LLVM 20.0.0git
AArch64SpeculationHardening.cpp
Go to the documentation of this file.
1//===- AArch64SpeculationHardening.cpp - Harden Against Missspeculation --===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass to insert code to mitigate against side channel
10// vulnerabilities that may happen under control flow miss-speculation.
11//
12// The pass implements tracking of control flow miss-speculation into a "taint"
13// register. That taint register can then be used to mask off registers with
14// sensitive data when executing under miss-speculation, a.k.a. "transient
15// execution".
16// This pass is aimed at mitigating against SpectreV1-style vulnarabilities.
17//
18// It also implements speculative load hardening, i.e. using the taint register
19// to automatically mask off loaded data.
20//
21// As a possible follow-on improvement, also an intrinsics-based approach as
22// explained at https://lwn.net/Articles/759423/ could be implemented on top of
23// the current design.
24//
25// For AArch64, the following implementation choices are made to implement the
26// tracking of control flow miss-speculation into a taint register:
27// Some of these are different than the implementation choices made in
28// the similar pass implemented in X86SpeculativeLoadHardening.cpp, as
29// the instruction set characteristics result in different trade-offs.
30// - The speculation hardening is done after register allocation. With a
31// relative abundance of registers, one register is reserved (X16) to be
32// the taint register. X16 is expected to not clash with other register
33// reservation mechanisms with very high probability because:
34// . The AArch64 ABI doesn't guarantee X16 to be retained across any call.
35// . The only way to request X16 to be used as a programmer is through
36// inline assembly. In the rare case a function explicitly demands to
37// use X16/W16, this pass falls back to hardening against speculation
38// by inserting a DSB SYS/ISB barrier pair which will prevent control
39// flow speculation.
40// - It is easy to insert mask operations at this late stage as we have
41// mask operations available that don't set flags.
42// - The taint variable contains all-ones when no miss-speculation is detected,
43// and contains all-zeros when miss-speculation is detected. Therefore, when
44// masking, an AND instruction (which only changes the register to be masked,
45// no other side effects) can easily be inserted anywhere that's needed.
46// - The tracking of miss-speculation is done by using a data-flow conditional
47// select instruction (CSEL) to evaluate the flags that were also used to
48// make conditional branch direction decisions. Speculation of the CSEL
49// instruction can be limited with a CSDB instruction - so the combination of
50// CSEL + a later CSDB gives the guarantee that the flags as used in the CSEL
51// aren't speculated. When conditional branch direction gets miss-speculated,
52// the semantics of the inserted CSEL instruction is such that the taint
53// register will contain all zero bits.
54// One key requirement for this to work is that the conditional branch is
55// followed by an execution of the CSEL instruction, where the CSEL
56// instruction needs to use the same flags status as the conditional branch.
57// This means that the conditional branches must not be implemented as one
58// of the AArch64 conditional branches that do not use the flags as input
59// (CB(N)Z and TB(N)Z). This is implemented by ensuring in the instruction
60// selectors to not produce these instructions when speculation hardening
61// is enabled. This pass will assert if it does encounter such an instruction.
62// - On function call boundaries, the miss-speculation state is transferred from
63// the taint register X16 to be encoded in the SP register as value 0.
64//
65// For the aspect of automatically hardening loads, using the taint register,
66// (a.k.a. speculative load hardening, see
67// https://llvm.org/docs/SpeculativeLoadHardening.html), the following
68// implementation choices are made for AArch64:
69// - Many of the optimizations described at
70// https://llvm.org/docs/SpeculativeLoadHardening.html to harden fewer
71// loads haven't been implemented yet - but for some of them there are
72// FIXMEs in the code.
73// - loads that load into general purpose (X or W) registers get hardened by
74// masking the loaded data. For loads that load into other registers, the
75// address loaded from gets hardened. It is expected that hardening the
76// loaded data may be more efficient; but masking data in registers other
77// than X or W is not easy and may result in being slower than just
78// hardening the X address register loaded from.
79// - On AArch64, CSDB instructions are inserted between the masking of the
80// register and its first use, to ensure there's no non-control-flow
81// speculation that might undermine the hardening mechanism.
82//
83// Future extensions/improvements could be:
84// - Implement this functionality using full speculation barriers, akin to the
85// x86-slh-lfence option. This may be more useful for the intrinsics-based
86// approach than for the SLH approach to masking.
87// Note that this pass already inserts the full speculation barriers if the
88// function for some niche reason makes use of X16/W16.
89// - no indirect branch misprediction gets protected/instrumented; but this
90// could be done for some indirect branches, such as switch jump tables.
91//===----------------------------------------------------------------------===//
92
93#include "AArch64Subtarget.h"
95#include "llvm/ADT/BitVector.h"
104#include "llvm/IR/DebugLoc.h"
105#include "llvm/Pass.h"
106#include "llvm/Support/Debug.h"
108#include <cassert>
109
110using namespace llvm;
111
112#define DEBUG_TYPE "aarch64-speculation-hardening"
113
114#define AARCH64_SPECULATION_HARDENING_NAME "AArch64 speculation hardening pass"
115
116static cl::opt<bool> HardenLoads("aarch64-slh-loads", cl::Hidden,
117 cl::desc("Sanitize loads from memory."),
118 cl::init(true));
119
120namespace {
121
122class AArch64SpeculationHardening : public MachineFunctionPass {
123public:
124 const TargetInstrInfo *TII;
125 const TargetRegisterInfo *TRI;
126
127 static char ID;
128
129 AArch64SpeculationHardening() : MachineFunctionPass(ID) {
131 }
132
133 bool runOnMachineFunction(MachineFunction &Fn) override;
134
135 StringRef getPassName() const override {
137 }
138
139private:
140 unsigned MisspeculatingTaintReg;
141 unsigned MisspeculatingTaintReg32Bit;
142 bool UseControlFlowSpeculationBarrier;
143 BitVector RegsNeedingCSDBBeforeUse;
144 BitVector RegsAlreadyMasked;
145
146 bool functionUsesHardeningRegister(MachineFunction &MF) const;
147 bool instrumentControlFlow(MachineBasicBlock &MBB,
148 bool &UsesFullSpeculationBarrier);
149 bool endsWithCondControlFlow(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
150 MachineBasicBlock *&FBB,
151 AArch64CC::CondCode &CondCode) const;
152 void insertTrackingCode(MachineBasicBlock &SplitEdgeBB,
153 AArch64CC::CondCode &CondCode, DebugLoc DL) const;
154 void insertSPToRegTaintPropagation(MachineBasicBlock &MBB,
156 void insertRegToSPTaintPropagation(MachineBasicBlock &MBB,
158 unsigned TmpReg) const;
159 void insertFullSpeculationBarrier(MachineBasicBlock &MBB,
161 DebugLoc DL) const;
162
163 bool slhLoads(MachineBasicBlock &MBB);
164 bool makeGPRSpeculationSafe(MachineBasicBlock &MBB,
166 MachineInstr &MI, unsigned Reg);
167 bool lowerSpeculationSafeValuePseudos(MachineBasicBlock &MBB,
168 bool UsesFullSpeculationBarrier);
169 bool expandSpeculationSafeValue(MachineBasicBlock &MBB,
171 bool UsesFullSpeculationBarrier);
173 DebugLoc DL);
174};
175
176} // end anonymous namespace
177
178char AArch64SpeculationHardening::ID = 0;
179
180INITIALIZE_PASS(AArch64SpeculationHardening, "aarch64-speculation-hardening",
182
183bool AArch64SpeculationHardening::endsWithCondControlFlow(
185 AArch64CC::CondCode &CondCode) const {
186 SmallVector<MachineOperand, 1> analyzeBranchCondCode;
187 if (TII->analyzeBranch(MBB, TBB, FBB, analyzeBranchCondCode, false))
188 return false;
189
190 // Ignore if the BB ends in an unconditional branch/fall-through.
191 if (analyzeBranchCondCode.empty())
192 return false;
193
194 // If the BB ends with a single conditional branch, FBB will be set to
195 // nullptr (see API docs for TII->analyzeBranch). For the rest of the
196 // analysis we want the FBB block to be set always.
197 assert(TBB != nullptr);
198 if (FBB == nullptr)
199 FBB = MBB.getFallThrough();
200
201 // If both the true and the false condition jump to the same basic block,
202 // there isn't need for any protection - whether the branch is speculated
203 // correctly or not, we end up executing the architecturally correct code.
204 if (TBB == FBB)
205 return false;
206
207 assert(MBB.succ_size() == 2);
208 // translate analyzeBranchCondCode to CondCode.
209 assert(analyzeBranchCondCode.size() == 1 && "unknown Cond array format");
210 CondCode = AArch64CC::CondCode(analyzeBranchCondCode[0].getImm());
211 return true;
212}
213
214void AArch64SpeculationHardening::insertFullSpeculationBarrier(
216 DebugLoc DL) const {
217 // A full control flow speculation barrier consists of (DSB SYS + ISB)
218 BuildMI(MBB, MBBI, DL, TII->get(AArch64::DSB)).addImm(0xf);
219 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ISB)).addImm(0xf);
220}
221
222void AArch64SpeculationHardening::insertTrackingCode(
223 MachineBasicBlock &SplitEdgeBB, AArch64CC::CondCode &CondCode,
224 DebugLoc DL) const {
225 if (UseControlFlowSpeculationBarrier) {
226 insertFullSpeculationBarrier(SplitEdgeBB, SplitEdgeBB.begin(), DL);
227 } else {
228 BuildMI(SplitEdgeBB, SplitEdgeBB.begin(), DL, TII->get(AArch64::CSELXr))
229 .addDef(MisspeculatingTaintReg)
230 .addUse(MisspeculatingTaintReg)
231 .addUse(AArch64::XZR)
232 .addImm(CondCode);
233 SplitEdgeBB.addLiveIn(AArch64::NZCV);
234 }
235}
236
237bool AArch64SpeculationHardening::instrumentControlFlow(
238 MachineBasicBlock &MBB, bool &UsesFullSpeculationBarrier) {
239 LLVM_DEBUG(dbgs() << "Instrument control flow tracking on MBB: " << MBB);
240
241 bool Modified = false;
242 MachineBasicBlock *TBB = nullptr;
243 MachineBasicBlock *FBB = nullptr;
245
246 if (!endsWithCondControlFlow(MBB, TBB, FBB, CondCode)) {
247 LLVM_DEBUG(dbgs() << "... doesn't end with CondControlFlow\n");
248 } else {
249 // Now insert:
250 // "CSEL MisSpeculatingR, MisSpeculatingR, XZR, cond" on the True edge and
251 // "CSEL MisSpeculatingR, MisSpeculatingR, XZR, Invertcond" on the False
252 // edge.
254
255 MachineBasicBlock *SplitEdgeTBB = MBB.SplitCriticalEdge(TBB, *this);
256 MachineBasicBlock *SplitEdgeFBB = MBB.SplitCriticalEdge(FBB, *this);
257
258 assert(SplitEdgeTBB != nullptr);
259 assert(SplitEdgeFBB != nullptr);
260
261 DebugLoc DL;
262 if (MBB.instr_end() != MBB.instr_begin())
263 DL = (--MBB.instr_end())->getDebugLoc();
264
265 insertTrackingCode(*SplitEdgeTBB, CondCode, DL);
266 insertTrackingCode(*SplitEdgeFBB, InvCondCode, DL);
267
268 LLVM_DEBUG(dbgs() << "SplitEdgeTBB: " << *SplitEdgeTBB << "\n");
269 LLVM_DEBUG(dbgs() << "SplitEdgeFBB: " << *SplitEdgeFBB << "\n");
270 Modified = true;
271 }
272
273 // Perform correct code generation around function calls and before returns.
274 // The below variables record the return/terminator instructions and the call
275 // instructions respectively; including which register is available as a
276 // temporary register just before the recorded instructions.
279 // if a temporary register is not available for at least one of the
280 // instructions for which we need to transfer taint to the stack pointer, we
281 // need to insert a full speculation barrier.
282 // TmpRegisterNotAvailableEverywhere tracks that condition.
283 bool TmpRegisterNotAvailableEverywhere = false;
284
285 RegScavenger RS;
287
288 for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ) {
289 MachineInstr &MI = *--I;
290 if (!MI.isReturn() && !MI.isCall())
291 continue;
292
293 // The RegScavenger represents registers available *after* the MI
294 // instruction pointed to by RS.getCurrentPosition().
295 // We need to have a register that is available *before* the MI is executed.
296 if (I == MBB.begin())
298 else
299 RS.backward(I);
300 // FIXME: The below just finds *a* unused register. Maybe code could be
301 // optimized more if this looks for the register that isn't used for the
302 // longest time around this place, to enable more scheduling freedom. Not
303 // sure if that would actually result in a big performance difference
304 // though. Maybe RegisterScavenger::findSurvivorBackwards has some logic
305 // already to do this - but it's unclear if that could easily be used here.
306 Register TmpReg = RS.FindUnusedReg(&AArch64::GPR64commonRegClass);
307 LLVM_DEBUG(dbgs() << "RS finds "
308 << ((TmpReg == 0) ? "no register " : "register ");
309 if (TmpReg != 0) dbgs() << printReg(TmpReg, TRI) << " ";
310 dbgs() << "to be available at MI " << MI);
311 if (TmpReg == 0)
312 TmpRegisterNotAvailableEverywhere = true;
313 if (MI.isReturn())
314 ReturnInstructions.push_back({&MI, TmpReg});
315 else if (MI.isCall())
316 CallInstructions.push_back({&MI, TmpReg});
317 }
318
319 if (TmpRegisterNotAvailableEverywhere) {
320 // When a temporary register is not available everywhere in this basic
321 // basic block where a propagate-taint-to-sp operation is needed, just
322 // emit a full speculation barrier at the start of this basic block, which
323 // renders the taint/speculation tracking in this basic block unnecessary.
324 insertFullSpeculationBarrier(MBB, MBB.begin(),
325 (MBB.begin())->getDebugLoc());
326 UsesFullSpeculationBarrier = true;
327 Modified = true;
328 } else {
329 for (auto MI_Reg : ReturnInstructions) {
330 assert(MI_Reg.second != 0);
332 dbgs()
333 << " About to insert Reg to SP taint propagation with temp register "
334 << printReg(MI_Reg.second, TRI)
335 << " on instruction: " << *MI_Reg.first);
336 insertRegToSPTaintPropagation(MBB, MI_Reg.first, MI_Reg.second);
337 Modified = true;
338 }
339
340 for (auto MI_Reg : CallInstructions) {
341 assert(MI_Reg.second != 0);
342 LLVM_DEBUG(dbgs() << " About to insert Reg to SP and back taint "
343 "propagation with temp register "
344 << printReg(MI_Reg.second, TRI)
345 << " around instruction: " << *MI_Reg.first);
346 // Just after the call:
347 insertSPToRegTaintPropagation(
348 MBB, std::next((MachineBasicBlock::iterator)MI_Reg.first));
349 // Just before the call:
350 insertRegToSPTaintPropagation(MBB, MI_Reg.first, MI_Reg.second);
351 Modified = true;
352 }
353 }
354 return Modified;
355}
356
357void AArch64SpeculationHardening::insertSPToRegTaintPropagation(
359 // If full control flow speculation barriers are used, emit a control flow
360 // barrier to block potential miss-speculation in flight coming in to this
361 // function.
362 if (UseControlFlowSpeculationBarrier) {
363 insertFullSpeculationBarrier(MBB, MBBI, DebugLoc());
364 return;
365 }
366
367 // CMP SP, #0 === SUBS xzr, SP, #0
368 BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::SUBSXri))
369 .addDef(AArch64::XZR)
370 .addUse(AArch64::SP)
371 .addImm(0)
372 .addImm(0); // no shift
373 // CSETM x16, NE === CSINV x16, xzr, xzr, EQ
374 BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::CSINVXr))
375 .addDef(MisspeculatingTaintReg)
376 .addUse(AArch64::XZR)
377 .addUse(AArch64::XZR)
379}
380
381void AArch64SpeculationHardening::insertRegToSPTaintPropagation(
383 unsigned TmpReg) const {
384 // If full control flow speculation barriers are used, there will not be
385 // miss-speculation when returning from this function, and therefore, also
386 // no need to encode potential miss-speculation into the stack pointer.
387 if (UseControlFlowSpeculationBarrier)
388 return;
389
390 // mov Xtmp, SP === ADD Xtmp, SP, #0
391 BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::ADDXri))
392 .addDef(TmpReg)
393 .addUse(AArch64::SP)
394 .addImm(0)
395 .addImm(0); // no shift
396 // and Xtmp, Xtmp, TaintReg === AND Xtmp, Xtmp, TaintReg, #0
397 BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::ANDXrs))
400 .addUse(MisspeculatingTaintReg, RegState::Kill)
401 .addImm(0);
402 // mov SP, Xtmp === ADD SP, Xtmp, #0
403 BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::ADDXri))
404 .addDef(AArch64::SP)
405 .addUse(TmpReg, RegState::Kill)
406 .addImm(0)
407 .addImm(0); // no shift
408}
409
410bool AArch64SpeculationHardening::functionUsesHardeningRegister(
411 MachineFunction &MF) const {
412 for (MachineBasicBlock &MBB : MF) {
413 for (MachineInstr &MI : MBB) {
414 // treat function calls specially, as the hardening register does not
415 // need to remain live across function calls.
416 if (MI.isCall())
417 continue;
418 if (MI.readsRegister(MisspeculatingTaintReg, TRI) ||
419 MI.modifiesRegister(MisspeculatingTaintReg, TRI))
420 return true;
421 }
422 }
423 return false;
424}
425
426// Make GPR register Reg speculation-safe by putting it through the
427// SpeculationSafeValue pseudo instruction, if we can't prove that
428// the value in the register has already been hardened.
429bool AArch64SpeculationHardening::makeGPRSpeculationSafe(
431 unsigned Reg) {
432 assert(AArch64::GPR32allRegClass.contains(Reg) ||
433 AArch64::GPR64allRegClass.contains(Reg));
434
435 // Loads cannot directly load a value into the SP (nor WSP).
436 // Therefore, if Reg is SP or WSP, it is because the instruction loads from
437 // the stack through the stack pointer.
438 //
439 // Since the stack pointer is never dynamically controllable, don't harden it.
440 if (Reg == AArch64::SP || Reg == AArch64::WSP)
441 return false;
442
443 // Do not harden the register again if already hardened before.
444 if (RegsAlreadyMasked[Reg])
445 return false;
446
447 const bool Is64Bit = AArch64::GPR64allRegClass.contains(Reg);
448 LLVM_DEBUG(dbgs() << "About to harden register : " << Reg << "\n");
449 BuildMI(MBB, MBBI, MI.getDebugLoc(),
450 TII->get(Is64Bit ? AArch64::SpeculationSafeValueX
451 : AArch64::SpeculationSafeValueW))
452 .addDef(Reg)
453 .addUse(Reg);
454 RegsAlreadyMasked.set(Reg);
455 return true;
456}
457
458bool AArch64SpeculationHardening::slhLoads(MachineBasicBlock &MBB) {
459 bool Modified = false;
460
461 LLVM_DEBUG(dbgs() << "slhLoads running on MBB: " << MBB);
462
463 RegsAlreadyMasked.reset();
464
467 for (; MBBI != E; MBBI = NextMBBI) {
468 MachineInstr &MI = *MBBI;
469 NextMBBI = std::next(MBBI);
470 // Only harden loaded values or addresses used in loads.
471 if (!MI.mayLoad())
472 continue;
473
474 LLVM_DEBUG(dbgs() << "About to harden: " << MI);
475
476 // For general purpose register loads, harden the registers loaded into.
477 // For other loads, harden the address loaded from.
478 // Masking the loaded value is expected to result in less performance
479 // overhead, as the load can still execute speculatively in comparison to
480 // when the address loaded from gets masked. However, masking is only
481 // easy to do efficiently on GPR registers, so for loads into non-GPR
482 // registers (e.g. floating point loads), mask the address loaded from.
483 bool AllDefsAreGPR = llvm::all_of(MI.defs(), [&](MachineOperand &Op) {
484 return Op.isReg() && (AArch64::GPR32allRegClass.contains(Op.getReg()) ||
485 AArch64::GPR64allRegClass.contains(Op.getReg()));
486 });
487 // FIXME: it might be a worthwhile optimization to not mask loaded
488 // values if all the registers involved in address calculation are already
489 // hardened, leading to this load not able to execute on a miss-speculated
490 // path.
491 bool HardenLoadedData = AllDefsAreGPR;
492 bool HardenAddressLoadedFrom = !HardenLoadedData;
493
494 // First remove registers from AlreadyMaskedRegisters if their value is
495 // updated by this instruction - it makes them contain a new value that is
496 // not guaranteed to already have been masked.
497 for (MachineOperand Op : MI.defs())
498 for (MCRegAliasIterator AI(Op.getReg(), TRI, true); AI.isValid(); ++AI)
499 RegsAlreadyMasked.reset(*AI);
500
501 // FIXME: loads from the stack with an immediate offset from the stack
502 // pointer probably shouldn't be hardened, which could result in a
503 // significant optimization. See section "Don’t check loads from
504 // compile-time constant stack offsets", in
505 // https://llvm.org/docs/SpeculativeLoadHardening.html
506
507 if (HardenLoadedData)
508 for (auto Def : MI.defs()) {
509 if (Def.isDead())
510 // Do not mask a register that is not used further.
511 continue;
512 // FIXME: For pre/post-increment addressing modes, the base register
513 // used in address calculation is also defined by this instruction.
514 // It might be a worthwhile optimization to not harden that
515 // base register increment/decrement when the increment/decrement is
516 // an immediate.
517 Modified |= makeGPRSpeculationSafe(MBB, NextMBBI, MI, Def.getReg());
518 }
519
520 if (HardenAddressLoadedFrom)
521 for (auto Use : MI.uses()) {
522 if (!Use.isReg())
523 continue;
524 Register Reg = Use.getReg();
525 // Some loads of floating point data have implicit defs/uses on a
526 // super register of that floating point data. Some examples:
527 // $s0 = LDRSui $sp, 22, implicit-def $q0
528 // $q0 = LD1i64 $q0, 1, renamable $x0
529 // We need to filter out these uses for non-GPR register which occur
530 // because the load partially fills a non-GPR register with the loaded
531 // data. Just skipping all non-GPR registers is safe (for now) as all
532 // AArch64 load instructions only use GPR registers to perform the
533 // address calculation. FIXME: However that might change once we can
534 // produce SVE gather instructions.
535 if (!(AArch64::GPR32allRegClass.contains(Reg) ||
536 AArch64::GPR64allRegClass.contains(Reg)))
537 continue;
538 Modified |= makeGPRSpeculationSafe(MBB, MBBI, MI, Reg);
539 }
540 }
541 return Modified;
542}
543
544/// \brief If MBBI references a pseudo instruction that should be expanded
545/// here, do the expansion and return true. Otherwise return false.
546bool AArch64SpeculationHardening::expandSpeculationSafeValue(
548 bool UsesFullSpeculationBarrier) {
549 MachineInstr &MI = *MBBI;
550 unsigned Opcode = MI.getOpcode();
551 bool Is64Bit = true;
552
553 switch (Opcode) {
554 default:
555 break;
556 case AArch64::SpeculationSafeValueW:
557 Is64Bit = false;
558 [[fallthrough]];
559 case AArch64::SpeculationSafeValueX:
560 // Just remove the SpeculationSafe pseudo's if control flow
561 // miss-speculation isn't happening because we're already inserting barriers
562 // to guarantee that.
563 if (!UseControlFlowSpeculationBarrier && !UsesFullSpeculationBarrier) {
564 Register DstReg = MI.getOperand(0).getReg();
565 Register SrcReg = MI.getOperand(1).getReg();
566 // Mark this register and all its aliasing registers as needing to be
567 // value speculation hardened before its next use, by using a CSDB
568 // barrier instruction.
569 for (MachineOperand Op : MI.defs())
570 for (MCRegAliasIterator AI(Op.getReg(), TRI, true); AI.isValid(); ++AI)
571 RegsNeedingCSDBBeforeUse.set(*AI);
572
573 // Mask off with taint state.
574 BuildMI(MBB, MBBI, MI.getDebugLoc(),
575 Is64Bit ? TII->get(AArch64::ANDXrs) : TII->get(AArch64::ANDWrs))
576 .addDef(DstReg)
577 .addUse(SrcReg, RegState::Kill)
578 .addUse(Is64Bit ? MisspeculatingTaintReg
579 : MisspeculatingTaintReg32Bit)
580 .addImm(0);
581 }
582 MI.eraseFromParent();
583 return true;
584 }
585 return false;
586}
587
588bool AArch64SpeculationHardening::insertCSDB(MachineBasicBlock &MBB,
590 DebugLoc DL) {
591 assert(!UseControlFlowSpeculationBarrier && "No need to insert CSDBs when "
592 "control flow miss-speculation "
593 "is already blocked");
594 // insert data value speculation barrier (CSDB)
595 BuildMI(MBB, MBBI, DL, TII->get(AArch64::HINT)).addImm(0x14);
596 RegsNeedingCSDBBeforeUse.reset();
597 return true;
598}
599
600bool AArch64SpeculationHardening::lowerSpeculationSafeValuePseudos(
601 MachineBasicBlock &MBB, bool UsesFullSpeculationBarrier) {
602 bool Modified = false;
603
604 RegsNeedingCSDBBeforeUse.reset();
605
606 // The following loop iterates over all instructions in the basic block,
607 // and performs 2 operations:
608 // 1. Insert a CSDB at this location if needed.
609 // 2. Expand the SpeculationSafeValuePseudo if the current instruction is
610 // one.
611 //
612 // The insertion of the CSDB is done as late as possible (i.e. just before
613 // the use of a masked register), in the hope that that will reduce the
614 // total number of CSDBs in a block when there are multiple masked registers
615 // in the block.
617 DebugLoc DL;
618 while (MBBI != E) {
619 MachineInstr &MI = *MBBI;
620 DL = MI.getDebugLoc();
621 MachineBasicBlock::iterator NMBBI = std::next(MBBI);
622
623 // First check if a CSDB needs to be inserted due to earlier registers
624 // that were masked and that are used by the next instruction.
625 // Also emit the barrier on any potential control flow changes.
626 bool NeedToEmitBarrier = false;
627 if (RegsNeedingCSDBBeforeUse.any() && (MI.isCall() || MI.isTerminator()))
628 NeedToEmitBarrier = true;
629 if (!NeedToEmitBarrier)
630 for (MachineOperand Op : MI.uses())
631 if (Op.isReg() && RegsNeedingCSDBBeforeUse[Op.getReg()]) {
632 NeedToEmitBarrier = true;
633 break;
634 }
635
636 if (NeedToEmitBarrier && !UsesFullSpeculationBarrier)
637 Modified |= insertCSDB(MBB, MBBI, DL);
638
639 Modified |=
640 expandSpeculationSafeValue(MBB, MBBI, UsesFullSpeculationBarrier);
641
642 MBBI = NMBBI;
643 }
644
645 if (RegsNeedingCSDBBeforeUse.any() && !UsesFullSpeculationBarrier)
646 Modified |= insertCSDB(MBB, MBBI, DL);
647
648 return Modified;
649}
650
651bool AArch64SpeculationHardening::runOnMachineFunction(MachineFunction &MF) {
652 if (!MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
653 return false;
654
655 MisspeculatingTaintReg = AArch64::X16;
656 MisspeculatingTaintReg32Bit = AArch64::W16;
659 RegsNeedingCSDBBeforeUse.resize(TRI->getNumRegs());
660 RegsAlreadyMasked.resize(TRI->getNumRegs());
661 UseControlFlowSpeculationBarrier = functionUsesHardeningRegister(MF);
662
663 bool Modified = false;
664
665 // Step 1: Enable automatic insertion of SpeculationSafeValue.
666 if (HardenLoads) {
668 dbgs() << "***** AArch64SpeculationHardening - automatic insertion of "
669 "SpeculationSafeValue intrinsics *****\n");
670 for (auto &MBB : MF)
671 Modified |= slhLoads(MBB);
672 }
673
674 // 2. Add instrumentation code to function entry and exits.
676 dbgs()
677 << "***** AArch64SpeculationHardening - track control flow *****\n");
678
680 EntryBlocks.push_back(&MF.front());
681 for (const LandingPadInfo &LPI : MF.getLandingPads())
682 EntryBlocks.push_back(LPI.LandingPadBlock);
683 for (auto *Entry : EntryBlocks)
684 insertSPToRegTaintPropagation(
685 *Entry, Entry->SkipPHIsLabelsAndDebug(Entry->begin()));
686
687 // 3. Add instrumentation code to every basic block.
688 for (auto &MBB : MF) {
689 bool UsesFullSpeculationBarrier = false;
690 Modified |= instrumentControlFlow(MBB, UsesFullSpeculationBarrier);
691 Modified |=
692 lowerSpeculationSafeValuePseudos(MBB, UsesFullSpeculationBarrier);
693 }
694
695 return Modified;
696}
697
698/// \brief Returns an instance of the pseudo instruction expansion pass.
700 return new AArch64SpeculationHardening();
701}
#define AARCH64_SPECULATION_HARDENING_NAME
static cl::opt< bool > HardenLoads("aarch64-slh-loads", cl::Hidden, cl::desc("Sanitize loads from memory."), cl::init(true))
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
This file implements the BitVector class.
#define LLVM_DEBUG(...)
Definition: Debug.h:106
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first found DebugLoc that has a DILocation, given a range of instructions.
unsigned const TargetRegisterInfo * TRI
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
This file declares the machine register scavenger class.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
This file defines the SmallVector class.
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:731
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const override
Analyze the branching code at the end of MBB, returning true if it cannot be understood (e....
MCRegAliasIterator enumerates all registers aliasing Reg.
instr_iterator instr_begin()
MachineBasicBlock * getFallThrough(bool JumpToFallThrough=true)
Return the fallthrough block if the block can implicitly transfer control to the block after it by fa...
MachineBasicBlock * SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P, std::vector< SparseBitVector<> > *LiveInSets=nullptr, MachineDomTreeUpdater *MDTU=nullptr)
Split the critical edge from this block to the given successor block, and return the newly created bl...
unsigned succ_size() const
instr_iterator instr_end()
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Function & getFunction()
Return the LLVM function that this machine code represents.
const std::vector< LandingPadInfo > & getLandingPads() const
Return a reference to the landing pad info for the current function.
const MachineBasicBlock & front() const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineOperand class - Representation of each machine instruction operand.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
void enterBasicBlockEnd(MachineBasicBlock &MBB)
Start tracking liveness from the end of basic block MBB.
Register FindUnusedReg(const TargetRegisterClass *RC) const
Find an unused register of the specified register class.
void backward()
Update internal register state and move MBB iterator backwards.
void enterBasicBlock(MachineBasicBlock &MBB)
Start tracking liveness from the begin of basic block MBB.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
TargetInstrInfo - Interface to description of machine instruction set.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const TargetInstrInfo * getInstrInfo() const
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
static CondCode getInvertedCondCode(CondCode Code)
@ Entry
Definition: COFF.h:844
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1602
@ Renamable
Register that may be renamed.
@ Kill
The last use of a register.
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
void initializeAArch64SpeculationHardeningPass(PassRegistry &)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
FunctionPass * createAArch64SpeculationHardeningPass()
Returns an instance of the pseudo instruction expansion pass.
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
This structure is used to retain landing pad info for the current function.