTypeStoreSize(Type *Ty) const
Returns the maximum number of bytes that may be overwritten by storing the specified type...
Definition: DataLayout.h:411
bool hasInitializer() const
Definitions have initializers, declarations don&#39;t.
MachineLoop * getLoopFor(const MachineBasicBlock *BB) const
Return the innermost loop that BB lives in.
Constant expressions.
Definition: MCExpr.h:40
Binary expressions.
Definition: MCExpr.h:39
unsigned int getSmVersion() const
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:59
uint64_t getTypeAllocSizeInBits(Type *Ty) const
Returns the offset in bits between successive objects of the specified type, including alignment padd...
Definition: DataLayout.h:438
const DataLayout & getDataLayout() const
Return information about data layout.
Definition: AsmPrinter.cpp:214
static void ConvertDoubleToBytes(unsigned char *p, double val)
iterator_range< global_iterator > globals()
Definition: Module.h:574
IRTranslator LLVM IR MI
void addOperand(const MCOperand &Op)
Definition: MCInst.h:186
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
APInt bitcastToAPInt() const
Definition: APFloat.h:1094
bool getMinCTASm(const Function &F, unsigned &x)
Target specific expression.
Definition: MCExpr.h:43
static void ConvertIntToBytes(unsigned char *p, T val)
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:35
MachineOperandType getType() const
getType - Returns the MachineOperandType for this operand.
uint64_t getStackSize() const
Return the number of bytes that must be allocated to hold all of the fixed size frame objects...
static MCOperand createImm(int64_t Val)
Definition: MCInst.h:123
static IntegerType * getInt8Ty(LLVMContext &C)
Definition: Type.cpp:174
bool use_empty() const
Definition: Value.h:323
static const MCConstantExpr * create(int64_t Value, MCContext &Ctx)
Definition: MCExpr.cpp:164
bool isImageWriteOnly(const Value &val)
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:274
void LLVMInitializeNVPTXAsmPrinter()
bool doFinalization(Module &M) override
Shut down the asmprinter.
This file describes how to lower LLVM code to machine code.
const BasicBlock * getParent() const
Definition: Instruction.h:67
const NVPTXRegisterInfo * getRegisterInfo() const override
void print(raw_ostream &OS, const MCAsmInfo *MAI) const
print - Print the value to the stream OS.
Definition: MCSymbol.cpp:60