LLVM 22.0.0git
SafeStack.cpp
Go to the documentation of this file.
1//===- SafeStack.cpp - Safe Stack Insertion -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass splits the stack into the safe stack (kept as-is for LLVM backend)
10// and the unsafe stack (explicitly allocated and managed through the runtime
11// support library).
12//
13// http://clang.llvm.org/docs/SafeStack.html
14//
15//===----------------------------------------------------------------------===//
16
18#include "SafeStackLayout.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/Statistic.h"
36#include "llvm/IR/Argument.h"
37#include "llvm/IR/Attributes.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DIBuilder.h"
41#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/Dominators.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/IRBuilder.h"
47#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Intrinsics.h"
51#include "llvm/IR/MDBuilder.h"
52#include "llvm/IR/Metadata.h"
53#include "llvm/IR/Module.h"
54#include "llvm/IR/Type.h"
55#include "llvm/IR/Use.h"
56#include "llvm/IR/Value.h"
58#include "llvm/Pass.h"
60#include "llvm/Support/Debug.h"
67#include <algorithm>
68#include <cassert>
69#include <cstdint>
70#include <optional>
71#include <string>
72#include <utility>
73
74using namespace llvm;
75using namespace llvm::safestack;
76
77#define DEBUG_TYPE "safe-stack"
78
79STATISTIC(NumFunctions, "Total number of functions");
80STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
81STATISTIC(NumUnsafeStackRestorePointsFunctions,
82 "Number of functions that use setjmp or exceptions");
83
84STATISTIC(NumAllocas, "Total number of allocas");
85STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
86STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
87STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
88STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");
89
90/// Use __safestack_pointer_address even if the platform has a faster way of
91/// access safe stack pointer.
92static cl::opt<bool>
93 SafeStackUsePointerAddress("safestack-use-pointer-address",
94 cl::init(false), cl::Hidden);
95
96static cl::opt<bool> ClColoring("safe-stack-coloring",
97 cl::desc("enable safe stack coloring"),
98 cl::Hidden, cl::init(true));
99
100namespace {
101
102/// The SafeStack pass splits the stack of each function into the safe
103/// stack, which is only accessed through memory safe dereferences (as
104/// determined statically), and the unsafe stack, which contains all
105/// local variables that are accessed in ways that we can't prove to
106/// be safe.
107class SafeStack {
108 Function &F;
109 const TargetLoweringBase &TL;
110 const DataLayout &DL;
111 DomTreeUpdater *DTU;
112 ScalarEvolution &SE;
113
114 Type *StackPtrTy;
115 Type *IntPtrTy;
116 Type *Int32Ty;
117
118 Value *UnsafeStackPtr = nullptr;
119
120 /// Unsafe stack alignment. Each stack frame must ensure that the stack is
121 /// aligned to this value. We need to re-align the unsafe stack if the
122 /// alignment of any object on the stack exceeds this value.
123 ///
124 /// 16 seems like a reasonable upper bound on the alignment of objects that we
125 /// might expect to appear on the stack on most common targets.
126 static constexpr Align StackAlignment = Align::Constant<16>();
127
128 /// Return the value of the stack canary.
130
131 /// Load stack guard from the frame and check if it has changed.
132 void checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
133 AllocaInst *StackGuardSlot, Value *StackGuard);
134
135 /// Find all static allocas, dynamic allocas, return instructions and
136 /// stack restore points (exception unwind blocks and setjmp calls) in the
137 /// given function and append them to the respective vectors.
138 void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
139 SmallVectorImpl<AllocaInst *> &DynamicAllocas,
140 SmallVectorImpl<Argument *> &ByValArguments,
142 SmallVectorImpl<Instruction *> &StackRestorePoints);
143
144 /// Calculate the allocation size of a given alloca. Returns 0 if the
145 /// size can not be statically determined.
146 uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);
147
148 /// Allocate space for all static allocas in \p StaticAllocas,
149 /// replace allocas with pointers into the unsafe stack.
150 ///
151 /// \returns A pointer to the top of the unsafe stack after all unsafe static
152 /// allocas are allocated.
153 Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
154 ArrayRef<AllocaInst *> StaticAllocas,
155 ArrayRef<Argument *> ByValArguments,
156 Instruction *BasePointer,
157 AllocaInst *StackGuardSlot);
158
159 /// Generate code to restore the stack after all stack restore points
160 /// in \p StackRestorePoints.
161 ///
162 /// \returns A local variable in which to maintain the dynamic top of the
163 /// unsafe stack if needed.
164 AllocaInst *
165 createStackRestorePoints(IRBuilder<> &IRB, Function &F,
166 ArrayRef<Instruction *> StackRestorePoints,
167 Value *StaticTop, bool NeedDynamicTop);
168
169 /// Replace all allocas in \p DynamicAllocas with code to allocate
170 /// space dynamically on the unsafe stack and store the dynamic unsafe stack
171 /// top to \p DynamicTop if non-null.
172 void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
173 AllocaInst *DynamicTop,
174 ArrayRef<AllocaInst *> DynamicAllocas);
175
176 bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);
177
178 bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
179 const Value *AllocaPtr, uint64_t AllocaSize);
180 bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
181 uint64_t AllocaSize);
182
183 bool ShouldInlinePointerAddress(CallInst &CI);
184 void TryInlinePointerAddress();
185
186public:
187 SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL,
189 : F(F), TL(TL), DL(DL), DTU(DTU), SE(SE),
190 StackPtrTy(DL.getAllocaPtrType(F.getContext())),
191 IntPtrTy(DL.getIntPtrType(F.getContext())),
192 Int32Ty(Type::getInt32Ty(F.getContext())) {}
193
194 // Run the transformation on the associated function.
195 // Returns whether the function was changed.
196 bool run();
197};
198
199uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
200 uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType());
201 if (AI->isArrayAllocation()) {
203 if (!C)
204 return 0;
205 Size *= C->getZExtValue();
206 }
207 return Size;
208}
209
210bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
211 const Value *AllocaPtr, uint64_t AllocaSize) {
212 const SCEV *AddrExpr = SE.getSCEV(Addr);
213 const auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(AddrExpr));
214 if (!Base || Base->getValue() != AllocaPtr) {
216 dbgs() << "[SafeStack] "
217 << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
218 << *AllocaPtr << "\n"
219 << "SCEV " << *AddrExpr << " not directly based on alloca\n");
220 return false;
221 }
222
223 const SCEV *Expr = SE.removePointerBase(AddrExpr);
224 uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType());
225 ConstantRange AccessStartRange = SE.getUnsignedRange(Expr);
226 ConstantRange SizeRange =
227 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
228 ConstantRange AccessRange = AccessStartRange.add(SizeRange);
229 ConstantRange AllocaRange =
230 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
231 bool Safe = AllocaRange.contains(AccessRange);
232
234 dbgs() << "[SafeStack] "
235 << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
236 << *AllocaPtr << "\n"
237 << " Access " << *Addr << "\n"
238 << " SCEV " << *Expr
239 << " U: " << SE.getUnsignedRange(Expr)
240 << ", S: " << SE.getSignedRange(Expr) << "\n"
241 << " Range " << AccessRange << "\n"
242 << " AllocaRange " << AllocaRange << "\n"
243 << " " << (Safe ? "safe" : "unsafe") << "\n");
244
245 return Safe;
246}
247
248bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
249 const Value *AllocaPtr,
250 uint64_t AllocaSize) {
251 if (auto MTI = dyn_cast<MemTransferInst>(MI)) {
252 if (MTI->getRawSource() != U && MTI->getRawDest() != U)
253 return true;
254 } else {
255 if (MI->getRawDest() != U)
256 return true;
257 }
258
259 auto Len = MI->getLengthInBytes();
260 // Non-constant size => unsafe. FIXME: try SCEV getRange.
261 if (!Len) return false;
262 return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
263}
264
265/// Check whether a given allocation must be put on the safe
266/// stack or not. The function analyzes all uses of AI and checks whether it is
267/// only accessed in a memory safe way (as decided statically).
268bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
269 // Go through all uses of this alloca and check whether all accesses to the
270 // allocated object are statically known to be memory safe and, hence, the
271 // object can be placed on the safe stack.
272 SmallPtrSet<const Value *, 16> Visited;
273 SmallVector<const Value *, 8> WorkList;
274 WorkList.push_back(AllocaPtr);
275
276 // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
277 while (!WorkList.empty()) {
278 const Value *V = WorkList.pop_back_val();
279 for (const Use &UI : V->uses()) {
280 auto I = cast<const Instruction>(UI.getUser());
281 assert(V == UI.get());
282
283 switch (I->getOpcode()) {
284 case Instruction::Load:
285 if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr,
286 AllocaSize))
287 return false;
288 break;
289
290 case Instruction::VAArg:
291 // "va-arg" from a pointer is safe.
292 break;
293 case Instruction::Store:
294 if (V == I->getOperand(0)) {
295 // Stored the pointer - conservatively assume it may be unsafe.
297 << "[SafeStack] Unsafe alloca: " << *AllocaPtr
298 << "\n store of address: " << *I << "\n");
299 return false;
300 }
301
302 if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()),
303 AllocaPtr, AllocaSize))
304 return false;
305 break;
306
307 case Instruction::Ret:
308 // Information leak.
309 return false;
310
311 case Instruction::Call:
312 case Instruction::Invoke: {
313 const CallBase &CS = *cast<CallBase>(I);
314
315 if (I->isLifetimeStartOrEnd())
316 continue;
317
318 if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
319 if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
321 << "[SafeStack] Unsafe alloca: " << *AllocaPtr
322 << "\n unsafe memintrinsic: " << *I << "\n");
323 return false;
324 }
325 continue;
326 }
327
328 // LLVM 'nocapture' attribute is only set for arguments whose address
329 // is not stored, passed around, or used in any other non-trivial way.
330 // We assume that passing a pointer to an object as a 'nocapture
331 // readnone' argument is safe.
332 // FIXME: a more precise solution would require an interprocedural
333 // analysis here, which would look at all uses of an argument inside
334 // the function being called.
335 auto B = CS.arg_begin(), E = CS.arg_end();
336 for (const auto *A = B; A != E; ++A)
337 if (A->get() == V)
338 if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
339 CS.doesNotAccessMemory()))) {
340 LLVM_DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
341 << "\n unsafe call: " << *I << "\n");
342 return false;
343 }
344 continue;
345 }
346
347 default:
348 if (Visited.insert(I).second)
350 }
351 }
352 }
353
354 // All uses of the alloca are safe, we can place it on the safe stack.
355 return true;
356}
357
358Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) {
359 Value *StackGuardVar = TL.getIRStackGuard(IRB);
360 Module *M = F.getParent();
361
362 if (!StackGuardVar) {
364 return IRB.CreateIntrinsic(Intrinsic::stackguard, {});
365 }
366
367 return IRB.CreateLoad(StackPtrTy, StackGuardVar, "StackGuard");
368}
369
370void SafeStack::findInsts(Function &F,
371 SmallVectorImpl<AllocaInst *> &StaticAllocas,
372 SmallVectorImpl<AllocaInst *> &DynamicAllocas,
373 SmallVectorImpl<Argument *> &ByValArguments,
374 SmallVectorImpl<Instruction *> &Returns,
375 SmallVectorImpl<Instruction *> &StackRestorePoints) {
376 for (Instruction &I : instructions(&F)) {
377 if (auto AI = dyn_cast<AllocaInst>(&I)) {
378 ++NumAllocas;
379
380 uint64_t Size = getStaticAllocaAllocationSize(AI);
381 if (IsSafeStackAlloca(AI, Size))
382 continue;
383
384 if (AI->isStaticAlloca()) {
385 ++NumUnsafeStaticAllocas;
386 StaticAllocas.push_back(AI);
387 } else {
388 ++NumUnsafeDynamicAllocas;
389 DynamicAllocas.push_back(AI);
390 }
391 } else if (auto RI = dyn_cast<ReturnInst>(&I)) {
392 if (CallInst *CI = I.getParent()->getTerminatingMustTailCall())
393 Returns.push_back(CI);
394 else
395 Returns.push_back(RI);
396 } else if (auto CI = dyn_cast<CallInst>(&I)) {
397 // setjmps require stack restore.
398 if (CI->getCalledFunction() && CI->canReturnTwice())
399 StackRestorePoints.push_back(CI);
400 } else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
401 // Exception landing pads require stack restore.
402 StackRestorePoints.push_back(LP);
403 } else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
404 if (II->getIntrinsicID() == Intrinsic::gcroot)
406 "gcroot intrinsic not compatible with safestack attribute");
407 }
408 }
409 for (Argument &Arg : F.args()) {
410 if (!Arg.hasByValAttr())
411 continue;
412 uint64_t Size = DL.getTypeStoreSize(Arg.getParamByValType());
413 if (IsSafeStackAlloca(&Arg, Size))
414 continue;
415
416 ++NumUnsafeByValArguments;
417 ByValArguments.push_back(&Arg);
418 }
419}
420
421AllocaInst *
422SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
423 ArrayRef<Instruction *> StackRestorePoints,
424 Value *StaticTop, bool NeedDynamicTop) {
425 assert(StaticTop && "The stack top isn't set.");
426
427 if (StackRestorePoints.empty())
428 return nullptr;
429
430 // We need the current value of the shadow stack pointer to restore
431 // after longjmp or exception catching.
432
433 // FIXME: On some platforms this could be handled by the longjmp/exception
434 // runtime itself.
435
436 AllocaInst *DynamicTop = nullptr;
437 if (NeedDynamicTop) {
438 // If we also have dynamic alloca's, the stack pointer value changes
439 // throughout the function. For now we store it in an alloca.
440 DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
441 "unsafe_stack_dynamic_ptr");
442 IRB.CreateStore(StaticTop, DynamicTop);
443 }
444
445 // Restore current stack pointer after longjmp/exception catch.
446 for (Instruction *I : StackRestorePoints) {
447 ++NumUnsafeStackRestorePoints;
448
449 IRB.SetInsertPoint(I->getNextNode());
450 Value *CurrentTop =
451 DynamicTop ? IRB.CreateLoad(StackPtrTy, DynamicTop) : StaticTop;
452 IRB.CreateStore(CurrentTop, UnsafeStackPtr);
453 }
454
455 return DynamicTop;
456}
457
458void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
459 AllocaInst *StackGuardSlot, Value *StackGuard) {
460 Value *V = IRB.CreateLoad(StackPtrTy, StackGuardSlot);
461 Value *Cmp = IRB.CreateICmpNE(StackGuard, V);
462
465 MDNode *Weights = MDBuilder(F.getContext())
466 .createBranchWeights(SuccessProb.getNumerator(),
467 FailureProb.getNumerator());
468 Instruction *CheckTerm =
469 SplitBlockAndInsertIfThen(Cmp, &RI, /* Unreachable */ true, Weights, DTU);
470 IRBuilder<> IRBFail(CheckTerm);
471 // FIXME: respect -fsanitize-trap / -ftrap-function here?
472 const char *StackChkFailName =
473 TL.getLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL);
474 if (!StackChkFailName) {
475 F.getContext().emitError(
476 "no libcall available for stackprotector check fail");
477 return;
478 }
479
480 FunctionCallee StackChkFail =
481 F.getParent()->getOrInsertFunction(StackChkFailName, IRB.getVoidTy());
482 IRBFail.CreateCall(StackChkFail, {});
483}
484
485/// We explicitly compute and set the unsafe stack layout for all unsafe
486/// static alloca instructions. We save the unsafe "base pointer" in the
487/// prologue into a local variable and restore it in the epilogue.
488Value *SafeStack::moveStaticAllocasToUnsafeStack(
489 IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
490 ArrayRef<Argument *> ByValArguments, Instruction *BasePointer,
491 AllocaInst *StackGuardSlot) {
492 if (StaticAllocas.empty() && ByValArguments.empty())
493 return BasePointer;
494
495 DIBuilder DIB(*F.getParent());
496
497 StackLifetime SSC(F, StaticAllocas, StackLifetime::LivenessType::May);
498 static const StackLifetime::LiveRange NoColoringRange(1, true);
499 if (ClColoring)
500 SSC.run();
501
502 for (const auto *I : SSC.getMarkers()) {
503 auto *Op = dyn_cast<Instruction>(I->getOperand(1));
504 const_cast<IntrinsicInst *>(I)->eraseFromParent();
505 // Remove the operand bitcast, too, if it has no more uses left.
506 if (Op && Op->use_empty())
507 Op->eraseFromParent();
508 }
509
510 // Unsafe stack always grows down.
511 StackLayout SSL(StackAlignment);
512 if (StackGuardSlot) {
513 Type *Ty = StackGuardSlot->getAllocatedType();
514 Align Align = std::max(DL.getPrefTypeAlign(Ty), StackGuardSlot->getAlign());
515 SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot),
516 Align, SSC.getFullLiveRange());
517 }
518
519 for (Argument *Arg : ByValArguments) {
520 Type *Ty = Arg->getParamByValType();
521 uint64_t Size = DL.getTypeStoreSize(Ty);
522 if (Size == 0)
523 Size = 1; // Don't create zero-sized stack objects.
524
525 // Ensure the object is properly aligned.
526 Align Align = DL.getPrefTypeAlign(Ty);
527 if (auto A = Arg->getParamAlign())
528 Align = std::max(Align, *A);
529 SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange());
530 }
531
532 for (AllocaInst *AI : StaticAllocas) {
533 Type *Ty = AI->getAllocatedType();
534 uint64_t Size = getStaticAllocaAllocationSize(AI);
535 if (Size == 0)
536 Size = 1; // Don't create zero-sized stack objects.
537
538 // Ensure the object is properly aligned.
539 Align Align = std::max(DL.getPrefTypeAlign(Ty), AI->getAlign());
540
541 SSL.addObject(AI, Size, Align,
542 ClColoring ? SSC.getLiveRange(AI) : NoColoringRange);
543 }
544
545 SSL.computeLayout();
546 Align FrameAlignment = SSL.getFrameAlignment();
547
548 // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location
549 // (AlignmentSkew).
550 if (FrameAlignment > StackAlignment) {
551 // Re-align the base pointer according to the max requested alignment.
552 IRB.SetInsertPoint(BasePointer->getNextNode());
553 BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
554 IRB.CreateAnd(
555 IRB.CreatePtrToInt(BasePointer, IntPtrTy),
556 ConstantInt::get(IntPtrTy, ~(FrameAlignment.value() - 1))),
557 StackPtrTy));
558 }
559
560 IRB.SetInsertPoint(BasePointer->getNextNode());
561
562 if (StackGuardSlot) {
563 unsigned Offset = SSL.getObjectOffset(StackGuardSlot);
564 Value *Off =
565 IRB.CreatePtrAdd(BasePointer, ConstantInt::get(Int32Ty, -Offset));
566 Value *NewAI =
567 IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot");
568
569 // Replace alloc with the new location.
570 StackGuardSlot->replaceAllUsesWith(NewAI);
571 StackGuardSlot->eraseFromParent();
572 }
573
574 for (Argument *Arg : ByValArguments) {
575 unsigned Offset = SSL.getObjectOffset(Arg);
576 MaybeAlign Align(SSL.getObjectAlignment(Arg));
577 Type *Ty = Arg->getParamByValType();
578
579 uint64_t Size = DL.getTypeStoreSize(Ty);
580 if (Size == 0)
581 Size = 1; // Don't create zero-sized stack objects.
582
583 Value *Off =
584 IRB.CreatePtrAdd(BasePointer, ConstantInt::get(Int32Ty, -Offset));
585 Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
586 Arg->getName() + ".unsafe-byval");
587
588 // Replace alloc with the new location.
589 replaceDbgDeclare(Arg, BasePointer, DIB, DIExpression::ApplyOffset,
590 -Offset);
591 Arg->replaceAllUsesWith(NewArg);
593 IRB.CreateMemCpy(Off, Align, Arg, Arg->getParamAlign(), Size);
594 }
595
596 // Allocate space for every unsafe static AllocaInst on the unsafe stack.
597 for (AllocaInst *AI : StaticAllocas) {
598 IRB.SetInsertPoint(AI);
599 unsigned Offset = SSL.getObjectOffset(AI);
600
601 replaceDbgDeclare(AI, BasePointer, DIB, DIExpression::ApplyOffset, -Offset);
602 replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset);
603
604 // Replace uses of the alloca with the new location.
605 // Insert address calculation close to each use to work around PR27844.
606 std::string Name = std::string(AI->getName()) + ".unsafe";
607 while (!AI->use_empty()) {
608 Use &U = *AI->use_begin();
609 Instruction *User = cast<Instruction>(U.getUser());
610
611 // Drop lifetime markers now that this is no longer an alloca.
612 // SafeStack has already performed its own stack coloring.
613 if (User->isLifetimeStartOrEnd()) {
614 User->eraseFromParent();
615 continue;
616 }
617
618 Instruction *InsertBefore;
619 if (auto *PHI = dyn_cast<PHINode>(User))
620 InsertBefore = PHI->getIncomingBlock(U)->getTerminator();
621 else
622 InsertBefore = User;
623
624 IRBuilder<> IRBUser(InsertBefore);
625 Value *Off =
626 IRBUser.CreatePtrAdd(BasePointer, ConstantInt::get(Int32Ty, -Offset));
627 Value *Replacement =
628 IRBUser.CreateAddrSpaceCast(Off, AI->getType(), Name);
629
630 if (auto *PHI = dyn_cast<PHINode>(User))
631 // PHI nodes may have multiple incoming edges from the same BB (why??),
632 // all must be updated at once with the same incoming value.
633 PHI->setIncomingValueForBlock(PHI->getIncomingBlock(U), Replacement);
634 else
635 U.set(Replacement);
636 }
637
638 AI->eraseFromParent();
639 }
640
641 // Re-align BasePointer so that our callees would see it aligned as
642 // expected.
643 // FIXME: no need to update BasePointer in leaf functions.
644 unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment);
645
646 MDBuilder MDB(F.getContext());
648 Data.push_back(MDB.createString("unsafe-stack-size"));
649 Data.push_back(MDB.createConstant(ConstantInt::get(Int32Ty, FrameSize)));
650 MDNode *MD = MDTuple::get(F.getContext(), Data);
651 F.setMetadata(LLVMContext::MD_annotation, MD);
652
653 // Update shadow stack pointer in the function epilogue.
654 IRB.SetInsertPoint(BasePointer->getNextNode());
655
656 Value *StaticTop =
657 IRB.CreatePtrAdd(BasePointer, ConstantInt::get(Int32Ty, -FrameSize),
658 "unsafe_stack_static_top");
659 IRB.CreateStore(StaticTop, UnsafeStackPtr);
660 return StaticTop;
661}
662
663void SafeStack::moveDynamicAllocasToUnsafeStack(
664 Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
665 ArrayRef<AllocaInst *> DynamicAllocas) {
666 DIBuilder DIB(*F.getParent());
667
668 for (AllocaInst *AI : DynamicAllocas) {
669 IRBuilder<> IRB(AI);
670
671 // Compute the new SP value (after AI).
672 Value *ArraySize = AI->getArraySize();
673 if (ArraySize->getType() != IntPtrTy)
674 ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);
675
676 Type *Ty = AI->getAllocatedType();
677 uint64_t TySize = DL.getTypeAllocSize(Ty);
678 Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));
679
680 Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(StackPtrTy, UnsafeStackPtr),
681 IntPtrTy);
682 SP = IRB.CreateSub(SP, Size);
683
684 // Align the SP value to satisfy the AllocaInst, type and stack alignments.
685 auto Align = std::max(std::max(DL.getPrefTypeAlign(Ty), AI->getAlign()),
686 StackAlignment);
687
688 Value *NewTop = IRB.CreateIntToPtr(
689 IRB.CreateAnd(SP,
690 ConstantInt::get(IntPtrTy, ~uint64_t(Align.value() - 1))),
691 StackPtrTy);
692
693 // Save the stack pointer.
694 IRB.CreateStore(NewTop, UnsafeStackPtr);
695 if (DynamicTop)
696 IRB.CreateStore(NewTop, DynamicTop);
697
698 Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
699 if (AI->hasName() && isa<Instruction>(NewAI))
700 NewAI->takeName(AI);
701
703 AI->replaceAllUsesWith(NewAI);
704 AI->eraseFromParent();
705 }
706
707 if (!DynamicAllocas.empty()) {
708 // Now go through the instructions again, replacing stacksave/stackrestore.
709 for (Instruction &I : llvm::make_early_inc_range(instructions(&F))) {
710 auto *II = dyn_cast<IntrinsicInst>(&I);
711 if (!II)
712 continue;
713
714 if (II->getIntrinsicID() == Intrinsic::stacksave) {
715 IRBuilder<> IRB(II);
716 Instruction *LI = IRB.CreateLoad(StackPtrTy, UnsafeStackPtr);
717 LI->takeName(II);
718 II->replaceAllUsesWith(LI);
719 II->eraseFromParent();
720 } else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
721 IRBuilder<> IRB(II);
722 Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
723 SI->takeName(II);
724 assert(II->use_empty());
725 II->eraseFromParent();
726 }
727 }
728 }
729}
730
731bool SafeStack::ShouldInlinePointerAddress(CallInst &CI) {
733 if (CI.hasFnAttr(Attribute::AlwaysInline) &&
734 isInlineViable(*Callee).isSuccess())
735 return true;
736 if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) ||
737 CI.isNoInline())
738 return false;
739 return true;
740}
741
742void SafeStack::TryInlinePointerAddress() {
743 auto *CI = dyn_cast<CallInst>(UnsafeStackPtr);
744 if (!CI)
745 return;
746
747 if(F.hasOptNone())
748 return;
749
751 if (!Callee || Callee->isDeclaration())
752 return;
753
754 if (!ShouldInlinePointerAddress(*CI))
755 return;
756
757 InlineFunctionInfo IFI;
758 InlineFunction(*CI, IFI);
759}
760
761bool SafeStack::run() {
762 assert(F.hasFnAttribute(Attribute::SafeStack) &&
763 "Can't run SafeStack on a function without the attribute");
764 assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration");
765
766 ++NumFunctions;
767
768 SmallVector<AllocaInst *, 16> StaticAllocas;
769 SmallVector<AllocaInst *, 4> DynamicAllocas;
770 SmallVector<Argument *, 4> ByValArguments;
771 SmallVector<Instruction *, 4> Returns;
772
773 // Collect all points where stack gets unwound and needs to be restored
774 // This is only necessary because the runtime (setjmp and unwind code) is
775 // not aware of the unsafe stack and won't unwind/restore it properly.
776 // To work around this problem without changing the runtime, we insert
777 // instrumentation to restore the unsafe stack pointer when necessary.
778 SmallVector<Instruction *, 4> StackRestorePoints;
779
780 // Find all static and dynamic alloca instructions that must be moved to the
781 // unsafe stack, all return instructions and stack restore points.
782 findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
783 StackRestorePoints);
784
785 if (StaticAllocas.empty() && DynamicAllocas.empty() &&
786 ByValArguments.empty() && StackRestorePoints.empty())
787 return false; // Nothing to do in this function.
788
789 if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
790 !ByValArguments.empty())
791 ++NumUnsafeStackFunctions; // This function has the unsafe stack.
792
793 if (!StackRestorePoints.empty())
794 ++NumUnsafeStackRestorePointsFunctions;
795
796 IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
797 // Calls must always have a debug location, or else inlining breaks. So
798 // we explicitly set a artificial debug location here.
799 if (DISubprogram *SP = F.getSubprogram())
801 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP));
803 const char *SafestackPointerAddressName =
804 TL.getLibcallName(RTLIB::SAFESTACK_POINTER_ADDRESS);
805 if (!SafestackPointerAddressName) {
806 F.getContext().emitError(
807 "no libcall available for safestack pointer address");
808 return false;
809 }
810
811 FunctionCallee Fn = F.getParent()->getOrInsertFunction(
812 SafestackPointerAddressName, IRB.getPtrTy(0));
813 UnsafeStackPtr = IRB.CreateCall(Fn);
814 } else {
815 UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB);
816 }
817
818 // Load the current stack pointer (we'll also use it as a base pointer).
819 // FIXME: use a dedicated register for it ?
820 Instruction *BasePointer =
821 IRB.CreateLoad(StackPtrTy, UnsafeStackPtr, false, "unsafe_stack_ptr");
822 assert(BasePointer->getType() == StackPtrTy);
823
824 AllocaInst *StackGuardSlot = nullptr;
825 // FIXME: implement weaker forms of stack protector.
826 if (F.hasFnAttribute(Attribute::StackProtect) ||
827 F.hasFnAttribute(Attribute::StackProtectStrong) ||
828 F.hasFnAttribute(Attribute::StackProtectReq)) {
829 Value *StackGuard = getStackGuard(IRB, F);
830 StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr);
831 IRB.CreateStore(StackGuard, StackGuardSlot);
832
833 for (Instruction *RI : Returns) {
834 IRBuilder<> IRBRet(RI);
835 checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard);
836 }
837 }
838
839 // The top of the unsafe stack after all unsafe static allocas are
840 // allocated.
841 Value *StaticTop = moveStaticAllocasToUnsafeStack(
842 IRB, F, StaticAllocas, ByValArguments, BasePointer, StackGuardSlot);
843
844 // Safe stack object that stores the current unsafe stack top. It is updated
845 // as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
846 // This is only needed if we need to restore stack pointer after longjmp
847 // or exceptions, and we have dynamic allocations.
848 // FIXME: a better alternative might be to store the unsafe stack pointer
849 // before setjmp / invoke instructions.
850 AllocaInst *DynamicTop = createStackRestorePoints(
851 IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());
852
853 // Handle dynamic allocas.
854 moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
855 DynamicAllocas);
856
857 // Restore the unsafe stack pointer before each return.
858 for (Instruction *RI : Returns) {
859 IRB.SetInsertPoint(RI);
860 IRB.CreateStore(BasePointer, UnsafeStackPtr);
861 }
862
863 TryInlinePointerAddress();
864
865 LLVM_DEBUG(dbgs() << "[SafeStack] safestack applied\n");
866 return true;
867}
868
869class SafeStackLegacyPass : public FunctionPass {
870 const TargetMachine *TM = nullptr;
871
872public:
873 static char ID; // Pass identification, replacement for typeid..
874
875 SafeStackLegacyPass() : FunctionPass(ID) {
877 }
878
879 void getAnalysisUsage(AnalysisUsage &AU) const override {
880 AU.addRequired<TargetPassConfig>();
881 AU.addRequired<TargetLibraryInfoWrapperPass>();
882 AU.addRequired<AssumptionCacheTracker>();
883 AU.addPreserved<DominatorTreeWrapperPass>();
884 }
885
886 bool runOnFunction(Function &F) override {
887 LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
888
889 if (!F.hasFnAttribute(Attribute::SafeStack)) {
890 LLVM_DEBUG(dbgs() << "[SafeStack] safestack is not requested"
891 " for this function\n");
892 return false;
893 }
894
895 if (F.isDeclaration()) {
896 LLVM_DEBUG(dbgs() << "[SafeStack] function definition"
897 " is not available\n");
898 return false;
899 }
900
901 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
902 auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
903 if (!TL)
904 report_fatal_error("TargetLowering instance is required");
905
906 auto *DL = &F.getDataLayout();
907 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
908 auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
909
910 // Compute DT and LI only for functions that have the attribute.
911 // This is only useful because the legacy pass manager doesn't let us
912 // compute analyzes lazily.
913
914 DominatorTree *DT;
915 bool ShouldPreserveDominatorTree;
916 std::optional<DominatorTree> LazilyComputedDomTree;
917
918 // Do we already have a DominatorTree available from the previous pass?
919 // Note that we should *NOT* require it, to avoid the case where we end up
920 // not needing it, but the legacy PM would have computed it for us anyways.
921 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
922 DT = &DTWP->getDomTree();
923 ShouldPreserveDominatorTree = true;
924 } else {
925 // Otherwise, we need to compute it.
926 LazilyComputedDomTree.emplace(F);
927 DT = &*LazilyComputedDomTree;
928 ShouldPreserveDominatorTree = false;
929 }
930
931 // Likewise, lazily compute loop info.
932 LoopInfo LI(*DT);
933
934 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
935
936 ScalarEvolution SE(F, TLI, ACT, *DT, LI);
937
938 return SafeStack(F, *TL, *DL, ShouldPreserveDominatorTree ? &DTU : nullptr,
939 SE)
940 .run();
941 }
942};
943
944} // end anonymous namespace
945
948 LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
949
950 if (!F.hasFnAttribute(Attribute::SafeStack)) {
951 LLVM_DEBUG(dbgs() << "[SafeStack] safestack is not requested"
952 " for this function\n");
953 return PreservedAnalyses::all();
954 }
955
956 if (F.isDeclaration()) {
957 LLVM_DEBUG(dbgs() << "[SafeStack] function definition"
958 " is not available\n");
959 return PreservedAnalyses::all();
960 }
961
962 auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
963 if (!TL)
964 report_fatal_error("TargetLowering instance is required");
965
966 auto &DL = F.getDataLayout();
967
968 // preserve DominatorTree
969 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
970 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
971 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
972
973 bool Changed = SafeStack(F, *TL, DL, &DTU, SE).run();
974
975 if (!Changed)
976 return PreservedAnalyses::all();
979 return PA;
980}
981
982char SafeStackLegacyPass::ID = 0;
983
985 "Safe Stack instrumentation pass", false, false)
988INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE,
989 "Safe Stack instrumentation pass", false, false)
990
991FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); }
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
VarLocInsertPt getNextNode(const DbgRecord *DVR)
Expand Atomic instructions
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool runOnFunction(Function &F, bool PostInlining)
#define DEBUG_TYPE
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
This defines the Use class.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
Machine Check Debug Module
This file contains the declarations for metadata subclasses.
uint64_t IntrinsicInst * II
FunctionAnalysisManager FAM
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition PassSupport.h:39
static cl::opt< bool > SafeStackUsePointerAddress("safestack-use-pointer-address", cl::init(false), cl::Hidden)
Use __safestack_pointer_address even if the platform has a faster way of access safe stack pointer.
static cl::opt< bool > ClColoring("safe-stack-coloring", cl::desc("enable safe stack coloring"), cl::Hidden, cl::init(true))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static Value * getStackGuard(const TargetLoweringBase *TLI, Module *M, IRBuilder<> &B, bool *SupportsSelectionDAGSP=nullptr)
Create a stack guard loading and populate whether SelectionDAG SSP is supported.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
This file describes how to lower LLVM code to machine code.
Target-Independent Code Generator Pass Configuration Options pass.
an instruction to allocate memory on the stack
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
PointerType * getType() const
Overload to return most specific pointer type.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
const Value * getArraySize() const
Get the number of elements allocated.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:138
static BranchProbability getBranchProbStackProtector(bool IsLikely)
bool doesNotCapture(unsigned OpNo) const
Determine whether this data operand is not captured.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool doesNotAccessMemory(unsigned OpNo) const
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
bool isNoInline() const
Return true if the call should not be inlined.
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
This class represents a function call, abstracting a target machine's calling convention.
LLVM_ABI ConstantRange add(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an addition of a value in this ran...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Analysis pass which computes a DominatorTree.
Definition Dominators.h:284
Legacy analysis pass which computes a DominatorTree.
Definition Dominators.h:322
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
AllocaInst * CreateAlloca(Type *Ty, unsigned AddrSpace, Value *ArraySize=nullptr, const Twine &Name="")
Definition IRBuilder.h:1833
CallInst * CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src, MaybeAlign SrcAlign, uint64_t Size, bool isVolatile=false, const AAMDNodes &AAInfo=AAMDNodes())
Create and insert a memcpy between the specified pointers.
Definition IRBuilder.h:687
Value * CreatePointerCast(Value *V, Type *DestTy, const Twine &Name="")
Definition IRBuilder.h:2254
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Definition IRBuilder.h:2202
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition IRBuilder.h:2039
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Definition IRBuilder.h:247
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2336
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1420
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition IRBuilder.h:2207
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Definition IRBuilder.h:1850
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:1551
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Definition IRBuilder.h:1863
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
Definition IRBuilder.h:2197
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2511
PointerType * getPtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer.
Definition IRBuilder.h:605
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Definition IRBuilder.h:2280
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition IRBuilder.h:207
Type * getVoidTy()
Fetch the type representing void.
Definition IRBuilder.h:600
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1437
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
bool isSuccess() const
Definition InlineCost.h:190
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1526
This is the common base class for memset/memcpy/memmove.
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM)
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * removePointerBase(const SCEV *S)
Compute an expression equivalent to S - getPointerBase(S).
LLVM_ABI uint64_t getTypeSizeInBits(Type *Ty) const
Return the size in bits of the specified type, for which isSCEVable must return true.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
ConstantRange getSignedRange(const SCEV *S)
Determine the signed range for a particular SCEV.
ConstantRange getUnsignedRange(const SCEV *S)
Determine the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * getPointerBase(const SCEV *V)
Transitively follow the chain of pointer-type operands until reaching a SCEV that does not have a sin...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
virtual const TargetSubtargetInfo * getSubtargetImpl(const Function &) const
Virtual method implemented by subclasses that returns a reference to that target's TargetSubtargetInf...
Target-Independent Code Generator Pass Configuration Options.
virtual const TargetLowering * getTargetLowering() const
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
use_iterator use_begin()
Definition Value.h:364
bool use_empty() const
Definition Value.h:346
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:396
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:348
Changed
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
initializer< Ty > init(const Ty &Val)
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
@ User
could "use" a pointer
NodeAddr< UseNode * > Use
Definition RDFGraph.h:385
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, bool MergeAttributes=false, AAResults *CalleeAAR=nullptr, bool InsertLifetime=true, Function *ForwardVarArgsTo=nullptr, OptimizationRemarkEmitter *ORE=nullptr)
This function inlines the called function into the basic block of the caller.
LLVM_ABI FunctionPass * createSafeStackPass()
This pass splits the stack into a safe stack and an unsafe stack to protect against stack-based overf...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
Definition InstrProf.h:296
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
LLVM_ABI InlineResult isInlineViable(Function &Callee)
Check if it is mechanically possible to inline the function Callee, based on the contents of the func...
LLVM_ABI void initializeSafeStackLegacyPassPass(PassRegistry &)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
DWARFExpression::Operation Op
LLVM_ABI void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, DIBuilder &Builder, int Offset=0)
Replaces multiple dbg.value records when the alloca it describes is replaced with a new value.
Definition Local.cpp:1982
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI Instruction * SplitBlockAndInsertIfThen(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ThenBlock=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool replaceDbgDeclare(Value *Address, Value *NewAddress, DIBuilder &Builder, uint8_t DIExprFlags, int Offset)
Replaces dbg.declare record when the address it describes is replaced with a new value.
Definition Local.cpp:1942
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
static constexpr Align Constant()
Allow constructions of constexpr Align.
Definition Alignment.h:88