LLVM 20.0.0git
NVPTXTargetTransformInfo.cpp
Go to the documentation of this file.
1//===-- NVPTXTargetTransformInfo.cpp - NVPTX specific TTI -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10#include "NVPTXUtilities.h"
16#include "llvm/IR/Constants.h"
18#include "llvm/IR/Intrinsics.h"
19#include "llvm/IR/IntrinsicsNVPTX.h"
20#include "llvm/IR/Value.h"
24#include <optional>
25using namespace llvm;
26
27#define DEBUG_TYPE "NVPTXtti"
28
29// Whether the given intrinsic reads threadIdx.x/y/z.
30static bool readsThreadIndex(const IntrinsicInst *II) {
31 switch (II->getIntrinsicID()) {
32 default: return false;
33 case Intrinsic::nvvm_read_ptx_sreg_tid_x:
34 case Intrinsic::nvvm_read_ptx_sreg_tid_y:
35 case Intrinsic::nvvm_read_ptx_sreg_tid_z:
36 return true;
37 }
38}
39
40static bool readsLaneId(const IntrinsicInst *II) {
41 return II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_laneid;
42}
43
44// Whether the given intrinsic is an atomic instruction in PTX.
45static bool isNVVMAtomic(const IntrinsicInst *II) {
46 switch (II->getIntrinsicID()) {
47 default: return false;
48 case Intrinsic::nvvm_atomic_load_inc_32:
49 case Intrinsic::nvvm_atomic_load_dec_32:
50
51 case Intrinsic::nvvm_atomic_add_gen_f_cta:
52 case Intrinsic::nvvm_atomic_add_gen_f_sys:
53 case Intrinsic::nvvm_atomic_add_gen_i_cta:
54 case Intrinsic::nvvm_atomic_add_gen_i_sys:
55 case Intrinsic::nvvm_atomic_and_gen_i_cta:
56 case Intrinsic::nvvm_atomic_and_gen_i_sys:
57 case Intrinsic::nvvm_atomic_cas_gen_i_cta:
58 case Intrinsic::nvvm_atomic_cas_gen_i_sys:
59 case Intrinsic::nvvm_atomic_dec_gen_i_cta:
60 case Intrinsic::nvvm_atomic_dec_gen_i_sys:
61 case Intrinsic::nvvm_atomic_inc_gen_i_cta:
62 case Intrinsic::nvvm_atomic_inc_gen_i_sys:
63 case Intrinsic::nvvm_atomic_max_gen_i_cta:
64 case Intrinsic::nvvm_atomic_max_gen_i_sys:
65 case Intrinsic::nvvm_atomic_min_gen_i_cta:
66 case Intrinsic::nvvm_atomic_min_gen_i_sys:
67 case Intrinsic::nvvm_atomic_or_gen_i_cta:
68 case Intrinsic::nvvm_atomic_or_gen_i_sys:
69 case Intrinsic::nvvm_atomic_exch_gen_i_cta:
70 case Intrinsic::nvvm_atomic_exch_gen_i_sys:
71 case Intrinsic::nvvm_atomic_xor_gen_i_cta:
72 case Intrinsic::nvvm_atomic_xor_gen_i_sys:
73 return true;
74 }
75}
76
78 // Without inter-procedural analysis, we conservatively assume that arguments
79 // to __device__ functions are divergent.
80 if (const Argument *Arg = dyn_cast<Argument>(V))
81 return !isKernelFunction(*Arg->getParent());
82
83 if (const Instruction *I = dyn_cast<Instruction>(V)) {
84 // Without pointer analysis, we conservatively assume values loaded from
85 // generic or local address space are divergent.
86 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
87 unsigned AS = LI->getPointerAddressSpace();
88 return AS == ADDRESS_SPACE_GENERIC || AS == ADDRESS_SPACE_LOCAL;
89 }
90 // Atomic instructions may cause divergence. Atomic instructions are
91 // executed sequentially across all threads in a warp. Therefore, an earlier
92 // executed thread may see different memory inputs than a later executed
93 // thread. For example, suppose *a = 0 initially.
94 //
95 // atom.global.add.s32 d, [a], 1
96 //
97 // returns 0 for the first thread that enters the critical region, and 1 for
98 // the second thread.
99 if (I->isAtomic())
100 return true;
101 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
102 // Instructions that read threadIdx are obviously divergent.
104 return true;
105 // Handle the NVPTX atomic intrinsics that cannot be represented as an
106 // atomic IR instruction.
107 if (isNVVMAtomic(II))
108 return true;
109 }
110 // Conservatively consider the return value of function calls as divergent.
111 // We could analyze callees with bodies more precisely using
112 // inter-procedural analysis.
113 if (isa<CallInst>(I))
114 return true;
115 }
116
117 return false;
118}
119
120// Convert NVVM intrinsics to target-generic LLVM code where possible.
122 IntrinsicInst *II) {
123 // Each NVVM intrinsic we can simplify can be replaced with one of:
124 //
125 // * an LLVM intrinsic,
126 // * an LLVM cast operation,
127 // * an LLVM binary operation, or
128 // * ad-hoc LLVM IR for the particular operation.
129
130 // Some transformations are only valid when the module's
131 // flush-denormals-to-zero (ftz) setting is true/false, whereas other
132 // transformations are valid regardless of the module's ftz setting.
133 enum FtzRequirementTy {
134 FTZ_Any, // Any ftz setting is ok.
135 FTZ_MustBeOn, // Transformation is valid only if ftz is on.
136 FTZ_MustBeOff, // Transformation is valid only if ftz is off.
137 };
138 // Classes of NVVM intrinsics that can't be replaced one-to-one with a
139 // target-generic intrinsic, cast op, or binary op but that we can nonetheless
140 // simplify.
141 enum SpecialCase {
142 SPC_Reciprocal,
143 SCP_FunnelShiftClamp,
144 };
145
146 // SimplifyAction is a poor-man's variant (plus an additional flag) that
147 // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
148 struct SimplifyAction {
149 // Invariant: At most one of these Optionals has a value.
150 std::optional<Intrinsic::ID> IID;
151 std::optional<Instruction::CastOps> CastOp;
152 std::optional<Instruction::BinaryOps> BinaryOp;
153 std::optional<SpecialCase> Special;
154
155 FtzRequirementTy FtzRequirement = FTZ_Any;
156 // Denormal handling is guarded by different attributes depending on the
157 // type (denormal-fp-math vs denormal-fp-math-f32), take note of halfs.
158 bool IsHalfTy = false;
159
160 SimplifyAction() = default;
161
162 SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq,
163 bool IsHalfTy = false)
164 : IID(IID), FtzRequirement(FtzReq), IsHalfTy(IsHalfTy) {}
165
166 // Cast operations don't have anything to do with FTZ, so we skip that
167 // argument.
168 SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
169
170 SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
171 : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
172
173 SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
174 : Special(Special), FtzRequirement(FtzReq) {}
175 };
176
177 // Try to generate a SimplifyAction describing how to replace our
178 // IntrinsicInstr with target-generic LLVM IR.
179 const SimplifyAction Action = [II]() -> SimplifyAction {
180 switch (II->getIntrinsicID()) {
181 // NVVM intrinsics that map directly to LLVM intrinsics.
182 case Intrinsic::nvvm_ceil_d:
183 return {Intrinsic::ceil, FTZ_Any};
184 case Intrinsic::nvvm_ceil_f:
185 return {Intrinsic::ceil, FTZ_MustBeOff};
186 case Intrinsic::nvvm_ceil_ftz_f:
187 return {Intrinsic::ceil, FTZ_MustBeOn};
188 case Intrinsic::nvvm_fabs_d:
189 return {Intrinsic::fabs, FTZ_Any};
190 case Intrinsic::nvvm_floor_d:
191 return {Intrinsic::floor, FTZ_Any};
192 case Intrinsic::nvvm_floor_f:
193 return {Intrinsic::floor, FTZ_MustBeOff};
194 case Intrinsic::nvvm_floor_ftz_f:
195 return {Intrinsic::floor, FTZ_MustBeOn};
196 case Intrinsic::nvvm_fma_rn_d:
197 return {Intrinsic::fma, FTZ_Any};
198 case Intrinsic::nvvm_fma_rn_f:
199 return {Intrinsic::fma, FTZ_MustBeOff};
200 case Intrinsic::nvvm_fma_rn_ftz_f:
201 return {Intrinsic::fma, FTZ_MustBeOn};
202 case Intrinsic::nvvm_fma_rn_f16:
203 return {Intrinsic::fma, FTZ_MustBeOff, true};
204 case Intrinsic::nvvm_fma_rn_ftz_f16:
205 return {Intrinsic::fma, FTZ_MustBeOn, true};
206 case Intrinsic::nvvm_fma_rn_f16x2:
207 return {Intrinsic::fma, FTZ_MustBeOff, true};
208 case Intrinsic::nvvm_fma_rn_ftz_f16x2:
209 return {Intrinsic::fma, FTZ_MustBeOn, true};
210 case Intrinsic::nvvm_fma_rn_bf16:
211 return {Intrinsic::fma, FTZ_MustBeOff, true};
212 case Intrinsic::nvvm_fma_rn_ftz_bf16:
213 return {Intrinsic::fma, FTZ_MustBeOn, true};
214 case Intrinsic::nvvm_fma_rn_bf16x2:
215 return {Intrinsic::fma, FTZ_MustBeOff, true};
216 case Intrinsic::nvvm_fma_rn_ftz_bf16x2:
217 return {Intrinsic::fma, FTZ_MustBeOn, true};
218 case Intrinsic::nvvm_fmax_d:
219 return {Intrinsic::maxnum, FTZ_Any};
220 case Intrinsic::nvvm_fmax_f:
221 return {Intrinsic::maxnum, FTZ_MustBeOff};
222 case Intrinsic::nvvm_fmax_ftz_f:
223 return {Intrinsic::maxnum, FTZ_MustBeOn};
224 case Intrinsic::nvvm_fmax_nan_f:
225 return {Intrinsic::maximum, FTZ_MustBeOff};
226 case Intrinsic::nvvm_fmax_ftz_nan_f:
227 return {Intrinsic::maximum, FTZ_MustBeOn};
228 case Intrinsic::nvvm_fmax_f16:
229 return {Intrinsic::maxnum, FTZ_MustBeOff, true};
230 case Intrinsic::nvvm_fmax_ftz_f16:
231 return {Intrinsic::maxnum, FTZ_MustBeOn, true};
232 case Intrinsic::nvvm_fmax_f16x2:
233 return {Intrinsic::maxnum, FTZ_MustBeOff, true};
234 case Intrinsic::nvvm_fmax_ftz_f16x2:
235 return {Intrinsic::maxnum, FTZ_MustBeOn, true};
236 case Intrinsic::nvvm_fmax_nan_f16:
237 return {Intrinsic::maximum, FTZ_MustBeOff, true};
238 case Intrinsic::nvvm_fmax_ftz_nan_f16:
239 return {Intrinsic::maximum, FTZ_MustBeOn, true};
240 case Intrinsic::nvvm_fmax_nan_f16x2:
241 return {Intrinsic::maximum, FTZ_MustBeOff, true};
242 case Intrinsic::nvvm_fmax_ftz_nan_f16x2:
243 return {Intrinsic::maximum, FTZ_MustBeOn, true};
244 case Intrinsic::nvvm_fmin_d:
245 return {Intrinsic::minnum, FTZ_Any};
246 case Intrinsic::nvvm_fmin_f:
247 return {Intrinsic::minnum, FTZ_MustBeOff};
248 case Intrinsic::nvvm_fmin_ftz_f:
249 return {Intrinsic::minnum, FTZ_MustBeOn};
250 case Intrinsic::nvvm_fmin_nan_f:
251 return {Intrinsic::minimum, FTZ_MustBeOff};
252 case Intrinsic::nvvm_fmin_ftz_nan_f:
253 return {Intrinsic::minimum, FTZ_MustBeOn};
254 case Intrinsic::nvvm_fmin_f16:
255 return {Intrinsic::minnum, FTZ_MustBeOff, true};
256 case Intrinsic::nvvm_fmin_ftz_f16:
257 return {Intrinsic::minnum, FTZ_MustBeOn, true};
258 case Intrinsic::nvvm_fmin_f16x2:
259 return {Intrinsic::minnum, FTZ_MustBeOff, true};
260 case Intrinsic::nvvm_fmin_ftz_f16x2:
261 return {Intrinsic::minnum, FTZ_MustBeOn, true};
262 case Intrinsic::nvvm_fmin_nan_f16:
263 return {Intrinsic::minimum, FTZ_MustBeOff, true};
264 case Intrinsic::nvvm_fmin_ftz_nan_f16:
265 return {Intrinsic::minimum, FTZ_MustBeOn, true};
266 case Intrinsic::nvvm_fmin_nan_f16x2:
267 return {Intrinsic::minimum, FTZ_MustBeOff, true};
268 case Intrinsic::nvvm_fmin_ftz_nan_f16x2:
269 return {Intrinsic::minimum, FTZ_MustBeOn, true};
270 case Intrinsic::nvvm_sqrt_rn_d:
271 return {Intrinsic::sqrt, FTZ_Any};
272 case Intrinsic::nvvm_sqrt_f:
273 // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
274 // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
275 // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
276 // the versions with explicit ftz-ness.
277 return {Intrinsic::sqrt, FTZ_Any};
278 case Intrinsic::nvvm_trunc_d:
279 return {Intrinsic::trunc, FTZ_Any};
280 case Intrinsic::nvvm_trunc_f:
281 return {Intrinsic::trunc, FTZ_MustBeOff};
282 case Intrinsic::nvvm_trunc_ftz_f:
283 return {Intrinsic::trunc, FTZ_MustBeOn};
284
285 // NVVM intrinsics that map to LLVM cast operations.
286 //
287 // Note that llvm's target-generic conversion operators correspond to the rz
288 // (round to zero) versions of the nvvm conversion intrinsics, even though
289 // most everything else here uses the rn (round to nearest even) nvvm ops.
290 case Intrinsic::nvvm_d2i_rz:
291 case Intrinsic::nvvm_f2i_rz:
292 case Intrinsic::nvvm_d2ll_rz:
293 case Intrinsic::nvvm_f2ll_rz:
294 return {Instruction::FPToSI};
295 case Intrinsic::nvvm_d2ui_rz:
296 case Intrinsic::nvvm_f2ui_rz:
297 case Intrinsic::nvvm_d2ull_rz:
298 case Intrinsic::nvvm_f2ull_rz:
299 return {Instruction::FPToUI};
300 // Integer to floating-point uses RN rounding, not RZ
301 case Intrinsic::nvvm_i2d_rn:
302 case Intrinsic::nvvm_i2f_rn:
303 case Intrinsic::nvvm_ll2d_rn:
304 case Intrinsic::nvvm_ll2f_rn:
305 return {Instruction::SIToFP};
306 case Intrinsic::nvvm_ui2d_rn:
307 case Intrinsic::nvvm_ui2f_rn:
308 case Intrinsic::nvvm_ull2d_rn:
309 case Intrinsic::nvvm_ull2f_rn:
310 return {Instruction::UIToFP};
311
312 // NVVM intrinsics that map to LLVM binary ops.
313 case Intrinsic::nvvm_div_rn_d:
314 return {Instruction::FDiv, FTZ_Any};
315
316 // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
317 // need special handling.
318 //
319 // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
320 // as well.
321 case Intrinsic::nvvm_rcp_rn_d:
322 return {SPC_Reciprocal, FTZ_Any};
323
324 case Intrinsic::nvvm_fshl_clamp:
325 case Intrinsic::nvvm_fshr_clamp:
326 return {SCP_FunnelShiftClamp, FTZ_Any};
327
328 // We do not currently simplify intrinsics that give an approximate
329 // answer. These include:
330 //
331 // - nvvm_cos_approx_{f,ftz_f}
332 // - nvvm_ex2_approx_{d,f,ftz_f}
333 // - nvvm_lg2_approx_{d,f,ftz_f}
334 // - nvvm_sin_approx_{f,ftz_f}
335 // - nvvm_sqrt_approx_{f,ftz_f}
336 // - nvvm_rsqrt_approx_{d,f,ftz_f}
337 // - nvvm_div_approx_{ftz_d,ftz_f,f}
338 // - nvvm_rcp_approx_ftz_d
339 //
340 // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
341 // means that fastmath is enabled in the intrinsic. Unfortunately only
342 // binary operators (currently) have a fastmath bit in SelectionDAG, so
343 // this information gets lost and we can't select on it.
344 //
345 // TODO: div and rcp are lowered to a binary op, so these we could in
346 // theory lower them to "fast fdiv".
347
348 default:
349 return {};
350 }
351 }();
352
353 // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
354 // can bail out now. (Notice that in the case that IID is not an NVVM
355 // intrinsic, we don't have to look up any module metadata, as
356 // FtzRequirementTy will be FTZ_Any.)
357 if (Action.FtzRequirement != FTZ_Any) {
358 // FIXME: Broken for f64
359 DenormalMode Mode = II->getFunction()->getDenormalMode(
360 Action.IsHalfTy ? APFloat::IEEEhalf() : APFloat::IEEEsingle());
361 bool FtzEnabled = Mode.Output == DenormalMode::PreserveSign;
362
363 if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
364 return nullptr;
365 }
366
367 // Simplify to target-generic intrinsic.
368 if (Action.IID) {
369 SmallVector<Value *, 4> Args(II->args());
370 // All the target-generic intrinsics currently of interest to us have one
371 // type argument, equal to that of the nvvm intrinsic's argument.
372 Type *Tys[] = {II->getArgOperand(0)->getType()};
373 return CallInst::Create(
374 Intrinsic::getOrInsertDeclaration(II->getModule(), *Action.IID, Tys),
375 Args);
376 }
377
378 // Simplify to target-generic binary op.
379 if (Action.BinaryOp)
380 return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
381 II->getArgOperand(1), II->getName());
382
383 // Simplify to target-generic cast op.
384 if (Action.CastOp)
385 return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
386 II->getName());
387
388 // All that's left are the special cases.
389 if (!Action.Special)
390 return nullptr;
391
392 switch (*Action.Special) {
393 case SPC_Reciprocal:
394 // Simplify reciprocal.
396 Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
397 II->getArgOperand(0), II->getName());
398
399 case SCP_FunnelShiftClamp: {
400 // Canonicalize a clamping funnel shift to the generic llvm funnel shift
401 // when possible, as this is easier for llvm to optimize further.
402 if (const auto *ShiftConst = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
403 const bool IsLeft = II->getIntrinsicID() == Intrinsic::nvvm_fshl_clamp;
404 if (ShiftConst->getZExtValue() >= II->getType()->getIntegerBitWidth())
405 return IC.replaceInstUsesWith(*II, II->getArgOperand(IsLeft ? 1 : 0));
406
407 const unsigned FshIID = IsLeft ? Intrinsic::fshl : Intrinsic::fshr;
409 II->getModule(), FshIID, II->getType()),
410 SmallVector<Value *, 3>(II->args()));
411 }
412 return nullptr;
413 }
414 }
415 llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
416}
417
418// Returns true/false when we know the answer, nullopt otherwise.
419static std::optional<bool> evaluateIsSpace(Intrinsic::ID IID, unsigned AS) {
422 return std::nullopt; // Got to check at run-time.
423 switch (IID) {
424 case Intrinsic::nvvm_isspacep_global:
426 case Intrinsic::nvvm_isspacep_local:
427 return AS == NVPTXAS::ADDRESS_SPACE_LOCAL;
428 case Intrinsic::nvvm_isspacep_shared:
430 case Intrinsic::nvvm_isspacep_shared_cluster:
431 // We can't tell shared from shared_cluster at compile time from AS alone,
432 // but it can't be either is AS is not shared.
433 return AS == NVPTXAS::ADDRESS_SPACE_SHARED ? std::nullopt
434 : std::optional{false};
435 case Intrinsic::nvvm_isspacep_const:
436 return AS == NVPTXAS::ADDRESS_SPACE_CONST;
437 default:
438 llvm_unreachable("Unexpected intrinsic");
439 }
440}
441
442// Returns an instruction pointer (may be nullptr if we do not know the answer).
443// Returns nullopt if `II` is not one of the `isspacep` intrinsics.
444//
445// TODO: If InferAddressSpaces were run early enough in the pipeline this could
446// be removed in favor of the constant folding that occurs there through
447// rewriteIntrinsicWithAddressSpace
448static std::optional<Instruction *>
450
451 switch (auto IID = II.getIntrinsicID()) {
452 case Intrinsic::nvvm_isspacep_global:
453 case Intrinsic::nvvm_isspacep_local:
454 case Intrinsic::nvvm_isspacep_shared:
455 case Intrinsic::nvvm_isspacep_shared_cluster:
456 case Intrinsic::nvvm_isspacep_const: {
457 Value *Op0 = II.getArgOperand(0);
458 unsigned AS = Op0->getType()->getPointerAddressSpace();
459 // Peek through ASC to generic AS.
460 // TODO: we could dig deeper through both ASCs and GEPs.
462 if (auto *ASCO = dyn_cast<AddrSpaceCastOperator>(Op0))
463 AS = ASCO->getOperand(0)->getType()->getPointerAddressSpace();
464
465 if (std::optional<bool> Answer = evaluateIsSpace(IID, AS))
466 return IC.replaceInstUsesWith(II,
467 ConstantInt::get(II.getType(), *Answer));
468 return nullptr; // Don't know the answer, got to check at run time.
469 }
470 default:
471 return std::nullopt;
472 }
473}
474
475std::optional<Instruction *>
477 if (std::optional<Instruction *> I = handleSpaceCheckIntrinsics(IC, II))
478 return *I;
480 return I;
481
482 return std::nullopt;
483}
484
486 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
489 const Instruction *CxtI) {
490 // Legalize the type.
491 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
492
493 int ISD = TLI->InstructionOpcodeToISD(Opcode);
494
495 switch (ISD) {
496 default:
497 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
498 Op2Info);
499 case ISD::ADD:
500 case ISD::MUL:
501 case ISD::XOR:
502 case ISD::OR:
503 case ISD::AND:
504 // The machine code (SASS) simulates an i64 with two i32. Therefore, we
505 // estimate that arithmetic operations on i64 are twice as expensive as
506 // those on types that can fit into one machine register.
507 if (LT.second.SimpleTy == MVT::i64)
508 return 2 * LT.first;
509 // Delegate other cases to the basic TTI.
510 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
511 Op2Info);
512 }
513}
514
518 BaseT::getUnrollingPreferences(L, SE, UP, ORE);
519
520 // Enable partial unrolling and runtime unrolling, but reduce the
521 // threshold. This partially unrolls small loops which are often
522 // unrolled by the PTX to SASS compiler and unrolling earlier can be
523 // beneficial.
524 UP.Partial = UP.Runtime = true;
525 UP.PartialThreshold = UP.Threshold / 4;
526}
527
531}
532
534 Intrinsic::ID IID) const {
535 switch (IID) {
536 case Intrinsic::nvvm_isspacep_const:
537 case Intrinsic::nvvm_isspacep_global:
538 case Intrinsic::nvvm_isspacep_local:
539 case Intrinsic::nvvm_isspacep_shared:
540 case Intrinsic::nvvm_isspacep_shared_cluster: {
541 OpIndexes.push_back(0);
542 return true;
543 }
544 }
545 return false;
546}
547
549 Value *OldV,
550 Value *NewV) const {
551 const Intrinsic::ID IID = II->getIntrinsicID();
552 switch (IID) {
553 case Intrinsic::nvvm_isspacep_const:
554 case Intrinsic::nvvm_isspacep_global:
555 case Intrinsic::nvvm_isspacep_local:
556 case Intrinsic::nvvm_isspacep_shared:
557 case Intrinsic::nvvm_isspacep_shared_cluster: {
558 const unsigned NewAS = NewV->getType()->getPointerAddressSpace();
559 if (const auto R = evaluateIsSpace(IID, NewAS))
560 return ConstantInt::get(II->getType(), *R);
561 return nullptr;
562 }
563 }
564 return nullptr;
565}
This file provides a helper that implements much of the TTI interface in terms of the target-independ...
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
This file provides the interface for the instcombine pass implementation.
#define I(x, y, z)
Definition: MD5.cpp:58
static std::optional< Instruction * > handleSpaceCheckIntrinsics(InstCombiner &IC, IntrinsicInst &II)
static bool isNVVMAtomic(const IntrinsicInst *II)
static Instruction * convertNvvmIntrinsicToLlvm(InstCombiner &IC, IntrinsicInst *II)
static bool readsLaneId(const IntrinsicInst *II)
static std::optional< bool > evaluateIsSpace(Intrinsic::ID IID, unsigned AS)
static bool readsThreadIndex(const IntrinsicInst *II)
This file a TargetTransformInfo::Concept conforming object specific to the NVPTX target machine.
uint64_t IntrinsicInst * II
This file describes how to lower LLVM code to machine code.
This pass exposes codegen information to IR-level passes.
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE)
Definition: BasicTTIImpl.h:596
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP)
Definition: BasicTTIImpl.h:668
std::pair< InstructionCost, MVT > getTypeLegalizationCost(Type *Ty) const
Estimate the cost of type-legalization and the legalized type.
Definition: BasicTTIImpl.h:896
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr)
Definition: BasicTTIImpl.h:932
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
The core instruction combiner logic.
Definition: InstCombiner.h:48
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Definition: InstCombiner.h:394
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
An instruction for reading from memory.
Definition: Instructions.h:176
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE)
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr)
std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP)
bool isSourceOfDivergence(const Value *V)
The optimization diagnostic interface.
The main scalar evolution driver.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
TargetCostKind
The kind of cost model.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ ADD
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:246
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:709
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
Definition: Intrinsics.cpp:731
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool isKernelFunction(const Function &F)
static const fltSemantics & IEEEsingle() LLVM_READNONE
Definition: APFloat.cpp:265
static const fltSemantics & IEEEhalf() LLVM_READNONE
Definition: APFloat.cpp:263
Represent subnormal handling kind for floating point instruction inputs and outputs.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
Parameters that control the generic loop unrolling transformation.
unsigned Threshold
The cost threshold for the unrolled loop.
unsigned PartialThreshold
The cost threshold for the unrolled loop, like Threshold, but used for partial/runtime unrolling (set...
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...