86using namespace PatternMatch;
88#define DEBUG_TYPE "gvn"
90STATISTIC(NumGVNInstr,
"Number of instructions deleted");
92STATISTIC(NumGVNPRE,
"Number of instructions PRE'd");
94STATISTIC(NumGVNSimpl,
"Number of instructions simplified");
95STATISTIC(NumGVNEqProp,
"Number of equalities propagated");
97STATISTIC(NumPRELoopLoad,
"Number of loop loads PRE'd");
99 "Number of loads moved to predecessor of a critical edge in PRE");
101STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax,
102 "Number of blocks speculated as available in "
103 "IsValueFullyAvailableInBlock(), max");
105 "Number of times we we reached gvn-max-block-speculations cut-off "
106 "preventing further exploration");
119 cl::desc(
"Max number of dependences to attempt Load PRE (default = 100)"));
124 cl::desc(
"Max number of blocks we're willing to speculate on (and recurse "
125 "into) when deducing if a value is fully available or not in GVN "
130 cl::desc(
"Max number of visited instructions when trying to find "
131 "dominating value of select dependency (default = 100)"));
135 cl::desc(
"Max number of instructions to scan in each basic block in GVN "
272 return cast<LoadInst>(
Val);
277 return cast<MemIntrinsic>(
Val);
282 return cast<SelectInst>(
Val);
303 Res.
AV = std::move(
AV);
334 e.type =
I->getType();
335 e.opcode =
I->getOpcode();
340 e.varargs.push_back(
lookupOrAdd(GCR->getOperand(0)));
341 e.varargs.push_back(
lookupOrAdd(GCR->getBasePtr()));
342 e.varargs.push_back(
lookupOrAdd(GCR->getDerivedPtr()));
344 for (
Use &
Op :
I->operands())
347 if (
I->isCommutative()) {
352 assert(
I->getNumOperands() >= 2 &&
"Unsupported commutative instruction!");
353 if (
e.varargs[0] >
e.varargs[1])
355 e.commutative =
true;
358 if (
auto *
C = dyn_cast<CmpInst>(
I)) {
361 if (
e.varargs[0] >
e.varargs[1]) {
365 e.opcode = (
C->getOpcode() << 8) | Predicate;
366 e.commutative =
true;
367 }
else if (
auto *E = dyn_cast<InsertValueInst>(
I)) {
368 e.varargs.append(E->idx_begin(), E->idx_end());
369 }
else if (
auto *SVI = dyn_cast<ShuffleVectorInst>(
I)) {
371 e.varargs.append(ShuffleMask.
begin(), ShuffleMask.
end());
372 }
else if (
auto *CB = dyn_cast<CallBase>(
I)) {
373 e.attrs = CB->getAttributes();
381 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
382 "Not a comparison!");
385 e.varargs.push_back(lookupOrAdd(LHS));
386 e.varargs.push_back(lookupOrAdd(RHS));
389 if (
e.varargs[0] >
e.varargs[1]) {
393 e.opcode = (Opcode << 8) | Predicate;
394 e.commutative =
true;
400 assert(EI &&
"Not an ExtractValueInst?");
411 e.varargs.push_back(lookupOrAdd(WO->
getLHS()));
412 e.varargs.push_back(lookupOrAdd(WO->
getRHS()));
420 e.varargs.push_back(lookupOrAdd(
Op));
429 Type *PtrTy =
GEP->getType()->getScalarType();
431 unsigned BitWidth =
DL.getIndexTypeSizeInBits(PtrTy);
434 if (
GEP->collectOffset(
DL,
BitWidth, VariableOffsets, ConstantOffset)) {
438 E.opcode =
GEP->getOpcode();
440 E.varargs.push_back(lookupOrAdd(
GEP->getPointerOperand()));
441 for (
const auto &Pair : VariableOffsets) {
442 E.varargs.push_back(lookupOrAdd(Pair.first));
443 E.varargs.push_back(lookupOrAdd(ConstantInt::get(Context, Pair.second)));
445 if (!ConstantOffset.isZero())
447 lookupOrAdd(ConstantInt::get(Context, ConstantOffset)));
451 E.opcode =
GEP->getOpcode();
452 E.type =
GEP->getSourceElementType();
454 E.varargs.push_back(lookupOrAdd(
Op));
463GVNPass::ValueTable::ValueTable() =
default;
464GVNPass::ValueTable::ValueTable(
const ValueTable &) =
default;
465GVNPass::ValueTable::ValueTable(
ValueTable &&) =
default;
466GVNPass::ValueTable::~ValueTable() =
default;
472 valueNumbering.
insert(std::make_pair(V, num));
473 if (
PHINode *PN = dyn_cast<PHINode>(V))
474 NumberingPhi[num] = PN;
485 if (
C->getFunction()->isPresplitCoroutine()) {
486 valueNumbering[
C] = nextValueNumber;
487 return nextValueNumber++;
493 if (
C->isConvergent()) {
494 valueNumbering[
C] = nextValueNumber;
495 return nextValueNumber++;
498 if (AA->doesNotAccessMemory(
C)) {
500 uint32_t e = assignExpNewValueNum(exp).first;
501 valueNumbering[
C] = e;
505 if (MD && AA->onlyReadsMemory(
C)) {
507 auto ValNum = assignExpNewValueNum(exp);
509 valueNumbering[
C] = ValNum.first;
516 valueNumbering[
C] = nextValueNumber;
517 return nextValueNumber++;
520 if (local_dep.
isDef()) {
525 if (!local_cdep || local_cdep->
arg_size() !=
C->arg_size()) {
526 valueNumbering[
C] = nextValueNumber;
527 return nextValueNumber++;
530 for (
unsigned i = 0, e =
C->arg_size(); i < e; ++i) {
531 uint32_t c_vn = lookupOrAdd(
C->getArgOperand(i));
534 valueNumbering[
C] = nextValueNumber;
535 return nextValueNumber++;
540 valueNumbering[
C] =
v;
553 if (
I.getResult().isNonLocal())
558 if (!
I.getResult().isDef() || cdep !=
nullptr) {
563 CallInst *NonLocalDepCall = dyn_cast<CallInst>(
I.getResult().getInst());
566 cdep = NonLocalDepCall;
575 valueNumbering[
C] = nextValueNumber;
576 return nextValueNumber++;
580 valueNumbering[
C] = nextValueNumber;
581 return nextValueNumber++;
583 for (
unsigned i = 0, e =
C->arg_size(); i < e; ++i) {
584 uint32_t c_vn = lookupOrAdd(
C->getArgOperand(i));
587 valueNumbering[
C] = nextValueNumber;
588 return nextValueNumber++;
593 valueNumbering[
C] =
v;
597 valueNumbering[
C] = nextValueNumber;
598 return nextValueNumber++;
602bool GVNPass::ValueTable::exists(
Value *V)
const {
603 return valueNumbering.contains(V);
610 if (VI != valueNumbering.end())
613 auto *
I = dyn_cast<Instruction>(V);
615 valueNumbering[V] = nextValueNumber;
616 return nextValueNumber++;
620 switch (
I->getOpcode()) {
621 case Instruction::Call:
622 return lookupOrAddCall(cast<CallInst>(
I));
623 case Instruction::FNeg:
624 case Instruction::Add:
625 case Instruction::FAdd:
626 case Instruction::Sub:
627 case Instruction::FSub:
628 case Instruction::Mul:
629 case Instruction::FMul:
630 case Instruction::UDiv:
631 case Instruction::SDiv:
632 case Instruction::FDiv:
633 case Instruction::URem:
634 case Instruction::SRem:
635 case Instruction::FRem:
636 case Instruction::Shl:
637 case Instruction::LShr:
638 case Instruction::AShr:
639 case Instruction::And:
640 case Instruction::Or:
641 case Instruction::Xor:
642 case Instruction::ICmp:
643 case Instruction::FCmp:
644 case Instruction::Trunc:
645 case Instruction::ZExt:
646 case Instruction::SExt:
647 case Instruction::FPToUI:
648 case Instruction::FPToSI:
649 case Instruction::UIToFP:
650 case Instruction::SIToFP:
651 case Instruction::FPTrunc:
652 case Instruction::FPExt:
653 case Instruction::PtrToInt:
654 case Instruction::IntToPtr:
655 case Instruction::AddrSpaceCast:
656 case Instruction::BitCast:
657 case Instruction::Select:
658 case Instruction::Freeze:
659 case Instruction::ExtractElement:
660 case Instruction::InsertElement:
661 case Instruction::ShuffleVector:
662 case Instruction::InsertValue:
665 case Instruction::GetElementPtr:
666 exp = createGEPExpr(cast<GetElementPtrInst>(
I));
668 case Instruction::ExtractValue:
669 exp = createExtractvalueExpr(cast<ExtractValueInst>(
I));
671 case Instruction::PHI:
672 valueNumbering[V] = nextValueNumber;
673 NumberingPhi[nextValueNumber] = cast<PHINode>(V);
674 return nextValueNumber++;
676 valueNumbering[V] = nextValueNumber;
677 return nextValueNumber++;
680 uint32_t e = assignExpNewValueNum(exp).first;
681 valueNumbering[V] = e;
690 assert(VI != valueNumbering.end() &&
"Value not numbered?");
693 return (VI != valueNumbering.end()) ? VI->second : 0;
700uint32_t GVNPass::ValueTable::lookupOrAddCmp(
unsigned Opcode,
704 return assignExpNewValueNum(exp).first;
709 valueNumbering.clear();
710 expressionNumbering.clear();
711 NumberingPhi.clear();
712 PhiTranslateTable.clear();
721 uint32_t Num = valueNumbering.lookup(V);
722 valueNumbering.erase(V);
725 NumberingPhi.erase(Num);
730void GVNPass::ValueTable::verifyRemoved(
const Value *V)
const {
731 assert(!valueNumbering.contains(V) &&
732 "Inst still occurs in value numbering map!");
741 LeaderListNode &Curr = NumToLeaders[
N];
742 if (!Curr.Entry.Val) {
748 LeaderListNode *Node = TableAllocator.Allocate<LeaderListNode>();
751 Node->Next = Curr.Next;
759 LeaderListNode *Prev =
nullptr;
760 LeaderListNode *Curr = &NumToLeaders[
N];
762 while (Curr && (Curr->Entry.Val !=
I || Curr->Entry.BB != BB)) {
771 Prev->Next = Curr->Next;
774 Curr->Entry.Val =
nullptr;
775 Curr->Entry.BB =
nullptr;
777 LeaderListNode *Next = Curr->Next;
778 Curr->Entry.Val = Next->Entry.Val;
779 Curr->Entry.BB = Next->Entry.BB;
780 Curr->Next = Next->Next;
785void GVNPass::LeaderMap::verifyRemoved(
const Value *V)
const {
788 for (
const auto &
I : NumToLeaders) {
790 assert(
I.second.Entry.Val != V &&
"Inst still in value numbering scope!");
792 std::none_of(leader_iterator(&
I.second), leader_iterator(
nullptr),
793 [=](
const LeaderTableEntry &E) {
return E.Val ==
V; }) &&
794 "Inst still in value numbering scope!");
837 bool Changed = runImpl(
F, AC, DT, TLI, AA, MemDep, LI, &ORE,
838 MSSA ? &MSSA->getMSSA() :
nullptr);
853 OS, MapClassName2PassName);
856 if (Options.
AllowPRE != std::nullopt)
857 OS << (*Options.
AllowPRE ?
"" :
"no-") <<
"pre;";
862 <<
"split-backedge-load-pre;";
868#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
872 errs() <<
I.first <<
"\n";
903 std::optional<BasicBlock *> UnavailableBB;
907 unsigned NumNewNewSpeculativelyAvailableBBs = 0;
915 while (!Worklist.
empty()) {
919 std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator,
bool>
IV =
921 CurrBB, AvailabilityState::SpeculativelyAvailable);
926 if (State == AvailabilityState::Unavailable) {
927 UnavailableBB = CurrBB;
938 ++NumNewNewSpeculativelyAvailableBBs;
944 MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget;
945 State = AvailabilityState::Unavailable;
946 UnavailableBB = CurrBB;
952 NewSpeculativelyAvailableBBs.
insert(CurrBB);
959 IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax(
960 NumNewNewSpeculativelyAvailableBBs);
965 auto MarkAsFixpointAndEnqueueSuccessors =
967 auto It = FullyAvailableBlocks.
find(BB);
968 if (It == FullyAvailableBlocks.
end())
971 case AvailabilityState::Unavailable:
972 case AvailabilityState::Available:
974 case AvailabilityState::SpeculativelyAvailable:
975 State = FixpointState;
978 "Found a speculatively available successor leftover?");
993 while (!Worklist.
empty())
994 MarkAsFixpointAndEnqueueSuccessors(Worklist.
pop_back_val(),
995 AvailabilityState::Unavailable);
1002 while (!Worklist.
empty())
1003 MarkAsFixpointAndEnqueueSuccessors(Worklist.
pop_back_val(),
1004 AvailabilityState::Available);
1007 "Must have fixed all the new speculatively available blocks.");
1010 return !UnavailableBB;
1019 if (V.AV.Val == OldValue)
1020 V.AV.Val = NewValue;
1021 if (V.AV.isSelectValue()) {
1022 if (V.AV.V1 == OldValue)
1024 if (V.AV.V2 == OldValue)
1039 if (ValuesPerBlock.
size() == 1 &&
1041 Load->getParent())) {
1042 assert(!ValuesPerBlock[0].AV.isUndefValue() &&
1043 "Dead BB dominate this block");
1044 return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn);
1050 SSAUpdate.
Initialize(Load->getType(), Load->getName());
1055 if (AV.AV.isUndefValue())
1065 if (BB == Load->getParent() &&
1066 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) ||
1067 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load)))
1081 Type *LoadTy = Load->getType();
1083 if (isSimpleValue()) {
1084 Res = getSimpleValue();
1085 if (Res->
getType() != LoadTy) {
1089 <<
" " << *getSimpleValue() <<
'\n'
1093 }
else if (isCoercedLoadValue()) {
1094 LoadInst *CoercedLoad = getCoercedLoadValue();
1109 if (!CoercedLoad->
hasMetadata(LLVMContext::MD_noundef))
1111 {LLVMContext::MD_dereferenceable,
1112 LLVMContext::MD_dereferenceable_or_null,
1113 LLVMContext::MD_invariant_load, LLVMContext::MD_invariant_group});
1115 <<
" " << *getCoercedLoadValue() <<
'\n'
1119 }
else if (isMemIntrinValue()) {
1123 <<
" " << *getMemIntrinValue() <<
'\n'
1126 }
else if (isSelectValue()) {
1129 assert(V1 && V2 &&
"both value operands of the select must be present");
1134 cast<SelectInst>(Res)->setDebugLoc(Load->getDebugLoc());
1138 assert(Res &&
"failed to materialize?");
1144 return II->getIntrinsicID() == Intrinsic::lifetime_start;
1164 using namespace ore;
1169 R <<
"load of type " << NV(
"Type", Load->getType()) <<
" not eliminated"
1172 for (
auto *U : Load->getPointerOperand()->users()) {
1173 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) {
1174 auto *
I = cast<Instruction>(U);
1175 if (
I->getFunction() == Load->getFunction() && DT->
dominates(
I, Load)) {
1191 for (
auto *U : Load->getPointerOperand()->users()) {
1192 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) {
1193 auto *
I = cast<Instruction>(U);
1194 if (
I->getFunction() == Load->getFunction() &&
1202 OtherAccess =
nullptr;
1214 R <<
" in favor of " << NV(
"OtherAccess", OtherAccess);
1216 R <<
" because it is clobbered by " << NV(
"ClobberedBy", DepInfo.
getInst());
1236 if (
auto *LI = dyn_cast<LoadInst>(Inst))
1237 if (LI->getPointerOperand() == Loc.
Ptr && LI->getType() == LoadTy)
1243std::optional<AvailableValue>
1246 assert(
Load->isUnordered() &&
"rules below are incorrect for ordered access");
1256 if (
StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1258 if (
Address &&
Load->isAtomic() <= DepSI->isAtomic()) {
1270 if (
LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) {
1274 if (DepLoad != Load &&
Address &&
1275 Load->isAtomic() <= DepLoad->isAtomic()) {
1284 Offset = (ClobberOff == std::nullopt || *ClobberOff < 0)
1298 if (
MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1311 dbgs() <<
" is clobbered by " << *DepInst <<
'\n';);
1315 return std::nullopt;
1328 if (
StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1334 return std::nullopt;
1337 if (S->isAtomic() <
Load->isAtomic())
1338 return std::nullopt;
1343 if (
LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1348 return std::nullopt;
1351 if (
LD->isAtomic() <
Load->isAtomic())
1352 return std::nullopt;
1360 if (
auto *Sel = dyn_cast<SelectInst>(DepInst)) {
1361 assert(Sel->getType() ==
Load->getPointerOperandType());
1367 return std::nullopt;
1372 return std::nullopt;
1380 dbgs() <<
" has unknown def " << *DepInst <<
'\n';);
1381 return std::nullopt;
1384void GVNPass::AnalyzeLoadAvailability(
LoadInst *Load, LoadDepVect &Deps,
1385 AvailValInBlkVect &ValuesPerBlock,
1386 UnavailBlkVect &UnavailableBlocks) {
1391 for (
const auto &Dep : Deps) {
1395 if (DeadBlocks.count(DepBB)) {
1403 UnavailableBlocks.push_back(DepBB);
1410 if (
auto AV = AnalyzeLoadAvailability(Load, DepInfo, Dep.getAddress())) {
1414 ValuesPerBlock.push_back(
1417 UnavailableBlocks.push_back(DepBB);
1421 assert(Deps.size() == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1422 "post condition violation");
1448 if (
Term->getNumSuccessors() != 2 ||
Term->isSpecialTerminator())
1450 auto *SuccBB =
Term->getSuccessor(0);
1451 if (SuccBB == LoadBB)
1452 SuccBB =
Term->getSuccessor(1);
1453 if (!SuccBB->getSinglePredecessor())
1458 if (Inst.isDebugOrPseudoInst())
1460 if (--NumInsts == 0)
1463 if (!Inst.isIdenticalTo(Load))
1472 return cast<LoadInst>(&Inst);
1482void GVNPass::eliminatePartiallyRedundantLoad(
1483 LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1486 for (
const auto &AvailableLoad : AvailableLoads) {
1487 BasicBlock *UnavailableBlock = AvailableLoad.first;
1488 Value *LoadPtr = AvailableLoad.second;
1491 Load->getType(), LoadPtr,
Load->getName() +
".pre",
Load->isVolatile(),
1492 Load->getAlign(),
Load->getOrdering(),
Load->getSyncScopeID(),
1494 NewLoad->setDebugLoc(
Load->getDebugLoc());
1498 if (
auto *NewDef = dyn_cast<MemoryDef>(NewAccess))
1501 MSSAU->
insertUse(cast<MemoryUse>(NewAccess),
true);
1507 NewLoad->setAAMetadata(Tags);
1509 if (
auto *MD =
Load->getMetadata(LLVMContext::MD_invariant_load))
1510 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1511 if (
auto *InvGroupMD =
Load->getMetadata(LLVMContext::MD_invariant_group))
1512 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1513 if (
auto *RangeMD =
Load->getMetadata(LLVMContext::MD_range))
1514 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1515 if (
auto *AccessMD =
Load->getMetadata(LLVMContext::MD_access_group))
1517 NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD);
1526 ValuesPerBlock.push_back(
1533 if (CriticalEdgePredAndLoad) {
1534 auto I = CriticalEdgePredAndLoad->
find(UnavailableBlock);
1535 if (
I != CriticalEdgePredAndLoad->
end()) {
1536 ++NumPRELoadMoved2CEPred;
1543 LeaderTable.erase(ValNo, OldLoad, OldLoad->
getParent());
1545 removeInstruction(OldLoad);
1554 Load->replaceAllUsesWith(V);
1555 if (isa<PHINode>(V))
1558 I->setDebugLoc(
Load->getDebugLoc());
1559 if (
V->getType()->isPtrOrPtrVectorTy())
1564 <<
"load eliminated by PRE";
1568bool GVNPass::PerformLoadPRE(
LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1569 UnavailBlkVect &UnavailableBlocks) {
1579 UnavailableBlocks.end());
1601 bool MustEnsureSafetyOfSpeculativeExecution =
1606 if (TmpBB == LoadBB)
1608 if (Blockers.count(TmpBB))
1620 MustEnsureSafetyOfSpeculativeExecution =
1621 MustEnsureSafetyOfSpeculativeExecution || ICF->
hasICF(TmpBB);
1632 FullyAvailableBlocks[AV.BB] = AvailabilityState::Available;
1633 for (
BasicBlock *UnavailableBB : UnavailableBlocks)
1634 FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable;
1647 dbgs() <<
"COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1648 << Pred->
getName() <<
"': " << *Load <<
'\n');
1659 dbgs() <<
"COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1660 << Pred->
getName() <<
"': " << *Load <<
'\n');
1666 dbgs() <<
"COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1667 << Pred->
getName() <<
"': " << *Load <<
'\n');
1676 <<
"COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '"
1677 << Pred->
getName() <<
"': " << *Load <<
'\n');
1681 if (
LoadInst *LI = findLoadToHoistIntoPred(Pred, LoadBB, Load))
1682 CriticalEdgePredAndLoad[Pred] = LI;
1687 PredLoads[Pred] =
nullptr;
1692 unsigned NumInsertPreds = PredLoads.
size() + CriticalEdgePredSplit.
size();
1693 unsigned NumUnavailablePreds = NumInsertPreds +
1694 CriticalEdgePredAndLoad.
size();
1695 assert(NumUnavailablePreds != 0 &&
1696 "Fully available value should already be eliminated!");
1697 (void)NumUnavailablePreds;
1703 if (NumInsertPreds > 1)
1708 if (MustEnsureSafetyOfSpeculativeExecution) {
1709 if (CriticalEdgePredSplit.
size())
1712 for (
auto &PL : PredLoads)
1716 for (
auto &CEP : CriticalEdgePredAndLoad)
1723 for (
BasicBlock *OrigPred : CriticalEdgePredSplit) {
1724 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1725 assert(!PredLoads.count(OrigPred) &&
"Split edges shouldn't be in map!");
1726 PredLoads[NewPred] =
nullptr;
1727 LLVM_DEBUG(
dbgs() <<
"Split critical edge " << OrigPred->getName() <<
"->"
1728 << LoadBB->
getName() <<
'\n');
1731 for (
auto &CEP : CriticalEdgePredAndLoad)
1732 PredLoads[CEP.first] =
nullptr;
1735 bool CanDoPRE =
true;
1738 for (
auto &PredLoad : PredLoads) {
1739 BasicBlock *UnavailablePred = PredLoad.first;
1749 Value *LoadPtr =
Load->getPointerOperand();
1751 while (Cur != LoadBB) {
1764 LoadPtr =
Address.translateWithInsertion(LoadBB, UnavailablePred, *DT,
1771 << *
Load->getPointerOperand() <<
"\n");
1776 PredLoad.second = LoadPtr;
1780 while (!NewInsts.
empty()) {
1790 return !CriticalEdgePredSplit.empty();
1796 LLVM_DEBUG(
dbgs() <<
"GVN REMOVING PRE LOAD: " << *Load <<
'\n');
1798 <<
" INSTS: " << *NewInsts.
back()
1806 I->updateLocationAfterHoist();
1815 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads,
1816 &CriticalEdgePredAndLoad);
1821bool GVNPass::performLoopLoadPRE(
LoadInst *Load,
1822 AvailValInBlkVect &ValuesPerBlock,
1823 UnavailBlkVect &UnavailableBlocks) {
1826 if (!L ||
L->getHeader() !=
Load->getParent())
1831 if (!Preheader || !Latch)
1834 Value *LoadPtr =
Load->getPointerOperand();
1836 if (!
L->isLoopInvariant(LoadPtr))
1846 for (
auto *Blocker : UnavailableBlocks) {
1848 if (!
L->contains(Blocker))
1872 if (Blocker->getTerminator()->mayWriteToMemory())
1875 LoopBlock = Blocker;
1888 AvailableLoads[LoopBlock] = LoadPtr;
1889 AvailableLoads[Preheader] = LoadPtr;
1891 LLVM_DEBUG(
dbgs() <<
"GVN REMOVING PRE LOOP LOAD: " << *Load <<
'\n');
1892 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads,
1900 using namespace ore;
1904 <<
"load of type " << NV(
"Type", Load->getType()) <<
" eliminated"
1905 << setExtraArgs() <<
" in favor of "
1912bool GVNPass::processNonLocalLoad(
LoadInst *Load) {
1914 if (
Load->getParent()->getParent()->hasFnAttribute(
1915 Attribute::SanitizeAddress) ||
1916 Load->getParent()->getParent()->hasFnAttribute(
1917 Attribute::SanitizeHWAddress))
1927 unsigned NumDeps = Deps.size();
1934 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1936 dbgs() <<
" has unknown dependencies\n";);
1940 bool Changed =
false;
1943 dyn_cast<GetElementPtrInst>(
Load->getOperand(0))) {
1944 for (
Use &U :
GEP->indices())
1946 Changed |= performScalarPRE(
I);
1950 AvailValInBlkVect ValuesPerBlock;
1951 UnavailBlkVect UnavailableBlocks;
1952 AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks);
1956 if (ValuesPerBlock.empty())
1964 if (UnavailableBlocks.empty()) {
1965 LLVM_DEBUG(
dbgs() <<
"GVN REMOVING NONLOCAL LOAD: " << *Load <<
'\n');
1971 Load->replaceAllUsesWith(V);
1973 if (isa<PHINode>(V))
1979 if (
Load->getDebugLoc() &&
Load->getParent() ==
I->getParent())
1980 I->setDebugLoc(
Load->getDebugLoc());
1981 if (
V->getType()->isPtrOrPtrVectorTy())
1995 if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) ||
1996 PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks))
2004 auto *I = dyn_cast<Instruction>(U);
2005 return I && I->getParent() == BB;
2009bool GVNPass::processAssumeIntrinsic(
AssumeInst *IntrinsicI) {
2013 if (
Cond->isZero()) {
2032 for (
const auto &Acc : *AL) {
2033 if (
auto *Current = dyn_cast<MemoryUseOrDef>(&Acc))
2034 if (!Current->getMemoryInst()->comesBefore(NewS)) {
2035 FirstNonDom = Current;
2049 MSSAU->
insertDef(cast<MemoryDef>(NewDef),
false);
2059 if (isa<Constant>(V)) {
2067 bool Changed =
false;
2074 Changed |= propagateEquality(V, True, Edge,
false);
2080 ReplaceOperandsWithMap[
V] = True;
2102 if (
auto *CmpI = dyn_cast<CmpInst>(V)) {
2103 if (CmpI->isEquivalence()) {
2104 Value *CmpLHS = CmpI->getOperand(0);
2105 Value *CmpRHS = CmpI->getOperand(1);
2111 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
2113 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
2115 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
2116 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
2127 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
2131 << *CmpLHS <<
" with "
2132 << *CmpRHS <<
" in block "
2133 << IntrinsicI->
getParent()->getName() <<
"\n");
2138 ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
2151 I->replaceAllUsesWith(Repl);
2156bool GVNPass::processLoad(
LoadInst *L) {
2161 if (!
L->isUnordered())
2164 if (
L->use_empty()) {
2174 return processNonLocalLoad(L);
2181 dbgs() <<
"GVN: load ";
L->printAsOperand(
dbgs());
2182 dbgs() <<
" has unknown dependence\n";);
2186 auto AV = AnalyzeLoadAvailability(L, Dep,
L->getPointerOperand());
2209std::pair<uint32_t, bool>
2210GVNPass::ValueTable::assignExpNewValueNum(
Expression &Exp) {
2212 bool CreateNewValNum = !
e;
2213 if (CreateNewValNum) {
2214 Expressions.push_back(Exp);
2215 if (ExprIdx.size() < nextValueNumber + 1)
2216 ExprIdx.resize(nextValueNumber * 2);
2217 e = nextValueNumber;
2218 ExprIdx[nextValueNumber++] = nextExprNumber++;
2220 return {
e, CreateNewValNum};
2228 Gvn.LeaderTable.getLeaders(Num),
2229 [=](
const LeaderMap::LeaderTableEntry &L) { return L.BB == BB; });
2236 auto FindRes = PhiTranslateTable.find({Num, Pred});
2237 if (FindRes != PhiTranslateTable.end())
2238 return FindRes->second;
2239 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
2240 PhiTranslateTable.insert({{Num, Pred}, NewNum});
2251 auto Leaders = Gvn.LeaderTable.getLeaders(Num);
2252 for (
const auto &Entry : Leaders) {
2253 Call = dyn_cast<CallInst>(Entry.Val);
2254 if (Call && Call->getParent() == PhiBlock)
2258 if (AA->doesNotAccessMemory(Call))
2261 if (!MD || !AA->onlyReadsMemory(Call))
2273 if (
D.getResult().isNonFuncLocal())
2284 if (
PHINode *PN = NumberingPhi[Num]) {
2285 for (
unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
2286 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
2296 if (!areAllValsInBB(Num, PhiBlock, Gvn))
2299 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
2303 for (
unsigned i = 0; i <
Exp.varargs.size(); i++) {
2307 if ((i > 1 &&
Exp.opcode == Instruction::InsertValue) ||
2308 (i > 0 &&
Exp.opcode == Instruction::ExtractValue) ||
2309 (i > 1 &&
Exp.opcode == Instruction::ShuffleVector))
2311 Exp.varargs[i] = phiTranslate(Pred, PhiBlock,
Exp.varargs[i], Gvn);
2314 if (
Exp.commutative) {
2315 assert(
Exp.varargs.size() >= 2 &&
"Unsupported commutative instruction!");
2316 if (
Exp.varargs[0] >
Exp.varargs[1]) {
2319 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
2320 Exp.opcode = (Opcode << 8) |
2326 if (
uint32_t NewNum = expressionNumbering[Exp]) {
2327 if (
Exp.opcode == Instruction::Call && NewNum != Num)
2328 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
2336void GVNPass::ValueTable::eraseTranslateCacheEntry(
2339 PhiTranslateTable.erase({Num, Pred});
2348 auto Leaders = LeaderTable.getLeaders(num);
2349 if (Leaders.empty())
2352 Value *Val =
nullptr;
2353 for (
const auto &Entry : Leaders) {
2356 if (isa<Constant>(Val))
2376 "No edge between these basic blocks!");
2377 return Pred !=
nullptr;
2380void GVNPass::assignBlockRPONumber(
Function &
F) {
2381 BlockRPONumber.clear();
2385 BlockRPONumber[BB] = NextBlockNumber++;
2386 InvalidBlockRPONumbers =
false;
2389bool GVNPass::replaceOperandsForInBlockEquality(
Instruction *Instr)
const {
2390 bool Changed =
false;
2391 for (
unsigned OpNum = 0; OpNum <
Instr->getNumOperands(); ++OpNum) {
2393 auto it = ReplaceOperandsWithMap.find(Operand);
2394 if (it != ReplaceOperandsWithMap.end()) {
2396 << *it->second <<
" in instruction " << *Instr <<
'\n');
2397 Instr->setOperand(OpNum, it->second);
2409bool GVNPass::propagateEquality(
Value *LHS,
Value *RHS,
2411 bool DominatesByEdge) {
2413 Worklist.
push_back(std::make_pair(LHS, RHS));
2414 bool Changed =
false;
2419 while (!Worklist.
empty()) {
2420 std::pair<Value*, Value*> Item = Worklist.
pop_back_val();
2421 LHS = Item.first;
RHS = Item.second;
2428 if (isa<Constant>(LHS) && isa<Constant>(RHS))
2432 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2434 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) &&
"Unexpected value!");
2438 : cast<Instruction>(LHS)->getDataLayout();
2445 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2446 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2465 if (RootDominatesEnd && !isa<Instruction>(RHS) &&
2467 LeaderTable.insert(LVN, RHS, Root.
getEnd());
2474 auto canReplacePointersCallBack = [&
DL](
const Use &
U,
const Value *To) {
2477 unsigned NumReplacements =
2480 canReplacePointersCallBack)
2482 canReplacePointersCallBack);
2484 if (NumReplacements > 0) {
2486 NumGVNEqProp += NumReplacements;
2506 bool isKnownFalse = !isKnownTrue;
2521 if (
CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
2522 Value *Op0 =
Cmp->getOperand(0), *Op1 =
Cmp->getOperand(1);
2527 if (
Cmp->isEquivalence(isKnownFalse))
2528 Worklist.
push_back(std::make_pair(Op0, Op1));
2532 Constant *NotVal = ConstantInt::get(
Cmp->getType(), isKnownFalse);
2540 if (Num < NextNum) {
2542 if (NotCmp && isa<Instruction>(NotCmp)) {
2543 unsigned NumReplacements =
2548 Changed |= NumReplacements > 0;
2549 NumGVNEqProp += NumReplacements;
2559 if (RootDominatesEnd)
2560 LeaderTable.insert(Num, NotVal, Root.
getEnd());
2573 if (isa<DbgInfoIntrinsic>(
I))
2582 bool Changed =
false;
2583 if (!
I->use_empty()) {
2587 I->replaceAllUsesWith(V);
2595 if (MD &&
V->getType()->isPtrOrPtrVectorTy())
2602 if (
auto *Assume = dyn_cast<AssumeInst>(
I))
2603 return processAssumeIntrinsic(Assume);
2605 if (
LoadInst *Load = dyn_cast<LoadInst>(
I)) {
2606 if (processLoad(Load))
2610 LeaderTable.insert(Num, Load,
Load->getParent());
2617 if (!BI->isConditional())
2620 if (isa<Constant>(BI->getCondition()))
2621 return processFoldableCondBr(BI);
2623 Value *BranchCond = BI->getCondition();
2627 if (TrueSucc == FalseSucc)
2631 bool Changed =
false;
2635 Changed |= propagateEquality(BranchCond, TrueVal, TrueE,
true);
2639 Changed |= propagateEquality(BranchCond, FalseVal, FalseE,
true);
2646 Value *SwitchCond =
SI->getCondition();
2648 bool Changed =
false;
2653 ++SwitchEdges[Succ];
2659 if (SwitchEdges.
lookup(Dst) == 1) {
2661 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E,
true);
2669 if (
I->getType()->isVoidTy())
2677 if (isa<AllocaInst>(
I) ||
I->isTerminator() || isa<PHINode>(
I)) {
2678 LeaderTable.insert(Num,
I,
I->getParent());
2685 if (Num >= NextNum) {
2686 LeaderTable.insert(Num,
I,
I->getParent());
2692 Value *Repl = findLeader(
I->getParent(), Num);
2695 LeaderTable.insert(Num,
I,
I->getParent());
2729 InvalidBlockRPONumbers =
true;
2731 MSSAU = MSSA ? &Updater :
nullptr;
2733 bool Changed =
false;
2734 bool ShouldContinue =
true;
2744 Changed |= removedBlock;
2748 unsigned Iteration = 0;
2749 while (ShouldContinue) {
2752 ShouldContinue = iterateOnFunction(
F);
2753 Changed |= ShouldContinue;
2760 assignValNumForDeadCode();
2761 bool PREChanged =
true;
2762 while (PREChanged) {
2763 PREChanged = performPRE(
F);
2764 Changed |= PREChanged;
2773 cleanupGlobalSets();
2788 "We expect InstrsToErase to be empty across iterations");
2789 if (DeadBlocks.count(BB))
2793 ReplaceOperandsWithMap.clear();
2794 bool ChangedFunction =
false;
2802 for (
PHINode *PN : PHINodesToRemove) {
2804 removeInstruction(PN);
2809 if (!ReplaceOperandsWithMap.empty())
2810 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
2811 ChangedFunction |= processInstruction(&*BI);
2813 if (InstrsToErase.
empty()) {
2819 NumGVNInstr += InstrsToErase.
size();
2822 bool AtStart = BI == BB->
begin();
2826 for (
auto *
I : InstrsToErase) {
2827 assert(
I->getParent() == BB &&
"Removing instruction from wrong block?");
2831 removeInstruction(
I);
2833 InstrsToErase.clear();
2841 return ChangedFunction;
2852 for (
unsigned i = 0, e =
Instr->getNumOperands(); i != e; ++i) {
2854 if (isa<Argument>(
Op) || isa<Constant>(
Op) || isa<GlobalValue>(
Op))
2866 if (
Value *V = findLeader(Pred, TValNo)) {
2867 Instr->setOperand(i, V);
2890 LeaderTable.insert(Num, Instr, Pred);
2894bool GVNPass::performScalarPRE(
Instruction *CurInst) {
2895 if (isa<AllocaInst>(CurInst) || CurInst->
isTerminator() ||
2898 isa<DbgInfoIntrinsic>(CurInst))
2905 if (isa<CmpInst>(CurInst))
2915 if (isa<GetElementPtrInst>(CurInst))
2918 if (
auto *CallB = dyn_cast<CallBase>(CurInst)) {
2920 if (CallB->isInlineAsm())
2932 unsigned NumWith = 0;
2933 unsigned NumWithout = 0;
2938 if (InvalidBlockRPONumbers)
2939 assignBlockRPONumber(*CurrentBlock->
getParent());
2950 assert(BlockRPONumber.count(
P) && BlockRPONumber.count(CurrentBlock) &&
2951 "Invalid BlockRPONumber map.");
2952 if (BlockRPONumber[
P] >= BlockRPONumber[CurrentBlock]) {
2958 Value *predV = findLeader(
P, TValNo);
2963 }
else if (predV == CurInst) {
2975 if (NumWithout > 1 || NumWith == 0)
2983 if (NumWithout != 0) {
3002 toSplit.push_back(std::make_pair(PREPred->
getTerminator(), SuccNum));
3006 PREInstr = CurInst->
clone();
3007 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
3010 verifyRemoved(PREInstr);
3019 assert(PREInstr !=
nullptr || NumWithout == 0);
3025 CurInst->
getName() +
".pre-phi");
3026 Phi->insertBefore(CurrentBlock->begin());
3027 for (
unsigned i = 0, e = predMap.
size(); i != e; ++i) {
3028 if (
Value *V = predMap[i].first) {
3032 Phi->addIncoming(V, predMap[i].second);
3034 Phi->addIncoming(PREInstr, PREPred);
3041 LeaderTable.insert(ValNo, Phi, CurrentBlock);
3044 if (MD &&
Phi->getType()->isPtrOrPtrVectorTy())
3047 LeaderTable.erase(ValNo, CurInst, CurrentBlock);
3050 removeInstruction(CurInst);
3059 bool Changed =
false;
3062 if (CurrentBlock == &
F.getEntryBlock())
3066 if (CurrentBlock->isEHPad())
3070 BE = CurrentBlock->end();
3073 Changed |= performScalarPRE(CurInst);
3077 if (splitCriticalEdges())
3094 InvalidBlockRPONumbers =
true;
3101bool GVNPass::splitCriticalEdges() {
3102 if (toSplit.empty())
3105 bool Changed =
false;
3107 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
3111 }
while (!toSplit.empty());
3115 InvalidBlockRPONumbers =
true;
3121bool GVNPass::iterateOnFunction(
Function &
F) {
3122 cleanupGlobalSets();
3125 bool Changed =
false;
3132 Changed |= processBlock(BB);
3137void GVNPass::cleanupGlobalSets() {
3139 LeaderTable.clear();
3140 BlockRPONumber.clear();
3142 InvalidBlockRPONumbers =
true;
3153 I->eraseFromParent();
3158void GVNPass::verifyRemoved(
const Instruction *Inst)
const {
3160 LeaderTable.verifyRemoved(Inst);
3172 while (!NewDead.
empty()) {
3174 if (DeadBlocks.count(
D))
3180 DeadBlocks.insert(Dom.
begin(), Dom.
end());
3185 if (DeadBlocks.count(S))
3188 bool AllPredDead =
true;
3190 if (!DeadBlocks.count(
P)) {
3191 AllPredDead =
false;
3212 if (DeadBlocks.count(
B))
3219 if (!DeadBlocks.count(
P))
3225 DeadBlocks.insert(
P = S);
3231 if (!DeadBlocks.count(
P))
3255bool GVNPass::processFoldableCondBr(
BranchInst *BI) {
3269 if (DeadBlocks.count(DeadRoot))
3273 DeadRoot = splitCriticalEdges(BI->
getParent(), DeadRoot);
3275 addDeadBlock(DeadRoot);
3283void GVNPass::assignValNumForDeadCode() {
3287 LeaderTable.insert(ValNum, &Inst, BB);
3302 if (skipFunction(
F))
3305 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
3306 return Impl.runImpl(
3307 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
F),
3308 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3309 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
F),
3310 getAnalysis<AAResultsWrapperPass>().getAAResults(),
3311 Impl.isMemDepEnabled()
3312 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep()
3314 getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
3315 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(),
3316 MSSAWP ? &MSSAWP->getMSSA() :
nullptr);
3324 if (Impl.isMemDepEnabled())
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static RegisterPass< DebugifyFunctionPass > DF("debugify-function", "Attach debug info to a function")
This file defines the DenseMap class.
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
static bool hasUsersIn(Value *V, BasicBlock *BB)
static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo, DominatorTree *DT, OptimizationRemarkEmitter *ORE)
Try to locate the three instruction involved in a missed load-elimination case that is due to an inte...
static void reportLoadElim(LoadInst *Load, Value *AvailableValue, OptimizationRemarkEmitter *ORE)
static cl::opt< uint32_t > MaxNumInsnsPerBlock("gvn-max-num-insns", cl::Hidden, cl::init(100), cl::desc("Max number of instructions to scan in each basic block in GVN " "(default = 100)"))
static cl::opt< bool > GVNEnableMemDep("enable-gvn-memdep", cl::init(true))
static cl::opt< bool > GVNEnableLoadInLoopPRE("enable-load-in-loop-pre", cl::init(true))
static cl::opt< uint32_t > MaxNumDeps("gvn-max-num-deps", cl::Hidden, cl::init(100), cl::desc("Max number of dependences to attempt Load PRE (default = 100)"))
static Value * ConstructSSAForLoadSet(LoadInst *Load, SmallVectorImpl< AvailableValueInBlock > &ValuesPerBlock, GVNPass &gvn)
Given a set of loads specified by ValuesPerBlock, construct SSA form, allowing us to eliminate Load.
static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, DominatorTree *DT)
There is an edge from 'Src' to 'Dst'.
static bool IsValueFullyAvailableInBlock(BasicBlock *BB, DenseMap< BasicBlock *, AvailabilityState > &FullyAvailableBlocks)
Return true if we can prove that the value we're analyzing is fully available in the specified block.
static Value * findDominatingValue(const MemoryLocation &Loc, Type *LoadTy, Instruction *From, AAResults *AA)
static bool isLifetimeStart(const Instruction *Inst)
static cl::opt< bool > GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre", cl::init(false))
static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl)
static void replaceValuesPerBlockEntry(SmallVectorImpl< AvailableValueInBlock > &ValuesPerBlock, Value *OldValue, Value *NewValue)
If the specified OldValue exists in ValuesPerBlock, replace its value with NewValue.
@ Unavailable
We know the block is not fully available. This is a fixpoint.
@ Available
We know the block is fully available. This is a fixpoint.
@ SpeculativelyAvailable
We do not know whether the block is fully available or not, but we are currently speculating that it ...
static cl::opt< bool > GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden)
static cl::opt< uint32_t > MaxNumVisitedInsts("gvn-max-num-visited-insts", cl::Hidden, cl::init(100), cl::desc("Max number of visited instructions when trying to find " "dominating value of select dependency (default = 100)"))
static cl::opt< uint32_t > MaxBBSpeculations("gvn-max-block-speculations", cl::Hidden, cl::init(600), cl::desc("Max number of blocks we're willing to speculate on (and recurse " "into) when deducing if a value is fully available or not in GVN " "(default = 600)"))
static bool liesBetween(const Instruction *From, Instruction *Between, const Instruction *To, DominatorTree *DT)
Assuming To can be reached from both From and Between, does Between lie on every path from From to To...
static cl::opt< bool > GVNEnableLoadPRE("enable-load-pre", cl::init(true))
This file provides the interface for LLVM's Global Value Numbering pass which eliminates fully redund...
This is the interface for a simple mod/ref and alias analysis over globals.
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
static bool lookup(const GsymReader &GR, DataExtractor &Data, uint64_t &Offset, uint64_t BaseAddr, uint64_t Addr, SourceLocations &SrcLocs, llvm::Error &Err)
A Lookup helper functions.
This file implements a map that provides insertion order iteration.
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
uint64_t IntrinsicInst * II
ppc ctr loops PowerPC CTR Loops Verify
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static const uint32_t IV[8]
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
Class for arbitrary precision integers.
A container for analyses that lazily runs them and caches their results.
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
This represents the llvm.assume intrinsic.
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
bool isEmpty() const
Return true if there are no attributes.
std::optional< AttributeList > intersectWith(LLVMContext &C, AttributeList Other) const
Try to intersect this AttributeList with Other.
const BasicBlock * getEnd() const
const BasicBlock * getStart() const
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Function * getParent() const
Return the enclosing method, or null if none.
InstListType::iterator iterator
Instruction iterators...
LLVMContext & getContext() const
Get the context in which this basic block lives.
bool isEHPad() const
Return true if this basic block is an exception handling block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
ModRefInfo getModRefInfo(const Instruction *I, const std::optional< MemoryLocation > &OptLoc)
Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
Conditional or Unconditional Branch instruction.
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
static ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getFalse(LLVMContext &Context)
This is an important base class in LLVM.
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Analysis pass which computes a DominatorTree.
void getDescendants(NodeT *R, SmallVectorImpl< NodeT * > &Result) const
Get all nodes dominated by R, including R itself.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Class representing an expression and its matching format.
FunctionPass class - This class is used to implement most global optimizations.
Represents calls to the gc.relocate intrinsic.
This class holds the mapping between values and value numbers.
uint32_t lookupOrAddCmp(unsigned Opcode, CmpInst::Predicate Pred, Value *LHS, Value *RHS)
Returns the value number of the given comparison, assigning it a new number if it did not have one be...
uint32_t getNextUnusedValueNumber()
uint32_t lookupOrAdd(Value *V)
lookup_or_add - Returns the value number for the specified value, assigning it a new number if it did...
uint32_t lookup(Value *V, bool Verify=true) const
Returns the value number of the specified value.
void setAliasAnalysis(AAResults *A)
void clear()
Remove all entries from the ValueTable.
bool exists(Value *V) const
Returns true if a value number exists for the specified value.
uint32_t phiTranslate(const BasicBlock *BB, const BasicBlock *PhiBlock, uint32_t Num, GVNPass &Gvn)
Wrap phiTranslateImpl to provide caching functionality.
void setMemDep(MemoryDependenceResults *M)
void erase(Value *v)
Remove a value from the value numbering.
void add(Value *V, uint32_t num)
add - Insert a value into the table with a specified value number.
void setDomTree(DominatorTree *D)
void eraseTranslateCacheEntry(uint32_t Num, const BasicBlock &CurrBlock)
Erase stale entry from phiTranslate cache so phiTranslate can be computed again.
void verifyRemoved(const Value *) const
verifyRemoved - Verify that the value is removed from all internal data structures.
The core GVN pass object.
friend class gvn::GVNLegacyPass
bool isPREEnabled() const
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Run the pass over the function.
AAResults * getAliasAnalysis() const
bool isLoadPREEnabled() const
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
DominatorTree & getDominatorTree() const
bool isLoadInLoopPREEnabled() const
bool isLoadPRESplitBackedgeEnabled() const
void markInstructionForDeletion(Instruction *I)
This removes the specified instruction from our various maps and marks it for deletion.
bool isMemDepEnabled() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Legacy wrapper pass to provide the GlobalsAAResult object.
This class allows to keep track on instructions with implicit control flow.
bool isDominatedByICFIFromSameBlock(const Instruction *Insn)
Returns true if the first ICFI of Insn's block exists and dominates Insn.
bool hasICF(const BasicBlock *BB)
Returns true if at least one instruction from the given basic block has implicit control flow.
void clear()
Invalidates all information from this tracking.
void removeUsersOf(const Instruction *Inst)
Notifies this tracking that we are going to replace all uses of Inst.
void insertInstructionTo(const Instruction *Inst, const BasicBlock *BB)
Notifies this tracking that we are going to insert a new instruction Inst to the basic block BB.
void removeInstruction(const Instruction *Inst)
Notifies this tracking that we are going to remove the instruction Inst It makes all necessary update...
Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
const Instruction * getPrevNonDebugInstruction(bool SkipPseudoOp=false) const
Return a pointer to the previous non-debug instruction in the same basic block as 'this',...
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
bool isEHPad() const
Return true if the instruction is a variety of EH-block.
bool mayHaveSideEffects() const LLVM_READONLY
Return true if the instruction may have side effects.
bool isTerminator() const
bool mayReadFromMemory() const LLVM_READONLY
Return true if this instruction may read memory.
void dropUnknownNonDebugMetadata(ArrayRef< unsigned > KnownIDs={})
Drop all unknown metadata except for debug locations.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Analysis pass that exposes the LoopInfo for a function.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
The legacy pass manager's analysis pass to compute loop information.
Represents a single loop in the control flow graph.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
This class implements a map that also provides access to all stored values in a deterministic order.
iterator find(const KeyT &Key)
A memory dependence query can return one of three different answers.
bool isClobber() const
Tests if this MemDepResult represents a query that is an instruction clobber dependency.
bool isNonLocal() const
Tests if this MemDepResult represents a query that is transparent to the start of the block,...
bool isDef() const
Tests if this MemDepResult represents a query that is an instruction definition dependency.
bool isLocal() const
Tests if this MemDepResult represents a valid local query (Clobber/Def).
Instruction * getInst() const
If this is a normal dependency, returns the instruction that is depended on.
This is the common base class for memset/memcpy/memmove.
An analysis that produces MemoryDependenceResults for a function.
Provides a lazy, caching interface for making common memory aliasing information queries,...
std::vector< NonLocalDepEntry > NonLocalDepInfo
void invalidateCachedPredecessors()
Clears the PredIteratorCache info.
void invalidateCachedPointerInfo(Value *Ptr)
Invalidates cached information about the specified pointer, because it may be too conservative in mem...
std::optional< int32_t > getClobberOffset(LoadInst *DepInst) const
Return the clobber offset to dependent instruction.
void removeInstruction(Instruction *InstToRemove)
Removes an instruction from the dependence analysis, updating the dependence of instructions that pre...
MemDepResult getDependency(Instruction *QueryInst)
Returns the instruction on which a memory operation depends.
const NonLocalDepInfo & getNonLocalCallDependency(CallBase *QueryCall)
Perform a full dependency query for the specified call, returning the set of blocks that the value is...
void getNonLocalPointerDependency(Instruction *QueryInst, SmallVectorImpl< NonLocalDepResult > &Result)
Perform a full dependency query for an access to the QueryInst's specified memory location,...
A wrapper analysis pass for the legacy pass manager that exposes a MemoryDepnedenceResults instance.
Representation for a specific memory location.
static MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
const Value * Ptr
The address of the start of the location.
An analysis that produces MemorySSA for a function.
MemorySSA * getMemorySSA() const
Get handle on MemorySSA.
MemoryUseOrDef * createMemoryAccessBefore(Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt)
Create a MemoryAccess in MemorySSA before an existing MemoryAccess.
void insertDef(MemoryDef *Def, bool RenameUses=false)
Insert a definition into the MemorySSA IR.
void insertUse(MemoryUse *Use, bool RenameUses=false)
MemoryAccess * createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, MemorySSA::InsertionPlace Point, bool CreationMustSucceed=true)
Create a MemoryAccess in MemorySSA at a specified point in a block.
void removeMemoryAccess(MemoryAccess *, bool OptimizePhis=false)
Remove a MemoryAccess from MemorySSA, including updating all definitions and uses.
Legacy analysis pass which computes MemorySSA.
Encapsulates MemorySSA, including all data associated with memory accesses.
const AccessList * getBlockAccesses(const BasicBlock *BB) const
Return the list of MemoryAccess's for a given basic block.
void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
Class that has the common methods + fields of memory uses/defs.
This is an entry in the NonLocalDepInfo cache.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
PHITransAddr - An address value which tracks and handles phi translation.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void preserve()
Mark an analysis as preserved.
Helper class for SSA formation on a set of values defined in multiple blocks.
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type 'Ty'.
Value * GetValueInMiddleOfBlock(BasicBlock *BB)
Construct SSA form, materializing a value that is live in the middle of the specified block.
bool HasValueForBlock(BasicBlock *BB) const
Return true if the SSAUpdater already has a value for the specified block.
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
const Value * getCondition() const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
iterator insert(iterator I, T &&Elt)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
SmallVector & operator=(const SmallVector &RHS)
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
static IntegerType * getInt8Ty(LLVMContext &C)
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
bool canBeFreed() const
Return true if the memory object referred to by V can by freed in the scope for which the SSA value d...
void deleteValue()
Delete a pointer to a generic Value.
StringRef getName() const
Return a constant reference to the value's name.
Represents an op.with.overflow intrinsic.
An efficient, type-erasing, non-owning reference to a callable.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
GVNLegacyPass(bool NoMemDepAnalysis=!GVNEnableMemDep)
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
An opaque object representing a hash code.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
Value * getValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &DL)
If analyzeLoadFromClobberingStore/Load returned an offset, this function can be used to actually perf...
int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, StoreInst *DepSI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the store at D...
Value * getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &DL)
If analyzeLoadFromClobberingMemInst returned an offset, this function can be used to actually perform...
int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the load at De...
int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, MemIntrinsic *DepMI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the memory int...
bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, const DataLayout &DL)
Return true if CoerceAvailableValueToLoadType would succeed if it was called.
initializer< Ty > init(const Ty &Val)
A private "module" namespace for types and utilities used by GVN.
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
hash_code hash_value(const FixedPointSemantics &Val)
Constant * getInitialValueOfAllocation(const Value *V, const TargetLibraryInfo *TLI, Type *Ty)
If this is a call to an allocation function that initializes memory to a fixed value,...
unsigned replaceDominatedUsesWithIf(Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Edge, function_ref< bool(const Use &U, const Value *To)> ShouldReplace)
Replace each use of 'From' with 'To' if that use is dominated by the given edge and the callback Shou...
unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ)
Search for the specified successor of basic block BB and return its position in the terminator instru...
auto pred_end(const MachineBasicBlock *BB)
void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
auto successors(const MachineBasicBlock *BB)
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
bool isAssumeWithEmptyBundle(const AssumeInst &Assume)
Return true iff the operand bundles of the provided llvm.assume doesn't contain any valuable informat...
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
void initializeGVNLegacyPassPass(PassRegistry &)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
bool canReplacePointersInUseIfEqual(const Use &U, const Value *To, const DataLayout &DL)
bool canReplacePointersIfEqual(const Value *From, const Value *To, const DataLayout &DL)
Returns true if a pointer value From can be replaced with another pointer value \To if they are deeme...
bool isModSet(const ModRefInfo MRI)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
void patchReplacementInstruction(Instruction *I, Value *Repl)
Patch the replacement so that it is not more restrictive than the value being replaced.
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Edge)
Replace each use of 'From' with 'To' if that use is dominated by the given edge.
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
@ Global
Append to llvm.global_dtors.
void combineMetadataForCSE(Instruction *K, const Instruction *J, bool DoesKMove)
Combine the metadata of two instructions so that K can replace J.
bool VerifyMemorySSA
Enables verification of MemorySSA.
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
bool salvageKnowledge(Instruction *I, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr)
Calls BuildAssumeFromInst and if the resulting llvm.assume is valid insert if before I.
bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
BasicBlock * SplitCriticalEdge(Instruction *TI, unsigned SuccNum, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
If this edge is a critical edge, insert a new node to split the critical edge.
FunctionPass * createGVNPass(bool NoMemDepAnalysis=false)
Create a legacy GVN pass.
bool isCriticalEdge(const Instruction *TI, unsigned SuccNum, bool AllowIdenticalEdges=false)
Return true if the specified edge is a critical edge.
constexpr unsigned BitWidth
auto pred_begin(const MachineBasicBlock *BB)
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool pred_empty(const BasicBlock *BB)
iterator_range< df_iterator< T > > depth_first(const T &G)
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
bool EliminateDuplicatePHINodes(BasicBlock *BB)
Check for and eliminate duplicate PHI nodes in this block.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
bool isPotentiallyReachable(const Instruction *From, const Instruction *To, const SmallPtrSetImpl< BasicBlock * > *ExclusionSet=nullptr, const DominatorTree *DT=nullptr, const LoopInfo *LI=nullptr)
Determine whether instruction 'To' is reachable from 'From', without passing through any blocks in Ex...
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Option class for critical edge splitting.
static GVNPass::Expression getTombstoneKey()
static bool isEqual(const GVNPass::Expression &LHS, const GVNPass::Expression &RHS)
static unsigned getHashValue(const GVNPass::Expression &e)
static GVNPass::Expression getEmptyKey()
An information struct used to provide DenseMap with the various necessary components for a given valu...
A set of parameters to control various transforms performed by GVN pass.
std::optional< bool > AllowLoadPRESplitBackedge
std::optional< bool > AllowPRE
std::optional< bool > AllowLoadInLoopPRE
std::optional< bool > AllowMemDep
std::optional< bool > AllowLoadPRE
SmallVector< uint32_t, 4 > varargs
bool operator==(const Expression &other) const
friend hash_code hash_value(const Expression &Value)
Expression(uint32_t o=~2U)
A CRTP mix-in to automatically provide informational APIs needed for passes.
A MapVector that performs no allocations if smaller than a certain size.
Represents an AvailableValue which can be rematerialized at the end of the associated BasicBlock.
static AvailableValueInBlock get(BasicBlock *BB, Value *V, unsigned Offset=0)
static AvailableValueInBlock getUndef(BasicBlock *BB)
static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV)
Value * MaterializeAdjustedValue(LoadInst *Load, GVNPass &gvn) const
Emit code at the end of this block to adjust the value defined here to the specified type.
AvailableValue AV
AV - The actual available value.
static AvailableValueInBlock getSelect(BasicBlock *BB, SelectInst *Sel, Value *V1, Value *V2)
BasicBlock * BB
BB - The basic block in question.
Represents a particular available value that we know how to materialize.
unsigned Offset
Offset - The byte offset in Val that is interesting for the load query.
bool isSimpleValue() const
static AvailableValue getSelect(SelectInst *Sel, Value *V1, Value *V2)
bool isCoercedLoadValue() const
static AvailableValue get(Value *V, unsigned Offset=0)
ValType Kind
Kind of the live-out value.
LoadInst * getCoercedLoadValue() const
static AvailableValue getLoad(LoadInst *Load, unsigned Offset=0)
static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset=0)
bool isUndefValue() const
bool isSelectValue() const
Value * Val
Val - The value that is live out of the block.
Value * V1
V1, V2 - The dominating non-clobbered values of SelectVal.
Value * MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt, GVNPass &gvn) const
Emit code at the specified insertion point to adjust the value defined here to the specified type.
static AvailableValue getUndef()
SelectInst * getSelectValue() const
Value * getSimpleValue() const
bool isMemIntrinValue() const
MemIntrinsic * getMemIntrinValue() const