43using namespace PatternMatch;
48 cl::desc(
"Enable unsafe double to float "
49 "shrinking for math lib calls"));
56 cl::desc(
"Enable hot/cold operator new library calls"));
60 "Enable optimization of existing hot/cold operator new library calls"));
67struct HotColdHintParser :
public cl::parser<unsigned> {
72 return O.error(
"'" + Arg +
"' value invalid for uint argument!");
75 return O.error(
"'" + Arg +
"' value must be in the range [0, 255]!");
89 cl::desc(
"Value to pass to hot/cold operator new for cold allocation"));
92 cl::desc(
"Value to pass to hot/cold operator new for "
93 "notcold (warm) allocation"));
96 cl::desc(
"Value to pass to hot/cold operator new for hot allocation"));
103 return Func == LibFunc_abs || Func == LibFunc_labs ||
104 Func == LibFunc_llabs || Func == LibFunc_strlen;
109 for (
User *U : V->users()) {
110 if (
ICmpInst *IC = dyn_cast<ICmpInst>(U))
111 if (IC->isEquality() && IC->getOperand(1) == With)
121 return OI->getType()->isFloatingPointTy();
127 return OI->getType()->isFP128Ty();
140 if (Base < 2 || Base > 36)
149 if (!isSpace((
unsigned char)Str[
Offset])) {
160 bool Negate = Str[0] ==
'-';
161 if (Str[0] ==
'-' || Str[0] ==
'+') {
162 Str = Str.drop_front();
172 unsigned NBits =
RetTy->getPrimitiveSizeInBits();
173 uint64_t Max = AsSigned && Negate ? 1 : 0;
177 if (Str.size() > 1) {
179 if (toUpper((
unsigned char)Str[1]) ==
'X') {
180 if (Str.size() == 2 || (
Base &&
Base != 16))
185 Str = Str.drop_front(2);
191 }
else if (
Base == 0)
201 for (
unsigned i = 0; i != Str.size(); ++i) {
202 unsigned char DigVal = Str[i];
204 DigVal = DigVal -
'0';
206 DigVal = toUpper(DigVal);
208 DigVal = DigVal -
'A' + 10;
221 if (VFlow || Result > Max)
229 Value *StrEnd =
B.CreateInBoundsGEP(
B.getInt8Ty(), StrBeg, Off,
"endptr");
230 B.CreateStore(StrEnd, EndPtr);
237 return ConstantInt::get(
RetTy, Result);
241 for (
User *U : V->users()) {
242 if (
ICmpInst *IC = dyn_cast<ICmpInst>(U))
243 if (
Constant *
C = dyn_cast<Constant>(IC->getOperand(1)))
244 if (
C->isNullValue())
272 for (
unsigned ArgNo : ArgNos) {
273 uint64_t DerefBytes = DereferenceableBytes;
278 DereferenceableBytes);
297 for (
unsigned ArgNo : ArgNos) {
323 DerefMin = std::min(
X->getZExtValue(),
Y->getZExtValue());
337 if (
auto *NewCI = dyn_cast_or_null<CallInst>(New))
344 NewCI->
getContext(), {NewCI->getAttributes(), Old.getAttributes()}));
357 return Len >= Str.size() ? Str : Str.substr(0, Len);
382 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len,
B));
396 Value *CpyDst =
B.CreateInBoundsGEP(
B.getInt8Ty(), Dst, DstLen,
"endptr");
401 TLI->
getAsSizeT(Len + 1, *
B.GetInsertBlock()->getModule()));
445 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen,
B));
458 Type *CharTy =
B.getInt8Ty();
459 Value *Char0 =
B.CreateLoad(CharTy, Src);
460 CharVal =
B.CreateTrunc(CharVal, CharTy);
461 Value *Cmp =
B.CreateICmpEQ(Char0, CharVal,
"char0cmp");
465 Value *
And =
B.CreateICmpNE(NBytes, Zero);
466 Cmp =
B.CreateLogicalAnd(
And, Cmp);
470 return B.CreateSelect(Cmp, Src, NullPtr);
483 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
494 if (!FT->getParamType(1)->isIntegerTy(IntBits))
501 ConstantInt::get(SizeTTy, Len),
B,
510 return B.CreateIntToPtr(
B.getTrue(), CI->
getType());
519 return B.CreateInBoundsGEP(
B.getInt8Ty(), SrcStr, StrLen,
"strchr");
532 return B.CreateInBoundsGEP(
B.getInt8Ty(), SrcStr,
B.getInt64(
I),
"strchr");
538 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
544 if (CharC && CharC->
isZero())
555 Value *
Size = ConstantInt::get(SizeTTy, NBytes);
562 return ConstantInt::get(CI->
getType(), 0);
569 if (HasStr1 && HasStr2)
570 return ConstantInt::get(CI->
getType(),
571 std::clamp(Str1.
compare(Str2), -1, 1));
573 if (HasStr1 && Str1.
empty())
574 return B.CreateNeg(
B.CreateZExt(
575 B.CreateLoad(
B.getInt8Ty(), Str2P,
"strcmpload"), CI->
getType()));
577 if (HasStr2 && Str2.
empty())
578 return B.CreateZExt(
B.CreateLoad(
B.getInt8Ty(), Str1P,
"strcmpload"),
597 if (!HasStr1 && HasStr2) {
602 }
else if (HasStr1 && !HasStr2) {
624 return ConstantInt::get(CI->
getType(), 0);
636 return ConstantInt::get(CI->
getType(), 0);
646 if (HasStr1 && HasStr2) {
650 return ConstantInt::get(CI->
getType(),
651 std::clamp(SubStr1.
compare(SubStr2), -1, 1));
654 if (HasStr1 && Str1.
empty())
655 return B.CreateNeg(
B.CreateZExt(
656 B.CreateLoad(
B.getInt8Ty(), Str2P,
"strcmpload"), CI->
getType()));
658 if (HasStr2 && Str2.
empty())
659 return B.CreateZExt(
B.CreateLoad(
B.getInt8Ty(), Str1P,
"strcmpload"),
670 if (!HasStr1 && HasStr2) {
671 Len2 = std::min(Len2,
Length);
676 }
else if (HasStr1 && !HasStr2) {
677 Len1 = std::min(Len1,
Length);
691 if (SrcLen &&
Size) {
693 if (SrcLen <= Size->getZExtValue() + 1)
730 return StrLen ?
B.CreateInBoundsGEP(
B.getInt8Ty(), Dst, StrLen) :
nullptr;
741 Value *DstEnd =
B.CreateInBoundsGEP(
765 NBytes = SizeC->getZExtValue();
774 B.CreateStore(
B.getInt8(0), Dst);
790 bool NulTerm = SrcLen < NBytes;
799 SrcLen = std::min(SrcLen,
uint64_t(Str.size()));
800 NBytes = std::min(NBytes - 1, SrcLen);
805 B.CreateStore(
B.getInt8(0), Dst);
806 return ConstantInt::get(CI->
getType(), 0);
817 Value *EndOff = ConstantInt::get(CI->
getType(), NBytes);
818 Value *EndPtr =
B.CreateInBoundsGEP(
B.getInt8Ty(), Dst, EndOff);
819 B.CreateStore(
B.getInt8(0), EndPtr);
825 return ConstantInt::get(CI->
getType(), SrcLen);
830Value *LibCallSimplifier::optimizeStringNCpy(
CallInst *CI,
bool RetEnd,
847 N = SizeC->getZExtValue();
854 Type *CharTy =
B.getInt8Ty();
855 Value *CharVal =
B.CreateLoad(CharTy, Src,
"stxncpy.char0");
856 B.CreateStore(CharVal, Dst);
862 Value *ZeroChar = ConstantInt::get(CharTy, 0);
863 Value *
Cmp =
B.CreateICmpEQ(CharVal, ZeroChar,
"stpncpy.char0cmp");
865 Value *Off1 =
B.getInt32(1);
866 Value *EndPtr =
B.CreateInBoundsGEP(CharTy, Dst, Off1,
"stpncpy.end");
867 return B.CreateSelect(Cmp, Dst, EndPtr,
"stpncpy.sel");
883 CallInst *NewCI =
B.CreateMemSet(Dst,
B.getInt8(
'\0'),
Size, MemSetAlign);
891 if (
N > SrcLen + 1) {
900 std::string SrcStr = Str.str();
903 SrcStr.resize(
N,
'\0');
904 Src =
B.CreateGlobalString(SrcStr,
"str", 0,
919 return B.CreateInBoundsGEP(
B.getInt8Ty(), Dst, Off,
"endptr");
926 Type *CharTy =
B.getIntNTy(CharSize);
936 return B.CreateZExt(
B.CreateLoad(CharTy, Src,
"char0"),
941 if (
ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
942 if (BoundCst->isZero())
944 return ConstantInt::get(CI->
getType(), 0);
946 if (BoundCst->isOne()) {
948 Value *CharVal =
B.CreateLoad(CharTy, Src,
"strnlen.char0");
949 Value *ZeroChar = ConstantInt::get(CharTy, 0);
950 Value *
Cmp =
B.CreateICmpNE(CharVal, ZeroChar,
"strnlen.char0cmp");
951 return B.CreateZExt(Cmp, CI->
getType());
961 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
985 if (Slice.
Array ==
nullptr) {
1004 cast<ArrayType>(
GEP->getSourceElementType())->getNumElements();
1011 (isa<GlobalVariable>(
GEP->getOperand(0)) &&
1012 NullTermIdx == ArrSize - 1)) {
1014 return B.CreateSub(ConstantInt::get(CI->
getType(), NullTermIdx),
1021 if (
SelectInst *SI = dyn_cast<SelectInst>(Src)) {
1024 if (LenTrue && LenFalse) {
1027 <<
"folded strlen(select) to select of constants";
1029 return B.CreateSelect(
SI->getCondition(),
1030 ConstantInt::get(CI->
getType(), LenTrue - 1),
1031 ConstantInt::get(CI->
getType(), LenFalse - 1));
1039 if (
Value *V = optimizeStringLength(CI,
B, 8))
1047 if (
Value *V = optimizeStringLength(CI,
B, 8, Bound))
1062 return optimizeStringLength(CI,
B, WCharSize);
1072 if ((HasS1 &&
S1.empty()) || (HasS2 && S2.
empty()))
1076 if (HasS1 && HasS2) {
1077 size_t I =
S1.find_first_of(S2);
1082 B.getInt64(
I),
"strpbrk");
1086 if (HasS2 && S2.
size() == 1)
1094 if (isa<ConstantPointerNull>(EndPtr)) {
1110 if ((HasS1 &&
S1.empty()) || (HasS2 && S2.
empty()))
1114 if (HasS1 && HasS2) {
1115 size_t Pos =
S1.find_first_not_of(S2);
1118 return ConstantInt::get(CI->
getType(), Pos);
1130 if (HasS1 &&
S1.empty())
1134 if (HasS1 && HasS2) {
1135 size_t Pos =
S1.find_first_of(S2);
1138 return ConstantInt::get(CI->
getType(), Pos);
1142 if (HasS2 && S2.
empty())
1159 StrLen,
B, DL, TLI);
1167 replaceAllUsesWith(Old, Cmp);
1178 if (HasStr2 && ToFindStr.
empty())
1182 if (HasStr1 && HasStr2) {
1189 return B.CreateConstInBoundsGEP1_64(
B.getInt8Ty(), CI->
getArgOperand(0),
1194 if (HasStr2 && ToFindStr.
size() == 1) {
1215 if (LenC->
isOne()) {
1218 Value *Val =
B.CreateLoad(
B.getInt8Ty(), SrcStr,
"memrchr.char0");
1220 CharVal =
B.CreateTrunc(CharVal,
B.getInt8Ty());
1221 Value *
Cmp =
B.CreateICmpEQ(Val, CharVal,
"memrchr.char0cmp");
1222 return B.CreateSelect(Cmp, SrcStr, NullPtr,
"memrchr.sel");
1230 if (Str.size() == 0)
1239 if (Str.size() < EndOff)
1244 if (
ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
1254 return B.CreateInBoundsGEP(
B.getInt8Ty(), SrcStr,
B.getInt64(Pos));
1256 if (Str.find(Str[Pos]) == Pos) {
1263 Value *SrcPlus =
B.CreateInBoundsGEP(
B.getInt8Ty(), SrcStr,
1264 B.getInt64(Pos),
"memrchr.ptr_plus");
1265 return B.CreateSelect(Cmp, NullPtr, SrcPlus,
"memrchr.sel");
1270 Str = Str.substr(0, EndOff);
1278 Type *Int8Ty =
B.getInt8Ty();
1279 Value *NNeZ =
B.CreateICmpNE(
Size, ConstantInt::get(SizeTy, 0));
1281 CharVal =
B.CreateTrunc(CharVal, Int8Ty);
1282 Value *CEqS0 =
B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
1283 Value *
And =
B.CreateLogicalAnd(NNeZ, CEqS0);
1284 Value *SizeM1 =
B.CreateSub(
Size, ConstantInt::get(SizeTy, 1));
1286 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1,
"memrchr.ptr_plus");
1287 return B.CreateSelect(
And, SrcPlus, NullPtr,
"memrchr.sel");
1301 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
1310 if (LenC->
isOne()) {
1313 Value *Val =
B.CreateLoad(
B.getInt8Ty(), SrcStr,
"memchr.char0");
1315 CharVal =
B.CreateTrunc(CharVal,
B.getInt8Ty());
1316 Value *
Cmp =
B.CreateICmpEQ(Val, CharVal,
"memchr.char0cmp");
1317 return B.CreateSelect(Cmp, SrcStr, NullPtr,
"memchr.sel");
1337 Value *SrcPlus =
B.CreateInBoundsGEP(
B.getInt8Ty(), SrcStr,
B.getInt64(Pos),
1339 return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1342 if (Str.size() == 0)
1351 size_t Pos = Str.find_first_not_of(Str[0]);
1364 Type *Int8Ty =
B.getInt8Ty();
1367 CharVal =
B.CreateTrunc(CharVal, Int8Ty);
1369 Value *Sel1 = NullPtr;
1372 Value *PosVal = ConstantInt::get(SizeTy, Pos);
1373 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1374 Value *CEqSPos =
B.CreateICmpEQ(CharVal, StrPos);
1376 Value *
And =
B.CreateAnd(CEqSPos, NGtPos);
1377 Value *SrcPlus =
B.CreateInBoundsGEP(
B.getInt8Ty(), SrcStr, PosVal);
1378 Sel1 =
B.CreateSelect(
And, SrcPlus, NullPtr,
"memchr.sel1");
1381 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1382 Value *CEqS0 =
B.CreateICmpEQ(Str0, CharVal);
1383 Value *NNeZ =
B.CreateICmpNE(
Size, ConstantInt::get(SizeTy, 0));
1385 return B.CreateSelect(
And, SrcStr, Sel1,
"memchr.sel2");
1416 *std::max_element(
reinterpret_cast<const unsigned char *
>(Str.begin()),
1417 reinterpret_cast<const unsigned char *
>(Str.end()));
1430 std::string SortedStr = Str.str();
1433 unsigned NonContRanges = 1;
1434 for (
size_t i = 1; i < SortedStr.size(); ++i) {
1435 if (SortedStr[i] > SortedStr[i - 1] + 1) {
1442 if (NonContRanges > 2)
1446 CharVal =
B.CreateTrunc(CharVal,
B.getInt8Ty());
1449 for (
unsigned char C : SortedStr)
1450 CharCompares.
push_back(
B.CreateICmpEQ(CharVal,
B.getInt8(
C)));
1452 return B.CreateIntToPtr(
B.CreateOr(CharCompares), CI->
getType());
1457 unsigned char Width =
NextPowerOf2(std::max((
unsigned char)7, Max));
1467 C =
B.CreateAnd(
C,
B.getIntN(Width, 0xFF));
1474 Value *Shl =
B.CreateShl(
B.getIntN(Width, 1ULL),
C);
1475 Value *
Bits =
B.CreateIsNotNull(
B.CreateAnd(Shl, BitfieldC),
"memchr.bits");
1479 return B.CreateIntToPtr(
B.CreateLogicalAnd(Bounds, Bits,
"memchr"),
1504 if (Pos == MinSize ||
1505 (StrNCmp && (LStr[Pos] ==
'\0' && RStr[Pos] ==
'\0'))) {
1513 if (LStr[Pos] != RStr[Pos])
1518 typedef unsigned char UChar;
1519 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1520 Value *MaxSize = ConstantInt::get(
Size->getType(), Pos);
1523 return B.CreateSelect(Cmp, Zero, Res);
1535 Value *LHSV =
B.CreateZExt(
B.CreateLoad(
B.getInt8Ty(),
LHS,
"lhsc"),
1537 Value *RHSV =
B.CreateZExt(
B.CreateLoad(
B.getInt8Ty(),
RHS,
"rhsc"),
1539 return B.CreateSub(LHSV, RHSV,
"chardiff");
1547 Align PrefAlignment =
DL.getPrefTypeAlign(IntType);
1550 Value *LHSV =
nullptr;
1551 if (
auto *LHSC = dyn_cast<Constant>(
LHS))
1554 Value *RHSV =
nullptr;
1555 if (
auto *RHSC = dyn_cast<Constant>(
RHS))
1563 LHSV =
B.CreateLoad(IntType,
LHS,
"lhsv");
1565 RHSV =
B.CreateLoad(IntType,
RHS,
"rhsv");
1566 return B.CreateZExt(
B.CreateICmpNE(LHSV, RHSV), CI->
getType(),
"memcmp");
1574Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(
CallInst *CI,
1594 if (
Value *V = optimizeMemCmpBCmpCommon(CI,
B))
1612 return optimizeMemCmpBCmpCommon(CI,
B);
1618 if (isa<IntrinsicInst>(CI))
1638 if (
N->isNullValue())
1651 if (
N->getZExtValue() <= SrcStr.
size()) {
1660 ConstantInt::get(
N->getType(), std::min(
uint64_t(Pos + 1),
N->getZExtValue()));
1663 return Pos + 1 <=
N->getZExtValue()
1664 ?
B.CreateInBoundsGEP(
B.getInt8Ty(), Dst, NewN)
1678 return B.CreateInBoundsGEP(
B.getInt8Ty(), Dst,
N);
1684 if (isa<IntrinsicInst>(CI))
1697 if (isa<IntrinsicInst>(CI))
1742 case LibFunc_Znwm12__hot_cold_t:
1745 LibFunc_Znwm12__hot_cold_t, HotCold);
1750 LibFunc_Znwm12__hot_cold_t, HotCold);
1752 case LibFunc_Znam12__hot_cold_t:
1755 LibFunc_Znam12__hot_cold_t, HotCold);
1760 LibFunc_Znam12__hot_cold_t, HotCold);
1762 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
1766 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold);
1768 case LibFunc_ZnwmRKSt9nothrow_t:
1772 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold);
1774 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
1778 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold);
1780 case LibFunc_ZnamRKSt9nothrow_t:
1784 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold);
1786 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
1790 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold);
1792 case LibFunc_ZnwmSt11align_val_t:
1796 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold);
1798 case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
1802 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold);
1804 case LibFunc_ZnamSt11align_val_t:
1808 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold);
1810 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
1814 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1817 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
1821 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1824 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
1828 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1831 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
1835 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1838 case LibFunc_size_returning_new:
1841 LibFunc_size_returning_new_hot_cold,
1844 case LibFunc_size_returning_new_hot_cold:
1847 LibFunc_size_returning_new_hot_cold,
1850 case LibFunc_size_returning_new_aligned:
1854 LibFunc_size_returning_new_aligned_hot_cold, HotCold);
1856 case LibFunc_size_returning_new_aligned_hot_cold:
1860 LibFunc_size_returning_new_aligned_hot_cold, HotCold);
1886 if (
FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1887 Value *
Op = Cast->getOperand(0);
1888 if (
Op->getType()->isFloatTy())
1891 if (
ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1897 return ConstantFP::get(Const->getContext(),
F);
1905 bool isPrecise =
false) {
1936 if (!CallerName.
empty() && CallerName.
back() ==
'f' &&
1937 CallerName.
size() == (CalleeName.
size() + 1) &&
1950 R =
isBinary ?
B.CreateIntrinsic(IID,
B.getFloatTy(), V)
1951 :
B.CreateIntrinsic(IID,
B.getFloatTy(), V[0]);
1958 return B.CreateFPExt(R,
B.getDoubleTy());
1964 bool isPrecise =
false) {
1971 bool isPrecise =
false) {
1985 assert(
Op->getType()->isArrayTy() &&
"Unexpected signature for cabs!");
1987 Real =
B.CreateExtractValue(
Op, 0,
"real");
1988 Imag =
B.CreateExtractValue(
Op, 1,
"imag");
1998 Value *AbsOp =
nullptr;
1999 if (
ConstantFP *ConstReal = dyn_cast<ConstantFP>(Real)) {
2000 if (ConstReal->isZero())
2003 }
else if (
ConstantFP *ConstImag = dyn_cast<ConstantFP>(Imag)) {
2004 if (ConstImag->isZero())
2013 *CI,
B.CreateUnaryIntrinsic(Intrinsic::fabs, AbsOp,
nullptr,
"cabs"));
2024 Value *RealReal =
B.CreateFMul(Real, Real);
2025 Value *ImagImag =
B.CreateFMul(Imag, Imag);
2027 return copyFlags(*CI,
B.CreateUnaryIntrinsic(Intrinsic::sqrt,
2028 B.CreateFAdd(RealReal, ImagImag),
2035 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
2036 Value *
Op = cast<Instruction>(I2F)->getOperand(0);
2039 unsigned BitWidth =
Op->getType()->getScalarSizeInBits();
2040 if (
BitWidth < DstWidth || (
BitWidth == DstWidth && isa<SIToFPInst>(I2F))) {
2041 Type *IntTy =
Op->getType()->getWithNewBitWidth(DstWidth);
2042 return isa<SIToFPInst>(I2F) ?
B.CreateSExt(
Op, IntTy)
2043 :
B.CreateZExt(
Op, IntTy);
2084 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
2092 ExpName = TLI->
getName(LibFunc_exp);
2093 ID = Intrinsic::exp;
2094 LibFnFloat = LibFunc_expf;
2095 LibFnDouble = LibFunc_exp;
2096 LibFnLongDouble = LibFunc_expl;
2101 ExpName = TLI->
getName(LibFunc_exp2);
2102 ID = Intrinsic::exp2;
2103 LibFnFloat = LibFunc_exp2f;
2104 LibFnDouble = LibFunc_exp2;
2105 LibFnLongDouble = LibFunc_exp2l;
2112 ?
B.CreateUnaryIntrinsic(
ID,
FMul,
nullptr, ExpName)
2121 substituteInParent(BaseFn, ExpFn);
2138 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
2140 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) {
2145 Constant *One = ConstantFP::get(Ty, 1.0);
2148 return copyFlags(*Pow,
B.CreateIntrinsic(Intrinsic::ldexp,
2149 {Ty, ExpoI->getType()},
2150 {One, ExpoI}, Pow,
"exp2"));
2154 One, ExpoI, TLI, LibFunc_ldexp, LibFunc_ldexpf,
2155 LibFunc_ldexpl,
B, NoAttrs));
2160 if (
hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
2163 BaseR = BaseR / *BaseF;
2165 const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
2167 if ((IsInteger || IsReciprocal) &&
2170 NI > 1 && NI.isPowerOf2()) {
2171 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
2172 Value *
FMul =
B.CreateFMul(Expo, ConstantFP::get(Ty,
N),
"mul");
2174 return copyFlags(*Pow,
B.CreateUnaryIntrinsic(Intrinsic::exp2,
FMul,
2179 LibFunc_exp2l,
B, NoAttrs));
2185 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) {
2189 B.CreateIntrinsic(Intrinsic::exp10, {Ty}, {Expo}, Pow,
"exp10");
2194 LibFunc_exp10f, LibFunc_exp10l,
2204 "pow(1.0, y) should have been simplified earlier!");
2206 Value *Log =
nullptr;
2213 Value *
FMul =
B.CreateFMul(Log, Expo,
"mul");
2215 return copyFlags(*Pow,
B.CreateUnaryIntrinsic(Intrinsic::exp2,
FMul,
2217 else if (
hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
2221 LibFunc_exp2l,
B, NoAttrs));
2233 return B.CreateUnaryIntrinsic(Intrinsic::sqrt, V,
nullptr,
"sqrt");
2236 if (
hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
2242 LibFunc_sqrtl,
B, Attrs);
2279 Sqrt =
B.CreateUnaryIntrinsic(Intrinsic::fabs, Sqrt,
nullptr,
"abs");
2288 Value *FCmp =
B.CreateFCmpOEQ(
Base, NegInf,
"isinf");
2289 Sqrt =
B.CreateSelect(FCmp, PosInf, Sqrt);
2294 Sqrt =
B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt,
"reciprocal");
2303 return B.CreateIntrinsic(Intrinsic::powi, Types, Args);
2325 if (
Value *Exp = replacePowWithExp(Pow,
B))
2332 return B.CreateFDiv(ConstantFP::get(Ty, 1.0),
Base,
"reciprocal");
2336 return ConstantFP::get(Ty, 1.0);
2344 return B.CreateFMul(
Base,
Base,
"square");
2346 if (
Value *Sqrt = replacePowWithSqrt(Pow,
B))
2357 Value *Sqrt =
nullptr;
2358 if (!ExpoA.isInteger()) {
2372 if (!ExpoI.isInteger())
2395 return B.CreateFMul(PowI, Sqrt);
2402 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
2409 if (UnsafeFPShrink &&
Name == TLI->
getName(LibFunc_pow) &&
2410 hasFloatVersion(M,
Name)) {
2423 if (UnsafeFPShrink &&
Name == TLI->
getName(LibFunc_exp2) &&
2424 hasFloatVersion(M,
Name))
2433 const bool UseIntrinsic =
Callee->isIntrinsic();
2442 if ((isa<SIToFPInst>(
Op) || isa<UIToFPInst>(
Op)) &&
2444 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) {
2446 Constant *One = ConstantFP::get(Ty, 1.0);
2449 return copyFlags(*CI,
B.CreateIntrinsic(Intrinsic::ldexp,
2450 {Ty, Exp->getType()},
2457 One, Exp, TLI, LibFunc_ldexp, LibFunc_ldexpf,
2472 if ((
Name ==
"fmin" ||
Name ==
"fmax") && hasFloatVersion(M,
Name))
2486 B.setFastMathFlags(FMF);
2489 : Intrinsic::maxnum;
2501 if (UnsafeFPShrink && hasFloatVersion(
Mod, LogNm))
2505 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2511 LogID = Intrinsic::log;
2512 ExpLb = LibFunc_expf;
2513 Exp2Lb = LibFunc_exp2f;
2514 Exp10Lb = LibFunc_exp10f;
2515 PowLb = LibFunc_powf;
2518 LogID = Intrinsic::log;
2519 ExpLb = LibFunc_exp;
2520 Exp2Lb = LibFunc_exp2;
2521 Exp10Lb = LibFunc_exp10;
2522 PowLb = LibFunc_pow;
2525 LogID = Intrinsic::log;
2526 ExpLb = LibFunc_expl;
2527 Exp2Lb = LibFunc_exp2l;
2528 Exp10Lb = LibFunc_exp10l;
2529 PowLb = LibFunc_powl;
2532 LogID = Intrinsic::log2;
2533 ExpLb = LibFunc_expf;
2534 Exp2Lb = LibFunc_exp2f;
2535 Exp10Lb = LibFunc_exp10f;
2536 PowLb = LibFunc_powf;
2539 LogID = Intrinsic::log2;
2540 ExpLb = LibFunc_exp;
2541 Exp2Lb = LibFunc_exp2;
2542 Exp10Lb = LibFunc_exp10;
2543 PowLb = LibFunc_pow;
2546 LogID = Intrinsic::log2;
2547 ExpLb = LibFunc_expl;
2548 Exp2Lb = LibFunc_exp2l;
2549 Exp10Lb = LibFunc_exp10l;
2550 PowLb = LibFunc_powl;
2552 case LibFunc_log10f:
2553 LogID = Intrinsic::log10;
2554 ExpLb = LibFunc_expf;
2555 Exp2Lb = LibFunc_exp2f;
2556 Exp10Lb = LibFunc_exp10f;
2557 PowLb = LibFunc_powf;
2560 LogID = Intrinsic::log10;
2561 ExpLb = LibFunc_exp;
2562 Exp2Lb = LibFunc_exp2;
2563 Exp10Lb = LibFunc_exp10;
2564 PowLb = LibFunc_pow;
2566 case LibFunc_log10l:
2567 LogID = Intrinsic::log10;
2568 ExpLb = LibFunc_expl;
2569 Exp2Lb = LibFunc_exp2l;
2570 Exp10Lb = LibFunc_exp10l;
2571 PowLb = LibFunc_powl;
2579 if (!IsKnownNoErrno) {
2589 if (IsKnownNoErrno) {
2590 auto *NewLog =
B.CreateUnaryIntrinsic(LogID, Log->
getArgOperand(0), Log);
2591 NewLog->copyMetadata(*Log);
2594 }
else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2595 LogID == Intrinsic::log10) {
2597 ExpLb = LibFunc_expf;
2598 Exp2Lb = LibFunc_exp2f;
2599 Exp10Lb = LibFunc_exp10f;
2600 PowLb = LibFunc_powf;
2602 ExpLb = LibFunc_exp;
2603 Exp2Lb = LibFunc_exp2;
2604 Exp10Lb = LibFunc_exp10;
2605 PowLb = LibFunc_pow;
2625 if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) {
2628 ?
B.CreateUnaryIntrinsic(LogID, Arg->
getOperand(0),
nullptr,
"log")
2632 if (ArgID == Intrinsic::powi)
2633 Y =
B.CreateSIToFP(
Y, Ty,
"cast");
2634 Value *MulY =
B.CreateFMul(
Y, LogX,
"mul");
2637 substituteInParent(Arg, MulY);
2643 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2644 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2646 if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2649 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2650 Eul = ConstantFP::get(Log->
getType(), 2.0);
2652 Eul = ConstantFP::get(Log->
getType(), 10.0);
2654 ?
B.CreateUnaryIntrinsic(LogID, Eul,
nullptr,
"log")
2659 substituteInParent(Arg, MulY);
2679 LibFunc SqrtLb, ExpLb, Exp2Lb, Exp10Lb;
2684 ExpLb = LibFunc_expf;
2685 Exp2Lb = LibFunc_exp2f;
2686 Exp10Lb = LibFunc_exp10f;
2689 ExpLb = LibFunc_exp;
2690 Exp2Lb = LibFunc_exp2;
2691 Exp10Lb = LibFunc_exp10;
2694 ExpLb = LibFunc_expl;
2695 Exp2Lb = LibFunc_exp2l;
2696 Exp10Lb = LibFunc_exp10l;
2703 ExpLb = LibFunc_expf;
2704 Exp2Lb = LibFunc_exp2f;
2705 Exp10Lb = LibFunc_exp10f;
2707 ExpLb = LibFunc_exp;
2708 Exp2Lb = LibFunc_exp2;
2709 Exp10Lb = LibFunc_exp10;
2715 if (ArgLb != ExpLb && ArgLb != Exp2Lb && ArgLb != Exp10Lb &&
2716 ArgID != Intrinsic::exp && ArgID != Intrinsic::exp2)
2720 B.SetInsertPoint(Arg);
2723 B.CreateFMulFMF(ExpOperand, ConstantFP::get(ExpOperand->getType(), 0.5),
2738 (
Callee->getName() ==
"sqrt" ||
2739 Callee->getIntrinsicID() == Intrinsic::sqrt))
2742 if (
Value *Opt = mergeSqrtToExp(CI,
B))
2749 if (!
I ||
I->getOpcode() != Instruction::FMul || !
I->isFast())
2755 Value *Op0 =
I->getOperand(0);
2756 Value *Op1 =
I->getOperand(1);
2757 Value *RepeatOp =
nullptr;
2758 Value *OtherOp =
nullptr;
2770 cast<Instruction>(Op0)->isFast()) {
2775 cast<Instruction>(Op1)->isFast()) {
2787 B.setFastMathFlags(
I->getFastMathFlags());
2792 B.CreateUnaryIntrinsic(Intrinsic::fabs, RepeatOp,
nullptr,
"fabs");
2798 B.CreateUnaryIntrinsic(Intrinsic::sqrt, OtherOp,
nullptr,
"sqrt");
2799 return copyFlags(*CI,
B.CreateFMul(FabsCall, SqrtCall));
2825 if (
auto *FRemI = dyn_cast<Instruction>(FRem))
2826 FRemI->setHasNoNaNs(
true);
2832Value *LibCallSimplifier::optimizeTrigInversionPairs(
CallInst *CI,
2838 if (UnsafeFPShrink &&
2841 hasFloatVersion(M,
Name))
2845 auto *OpC = dyn_cast<CallInst>(Op1);
2850 if (!CI->
isFast() || !OpC->isFast())
2863 .
Case(
"tan", LibFunc_atan)
2864 .
Case(
"atanh", LibFunc_tanh)
2865 .
Case(
"sinh", LibFunc_asinh)
2866 .
Case(
"cosh", LibFunc_acosh)
2867 .
Case(
"tanf", LibFunc_atanf)
2868 .
Case(
"atanhf", LibFunc_tanhf)
2869 .
Case(
"sinhf", LibFunc_asinhf)
2870 .
Case(
"coshf", LibFunc_acoshf)
2871 .
Case(
"tanl", LibFunc_atanl)
2872 .
Case(
"atanhl", LibFunc_tanhl)
2873 .
Case(
"sinhl", LibFunc_asinhl)
2874 .
Case(
"coshl", LibFunc_acoshl)
2875 .
Case(
"asinh", LibFunc_sinh)
2876 .
Case(
"asinhf", LibFunc_sinhf)
2877 .
Case(
"asinhl", LibFunc_sinhl)
2879 if (Func == inverseFunc)
2880 Ret = OpC->getArgOperand(0);
2902 Name =
"__sincospif_stret";
2911 Name =
"__sincospi_stret";
2920 M, *TLI, TheLibFunc, OrigCallee->
getAttributes(), ResTy, ArgTy);
2922 if (
Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2925 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2929 BasicBlock &EntryBB =
B.GetInsertBlock()->getParent()->getEntryBlock();
2930 B.SetInsertPoint(&EntryBB, EntryBB.
begin());
2933 SinCos =
B.CreateCall(Callee, Arg,
"sincospi");
2936 Sin =
B.CreateExtractValue(SinCos, 0,
"sinpi");
2937 Cos =
B.CreateExtractValue(SinCos, 1,
"cospi");
2939 Sin =
B.CreateExtractElement(SinCos, ConstantInt::get(
B.getInt32Ty(), 0),
2941 Cos =
B.CreateExtractElement(SinCos, ConstantInt::get(
B.getInt32Ty(), 1),
3023 classifyArgUse(U,
F, IsFloat, SinCalls, CosCalls, SinCosCalls);
3029 Value *Sin, *Cos, *SinCos;
3037 replaceAllUsesWith(
C, Res);
3040 replaceTrigInsts(SinCalls, Sin);
3041 replaceTrigInsts(CosCalls, Cos);
3042 replaceTrigInsts(SinCosCalls, SinCos);
3044 return IsSin ? Sin : Cos;
3047void LibCallSimplifier::classifyArgUse(
3052 auto *CI = dyn_cast<CallInst>(Val);
3063 if (!Callee || !TLI->
getLibFunc(*Callee, Func) ||
3069 if (Func == LibFunc_sinpif)
3071 else if (Func == LibFunc_cospif)
3073 else if (Func == LibFunc_sincospif_stret)
3076 if (Func == LibFunc_sinpi)
3078 else if (Func == LibFunc_cospi)
3080 else if (Func == LibFunc_sincospi_stret)
3103 APSInt QuotInt(IntBW,
false);
3110 B.CreateAlignedStore(
3111 ConstantInt::get(
B.getIntNTy(IntBW), QuotInt.getExtValue()),
3113 return ConstantFP::get(CI->
getType(), Rem);
3140 return ConstantFP::get(CI->
getType(), MaxVal);
3152 Type *ArgType =
Op->getType();
3153 Value *
V =
B.CreateIntrinsic(Intrinsic::cttz, {ArgType}, {
Op,
B.getTrue()},
3155 V =
B.CreateAdd(V, ConstantInt::get(
V->getType(), 1));
3156 V =
B.CreateIntCast(V, RetType,
false);
3159 return B.CreateSelect(
Cond, V, ConstantInt::get(RetType, 0));
3166 Type *ArgType =
Op->getType();
3167 Value *
V =
B.CreateIntrinsic(Intrinsic::ctlz, {ArgType}, {
Op,
B.getFalse()},
3171 return B.CreateIntCast(V, CI->
getType(),
false);
3178 Value *IsNeg =
B.CreateIsNeg(
X);
3179 Value *NegX =
B.CreateNSWNeg(
X,
"neg");
3180 return B.CreateSelect(IsNeg, NegX,
X);
3186 Type *ArgType =
Op->getType();
3187 Op =
B.CreateSub(
Op, ConstantInt::get(ArgType,
'0'),
"isdigittmp");
3188 Op =
B.CreateICmpULT(
Op, ConstantInt::get(ArgType, 10),
"isdigit");
3195 Type *ArgType =
Op->getType();
3196 Op =
B.CreateICmpULT(
Op, ConstantInt::get(ArgType, 128),
"isascii");
3203 ConstantInt::get(CI->
getType(), 0x7F));
3221 if (isa<ConstantPointerNull>(EndPtr)) {
3234 return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned,
B);
3266 if (!Callee || !Callee->isDeclaration())
3275 if (StreamArg >= (
int)CI->
arg_size())
3283 return GV->
getName() ==
"stderr";
3293 if (FormatStr.
empty())
3304 if (FormatStr.
size() == 1 || FormatStr ==
"%%") {
3308 Value *IntChar = ConstantInt::get(IntTy, (
unsigned char)FormatStr[0]);
3313 if (FormatStr ==
"%s" && CI->
arg_size() > 1) {
3318 if (OperandStr.
empty())
3321 if (OperandStr.
size() == 1) {
3325 Value *IntChar = ConstantInt::get(IntTy, (
unsigned char)OperandStr[0]);
3329 if (OperandStr.
back() ==
'\n') {
3331 Value *GV =
B.CreateGlobalString(OperandStr,
"str");
3338 if (FormatStr.
back() ==
'\n' &&
3343 Value *GV =
B.CreateGlobalString(FormatStr,
"str");
3349 if (FormatStr ==
"%c" && CI->
arg_size() > 1 &&
3358 if (FormatStr ==
"%s\n" && CI->
arg_size() > 1 &&
3369 if (
Value *V = optimizePrintFString(CI,
B)) {
3380 Callee->getAttributes());
3382 New->setCalledFunction(IPrintFFn);
3392 Callee->getAttributes());
3394 New->setCalledFunction(SmallPrintFFn);
3402Value *LibCallSimplifier::optimizeSPrintFString(
CallInst *CI,
3421 return ConstantInt::get(CI->
getType(), FormatStr.
size());
3426 if (FormatStr.
size() != 2 || FormatStr[0] !=
'%' || CI->
arg_size() < 3)
3430 if (FormatStr[1] ==
'c') {
3436 B.CreateStore(V,
Ptr);
3437 Ptr =
B.CreateInBoundsGEP(
B.getInt8Ty(),
Ptr,
B.getInt32(1),
"nul");
3438 B.CreateStore(
B.getInt8(0),
Ptr);
3440 return ConstantInt::get(CI->
getType(), 1);
3443 if (FormatStr[1] ==
's') {
3458 return ConstantInt::get(CI->
getType(), SrcLen - 1);
3461 Value *PtrDiff =
B.CreatePtrDiff(
B.getInt8Ty(), V, Dest);
3462 return B.CreateIntCast(PtrDiff, CI->
getType(),
false);
3473 B.CreateAdd(Len, ConstantInt::get(
Len->getType(), 1),
"leninc");
3477 return B.CreateIntCast(Len, CI->
getType(),
false);
3486 if (
Value *V = optimizeSPrintFString(CI,
B)) {
3497 FT,
Callee->getAttributes());
3499 New->setCalledFunction(SIPrintFFn);
3509 Callee->getAttributes());
3511 New->setCalledFunction(SmallSPrintFFn);
3527 assert(StrArg || (
N < 2 && Str.size() == 1));
3531 if (Str.size() > IntMax)
3537 Value *StrLen = ConstantInt::get(CI->
getType(), Str.size());
3547 NCopy = Str.size() + 1;
3552 if (NCopy && StrArg)
3563 Type *Int8Ty =
B.getInt8Ty();
3564 Value *NulOff =
B.getIntN(IntBits, NCopy);
3565 Value *DstEnd =
B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff,
"endptr");
3566 B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd);
3570Value *LibCallSimplifier::optimizeSnPrintFString(
CallInst *CI,
3599 return emitSnPrintfMemCpy(CI, FmtArg, FormatStr,
N,
B);
3604 if (FormatStr.
size() != 2 || FormatStr[0] !=
'%' || CI->
arg_size() != 4)
3608 if (FormatStr[1] ==
'c') {
3614 return emitSnPrintfMemCpy(CI,
nullptr, CharStr,
N,
B);
3622 B.CreateStore(V,
Ptr);
3623 Ptr =
B.CreateInBoundsGEP(
B.getInt8Ty(),
Ptr,
B.getInt32(1),
"nul");
3624 B.CreateStore(
B.getInt8(0),
Ptr);
3625 return ConstantInt::get(CI->
getType(), 1);
3628 if (FormatStr[1] !=
's')
3637 return emitSnPrintfMemCpy(CI, StrArg, Str,
N,
B);
3641 if (
Value *V = optimizeSnPrintFString(CI,
B)) {
3650Value *LibCallSimplifier::optimizeFPrintFString(
CallInst *CI,
3652 optimizeErrorReporting(CI,
B, 0);
3679 if (FormatStr.
size() != 2 || FormatStr[0] !=
'%' || CI->
arg_size() < 3)
3683 if (FormatStr[1] ==
'c') {
3693 if (FormatStr[1] ==
's') {
3707 if (
Value *V = optimizeFPrintFString(CI,
B)) {
3716 FT,
Callee->getAttributes());
3718 New->setCalledFunction(FIPrintFFn);
3727 auto SmallFPrintFFn =
3729 Callee->getAttributes());
3731 New->setCalledFunction(SmallFPrintFFn);
3740 optimizeErrorReporting(CI,
B, 3);
3745 if (SizeC && CountC) {
3750 return ConstantInt::get(CI->
getType(), 0);
3757 Value *Cast =
B.CreateIntCast(Char, IntTy,
true,
"chari");
3759 return NewCI ? ConstantInt::get(CI->
getType(), 1) : nullptr;
3767 optimizeErrorReporting(CI,
B, 1);
3790 ConstantInt::get(SizeTTy, Len - 1),
3830bool LibCallSimplifier::hasFloatVersion(
const Module *M,
StringRef FuncName) {
3832 FloatFuncName +=
'f';
3836Value *LibCallSimplifier::optimizeStringMemoryLibCall(
CallInst *CI,
3848 "Optimizing string/memory libcall would change the calling convention");
3850 case LibFunc_strcat:
3851 return optimizeStrCat(CI, Builder);
3852 case LibFunc_strncat:
3853 return optimizeStrNCat(CI, Builder);
3854 case LibFunc_strchr:
3855 return optimizeStrChr(CI, Builder);
3856 case LibFunc_strrchr:
3857 return optimizeStrRChr(CI, Builder);
3858 case LibFunc_strcmp:
3859 return optimizeStrCmp(CI, Builder);
3860 case LibFunc_strncmp:
3861 return optimizeStrNCmp(CI, Builder);
3862 case LibFunc_strcpy:
3863 return optimizeStrCpy(CI, Builder);
3864 case LibFunc_stpcpy:
3865 return optimizeStpCpy(CI, Builder);
3866 case LibFunc_strlcpy:
3867 return optimizeStrLCpy(CI, Builder);
3868 case LibFunc_stpncpy:
3869 return optimizeStringNCpy(CI,
true, Builder);
3870 case LibFunc_strncpy:
3871 return optimizeStringNCpy(CI,
false, Builder);
3872 case LibFunc_strlen:
3873 return optimizeStrLen(CI, Builder);
3874 case LibFunc_strnlen:
3875 return optimizeStrNLen(CI, Builder);
3876 case LibFunc_strpbrk:
3877 return optimizeStrPBrk(CI, Builder);
3878 case LibFunc_strndup:
3879 return optimizeStrNDup(CI, Builder);
3880 case LibFunc_strtol:
3881 case LibFunc_strtod:
3882 case LibFunc_strtof:
3883 case LibFunc_strtoul:
3884 case LibFunc_strtoll:
3885 case LibFunc_strtold:
3886 case LibFunc_strtoull:
3887 return optimizeStrTo(CI, Builder);
3888 case LibFunc_strspn:
3889 return optimizeStrSpn(CI, Builder);
3890 case LibFunc_strcspn:
3891 return optimizeStrCSpn(CI, Builder);
3892 case LibFunc_strstr:
3893 return optimizeStrStr(CI, Builder);
3894 case LibFunc_memchr:
3895 return optimizeMemChr(CI, Builder);
3896 case LibFunc_memrchr:
3897 return optimizeMemRChr(CI, Builder);
3899 return optimizeBCmp(CI, Builder);
3900 case LibFunc_memcmp:
3901 return optimizeMemCmp(CI, Builder);
3902 case LibFunc_memcpy:
3903 return optimizeMemCpy(CI, Builder);
3904 case LibFunc_memccpy:
3905 return optimizeMemCCpy(CI, Builder);
3906 case LibFunc_mempcpy:
3907 return optimizeMemPCpy(CI, Builder);
3908 case LibFunc_memmove:
3909 return optimizeMemMove(CI, Builder);
3910 case LibFunc_memset:
3911 return optimizeMemSet(CI, Builder);
3912 case LibFunc_realloc:
3913 return optimizeRealloc(CI, Builder);
3914 case LibFunc_wcslen:
3915 return optimizeWcslen(CI, Builder);
3917 return optimizeBCopy(CI, Builder);
3919 case LibFunc_ZnwmRKSt9nothrow_t:
3920 case LibFunc_ZnwmSt11align_val_t:
3921 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
3923 case LibFunc_ZnamRKSt9nothrow_t:
3924 case LibFunc_ZnamSt11align_val_t:
3925 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
3926 case LibFunc_Znwm12__hot_cold_t:
3927 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
3928 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
3929 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
3930 case LibFunc_Znam12__hot_cold_t:
3931 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
3932 case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
3933 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
3934 case LibFunc_size_returning_new:
3935 case LibFunc_size_returning_new_hot_cold:
3936 case LibFunc_size_returning_new_aligned:
3937 case LibFunc_size_returning_new_aligned_hot_cold:
3938 return optimizeNew(CI, Builder, Func);
3954 if (CharSeq.
empty())
3955 Fill =
APInt(32, 0);
3962Value *LibCallSimplifier::optimizeFloatingPointLibCall(
CallInst *CI,
3971 if (
Value *V = optimizeSymmetric(CI, Func, Builder))
3975 case LibFunc_sinpif:
3977 return optimizeSinCosPi(CI,
true, Builder);
3978 case LibFunc_cospif:
3980 return optimizeSinCosPi(CI,
false, Builder);
3984 return optimizePow(CI, Builder);
3988 return optimizeExp2(CI, Builder);
3996 return optimizeSqrt(CI, Builder);
4000 return optimizeFMod(CI, Builder);
4004 case LibFunc_log10f:
4006 case LibFunc_log10l:
4007 case LibFunc_log1pf:
4009 case LibFunc_log1pl:
4016 return optimizeLog(CI, Builder);
4024 case LibFunc_asinhf:
4025 case LibFunc_asinhl:
4030 case LibFunc_atanhf:
4031 case LibFunc_atanhl:
4032 return optimizeTrigInversionPairs(CI, Builder);
4039 case LibFunc_roundeven:
4041 case LibFunc_nearbyint:
4061 case LibFunc_copysign:
4068 return optimizeFdim(CI, Builder);
4075 return optimizeFMinFMax(CI, Builder);
4079 return optimizeCAbs(CI, Builder);
4080 case LibFunc_remquo:
4081 case LibFunc_remquof:
4082 case LibFunc_remquol:
4083 return optimizeRemquo(CI, Builder);
4118 else if (isa<FPMathOperator>(CI) && CI->
isFast())
4119 UnsafeFPShrink =
true;
4123 if (!IsCallingConvC)
4127 switch (
II->getIntrinsicID()) {
4128 case Intrinsic::pow:
4129 return optimizePow(CI, Builder);
4130 case Intrinsic::exp2:
4131 return optimizeExp2(CI, Builder);
4132 case Intrinsic::log:
4133 case Intrinsic::log2:
4134 case Intrinsic::log10:
4135 return optimizeLog(CI, Builder);
4136 case Intrinsic::sqrt:
4137 return optimizeSqrt(CI, Builder);
4138 case Intrinsic::memset:
4139 return optimizeMemSet(CI, Builder);
4140 case Intrinsic::memcpy:
4141 return optimizeMemCpy(CI, Builder);
4142 case Intrinsic::memmove:
4143 return optimizeMemMove(CI, Builder);
4150 if (
Value *SimplifiedFortifiedCI =
4152 return SimplifiedFortifiedCI;
4159 if (
Value *V = optimizeStringMemoryLibCall(CI, Builder))
4161 if (
Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
4167 return optimizeFFS(CI, Builder);
4171 return optimizeFls(CI, Builder);
4175 return optimizeAbs(CI, Builder);
4176 case LibFunc_isdigit:
4177 return optimizeIsDigit(CI, Builder);
4178 case LibFunc_isascii:
4179 return optimizeIsAscii(CI, Builder);
4180 case LibFunc_toascii:
4181 return optimizeToAscii(CI, Builder);
4185 return optimizeAtoi(CI, Builder);
4186 case LibFunc_strtol:
4187 case LibFunc_strtoll:
4188 return optimizeStrToInt(CI, Builder,
true);
4189 case LibFunc_strtoul:
4190 case LibFunc_strtoull:
4191 return optimizeStrToInt(CI, Builder,
false);
4192 case LibFunc_printf:
4193 return optimizePrintF(CI, Builder);
4194 case LibFunc_sprintf:
4195 return optimizeSPrintF(CI, Builder);
4196 case LibFunc_snprintf:
4197 return optimizeSnPrintF(CI, Builder);
4198 case LibFunc_fprintf:
4199 return optimizeFPrintF(CI, Builder);
4200 case LibFunc_fwrite:
4201 return optimizeFWrite(CI, Builder);
4203 return optimizeFPuts(CI, Builder);
4205 return optimizePuts(CI, Builder);
4206 case LibFunc_perror:
4207 return optimizeErrorReporting(CI, Builder);
4208 case LibFunc_vfprintf:
4209 case LibFunc_fiprintf:
4210 return optimizeErrorReporting(CI, Builder, 0);
4213 return optimizeExit(CI);
4227 : FortifiedSimplifier(TLI),
DL(
DL), TLI(TLI), DT(DT), DC(DC), AC(AC),
4228 ORE(ORE), BFI(BFI), PSI(PSI), Replacer(Replacer), Eraser(Eraser) {}
4235void LibCallSimplifier::eraseFromParent(
Instruction *
I) {
4274bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(
4275 CallInst *CI,
unsigned ObjSizeOp, std::optional<unsigned> SizeOp,
4276 std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) {
4281 if (!Flag || !
Flag->isZero())
4290 if (ObjSizeCI->isMinusOne())
4293 if (OnlyLowerUnknownSize)
4303 return ObjSizeCI->getZExtValue() >=
Len;
4309 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
4315Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(
CallInst *CI,
4317 if (isFortifiedCallFoldable(CI, 3, 2)) {
4327Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(
CallInst *CI,
4329 if (isFortifiedCallFoldable(CI, 3, 2)) {
4339Value *FortifiedLibCallSimplifier::optimizeMemSetChk(
CallInst *CI,
4341 if (isFortifiedCallFoldable(CI, 3, 2)) {
4351Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(
CallInst *CI,
4354 if (isFortifiedCallFoldable(CI, 3, 2))
4362Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(
CallInst *CI,
4370 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
4372 return StrLen ?
B.CreateInBoundsGEP(
B.getInt8Ty(), Dst, StrLen) :
nullptr;
4380 if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) {
4381 if (Func == LibFunc_strcpy_chk)
4387 if (OnlyLowerUnknownSize)
4399 Value *LenV = ConstantInt::get(SizeTTy, Len);
4403 if (Ret && Func == LibFunc_stpcpy_chk)
4404 return B.CreateInBoundsGEP(
B.getInt8Ty(), Dst,
4405 ConstantInt::get(SizeTTy, Len - 1));
4406 return copyFlags(*CI, cast<CallInst>(Ret));
4409Value *FortifiedLibCallSimplifier::optimizeStrLenChk(
CallInst *CI,
4411 if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0))
4417Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(
CallInst *CI,
4420 if (isFortifiedCallFoldable(CI, 3, 2)) {
4421 if (Func == LibFunc_strncpy_chk)
4434Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(
CallInst *CI,
4436 if (isFortifiedCallFoldable(CI, 4, 3))
4444Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(
CallInst *CI,
4446 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) {
4456Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(
CallInst *CI,
4458 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) {
4462 VariadicArgs,
B, TLI));
4468Value *FortifiedLibCallSimplifier::optimizeStrCatChk(
CallInst *CI,
4470 if (isFortifiedCallFoldable(CI, 2))
4477Value *FortifiedLibCallSimplifier::optimizeStrLCat(
CallInst *CI,
4479 if (isFortifiedCallFoldable(CI, 3))
4487Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(
CallInst *CI,
4489 if (isFortifiedCallFoldable(CI, 3))
4497Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(
CallInst *CI,
4499 if (isFortifiedCallFoldable(CI, 3))
4507Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(
CallInst *CI,
4509 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2))
4517Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(
CallInst *CI,
4519 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1))
4562 case LibFunc_memcpy_chk:
4563 return optimizeMemCpyChk(CI, Builder);
4564 case LibFunc_mempcpy_chk:
4565 return optimizeMemPCpyChk(CI, Builder);
4566 case LibFunc_memmove_chk:
4567 return optimizeMemMoveChk(CI, Builder);
4568 case LibFunc_memset_chk:
4569 return optimizeMemSetChk(CI, Builder);
4570 case LibFunc_stpcpy_chk:
4571 case LibFunc_strcpy_chk:
4572 return optimizeStrpCpyChk(CI, Builder, Func);
4573 case LibFunc_strlen_chk:
4574 return optimizeStrLenChk(CI, Builder);
4575 case LibFunc_stpncpy_chk:
4576 case LibFunc_strncpy_chk:
4577 return optimizeStrpNCpyChk(CI, Builder, Func);
4578 case LibFunc_memccpy_chk:
4579 return optimizeMemCCpyChk(CI, Builder);
4580 case LibFunc_snprintf_chk:
4581 return optimizeSNPrintfChk(CI, Builder);
4582 case LibFunc_sprintf_chk:
4583 return optimizeSPrintfChk(CI, Builder);
4584 case LibFunc_strcat_chk:
4585 return optimizeStrCatChk(CI, Builder);
4586 case LibFunc_strlcat_chk:
4587 return optimizeStrLCat(CI, Builder);
4588 case LibFunc_strncat_chk:
4589 return optimizeStrNCatChk(CI, Builder);
4590 case LibFunc_strlcpy_chk:
4591 return optimizeStrLCpyChk(CI, Builder);
4592 case LibFunc_vsnprintf_chk:
4593 return optimizeVSNPrintfChk(CI, Builder);
4594 case LibFunc_vsprintf_chk:
4595 return optimizeVSPrintfChk(CI, Builder);
4604 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
Module.h This file contains the declarations for the Module class.
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
static bool isBinary(MachineInstr &MI)
const SmallVectorImpl< MachineOperand > & Cond
static bool isDigit(const char C)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isOnlyUsedInEqualityComparison(Value *V, Value *With)
Return true if it is only used in equality comparisons with With.
static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef< unsigned > ArgNos, Value *Size, const DataLayout &DL)
static cl::opt< unsigned, false, HotColdHintParser > ColdNewHintValue("cold-new-hint-value", cl::Hidden, cl::init(1), cl::desc("Value to pass to hot/cold operator new for cold allocation"))
static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos, const TargetLibraryInfo *TLI)
static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, const DataLayout &DL)
static Value * mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old)
static cl::opt< bool > OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false), cl::desc("Enable hot/cold operator new library calls"))
static Value * optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, const TargetLibraryInfo *TLI, bool isPrecise=false)
Shrink double -> float for binary functions.
static bool ignoreCallingConv(LibFunc Func)
static cl::opt< bool > OptimizeExistingHotColdNew("optimize-existing-hot-cold-new", cl::Hidden, cl::init(false), cl::desc("Enable optimization of existing hot/cold operator new library calls"))
static void annotateDereferenceableBytes(CallInst *CI, ArrayRef< unsigned > ArgNos, uint64_t DereferenceableBytes)
static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg)
static Value * optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, bool isBinary, const TargetLibraryInfo *TLI, bool isPrecise=false)
Shrink double -> float functions.
static Value * optimizeSymmetricCall(CallInst *CI, bool IsEven, IRBuilderBase &B)
static Value * getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, Module *M, IRBuilderBase &B, const TargetLibraryInfo *TLI)
static Value * valueHasFloatPrecision(Value *Val)
Return a variant of Val with float type.
static Value * optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, uint64_t Len, IRBuilderBase &B, const DataLayout &DL)
static Value * createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, IRBuilderBase &B)
static Value * convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr, uint64_t Base, bool AsSigned, IRBuilderBase &B)
static Value * memChrToCharCompare(CallInst *CI, Value *NBytes, IRBuilderBase &B, const DataLayout &DL)
static Value * copyFlags(const CallInst &Old, Value *New)
static StringRef substr(StringRef Str, uint64_t Len)
static cl::opt< unsigned, false, HotColdHintParser > HotNewHintValue("hot-new-hint-value", cl::Hidden, cl::init(254), cl::desc("Value to pass to hot/cold operator new for hot allocation"))
static bool isTrigLibCall(CallInst *CI)
static Value * optimizeNaN(CallInst *CI)
Constant folding nan/nanf/nanl.
static bool isOnlyUsedInComparisonWithZero(Value *V)
static Value * replaceUnaryCall(CallInst *CI, IRBuilderBase &B, Intrinsic::ID IID)
static bool callHasFloatingPointArgument(const CallInst *CI)
static Value * optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, const TargetLibraryInfo *TLI, bool isPrecise=false)
Shrink double -> float for unary functions.
static bool callHasFP128Argument(const CallInst *CI)
static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, ArrayRef< unsigned > ArgNos)
static Value * optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, Value *Size, bool StrNCmp, IRBuilderBase &B, const DataLayout &DL)
static Value * getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth)
static cl::opt< bool > EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, cl::init(false), cl::desc("Enable unsafe double to float " "shrinking for math lib calls"))
static cl::opt< unsigned, false, HotColdHintParser > NotColdNewHintValue("notcold-new-hint-value", cl::Hidden, cl::init(128), cl::desc("Value to pass to hot/cold operator new for " "notcold (warm) allocation"))
This file defines the SmallString class.
opStatus divide(const APFloat &RHS, roundingMode RM)
bool isFiniteNonZero() const
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
double convertToDouble() const
Converts this APFloat to host double value.
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
opStatus add(const APFloat &RHS, roundingMode RM)
const fltSemantics & getSemantics() const
float convertToFloat() const
Converts this APFloat to host float value.
opStatus remainder(const APFloat &RHS)
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
An arbitrary precision integer that knows its signedness.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
A cache of @llvm.assume calls within a function.
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute > > Attrs)
Create an AttributeList with the specified parameters in it.
Attribute getFnAttr(Attribute::AttrKind Kind) const
Return the attribute object that exists for the function.
AttributeSet getParamAttrs(unsigned ArgNo) const
The attributes for the argument or parameter at the given index are returned.
AttributeList addParamAttributes(LLVMContext &C, unsigned ArgNo, const AttrBuilder &B) const
Add an argument attribute to the list.
MaybeAlign getAlignment() const
static Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes)
StringRef getValueAsString() const
Return the attribute's value as a string.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
void addFnAttr(Attribute::AttrKind Kind)
Adds the attribute to the function.
void removeParamAttrs(unsigned ArgNo, const AttributeMask &AttrsToRemove)
Removes the attributes from the given argument.
void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Removes the attribute from the given argument.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool doesNotAccessMemory(unsigned OpNo) const
void removeRetAttrs(const AttributeMask &AttrsToRemove)
Removes the attributes from the return value.
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
bool isStrictFP() const
Determine if the call requires strict floating point semantics.
AttributeSet getParamAttributes(unsigned ArgNo) const
Return the param attributes for this call.
uint64_t getParamDereferenceableBytes(unsigned i) const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
MaybeAlign getParamAlign(unsigned ArgNo) const
Extract the alignment for a call or parameter (0=unknown).
AttributeSet getRetAttributes() const
Return the return attributes for this call.
void setAttributes(AttributeList A)
Set the attributes for this call.
bool doesNotThrow() const
Determine if the call cannot unwind.
Value * getArgOperand(unsigned i) const
uint64_t getParamDereferenceableOrNullBytes(unsigned i) const
Extract the number of dereferenceable_or_null bytes for a parameter (0=unknown).
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
Function * getCaller()
Helper to get the caller (the parent function).
This class represents a function call, abstracting a target machine's calling convention.
bool isNoTailCall() const
TailCallKind getTailCallKind() const
bool isMustTailCall() const
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getPredicate() const
Return the predicate for this instruction.
uint64_t getElementAsInteger(unsigned i) const
If this is a sequential container of integers (of any size), return the specified element in the low ...
ConstantFP - Floating Point Values [float, double].
static Constant * getInfinity(Type *Ty, bool Negative=false)
static Constant * getQNaN(Type *Ty, bool Negative=false, APInt *Payload=nullptr)
This is the shared class of boolean and integer constants.
bool isOne() const
This is just a convenience method to make client code smaller for a common case.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
bool fitsInLegalInteger(unsigned Width) const
Returns true if the specified type fits in a native integer type supported by the CPU.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
This class represents an extension of floating point types.
This class represents a truncation of floating point types.
Convenience struct for specifying and reasoning about fast-math flags.
void setNoSignedZeros(bool B=true)
static FastMathFlags getFast()
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
FortifiedLibCallSimplifier(const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize=false)
Value * optimizeCall(CallInst *CI, IRBuilderBase &B)
Take the given call instruction and return a more optimal value to replace the instruction with or 0 ...
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
AttributeList getAttributes() const
Return the attribute list for this Function.
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
Common base class shared among various IRBuilders.
void setDefaultOperandBundles(ArrayRef< OperandBundleDef > OpBundles)
Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
bool hasNoInfs() const LLVM_READONLY
Determine whether the no-infs flag is set.
bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
bool isFast() const LLVM_READONLY
Determine whether all fast-math-flags are set.
const Function * getFunction() const
Return the function this instruction belongs to.
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
bool hasApproxFunc() const LLVM_READONLY
Determine whether the approximate-math-functions flag is set.
bool hasAllowReassoc() const LLVM_READONLY
Determine whether the allow-reassociation flag is set.
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Class to represent integer types.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
LibCallSimplifier(const DataLayout &DL, const TargetLibraryInfo *TLI, DominatorTree *DT, DomConditionCache *DC, AssumptionCache *AC, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, function_ref< void(Instruction *, Value *)> Replacer=&replaceAllUsesWithDefault, function_ref< void(Instruction *)> Eraser=&eraseFromParentDefault)
Value * optimizeCall(CallInst *CI, IRBuilderBase &B)
optimizeCall - Take the given call instruction and return a more optimal value to replace the instruc...
An instruction for reading from memory.
Value * getPointerOperand()
A Module instance is used to store all the information related to an LLVM module.
const std::string & getTargetTriple() const
Get the target triple which is a string describing the target host.
Analysis providing profile information.
This class represents the LLVM 'select' instruction.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr bool empty() const
empty - Check if the string is empty.
char back() const
back - Get the last character in the string.
constexpr size_t size() const
size - Get the string size.
bool contains(StringRef Other) const
Return true if the given string is a substring of *this, and false otherwise.
size_t find(char C, size_t From=0) const
Search for the first character C in the string.
static constexpr size_t npos
int compare(StringRef RHS) const
compare - Compare two strings; the result is negative, zero, or positive if this string is lexicograp...
StringRef drop_back(size_t N=1) const
Return a StringRef equal to 'this' but with the last N elements dropped.
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
static bool isCallingConvCCompatible(CallBase *CI)
Returns true if call site / callee has cdecl-compatible calling conventions.
Provides information about what library functions are available for the current target.
unsigned getWCharSize(const Module &M) const
Returns the size of the wchar_t type in bytes or 0 if the size is unknown.
ConstantInt * getAsSizeT(uint64_t V, const Module &M) const
Returns a constant materialized as a size_t type.
unsigned getSizeTSize(const Module &M) const
Returns the size of the size_t type in bits.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
StringRef getName(LibFunc F) const
unsigned getIntSize() const
Get size of a C-level int or unsigned int, in bits.
Triple - Helper class for working with autoconf configuration names.
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
const fltSemantics & getFltSemantics() const
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
bool isStructTy() const
True if this is an instance of StructType.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
A Use represents the edge between a Value definition and its users.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
LLVMContext & getContext() const
All values hold a context through their type.
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
AttributeMask typeIncompatible(Type *Ty, AttributeSet AS, AttributeSafetyKind ASK=ASK_ALL)
Which attributes cannot be applied to a type.
@ C
The default llvm calling convention, compatible with C.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
OneUse_match< T > m_OneUse(const T &SubPattern)
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
initializer< Ty > init(const Ty &Val)
NodeAddr< FuncNode * > Func
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
int64_t maxIntN(int64_t N)
Gets the maximum value for a N-bit signed integer.
Value * emitUnaryFloatFnCall(Value *Op, const TargetLibraryInfo *TLI, StringRef Name, IRBuilderBase &B, const AttributeList &Attrs)
Emit a call to the unary function named 'Name' (e.g.
Value * emitStrChr(Value *Ptr, char C, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strchr function to the builder, for the specified pointer and character.
Value * emitPutChar(Value *Char, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the putchar function. This assumes that Char is an 'int'.
Value * emitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the __memcpy_chk function to the builder.
Value * emitStrNCpy(Value *Dst, Value *Src, Value *Len, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strncpy function to the builder, for the specified pointer arguments and length.
bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
Value * emitHotColdNewAlignedNoThrow(Value *Num, Value *Align, Value *NoThrow, IRBuilderBase &B, const TargetLibraryInfo *TLI, LibFunc NewFunc, uint8_t HotCold)
bool isKnownNeverInfinity(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
APFloat abs(APFloat X)
Returns the absolute value of the argument.
bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
Value * emitSPrintf(Value *Dest, Value *Fmt, ArrayRef< Value * > VariadicArgs, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the sprintf function.
bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
Value * emitMemRChr(Value *Ptr, Value *Val, Value *Len, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the memrchr function, analogously to emitMemChr.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Value * emitStrLCat(Value *Dest, Value *Src, Value *Size, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strlcat function.
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
bool hasFloatFn(const Module *M, const TargetLibraryInfo *TLI, Type *Ty, LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn)
Check whether the overloaded floating point function corresponding to Ty is available.
Value * emitStrNCat(Value *Dest, Value *Src, Value *Size, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strncat function.
bool isLibFuncEmittable(const Module *M, const TargetLibraryInfo *TLI, LibFunc TheLibFunc)
Check whether the library function is available on target and also that it in the current Module is a...
Value * emitVSNPrintf(Value *Dest, Value *Size, Value *Fmt, Value *VAList, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the vsnprintf function.
Align getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Value * emitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the strncmp function to the builder.
Value * emitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the memcmp function.
Value * emitBinaryFloatFnCall(Value *Op1, Value *Op2, const TargetLibraryInfo *TLI, StringRef Name, IRBuilderBase &B, const AttributeList &Attrs)
Emit a call to the binary function named 'Name' (e.g.
Value * emitFPutS(Value *Str, Value *File, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the fputs function.
Value * emitStrDup(Value *Ptr, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strdup function to the builder, for the specified pointer.
void sort(IteratorTy Start, IteratorTy End)
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
Value * emitBCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the bcmp function.
std::enable_if_t< std::is_unsigned_v< T >, T > SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed=nullptr)
Multiply two unsigned integers, X and Y, and add the unsigned integer, A to the product.
uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
FunctionCallee getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI, LibFunc TheLibFunc, FunctionType *T, AttributeList AttributeList)
Calls getOrInsertFunction() and then makes sure to add mandatory argument attributes.
Value * emitStrLen(Value *Ptr, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the strlen function to the builder, for the specified pointer.
Value * emitFPutC(Value *Char, Value *File, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the fputc function.
Value * emitStpNCpy(Value *Dst, Value *Src, Value *Len, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the stpncpy function to the builder, for the specified pointer arguments and length.
Value * emitStrCat(Value *Dest, Value *Src, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strcat function.
Value * emitVSPrintf(Value *Dest, Value *Fmt, Value *VAList, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the vsprintf function.
bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
Value * emitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the fwrite function.
Value * emitSNPrintf(Value *Dest, Value *Size, Value *Fmt, ArrayRef< Value * > Args, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the snprintf function.
@ Mod
The access may modify the value stored in memory.
Value * emitStpCpy(Value *Dst, Value *Src, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the stpcpy function to the builder, for the specified pointer arguments.
@ And
Bitwise or logical AND of integers.
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
DWARFExpression::Operation Op
@ NearestTiesToEven
roundTiesToEven.
constexpr unsigned BitWidth
Value * emitHotColdNewNoThrow(Value *Num, Value *NoThrow, IRBuilderBase &B, const TargetLibraryInfo *TLI, LibFunc NewFunc, uint8_t HotCold)
Value * emitMalloc(Value *Num, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the malloc function.
Value * emitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the memchr function.
Value * emitHotColdNewAligned(Value *Num, Value *Align, IRBuilderBase &B, const TargetLibraryInfo *TLI, LibFunc NewFunc, uint8_t HotCold)
Value * emitPutS(Value *Str, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the puts function. This assumes that Str is some pointer.
Value * emitMemCCpy(Value *Ptr1, Value *Ptr2, Value *Val, Value *Len, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the memccpy function.
Value * emitHotColdSizeReturningNew(Value *Num, IRBuilderBase &B, const TargetLibraryInfo *TLI, LibFunc NewFunc, uint8_t HotCold)
Value * emitHotColdNew(Value *Num, IRBuilderBase &B, const TargetLibraryInfo *TLI, LibFunc NewFunc, uint8_t HotCold)
Emit a call to the hot/cold operator new function.
Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize=8)
Returns true if the GEP is based on a pointer to a string (array of.
Value * emitStrLCpy(Value *Dest, Value *Src, Value *Size, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strlcpy function.
Value * emitHotColdSizeReturningNewAligned(Value *Num, Value *Align, IRBuilderBase &B, const TargetLibraryInfo *TLI, LibFunc NewFunc, uint8_t HotCold)
Value * emitStrCpy(Value *Dst, Value *Src, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strcpy function to the builder, for the specified pointer arguments.
KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, unsigned Depth, const SimplifyQuery &SQ)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
Value * emitMemPCpy(Value *Dst, Value *Src, Value *Len, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the mempcpy function.
uint64_t maxUIntN(uint64_t N)
Gets the maximum value for a N-bit unsigned integer.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
static const fltSemantics & IEEEsingle() LLVM_READNONE
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
opStatus
IEEE-754R 7: Default exception handling.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Holds functions to get, set or test bitfields.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
const ConstantDataArray * Array
ConstantDataArray pointer.
bool isNonNegative() const
Returns true if this value is known to be non-negative.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
static constexpr FPClassTest OrderedLessThanZeroMask
bool isKnownNeverLogicalZero(const Function &F, Type *Ty) const
Return true if it's know this can never be interpreted as a zero.
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.