LLVM 20.0.0git
VNCoercion.cpp
Go to the documentation of this file.
4#include "llvm/IR/IRBuilder.h"
6
7#define DEBUG_TYPE "vncoerce"
8
9namespace llvm {
10namespace VNCoercion {
11
13 return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
14}
15
16/// Return true if coerceAvailableValueToLoadType will succeed.
18 const DataLayout &DL) {
19 Type *StoredTy = StoredVal->getType();
20
21 if (StoredTy == LoadTy)
22 return true;
23
24 // If the loaded/stored value is a first class array/struct, or scalable type,
25 // don't try to transform them. We need to be able to bitcast to integer.
28 return false;
29
30 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedValue();
31
32 // The store size must be byte-aligned to support future type casts.
33 if (llvm::alignTo(StoreSize, 8) != StoreSize)
34 return false;
35
36 // The store has to be at least as big as the load.
37 if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedValue())
38 return false;
39
40 bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
41 bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
42 // Don't coerce non-integral pointers to integers or vice versa.
43 if (StoredNI != LoadNI) {
44 // As a special case, allow coercion of memset used to initialize
45 // an array w/null. Despite non-integral pointers not generally having a
46 // specific bit pattern, we do assume null is zero.
47 if (auto *CI = dyn_cast<Constant>(StoredVal))
48 return CI->isNullValue();
49 return false;
50 } else if (StoredNI && LoadNI &&
51 StoredTy->getPointerAddressSpace() !=
52 LoadTy->getPointerAddressSpace()) {
53 return false;
54 }
55
56
57 // The implementation below uses inttoptr for vectors of unequal size; we
58 // can't allow this for non integral pointers. We could teach it to extract
59 // exact subvectors if desired.
60 if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedValue())
61 return false;
62
63 if (StoredTy->isTargetExtTy() || LoadTy->isTargetExtTy())
64 return false;
65
66 return true;
67}
68
69/// If we saw a store of a value to memory, and
70/// then a load from a must-aliased pointer of a different type, try to coerce
71/// the stored value. LoadedTy is the type of the load we want to replace.
72/// IRB is IRBuilder used to insert new instructions.
73///
74/// If we can't do it, return null.
76 IRBuilderBase &Helper,
77 const DataLayout &DL) {
78 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
79 "precondition violation - materialization can't fail");
80 if (auto *C = dyn_cast<Constant>(StoredVal))
81 StoredVal = ConstantFoldConstant(C, DL);
82
83 // If this is already the right type, just return it.
84 Type *StoredValTy = StoredVal->getType();
85
86 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedValue();
87 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedValue();
88
89 // If the store and reload are the same size, we can always reuse it.
90 if (StoredValSize == LoadedValSize) {
91 // Pointer to Pointer -> use bitcast.
92 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
93 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
94 } else {
95 // Convert source pointers to integers, which can be bitcast.
96 if (StoredValTy->isPtrOrPtrVectorTy()) {
97 StoredValTy = DL.getIntPtrType(StoredValTy);
98 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
99 }
100
101 Type *TypeToCastTo = LoadedTy;
102 if (TypeToCastTo->isPtrOrPtrVectorTy())
103 TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
104
105 if (StoredValTy != TypeToCastTo)
106 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
107
108 // Cast to pointer if the load needs a pointer type.
109 if (LoadedTy->isPtrOrPtrVectorTy())
110 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
111 }
112
113 if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
114 StoredVal = ConstantFoldConstant(C, DL);
115
116 return StoredVal;
117 }
118 // If the loaded value is smaller than the available value, then we can
119 // extract out a piece from it. If the available value is too small, then we
120 // can't do anything.
121 assert(StoredValSize >= LoadedValSize &&
122 "canCoerceMustAliasedValueToLoad fail");
123
124 // Convert source pointers to integers, which can be manipulated.
125 if (StoredValTy->isPtrOrPtrVectorTy()) {
126 StoredValTy = DL.getIntPtrType(StoredValTy);
127 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
128 }
129
130 // Convert vectors and fp to integer, which can be manipulated.
131 if (!StoredValTy->isIntegerTy()) {
132 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
133 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
134 }
135
136 // If this is a big-endian system, we need to shift the value down to the low
137 // bits so that a truncate will work.
138 if (DL.isBigEndian()) {
139 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedValue() -
140 DL.getTypeStoreSizeInBits(LoadedTy).getFixedValue();
141 StoredVal = Helper.CreateLShr(
142 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
143 }
144
145 // Truncate the integer to the right size now.
146 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
147 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
148
149 if (LoadedTy != NewIntTy) {
150 // If the result is a pointer, inttoptr.
151 if (LoadedTy->isPtrOrPtrVectorTy())
152 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
153 else
154 // Otherwise, bitcast.
155 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
156 }
157
158 if (auto *C = dyn_cast<Constant>(StoredVal))
159 StoredVal = ConstantFoldConstant(C, DL);
160
161 return StoredVal;
162}
163
164/// This function is called when we have a memdep query of a load that ends up
165/// being a clobbering memory write (store, memset, memcpy, memmove). This
166/// means that the write *may* provide bits used by the load but we can't be
167/// sure because the pointers don't must-alias.
168///
169/// Check this case to see if there is anything more we can do before we give
170/// up. This returns -1 if we have to give up, or a byte number in the stored
171/// value of the piece that feeds the load.
172static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
173 Value *WritePtr,
174 uint64_t WriteSizeInBits,
175 const DataLayout &DL) {
176 // If the loaded/stored value is a first class array/struct, or scalable type,
177 // don't try to transform them. We need to be able to bitcast to integer.
179 return -1;
180
181 int64_t StoreOffset = 0, LoadOffset = 0;
182 Value *StoreBase =
183 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
184 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
185 if (StoreBase != LoadBase)
186 return -1;
187
188 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue();
189
190 if ((WriteSizeInBits & 7) | (LoadSize & 7))
191 return -1;
192 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
193 LoadSize /= 8;
194
195 // If the Load isn't completely contained within the stored bits, we don't
196 // have all the bits to feed it. We could do something crazy in the future
197 // (issue a smaller load then merge the bits in) but this seems unlikely to be
198 // valuable.
199 if (StoreOffset > LoadOffset ||
200 StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize))
201 return -1;
202
203 // Okay, we can do this transformation. Return the number of bytes into the
204 // store that the load is.
205 return LoadOffset - StoreOffset;
206}
207
208/// This function is called when we have a
209/// memdep query of a load that ends up being a clobbering store.
211 StoreInst *DepSI, const DataLayout &DL) {
212 auto *StoredVal = DepSI->getValueOperand();
213
214 // Cannot handle reading from store of first-class aggregate or scalable type.
215 if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
216 return -1;
217
218 if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL))
219 return -1;
220
221 Value *StorePtr = DepSI->getPointerOperand();
222 uint64_t StoreSize =
223 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedValue();
224 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
225 DL);
226}
227
228/// This function is called when we have a
229/// memdep query of a load that ends up being clobbered by another load. See if
230/// the other load can feed into the second load.
231int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
232 const DataLayout &DL) {
233 // Cannot handle reading from store of first-class aggregate yet.
234 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
235 return -1;
236
237 if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL))
238 return -1;
239
240 Value *DepPtr = DepLI->getPointerOperand();
241 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedValue();
242 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
243}
244
246 MemIntrinsic *MI, const DataLayout &DL) {
247 // If the mem operation is a non-constant size, we can't handle it.
248 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
249 if (!SizeCst)
250 return -1;
251 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
252
253 // If this is memset, we just need to see if the offset is valid in the size
254 // of the memset..
255 if (const auto *memset_inst = dyn_cast<MemSetInst>(MI)) {
256 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
257 auto *CI = dyn_cast<ConstantInt>(memset_inst->getValue());
258 if (!CI || !CI->isZero())
259 return -1;
260 }
261 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
262 MemSizeInBits, DL);
263 }
264
265 // If we have a memcpy/memmove, the only case we can handle is if this is a
266 // copy from constant memory. In that case, we can read directly from the
267 // constant memory.
268 MemTransferInst *MTI = cast<MemTransferInst>(MI);
269
270 Constant *Src = dyn_cast<Constant>(MTI->getSource());
271 if (!Src)
272 return -1;
273
274 GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
275 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
276 return -1;
277
278 // See if the access is within the bounds of the transfer.
279 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
280 MemSizeInBits, DL);
281 if (Offset == -1)
282 return Offset;
283
284 // Otherwise, see if we can constant fold a load from the constant with the
285 // offset applied as appropriate.
286 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
287 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL))
288 return Offset;
289 return -1;
290}
291
293 Type *LoadTy, IRBuilderBase &Builder,
294 const DataLayout &DL) {
295 LLVMContext &Ctx = SrcVal->getType()->getContext();
296
297 // If two pointers are in the same address space, they have the same size,
298 // so we don't need to do any truncation, etc. This avoids introducing
299 // ptrtoint instructions for pointers that may be non-integral.
300 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
301 cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
302 cast<PointerType>(LoadTy)->getAddressSpace()) {
303 return SrcVal;
304 }
305
306 uint64_t StoreSize =
307 (DL.getTypeSizeInBits(SrcVal->getType()).getFixedValue() + 7) / 8;
308 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedValue() + 7) / 8;
309 // Compute which bits of the stored value are being used by the load. Convert
310 // to an integer type to start with.
311 if (SrcVal->getType()->isPtrOrPtrVectorTy())
312 SrcVal =
313 Builder.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
314 if (!SrcVal->getType()->isIntegerTy())
315 SrcVal =
316 Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
317
318 // Shift the bits to the least significant depending on endianness.
319 unsigned ShiftAmt;
320 if (DL.isLittleEndian())
321 ShiftAmt = Offset * 8;
322 else
323 ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
324 if (ShiftAmt)
325 SrcVal = Builder.CreateLShr(SrcVal,
326 ConstantInt::get(SrcVal->getType(), ShiftAmt));
327
328 if (LoadSize != StoreSize)
329 SrcVal = Builder.CreateTruncOrBitCast(SrcVal,
330 IntegerType::get(Ctx, LoadSize * 8));
331 return SrcVal;
332}
333
334Value *getValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
335 Instruction *InsertPt, const DataLayout &DL) {
336
337#ifndef NDEBUG
338 unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType()).getFixedValue();
339 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue();
340 assert(Offset + LoadSize <= SrcValSize);
341#endif
342 IRBuilder<> Builder(InsertPt);
343 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
344 return coerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
345}
346
348 Type *LoadTy, const DataLayout &DL) {
349#ifndef NDEBUG
350 unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType()).getFixedValue();
351 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue();
352 assert(Offset + LoadSize <= SrcValSize);
353#endif
354 return ConstantFoldLoadFromConst(SrcVal, LoadTy, APInt(32, Offset), DL);
355}
356
357/// This function is called when we have a
358/// memdep query of a load that ends up being a clobbering mem intrinsic.
360 Type *LoadTy, Instruction *InsertPt,
361 const DataLayout &DL) {
362 LLVMContext &Ctx = LoadTy->getContext();
363 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
364 IRBuilder<> Builder(InsertPt);
365
366 // We know that this method is only called when the mem transfer fully
367 // provides the bits for the load.
368 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
369 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
370 // independently of what the offset is.
371 Value *Val = MSI->getValue();
372 if (LoadSize != 1)
373 Val =
374 Builder.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
375 Value *OneElt = Val;
376
377 // Splat the value out to the right number of bits.
378 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
379 // If we can double the number of bytes set, do it.
380 if (NumBytesSet * 2 <= LoadSize) {
381 Value *ShVal = Builder.CreateShl(
382 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
383 Val = Builder.CreateOr(Val, ShVal);
384 NumBytesSet <<= 1;
385 continue;
386 }
387
388 // Otherwise insert one byte at a time.
389 Value *ShVal =
390 Builder.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
391 Val = Builder.CreateOr(OneElt, ShVal);
392 ++NumBytesSet;
393 }
394
395 return coerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
396 }
397
398 // Otherwise, this is a memcpy/memmove from a constant global.
399 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
400 Constant *Src = cast<Constant>(MTI->getSource());
401 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
402 return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
403 DL);
404}
405
407 Type *LoadTy, const DataLayout &DL) {
408 LLVMContext &Ctx = LoadTy->getContext();
409 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
410
411 // We know that this method is only called when the mem transfer fully
412 // provides the bits for the load.
413 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
414 auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
415 if (!Val)
416 return nullptr;
417
418 Val = ConstantInt::get(Ctx, APInt::getSplat(LoadSize * 8, Val->getValue()));
419 return ConstantFoldLoadFromConst(Val, LoadTy, DL);
420 }
421
422 // Otherwise, this is a memcpy/memmove from a constant global.
423 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
424 Constant *Src = cast<Constant>(MTI->getSource());
425 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
426 return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
427 DL);
428}
429} // namespace VNCoercion
430} // namespace llvm
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
IRTranslator LLVM IR MI
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Class for arbitrary precision integers.
Definition: APInt.h:78
static APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition: APInt.cpp:624
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:157
This is an important base class in LLVM.
Definition: Constant.h:42
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:91
Value * CreateZExtOrBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2165
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2150
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1460
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2155
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1439
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2145
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1520
Value * CreateTruncOrBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2181
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:311
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:176
Value * getPointerOperand()
Definition: Instructions.h:255
This is the common base class for memset/memcpy/memmove.
This class wraps the llvm.memset and llvm.memset.inline intrinsics.
Value * getSource() const
This is just like getRawSource, but it strips off any cast instructions that feed it,...
This class wraps the llvm.memcpy/memmove intrinsics.
An instruction for storing to memory.
Definition: Instructions.h:292
Value * getValueOperand()
Definition: Instructions.h:378
Value * getPointerOperand()
Definition: Instructions.h:381
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:261
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:264
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:258
bool isTargetExtTy() const
Return true if this is a target extension type.
Definition: Type.h:203
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition: Type.h:267
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:237
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:355
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Value * getValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &DL)
If analyzeLoadFromClobberingStore/Load returned an offset, this function can be used to actually perf...
Definition: VNCoercion.cpp:334
static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, Value *WritePtr, uint64_t WriteSizeInBits, const DataLayout &DL)
This function is called when we have a memdep query of a load that ends up being a clobbering memory ...
Definition: VNCoercion.cpp:172
Value * coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, IRBuilderBase &IRB, const DataLayout &DL)
If we saw a store of a value to memory, and then a load from a must-aliased pointer of a different ty...
Definition: VNCoercion.cpp:75
static Value * getStoreValueForLoadHelper(Value *SrcVal, unsigned Offset, Type *LoadTy, IRBuilderBase &Builder, const DataLayout &DL)
Definition: VNCoercion.cpp:292
int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, StoreInst *DepSI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the store at D...
Definition: VNCoercion.cpp:210
Value * getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &DL)
If analyzeLoadFromClobberingMemInst returned an offset, this function can be used to actually perform...
Definition: VNCoercion.cpp:359
Constant * getConstantValueForLoad(Constant *SrcVal, unsigned Offset, Type *LoadTy, const DataLayout &DL)
Definition: VNCoercion.cpp:347
int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the load at De...
Definition: VNCoercion.cpp:231
Constant * getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, Type *LoadTy, const DataLayout &DL)
Definition: VNCoercion.cpp:406
int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, MemIntrinsic *DepMI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the memory int...
Definition: VNCoercion.cpp:245
static bool isFirstClassAggregateOrScalableType(Type *Ty)
Definition: VNCoercion.cpp:12
bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, const DataLayout &DL)
Return true if CoerceAvailableValueToLoadType would succeed if it was called.
Definition: VNCoercion.cpp:17
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...