LLVM 19.0.0git
TypeMetadataUtils.cpp
Go to the documentation of this file.
1//===- TypeMetadataUtils.cpp - Utilities related to type metadata ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains functions that make it easier to manipulate type metadata
10// for devirtualization.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/IR/Constants.h"
16#include "llvm/IR/Dominators.h"
19#include "llvm/IR/Module.h"
20
21using namespace llvm;
22
23// Search for virtual calls that call FPtr and add them to DevirtCalls.
24static void
26 bool *HasNonCallUses, Value *FPtr, uint64_t Offset,
27 const CallInst *CI, DominatorTree &DT) {
28 for (const Use &U : FPtr->uses()) {
29 Instruction *User = cast<Instruction>(U.getUser());
30 // Ignore this instruction if it is not dominated by the type intrinsic
31 // being analyzed. Otherwise we may transform a call sharing the same
32 // vtable pointer incorrectly. Specifically, this situation can arise
33 // after indirect call promotion and inlining, where we may have uses
34 // of the vtable pointer guarded by a function pointer check, and a fallback
35 // indirect call.
36 if (!DT.dominates(CI, User))
37 continue;
38 if (isa<BitCastInst>(User)) {
39 findCallsAtConstantOffset(DevirtCalls, HasNonCallUses, User, Offset, CI,
40 DT);
41 } else if (auto *CI = dyn_cast<CallInst>(User)) {
42 DevirtCalls.push_back({Offset, *CI});
43 } else if (auto *II = dyn_cast<InvokeInst>(User)) {
44 DevirtCalls.push_back({Offset, *II});
45 } else if (HasNonCallUses) {
46 *HasNonCallUses = true;
47 }
48 }
49}
50
51// Search for virtual calls that load from VPtr and add them to DevirtCalls.
53 const Module *M, SmallVectorImpl<DevirtCallSite> &DevirtCalls, Value *VPtr,
54 int64_t Offset, const CallInst *CI, DominatorTree &DT) {
55 for (const Use &U : VPtr->uses()) {
56 Value *User = U.getUser();
57 if (isa<BitCastInst>(User)) {
58 findLoadCallsAtConstantOffset(M, DevirtCalls, User, Offset, CI, DT);
59 } else if (isa<LoadInst>(User)) {
60 findCallsAtConstantOffset(DevirtCalls, nullptr, User, Offset, CI, DT);
61 } else if (auto GEP = dyn_cast<GetElementPtrInst>(User)) {
62 // Take into account the GEP offset.
63 if (VPtr == GEP->getPointerOperand() && GEP->hasAllConstantIndices()) {
64 SmallVector<Value *, 8> Indices(drop_begin(GEP->operands()));
65 int64_t GEPOffset = M->getDataLayout().getIndexedOffsetInType(
66 GEP->getSourceElementType(), Indices);
67 findLoadCallsAtConstantOffset(M, DevirtCalls, User, Offset + GEPOffset,
68 CI, DT);
69 }
70 } else if (auto *Call = dyn_cast<CallInst>(User)) {
71 if (Call->getIntrinsicID() == llvm::Intrinsic::load_relative) {
72 if (auto *LoadOffset = dyn_cast<ConstantInt>(Call->getOperand(1))) {
73 findCallsAtConstantOffset(DevirtCalls, nullptr, User,
74 Offset + LoadOffset->getSExtValue(), CI,
75 DT);
76 }
77 }
78 }
79 }
80}
81
84 SmallVectorImpl<CallInst *> &Assumes, const CallInst *CI,
85 DominatorTree &DT) {
86 assert(CI->getCalledFunction()->getIntrinsicID() == Intrinsic::type_test ||
88 Intrinsic::public_type_test);
89
90 const Module *M = CI->getParent()->getParent()->getParent();
91
92 // Find llvm.assume intrinsics for this llvm.type.test call.
93 for (const Use &CIU : CI->uses())
94 if (auto *Assume = dyn_cast<AssumeInst>(CIU.getUser()))
95 Assumes.push_back(Assume);
96
97 // If we found any, search for virtual calls based on %p and add them to
98 // DevirtCalls.
99 if (!Assumes.empty())
101 M, DevirtCalls, CI->getArgOperand(0)->stripPointerCasts(), 0, CI, DT);
102}
103
107 SmallVectorImpl<Instruction *> &Preds, bool &HasNonCallUses,
108 const CallInst *CI, DominatorTree &DT) {
110 Intrinsic::type_checked_load ||
112 Intrinsic::type_checked_load_relative);
113
114 auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
115 if (!Offset) {
116 HasNonCallUses = true;
117 return;
118 }
119
120 for (const Use &U : CI->uses()) {
121 auto CIU = U.getUser();
122 if (auto EVI = dyn_cast<ExtractValueInst>(CIU)) {
123 if (EVI->getNumIndices() == 1 && EVI->getIndices()[0] == 0) {
124 LoadedPtrs.push_back(EVI);
125 continue;
126 }
127 if (EVI->getNumIndices() == 1 && EVI->getIndices()[0] == 1) {
128 Preds.push_back(EVI);
129 continue;
130 }
131 }
132 HasNonCallUses = true;
133 }
134
135 for (Value *LoadedPtr : LoadedPtrs)
136 findCallsAtConstantOffset(DevirtCalls, &HasNonCallUses, LoadedPtr,
137 Offset->getZExtValue(), CI, DT);
138}
139
141 Constant *TopLevelGlobal) {
142 // TODO: Ideally it would be the caller who knows if it's appropriate to strip
143 // the DSOLocalEquicalent. More generally, it would feel more appropriate to
144 // have two functions that handle absolute and relative pointers separately.
145 if (auto *Equiv = dyn_cast<DSOLocalEquivalent>(I))
146 I = Equiv->getGlobalValue();
147
148 if (I->getType()->isPointerTy()) {
149 if (Offset == 0)
150 return I;
151 return nullptr;
152 }
153
154 const DataLayout &DL = M.getDataLayout();
155
156 if (auto *C = dyn_cast<ConstantStruct>(I)) {
157 const StructLayout *SL = DL.getStructLayout(C->getType());
158 if (Offset >= SL->getSizeInBytes())
159 return nullptr;
160
161 unsigned Op = SL->getElementContainingOffset(Offset);
162 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
163 Offset - SL->getElementOffset(Op), M,
164 TopLevelGlobal);
165 }
166 if (auto *C = dyn_cast<ConstantArray>(I)) {
167 ArrayType *VTableTy = C->getType();
168 uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());
169
170 unsigned Op = Offset / ElemSize;
171 if (Op >= C->getNumOperands())
172 return nullptr;
173
174 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
175 Offset % ElemSize, M, TopLevelGlobal);
176 }
177
178 // Relative-pointer support starts here.
179 if (auto *CI = dyn_cast<ConstantInt>(I)) {
180 if (Offset == 0 && CI->isZero()) {
181 return I;
182 }
183 }
184 if (auto *C = dyn_cast<ConstantExpr>(I)) {
185 switch (C->getOpcode()) {
186 case Instruction::Trunc:
187 case Instruction::PtrToInt:
188 return getPointerAtOffset(cast<Constant>(C->getOperand(0)), Offset, M,
189 TopLevelGlobal);
190 case Instruction::Sub: {
191 auto *Operand0 = cast<Constant>(C->getOperand(0));
192 auto *Operand1 = cast<Constant>(C->getOperand(1));
193
194 auto StripGEP = [](Constant *C) {
195 auto *CE = dyn_cast<ConstantExpr>(C);
196 if (!CE)
197 return C;
198 if (CE->getOpcode() != Instruction::GetElementPtr)
199 return C;
200 return CE->getOperand(0);
201 };
202 auto *Operand1TargetGlobal = StripGEP(getPointerAtOffset(Operand1, 0, M));
203
204 // Check that in the "sub (@a, @b)" expression, @b points back to the top
205 // level global (or a GEP thereof) that we're processing. Otherwise bail.
206 if (Operand1TargetGlobal != TopLevelGlobal)
207 return nullptr;
208
209 return getPointerAtOffset(Operand0, Offset, M, TopLevelGlobal);
210 }
211 default:
212 return nullptr;
213 }
214 }
215 return nullptr;
216}
217
218std::pair<Function *, Constant *>
220 Module &M) {
222 if (!Ptr)
223 return std::pair<Function *, Constant *>(nullptr, nullptr);
224
225 auto C = Ptr->stripPointerCasts();
226 // Make sure this is a function or alias to a function.
227 auto Fn = dyn_cast<Function>(C);
228 auto A = dyn_cast<GlobalAlias>(C);
229 if (!Fn && A)
230 Fn = dyn_cast<Function>(A->getAliasee());
231
232 if (!Fn)
233 return std::pair<Function *, Constant *>(nullptr, nullptr);
234
235 return std::pair<Function *, Constant *>(Fn, C);
236}
237
239 auto *PtrExpr = dyn_cast<ConstantExpr>(U);
240 if (!PtrExpr || PtrExpr->getOpcode() != Instruction::PtrToInt)
241 return;
242
243 for (auto *PtrToIntUser : PtrExpr->users()) {
244 auto *SubExpr = dyn_cast<ConstantExpr>(PtrToIntUser);
245 if (!SubExpr || SubExpr->getOpcode() != Instruction::Sub)
246 return;
247
248 SubExpr->replaceNonMetadataUsesWith(
249 ConstantInt::get(SubExpr->getType(), 0));
250 }
251}
252
254 for (auto *U : C->users()) {
255 if (auto *Equiv = dyn_cast<DSOLocalEquivalent>(U))
257 else
259 }
260}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Hexagon Common GEP
#define I(x, y, z)
Definition: MD5.cpp:58
Module.h This file contains the declarations for the Module class.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static void findLoadCallsAtConstantOffset(const Module *M, SmallVectorImpl< DevirtCallSite > &DevirtCalls, Value *VPtr, int64_t Offset, const CallInst *CI, DominatorTree &DT)
static void findCallsAtConstantOffset(SmallVectorImpl< DevirtCallSite > &DevirtCalls, bool *HasNonCallUses, Value *FPtr, uint64_t Offset, const CallInst *CI, DominatorTree &DT)
static void replaceRelativePointerUserWithZero(User *U)
Class to represent array types.
Definition: DerivedTypes.h:371
Type * getElementType() const
Definition: DerivedTypes.h:384
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:206
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1742
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1687
This class represents a function call, abstracting a target machine's calling convention.
This is an important base class in LLVM.
Definition: Constant.h:41
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition: Function.h:231
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:656
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
const BasicBlock * getParent() const
Definition: Instruction.h:152
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
bool empty() const
Definition: SmallVector.h:94
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition: DataLayout.h:622
TypeSize getSizeInBytes() const
Definition: DataLayout.h:629
unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
Definition: DataLayout.cpp:92
TypeSize getElementOffset(unsigned Idx) const
Definition: DataLayout.h:651
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
LLVM Value Representation.
Definition: Value.h:74
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition: Value.cpp:693
iterator_range< use_iterator > uses()
Definition: Value.h:376
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
@ Offset
Definition: DWP.cpp:456
void findDevirtualizableCallsForTypeCheckedLoad(SmallVectorImpl< DevirtCallSite > &DevirtCalls, SmallVectorImpl< Instruction * > &LoadedPtrs, SmallVectorImpl< Instruction * > &Preds, bool &HasNonCallUses, const CallInst *CI, DominatorTree &DT)
Given a call to the intrinsic @llvm.type.checked.load, find all devirtualizable call sites based on t...
void replaceRelativePointerUsersWithZero(Constant *C)
Finds the same "relative pointer" pattern as described above, where the target is C,...
void findDevirtualizableCallsForTypeTest(SmallVectorImpl< DevirtCallSite > &DevirtCalls, SmallVectorImpl< CallInst * > &Assumes, const CallInst *CI, DominatorTree &DT)
Given a call to the intrinsic @llvm.type.test, find all devirtualizable call sites based on the call ...
Constant * getPointerAtOffset(Constant *I, uint64_t Offset, Module &M, Constant *TopLevelGlobal=nullptr)
Processes a Constant recursively looking into elements of arrays, structs and expressions to find a t...
std::pair< Function *, Constant * > getFunctionAtVTableOffset(GlobalVariable *GV, uint64_t Offset, Module &M)
Given a vtable and a specified offset, returns the function and the trivial pointer at the specified ...