16#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
17#define LLVM_CODEGEN_BASICTTIIMPL_H
88 const T *thisT()
const {
return static_cast<const T *
>(
this); }
98 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
102 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
122 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
124 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
137 "Can only extract subvectors from vectors");
140 (Index + NumSubElts) <=
142 "SK_ExtractSubvector index out of range");
148 for (
int i = 0; i != NumSubElts; ++i) {
150 thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
151 CostKind, i + Index,
nullptr,
nullptr);
152 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, SubVTy,
165 "Can only insert subvectors into vectors");
168 (Index + NumSubElts) <=
170 "SK_InsertSubvector index out of range");
176 for (
int i = 0; i != NumSubElts; ++i) {
177 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVTy,
180 thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
CostKind,
181 i + Index,
nullptr,
nullptr);
188 return static_cast<const T *
>(
this)->getST();
193 return static_cast<const T *
>(
this)->getTLI();
215 bool IsGatherScatter,
223 unsigned VF = VT->getNumElements();
238 VF * thisT()->getMemoryOpCost(Opcode, VT->getElementType(), Alignment,
244 Opcode == Instruction::Store,
CostKind);
258 VF * (thisT()->getCFInstrCost(Instruction::Br,
CostKind) +
259 thisT()->getCFInstrCost(Instruction::PHI,
CostKind));
262 return AddrExtractCost + MemoryOpCost + PackingCost + ConditionalCost;
270 static bool isSplatMask(
ArrayRef<int> Mask,
unsigned NumSrcElts,
int &Index) {
272 bool IsCompared =
false;
276 return P.index() != Mask.size() - 1 || IsCompared;
277 if (
static_cast<unsigned>(
P.value()) >= NumSrcElts * 2)
280 SplatIdx =
P.value();
281 return P.index() != Mask.size() - 1;
284 return SplatIdx ==
P.value();
303 std::optional<InstructionCost> getMultipleResultIntrinsicVectorLibCallCost(
305 std::optional<unsigned> CallRetElementIndex = {})
const {
314 EVT VT = getTLI()->getValueType(
DL, Ty);
316 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
318 switch (ICA.
getID()) {
319 case Intrinsic::modf:
322 case Intrinsic::sincospi:
325 case Intrinsic::sincos:
333 RTLIB::LibcallImpl LibcallImpl = getTLI()->getLibcallImpl(LC);
334 if (LibcallImpl == RTLIB::Unsupported)
347 VecTy, {},
CostKind, 0,
nullptr, {});
353 if (Idx == CallRetElementIndex)
355 Cost += thisT()->getMemoryOpCost(
356 Instruction::Load, VectorTy,
389 unsigned *
Fast)
const override {
391 return getTLI()->allowsMisalignedMemoryAccesses(
396 const Function *Callee)
const override {
406 return (CallerBits & CalleeBits) == CalleeBits;
436 return getTLI()->getTargetMachine().isNoopAddrSpaceCast(FromAS, ToAS);
440 return getTLI()->getTargetMachine().getAssumedAddrSpace(V);
444 return getTLI()->getTargetMachine().Options.ThreadModel ==
448 std::pair<const Value *, unsigned>
450 return getTLI()->getTargetMachine().getPredicatedAddrSpace(V);
454 Value *NewV)
const override {
459 return getTLI()->isLegalAddImmediate(imm);
463 return getTLI()->isLegalAddScalableImmediate(Imm);
467 return getTLI()->isLegalICmpImmediate(imm);
471 bool HasBaseReg, int64_t Scale,
unsigned AddrSpace,
473 int64_t ScalableOffset = 0)
const override {
480 return getTLI()->isLegalAddressingMode(
DL, AM, Ty, AddrSpace,
I);
484 return getTLI()->getPreferredLargeGEPBaseOffset(MinOffset, MaxOffset);
488 Type *ScalarValTy)
const override {
489 auto &&IsSupportedByTarget = [
this, ScalarMemTy, ScalarValTy](
unsigned VF) {
491 EVT VT = getTLI()->getValueType(
DL, SrcTy);
492 if (getTLI()->isOperationLegal(ISD::STORE, VT) ||
493 getTLI()->isOperationCustom(ISD::STORE, VT))
499 getTLI()->getTypeToTransformTo(ScalarMemTy->
getContext(), VT);
500 return getTLI()->isTruncStoreLegal(LegalizedVT, ValVT);
502 while (VF > 2 && IsSupportedByTarget(VF))
508 EVT VT = getTLI()->getValueType(
DL, Ty,
true);
509 return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
513 EVT VT = getTLI()->getValueType(
DL, Ty,
true);
514 return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
537 unsigned AddrSpace)
const override {
550 return getTLI()->isTruncateFree(Ty1, Ty2);
554 return getTLI()->isProfitableToHoist(
I);
557 bool useAA()
const override {
return getST()->useAA(); }
560 EVT VT = getTLI()->getValueType(
DL, Ty,
true);
561 return getTLI()->isTypeLegal(VT);
565 EVT ETy = getTLI()->getValueType(
DL, Ty);
566 return getTLI()->getNumRegisters(Ty->getContext(), ETy);
585 unsigned N =
SI.getNumCases();
593 if (
N < 1 || (!IsJTAllowed &&
DL.getIndexSizeInBits(0u) <
N))
596 APInt MaxCaseVal =
SI.case_begin()->getCaseValue()->getValue();
597 APInt MinCaseVal = MaxCaseVal;
598 for (
auto CI :
SI.cases()) {
599 const APInt &CaseVal = CI.getCaseValue()->getValue();
600 if (CaseVal.
sgt(MaxCaseVal))
601 MaxCaseVal = CaseVal;
602 if (CaseVal.
slt(MinCaseVal))
603 MinCaseVal = CaseVal;
607 if (
N <=
DL.getIndexSizeInBits(0u)) {
609 for (
auto I :
SI.cases()) {
620 if (
N < 2 ||
N < TLI->getMinimumJumpTableEntries())
623 (MaxCaseVal - MinCaseVal)
624 .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
627 JumpTableSize =
Range;
685 const Function &Fn)
const override {
689 case Instruction::SDiv:
690 case Instruction::SRem:
691 case Instruction::UDiv:
692 case Instruction::URem: {
744 else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
745 MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
762 <<
"advising against unrolling the loop because it "
813 std::optional<Instruction *>
818 std::optional<Value *>
821 bool &KnownBitsComputed)
const override {
830 SimplifyAndSetOp)
const override {
832 IC,
II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
836 std::optional<unsigned>
838 return std::optional<unsigned>(
842 std::optional<unsigned>
844 std::optional<unsigned> TargetResult =
845 getST()->getCacheAssociativity(
static_cast<unsigned>(Level));
854 return getST()->getCacheLineSize();
858 return getST()->getPrefetchDistance();
862 unsigned NumStridedMemAccesses,
863 unsigned NumPrefetches,
864 bool HasCall)
const override {
865 return getST()->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
866 NumPrefetches, HasCall);
870 return getST()->getMaxPrefetchIterationsAhead();
874 return getST()->enableWritePrefetching();
878 return getST()->shouldPrefetchAddressSpace(AS);
891 std::optional<unsigned>
getMaxVScale()
const override {
return std::nullopt; }
901 VectorType *InTy,
const APInt &DemandedElts,
bool Insert,
bool Extract,
911 (VL.empty() || VL.size() == Ty->getNumElements()) &&
912 "Vector size mismatch");
916 for (
int i = 0, e = Ty->getNumElements(); i < e; ++i) {
917 if (!DemandedElts[i])
920 Value *InsertedVal = VL.empty() ? nullptr : VL[i];
921 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, Ty,
925 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
938 unsigned ScalarOpdIdx)
const override {
943 int OpdIdx)
const override {
949 int RetIdx)
const override {
962 return thisT()->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
972 for (
Type *Ty : Tys) {
974 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy() &&
975 !Ty->isPtrOrPtrVectorTy())
998 filterConstantAndDuplicatedOperands(Args, Tys),
CostKind);
1011 EVT MTy = getTLI()->getValueType(
DL, Ty);
1035 if (MTy == LK.second)
1050 const Instruction *CxtI =
nullptr)
const override {
1052 const TargetLoweringBase *TLI = getTLI();
1053 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1054 assert(ISD &&
"Invalid opcode");
1069 if (TLI->isOperationLegalOrPromote(ISD,
LT.second)) {
1072 return LT.first * OpCost;
1075 if (!TLI->isOperationExpand(ISD,
LT.second)) {
1078 return LT.first * 2 * OpCost;
1090 unsigned DivOpc = IsSigned ? Instruction::SDiv : Instruction::UDiv;
1092 DivOpc, Ty,
CostKind, Opd1Info, Opd2Info);
1094 thisT()->getArithmeticInstrCost(Instruction::Mul, Ty,
CostKind);
1096 thisT()->getArithmeticInstrCost(Instruction::Sub, Ty,
CostKind);
1097 return DivCost + MulCost + SubCost;
1129 int NumDstElts = Mask.size();
1130 int NumSrcElts = SrcTy->getElementCount().getKnownMinValue();
1137 if (isSplatMask(Mask, NumSrcElts, Index))
1140 (Index + NumDstElts) <= NumSrcElts) {
1147 if (
all_of(Mask, [NumSrcElts](
int M) {
return M < NumSrcElts; }))
1152 Mask, NumSrcElts, NumSubElts, Index)) {
1153 if (Index + NumSubElts > NumSrcElts)
1182 const Instruction *CxtI =
nullptr)
const override {
1186 return getBroadcastShuffleOverhead(FVT,
CostKind);
1195 return getPermuteShuffleOverhead(FVT,
CostKind);
1198 return getExtractSubvectorOverhead(SrcTy,
CostKind, Index,
1201 return getInsertSubvectorOverhead(DstTy,
CostKind, Index,
1220 TypeSize SrcSize = SrcLT.second.getSizeInBits();
1221 TypeSize DstSize = DstLT.second.getSizeInBits();
1222 bool IntOrPtrSrc = Src->isIntegerTy() || Src->isPointerTy();
1223 bool IntOrPtrDst = Dst->isIntegerTy() || Dst->isPointerTy();
1228 case Instruction::Trunc:
1233 case Instruction::BitCast:
1236 if (SrcLT.first == DstLT.first && IntOrPtrSrc == IntOrPtrDst &&
1240 case Instruction::FPExt:
1241 if (
I && getTLI()->isExtFree(
I))
1244 case Instruction::ZExt:
1245 if (TLI->
isZExtFree(SrcLT.second, DstLT.second))
1248 case Instruction::SExt:
1249 if (
I && getTLI()->isExtFree(
I))
1259 if (DstLT.first == SrcLT.first &&
1264 case Instruction::AddrSpaceCast:
1266 Dst->getPointerAddressSpace()))
1275 if (SrcLT.first == DstLT.first &&
1280 if (!SrcVTy && !DstVTy) {
1291 if (DstVTy && SrcVTy) {
1293 if (SrcLT.first == DstLT.first && SrcSize == DstSize) {
1296 if (Opcode == Instruction::ZExt)
1300 if (Opcode == Instruction::SExt)
1301 return SrcLT.first * 2;
1307 return SrcLT.first * 1;
1320 if ((SplitSrc || SplitDst) && SrcVTy->getElementCount().isKnownEven() &&
1321 DstVTy->getElementCount().isKnownEven()) {
1324 const T *TTI = thisT();
1327 (!SplitSrc || !SplitDst) ? TTI->getVectorSplitCost() : 0;
1329 (2 * TTI->getCastInstrCost(Opcode, SplitDstTy, SplitSrcTy, CCH,
1341 Opcode, Dst->getScalarType(), Src->getScalarType(), CCH,
CostKind,
I);
1354 if (Opcode == Instruction::BitCast) {
1371 return thisT()->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1372 CostKind, Index,
nullptr,
nullptr) +
1388 const Instruction *
I =
nullptr)
const override {
1389 const TargetLoweringBase *TLI = getTLI();
1390 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1391 assert(ISD &&
"Invalid opcode");
1395 Op1Info, Op2Info,
I);
1399 assert(CondTy &&
"CondTy must exist");
1406 !TLI->isOperationExpand(ISD,
LT.second)) {
1409 return LT.first * 1;
1421 Opcode, ValVTy->getScalarType(), CondTy->
getScalarType(), VecPred,
1437 unsigned Index,
const Value *Op0,
1438 const Value *Op1)
const override {
1448 unsigned Index,
Value *Scalar,
1449 ArrayRef<std::tuple<Value *, User *, int>>
1450 ScalarUserAndIdx)
const override {
1451 return thisT()->getVectorInstrCost(Opcode, Val,
CostKind, Index,
nullptr,
1457 unsigned Index)
const override {
1458 Value *Op0 =
nullptr;
1459 Value *Op1 =
nullptr;
1461 Op0 = IE->getOperand(0);
1462 Op1 = IE->getOperand(1);
1464 return thisT()->getVectorInstrCost(
I.getOpcode(), Val,
CostKind, Index, Op0,
1471 unsigned Index)
const override {
1472 unsigned NewIndex = -1;
1475 "Unexpected index from end of vector");
1476 NewIndex = FVTy->getNumElements() - 1 - Index;
1478 return thisT()->getVectorInstrCost(Opcode, Val,
CostKind, NewIndex,
nullptr,
1484 const APInt &DemandedDstElts,
1487 "Unexpected size of DemandedDstElts.");
1505 Cost += thisT()->getScalarizationOverhead(SrcVT, DemandedSrcElts,
1508 Cost += thisT()->getScalarizationOverhead(ReplicatedVT, DemandedDstElts,
1520 assert(!Src->isVoidTy() &&
"Invalid type");
1537 LT.second.getSizeInBits())) {
1543 if (Opcode == Instruction::Store)
1553 Opcode == Instruction::Store,
CostKind);
1565 unsigned Opcode = MICA.
getID() == Intrinsic::masked_load
1567 : Instruction::Store;
1569 return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment,
true,
false,
1575 bool VariableMask,
Align Alignment,
1578 return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, VariableMask,
1584 bool VariableMask,
Align Alignment,
1589 return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, VariableMask,
1594 const Value *Ptr,
bool VariableMask,
1601 return thisT()->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1608 bool UseMaskForCond =
false,
bool UseMaskForGaps =
false)
const override {
1616 unsigned NumElts = VT->getNumElements();
1617 assert(Factor > 1 && NumElts % Factor == 0 &&
"Invalid interleave factor");
1619 unsigned NumSubElts = NumElts / Factor;
1624 if (UseMaskForCond || UseMaskForGaps) {
1625 unsigned IID = Opcode == Instruction::Load ? Intrinsic::masked_load
1626 : Intrinsic::masked_store;
1627 Cost = thisT()->getMaskedMemoryOpCost(
1636 unsigned VecTySize = thisT()->getDataLayout().getTypeStoreSize(VecTy);
1653 if (
Cost.isValid() && VecTySize > VecTyLTSize) {
1656 unsigned NumLegalInsts =
divideCeil(VecTySize, VecTyLTSize);
1660 unsigned NumEltsPerLegalInst =
divideCeil(NumElts, NumLegalInsts);
1663 BitVector UsedInsts(NumLegalInsts,
false);
1664 for (
unsigned Index : Indices)
1665 for (
unsigned Elt = 0; Elt < NumSubElts; ++Elt)
1666 UsedInsts.
set((Index + Elt * Factor) / NumEltsPerLegalInst);
1675 "Interleaved memory op has too many members");
1681 for (
unsigned Index : Indices) {
1682 assert(Index < Factor &&
"Invalid index for interleaved memory op");
1683 for (
unsigned Elm = 0; Elm < NumSubElts; Elm++)
1684 DemandedLoadStoreElts.
setBit(Index + Elm * Factor);
1687 if (Opcode == Instruction::Load) {
1697 SubVT, DemandedAllSubElts,
1699 Cost += Indices.
size() * InsSubCost;
1700 Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts,
1718 SubVT, DemandedAllSubElts,
1720 Cost += ExtSubCost * Indices.
size();
1721 Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts,
1726 if (!UseMaskForCond)
1731 Cost += thisT()->getReplicationShuffleCost(
1732 I8Type, Factor, NumSubElts,
1733 UseMaskForGaps ? DemandedLoadStoreElts : DemandedAllResultElts,
1741 if (UseMaskForGaps) {
1743 Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, MaskVT,
1769 std::optional<unsigned> FOp =
1772 if (ICA.
getID() == Intrinsic::vp_load) {
1775 Alignment = VPI->getPointerAlignment().valueOrOne();
1779 AS = PtrTy->getAddressSpace();
1780 return thisT()->getMemoryOpCost(*FOp, ICA.
getReturnType(), Alignment,
1783 if (ICA.
getID() == Intrinsic::vp_store) {
1786 Alignment = VPI->getPointerAlignment().valueOrOne();
1790 AS = PtrTy->getAddressSpace();
1791 return thisT()->getMemoryOpCost(*FOp, ICA.
getArgTypes()[0], Alignment,
1795 ICA.
getID() == Intrinsic::vp_fneg) {
1796 return thisT()->getArithmeticInstrCost(*FOp, ICA.
getReturnType(),
1800 return thisT()->getCastInstrCost(
1809 return thisT()->getCmpSelInstrCost(*FOp, ICA.
getArgTypes()[0],
1816 if (ICA.
getID() == Intrinsic::vp_scatter) {
1826 Alignment = VPI->getPointerAlignment().valueOrOne();
1828 return thisT()->getGatherScatterOpCost(
1832 if (ICA.
getID() == Intrinsic::vp_gather) {
1842 Alignment = VPI->getPointerAlignment().valueOrOne();
1844 return thisT()->getGatherScatterOpCost(
1849 if (ICA.
getID() == Intrinsic::vp_select ||
1850 ICA.
getID() == Intrinsic::vp_merge) {
1861 std::optional<Intrinsic::ID> FID =
1865 if (ICA.
getID() == Intrinsic::experimental_vp_reverse)
1866 FID = Intrinsic::vector_reverse;
1872 "Expected VPIntrinsic to have Mask and Vector Length args and "
1884 *FID != Intrinsic::vector_reduce_fadd &&
1885 *FID != Intrinsic::vector_reduce_fmul) {
1893 return thisT()->getIntrinsicInstrCost(NewICA,
CostKind);
1912 case Intrinsic::powi:
1914 bool ShouldOptForSize =
I->getParent()->getParent()->hasOptSize();
1915 if (getTLI()->isBeneficialToExpandPowI(RHSC->getSExtValue(),
1916 ShouldOptForSize)) {
1920 unsigned ActiveBits =
Exponent.getActiveBits();
1921 unsigned PopCount =
Exponent.popcount();
1923 thisT()->getArithmeticInstrCost(
1924 Instruction::FMul, RetTy,
CostKind);
1925 if (RHSC->isNegative())
1926 Cost += thisT()->getArithmeticInstrCost(Instruction::FDiv, RetTy,
1932 case Intrinsic::cttz:
1934 if (RetVF.
isScalar() && getTLI()->isCheapToSpeculateCttz(RetTy))
1938 case Intrinsic::ctlz:
1940 if (RetVF.
isScalar() && getTLI()->isCheapToSpeculateCtlz(RetTy))
1944 case Intrinsic::memcpy:
1945 return thisT()->getMemcpyCost(ICA.
getInst());
1947 case Intrinsic::masked_scatter: {
1948 const Value *Mask = Args[2];
1950 Align Alignment =
I->getParamAlign(1).valueOrOne();
1951 return thisT()->getGatherScatterOpCost(Instruction::Store,
1955 case Intrinsic::masked_gather: {
1956 const Value *Mask = Args[1];
1958 Align Alignment =
I->getParamAlign(0).valueOrOne();
1959 return thisT()->getGatherScatterOpCost(Instruction::Load, RetTy, Args[0],
1962 case Intrinsic::masked_compressstore: {
1964 const Value *Mask = Args[2];
1965 Align Alignment =
I->getParamAlign(1).valueOrOne();
1966 return thisT()->getExpandCompressMemoryOpCost(
1970 case Intrinsic::masked_expandload: {
1971 const Value *Mask = Args[1];
1972 Align Alignment =
I->getParamAlign(0).valueOrOne();
1973 return thisT()->getExpandCompressMemoryOpCost(Instruction::Load, RetTy,
1977 case Intrinsic::experimental_vp_strided_store: {
1979 const Value *Ptr = Args[1];
1980 const Value *Mask = Args[3];
1981 const Value *EVL = Args[4];
1985 I->getParamAlign(1).value_or(thisT()->
DL.getABITypeAlign(EltTy));
1986 return thisT()->getStridedMemoryOpCost(Instruction::Store,
1987 Data->getType(), Ptr, VarMask,
1990 case Intrinsic::experimental_vp_strided_load: {
1991 const Value *Ptr = Args[0];
1992 const Value *Mask = Args[2];
1993 const Value *EVL = Args[3];
1997 I->getParamAlign(0).value_or(thisT()->
DL.getABITypeAlign(EltTy));
1998 return thisT()->getStridedMemoryOpCost(Instruction::Load, RetTy, Ptr,
2001 case Intrinsic::stepvector: {
2007 case Intrinsic::vector_extract: {
2018 case Intrinsic::vector_insert: {
2024 return thisT()->getShuffleCost(
2029 case Intrinsic::vector_splice: {
2035 case Intrinsic::vector_reduce_add:
2036 case Intrinsic::vector_reduce_mul:
2037 case Intrinsic::vector_reduce_and:
2038 case Intrinsic::vector_reduce_or:
2039 case Intrinsic::vector_reduce_xor:
2040 case Intrinsic::vector_reduce_smax:
2041 case Intrinsic::vector_reduce_smin:
2042 case Intrinsic::vector_reduce_fmax:
2043 case Intrinsic::vector_reduce_fmin:
2044 case Intrinsic::vector_reduce_fmaximum:
2045 case Intrinsic::vector_reduce_fminimum:
2046 case Intrinsic::vector_reduce_umax:
2047 case Intrinsic::vector_reduce_umin: {
2051 case Intrinsic::vector_reduce_fadd:
2052 case Intrinsic::vector_reduce_fmul: {
2054 IID, RetTy, {Args[0]->getType(), Args[1]->getType()}, FMF,
I, 1);
2057 case Intrinsic::fshl:
2058 case Intrinsic::fshr: {
2059 const Value *
X = Args[0];
2060 const Value *
Y = Args[1];
2061 const Value *Z = Args[2];
2070 thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy,
CostKind);
2072 thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy,
CostKind);
2073 Cost += thisT()->getArithmeticInstrCost(
2074 BinaryOperator::Shl, RetTy,
CostKind, OpInfoX,
2076 Cost += thisT()->getArithmeticInstrCost(
2077 BinaryOperator::LShr, RetTy,
CostKind, OpInfoY,
2083 Cost += thisT()->getArithmeticInstrCost(
2085 : BinaryOperator::URem,
2087 {TTI::OK_UniformConstantValue, TTI::OP_None});
2092 thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2095 thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2100 case Intrinsic::experimental_cttz_elts: {
2105 if (!getTLI()->shouldExpandCttzElements(ArgType))
2118 unsigned EltWidth = getTLI()->getBitWidthForCttzElements(
2129 thisT()->getIntrinsicInstrCost(StepVecAttrs,
CostKind);
2132 thisT()->getArithmeticInstrCost(Instruction::Sub, NewVecTy,
CostKind);
2133 Cost += thisT()->getCastInstrCost(Instruction::SExt, NewVecTy,
2137 thisT()->getArithmeticInstrCost(Instruction::And, NewVecTy,
CostKind);
2140 NewEltTy, NewVecTy, FMF,
I, 1);
2141 Cost += thisT()->getTypeBasedIntrinsicInstrCost(ReducAttrs,
CostKind);
2143 thisT()->getArithmeticInstrCost(Instruction::Sub, NewEltTy,
CostKind);
2147 case Intrinsic::get_active_lane_mask:
2148 case Intrinsic::experimental_vector_match:
2149 case Intrinsic::experimental_vector_histogram_add:
2150 case Intrinsic::experimental_vector_histogram_uadd_sat:
2151 case Intrinsic::experimental_vector_histogram_umax:
2152 case Intrinsic::experimental_vector_histogram_umin:
2153 return thisT()->getTypeBasedIntrinsicInstrCost(ICA,
CostKind);
2154 case Intrinsic::modf:
2155 case Intrinsic::sincos:
2156 case Intrinsic::sincospi: {
2157 std::optional<unsigned> CallRetElementIndex;
2160 if (ICA.
getID() == Intrinsic::modf)
2161 CallRetElementIndex = 0;
2163 if (
auto Cost = getMultipleResultIntrinsicVectorLibCallCost(
2164 ICA,
CostKind, CallRetElementIndex))
2176 ScalarizationCost = 0;
2185 filterConstantAndDuplicatedOperands(Args, ICA.
getArgTypes()),
2191 return thisT()->getTypeBasedIntrinsicInstrCost(Attrs,
CostKind);
2212 unsigned VecTyIndex = 0;
2213 if (IID == Intrinsic::vector_reduce_fadd ||
2214 IID == Intrinsic::vector_reduce_fmul)
2216 assert(Tys.
size() > VecTyIndex &&
"Unexpected IntrinsicCostAttributes");
2233 SkipScalarizationCost ? ScalarizationCostPassed : 0;
2234 unsigned ScalarCalls = 1;
2235 Type *ScalarRetTy = RetTy;
2237 if (!SkipScalarizationCost)
2240 ScalarCalls = std::max(ScalarCalls,
2245 for (
Type *Ty : Tys) {
2247 if (!SkipScalarizationCost)
2250 ScalarCalls = std::max(ScalarCalls,
2252 Ty = Ty->getScalarType();
2256 if (ScalarCalls == 1)
2261 thisT()->getIntrinsicInstrCost(ScalarAttrs,
CostKind);
2263 return ScalarCalls * ScalarCost + ScalarizationCost;
2267 case Intrinsic::sqrt:
2270 case Intrinsic::sin:
2273 case Intrinsic::cos:
2276 case Intrinsic::sincos:
2279 case Intrinsic::sincospi:
2280 ISD = ISD::FSINCOSPI;
2282 case Intrinsic::modf:
2285 case Intrinsic::tan:
2288 case Intrinsic::asin:
2291 case Intrinsic::acos:
2294 case Intrinsic::atan:
2297 case Intrinsic::atan2:
2300 case Intrinsic::sinh:
2303 case Intrinsic::cosh:
2306 case Intrinsic::tanh:
2309 case Intrinsic::exp:
2312 case Intrinsic::exp2:
2315 case Intrinsic::exp10:
2318 case Intrinsic::log:
2321 case Intrinsic::log10:
2324 case Intrinsic::log2:
2327 case Intrinsic::ldexp:
2330 case Intrinsic::fabs:
2333 case Intrinsic::canonicalize:
2336 case Intrinsic::minnum:
2339 case Intrinsic::maxnum:
2342 case Intrinsic::minimum:
2343 ISD = ISD::FMINIMUM;
2345 case Intrinsic::maximum:
2346 ISD = ISD::FMAXIMUM;
2348 case Intrinsic::minimumnum:
2349 ISD = ISD::FMINIMUMNUM;
2351 case Intrinsic::maximumnum:
2352 ISD = ISD::FMAXIMUMNUM;
2354 case Intrinsic::copysign:
2357 case Intrinsic::floor:
2360 case Intrinsic::ceil:
2363 case Intrinsic::trunc:
2366 case Intrinsic::nearbyint:
2367 ISD = ISD::FNEARBYINT;
2369 case Intrinsic::rint:
2372 case Intrinsic::lrint:
2375 case Intrinsic::llrint:
2378 case Intrinsic::round:
2381 case Intrinsic::roundeven:
2382 ISD = ISD::FROUNDEVEN;
2384 case Intrinsic::lround:
2387 case Intrinsic::llround:
2390 case Intrinsic::pow:
2393 case Intrinsic::fma:
2396 case Intrinsic::fmuladd:
2399 case Intrinsic::experimental_constrained_fmuladd:
2403 case Intrinsic::lifetime_start:
2404 case Intrinsic::lifetime_end:
2405 case Intrinsic::sideeffect:
2406 case Intrinsic::pseudoprobe:
2407 case Intrinsic::arithmetic_fence:
2409 case Intrinsic::masked_store: {
2411 Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
2412 return thisT()->getMaskedMemoryOpCost({IID, Ty, TyAlign, 0},
CostKind);
2414 case Intrinsic::masked_load: {
2416 Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
2417 return thisT()->getMaskedMemoryOpCost({IID, Ty, TyAlign, 0},
CostKind);
2419 case Intrinsic::experimental_vp_strided_store: {
2421 Align Alignment = thisT()->DL.getABITypeAlign(Ty->getElementType());
2422 return thisT()->getStridedMemoryOpCost(
2423 Instruction::Store, Ty,
nullptr,
true,
2426 case Intrinsic::experimental_vp_strided_load: {
2428 Align Alignment = thisT()->DL.getABITypeAlign(Ty->getElementType());
2429 return thisT()->getStridedMemoryOpCost(
2430 Instruction::Load, Ty,
nullptr,
true,
2433 case Intrinsic::vector_reduce_add:
2434 case Intrinsic::vector_reduce_mul:
2435 case Intrinsic::vector_reduce_and:
2436 case Intrinsic::vector_reduce_or:
2437 case Intrinsic::vector_reduce_xor:
2438 return thisT()->getArithmeticReductionCost(
2441 case Intrinsic::vector_reduce_fadd:
2442 case Intrinsic::vector_reduce_fmul:
2443 return thisT()->getArithmeticReductionCost(
2445 case Intrinsic::vector_reduce_smax:
2446 case Intrinsic::vector_reduce_smin:
2447 case Intrinsic::vector_reduce_umax:
2448 case Intrinsic::vector_reduce_umin:
2449 case Intrinsic::vector_reduce_fmax:
2450 case Intrinsic::vector_reduce_fmin:
2451 case Intrinsic::vector_reduce_fmaximum:
2452 case Intrinsic::vector_reduce_fminimum:
2455 case Intrinsic::experimental_vector_match: {
2458 unsigned SearchSize = NeedleTy->getNumElements();
2462 EVT SearchVT = getTLI()->getValueType(
DL, SearchTy);
2463 if (!getTLI()->shouldExpandVectorMatch(SearchVT, SearchSize))
2469 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, NeedleTy,
2471 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, SearchTy,
2475 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SearchTy, RetTy,
2478 thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy,
CostKind);
2481 thisT()->getArithmeticInstrCost(BinaryOperator::And, RetTy,
CostKind);
2484 case Intrinsic::vector_reverse:
2488 case Intrinsic::experimental_vector_histogram_add:
2489 case Intrinsic::experimental_vector_histogram_uadd_sat:
2490 case Intrinsic::experimental_vector_histogram_umax:
2491 case Intrinsic::experimental_vector_histogram_umin: {
2499 Align Alignment = thisT()->DL.getABITypeAlign(EltTy);
2501 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, PtrsTy,
2503 Cost += thisT()->getMemoryOpCost(Instruction::Load, EltTy, Alignment, 0,
2508 case Intrinsic::experimental_vector_histogram_add:
2510 thisT()->getArithmeticInstrCost(Instruction::Add, EltTy,
CostKind);
2512 case Intrinsic::experimental_vector_histogram_uadd_sat: {
2514 Cost += thisT()->getIntrinsicInstrCost(UAddSat,
CostKind);
2517 case Intrinsic::experimental_vector_histogram_umax: {
2522 case Intrinsic::experimental_vector_histogram_umin: {
2528 Cost += thisT()->getMemoryOpCost(Instruction::Store, EltTy, Alignment, 0,
2533 case Intrinsic::get_active_lane_mask: {
2535 EVT ResVT = getTLI()->getValueType(
DL, RetTy,
true);
2536 EVT ArgVT = getTLI()->getValueType(
DL, ArgTy,
true);
2540 if (!getTLI()->shouldExpandGetActiveLaneMask(ResVT, ArgVT))
2549 thisT()->getTypeBasedIntrinsicInstrCost(Attrs,
CostKind);
2550 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, ExpRetTy, RetTy,
2554 case Intrinsic::experimental_memset_pattern:
2559 case Intrinsic::abs:
2562 case Intrinsic::fshl:
2565 case Intrinsic::fshr:
2568 case Intrinsic::smax:
2571 case Intrinsic::smin:
2574 case Intrinsic::umax:
2577 case Intrinsic::umin:
2580 case Intrinsic::sadd_sat:
2583 case Intrinsic::ssub_sat:
2586 case Intrinsic::uadd_sat:
2589 case Intrinsic::usub_sat:
2592 case Intrinsic::smul_fix:
2595 case Intrinsic::umul_fix:
2598 case Intrinsic::sadd_with_overflow:
2601 case Intrinsic::ssub_with_overflow:
2604 case Intrinsic::uadd_with_overflow:
2607 case Intrinsic::usub_with_overflow:
2610 case Intrinsic::smul_with_overflow:
2613 case Intrinsic::umul_with_overflow:
2616 case Intrinsic::fptosi_sat:
2617 case Intrinsic::fptoui_sat: {
2623 if (!SrcLT.first.isValid() || !RetLT.first.isValid())
2629 case Intrinsic::ctpop:
2635 case Intrinsic::ctlz:
2638 case Intrinsic::cttz:
2641 case Intrinsic::bswap:
2644 case Intrinsic::bitreverse:
2647 case Intrinsic::ucmp:
2650 case Intrinsic::scmp:
2656 Type *LegalizeTy = ST ? ST->getContainedType(0) : RetTy;
2662 if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
2672 return (LT.first * 2);
2674 return (LT.first * 1);
2678 return (LT.first * 2);
2682 case Intrinsic::fmuladd: {
2686 return thisT()->getArithmeticInstrCost(BinaryOperator::FMul, RetTy,
2688 thisT()->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy,
2691 case Intrinsic::experimental_constrained_fmuladd: {
2693 Intrinsic::experimental_constrained_fmul, RetTy, Tys);
2695 Intrinsic::experimental_constrained_fadd, RetTy, Tys);
2696 return thisT()->getIntrinsicInstrCost(FMulAttrs,
CostKind) +
2697 thisT()->getIntrinsicInstrCost(FAddAttrs,
CostKind);
2699 case Intrinsic::smin:
2700 case Intrinsic::smax:
2701 case Intrinsic::umin:
2702 case Intrinsic::umax: {
2705 bool IsUnsigned = IID == Intrinsic::umax || IID == Intrinsic::umin;
2709 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2711 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2715 case Intrinsic::sadd_with_overflow:
2716 case Intrinsic::ssub_with_overflow: {
2719 unsigned Opcode = IID == Intrinsic::sadd_with_overflow
2720 ? BinaryOperator::Add
2721 : BinaryOperator::Sub;
2728 Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy,
CostKind);
2730 2 * thisT()->getCmpSelInstrCost(Instruction::ICmp, SumTy, OverflowTy,
2732 Cost += thisT()->getArithmeticInstrCost(BinaryOperator::Xor, OverflowTy,
2736 case Intrinsic::uadd_with_overflow:
2737 case Intrinsic::usub_with_overflow: {
2740 unsigned Opcode = IID == Intrinsic::uadd_with_overflow
2741 ? BinaryOperator::Add
2742 : BinaryOperator::Sub;
2748 Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy,
CostKind);
2749 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy,
2753 case Intrinsic::smul_with_overflow:
2754 case Intrinsic::umul_with_overflow: {
2759 bool IsSigned = IID == Intrinsic::smul_with_overflow;
2761 unsigned ExtOp = IsSigned ? Instruction::SExt : Instruction::ZExt;
2765 Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, MulTy, CCH,
CostKind);
2767 thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy,
CostKind);
2768 Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy,
2770 Cost += thisT()->getArithmeticInstrCost(
2775 Cost += thisT()->getArithmeticInstrCost(
2776 Instruction::AShr, MulTy,
CostKind,
2780 Cost += thisT()->getCmpSelInstrCost(
2784 case Intrinsic::sadd_sat:
2785 case Intrinsic::ssub_sat: {
2791 ? Intrinsic::sadd_with_overflow
2792 : Intrinsic::ssub_with_overflow;
2799 nullptr, ScalarizationCostPassed);
2800 Cost += thisT()->getIntrinsicInstrCost(Attrs,
CostKind);
2801 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2803 Cost += 2 * thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
2807 case Intrinsic::uadd_sat:
2808 case Intrinsic::usub_sat: {
2813 ? Intrinsic::uadd_with_overflow
2814 : Intrinsic::usub_with_overflow;
2818 nullptr, ScalarizationCostPassed);
2819 Cost += thisT()->getIntrinsicInstrCost(Attrs,
CostKind);
2821 thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2825 case Intrinsic::smul_fix:
2826 case Intrinsic::umul_fix: {
2831 IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
2835 Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, RetTy, CCH,
CostKind);
2837 thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy,
CostKind);
2838 Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy,
2840 Cost += thisT()->getArithmeticInstrCost(
2843 Cost += thisT()->getArithmeticInstrCost(
2846 Cost += thisT()->getArithmeticInstrCost(Instruction::Or, RetTy,
CostKind);
2849 case Intrinsic::abs: {
2854 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2856 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2859 Cost += thisT()->getArithmeticInstrCost(
2860 BinaryOperator::Sub, RetTy,
CostKind,
2864 case Intrinsic::fshl:
2865 case Intrinsic::fshr: {
2871 thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy,
CostKind);
2873 thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy,
CostKind);
2875 thisT()->getArithmeticInstrCost(BinaryOperator::Shl, RetTy,
CostKind);
2876 Cost += thisT()->getArithmeticInstrCost(BinaryOperator::LShr, RetTy,
2881 Cost += thisT()->getArithmeticInstrCost(
2883 : BinaryOperator::URem,
2884 RetTy,
CostKind, {TTI::OK_AnyValue, TTI::OP_None},
2885 {TTI::OK_UniformConstantValue, TTI::OP_None});
2887 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2889 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2893 case Intrinsic::fptosi_sat:
2894 case Intrinsic::fptoui_sat: {
2897 Type *FromTy = Tys[0];
2898 bool IsSigned = IID == Intrinsic::fptosi_sat;
2903 Cost += thisT()->getIntrinsicInstrCost(Attrs1,
CostKind);
2906 Cost += thisT()->getIntrinsicInstrCost(Attrs2,
CostKind);
2907 Cost += thisT()->getCastInstrCost(
2908 IsSigned ? Instruction::FPToSI : Instruction::FPToUI, RetTy, FromTy,
2912 Cost += thisT()->getCmpSelInstrCost(
2914 Cost += thisT()->getCmpSelInstrCost(
2919 case Intrinsic::ucmp:
2920 case Intrinsic::scmp: {
2921 Type *CmpTy = Tys[0];
2924 thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, CmpTy, CondTy,
2927 thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, CmpTy, CondTy,
2934 Cost += 2 * thisT()->getCmpSelInstrCost(
2935 BinaryOperator::Select, RetTy, CondTy,
2940 2 * thisT()->getCastInstrCost(CastInst::ZExt, RetTy, CondTy,
2942 Cost += thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy,
2947 case Intrinsic::maximumnum:
2948 case Intrinsic::minimumnum: {
2958 IID == Intrinsic::maximumnum ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
2963 thisT()->getIntrinsicInstrCost(FCanonicalizeAttrs,
CostKind);
2964 return LT.first + FCanonicalizeCost * 2;
2984 if (!SkipScalarizationCost) {
2985 ScalarizationCost = 0;
2986 for (
Type *RetVTy : RetVTys) {
2995 for (
Type *Ty : Tys) {
2996 if (Ty->isVectorTy())
2997 Ty = Ty->getScalarType();
3002 thisT()->getIntrinsicInstrCost(Attrs,
CostKind);
3003 for (
Type *Ty : Tys) {
3008 ScalarCalls = std::max(ScalarCalls,
3012 return ScalarCalls * ScalarCost + ScalarizationCost;
3016 return SingleCallCost;
3038 if (!LT.first.isValid())
3043 Tp && LT.second.isFixedLengthVector() &&
3048 return divideCeil(FTp->getNumElements(), SubTp->getNumElements());
3050 return LT.first.getValue();
3087 Type *ScalarTy = Ty->getElementType();
3089 if ((Opcode == Instruction::Or || Opcode == Instruction::And) &&
3099 return thisT()->getCastInstrCost(Instruction::BitCast, ValTy, Ty,
3101 thisT()->getCmpSelInstrCost(Instruction::ICmp, ValTy,
3105 unsigned NumReduxLevels =
Log2_32(NumVecElts);
3108 std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty);
3109 unsigned LongVectorCount = 0;
3111 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
3112 while (NumVecElts > MVTLen) {
3115 ShuffleCost += thisT()->getShuffleCost(
3117 ArithCost += thisT()->getArithmeticInstrCost(Opcode, SubTy,
CostKind);
3122 NumReduxLevels -= LongVectorCount;
3134 NumReduxLevels * thisT()->getArithmeticInstrCost(Opcode, Ty,
CostKind);
3135 return ShuffleCost + ArithCost +
3136 thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
3170 return ExtractCost + ArithCost;
3175 std::optional<FastMathFlags> FMF,
3177 assert(Ty &&
"Unknown reduction vector type");
3193 Type *ScalarTy = Ty->getElementType();
3195 unsigned NumReduxLevels =
Log2_32(NumVecElts);
3198 std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty);
3199 unsigned LongVectorCount = 0;
3201 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
3202 while (NumVecElts > MVTLen) {
3206 ShuffleCost += thisT()->getShuffleCost(
3215 NumReduxLevels -= LongVectorCount;
3228 return ShuffleCost + MinMaxCost +
3229 thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
3235 VectorType *Ty, std::optional<FastMathFlags> FMF,
3238 FTy && IsUnsigned && Opcode == Instruction::Add &&
3246 return thisT()->getCastInstrCost(Instruction::BitCast, IntTy, FTy,
3248 thisT()->getIntrinsicInstrCost(ICA,
CostKind);
3254 thisT()->getArithmeticReductionCost(Opcode, ExtTy, FMF,
CostKind);
3256 IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
3259 return RedCost + ExtCost;
3269 assert((RedOpcode == Instruction::Add || RedOpcode == Instruction::Sub) &&
3270 "The reduction opcode is expected to be Add or Sub.");
3273 RedOpcode, ExtTy, std::nullopt,
CostKind);
3275 IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
3279 thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy,
CostKind);
3281 return RedCost + MulCost + 2 * ExtCost;
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static const Function * getCalledFunction(const Value *V)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
static unsigned getNumElements(Type *Ty)
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool sgt(const APInt &RHS) const
Signed greater than comparison.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
an instruction to allocate memory on the stack
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
size_t size() const
size - Get the array size.
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
InstructionCost getFPOpCost(Type *Ty) const override
bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const override
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false) const override
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
Try to calculate op costs for min/max reduction operations.
bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty) const override
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType, TTI::TargetCostKind CostKind) const override
unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const override
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const override
bool shouldBuildLookupTables() const override
InstructionCost getScalarizationOverhead(VectorType *InTy, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const override
Estimate the overhead of scalarizing an instruction.
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override
bool isProfitableToHoist(Instruction *I) const override
unsigned getNumberOfParts(Type *Tp) const override
unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const override
InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const override
InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const override
bool useAA() const override
unsigned getPrefetchDistance() const override
TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind, ArrayRef< int > Mask, VectorType *SrcTy, int &Index, VectorType *&SubTy) const
unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const override
bool isLegalAddScalableImmediate(int64_t Imm) const override
unsigned getAssumedAddrSpace(const Value *V) const override
std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const override
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I=nullptr, int64_t ScalableOffset=0) const override
bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const override
bool areInlineCompatible(const Function *Caller, const Function *Callee) const override
bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty) const override
bool haveFastSqrt(Type *Ty) const override
bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const override
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Scalar, ArrayRef< std::tuple< Value *, User *, int > > ScalarUserAndIdx) const override
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JumpTableSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const override
Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const override
unsigned adjustInliningThreshold(const CallBase *CB) const override
unsigned getInliningThresholdMultiplier() const override
InstructionCost getExpandCompressMemoryOpCost(unsigned Opcode, Type *DataTy, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset, int64_t MaxOffset)
bool shouldBuildRelLookupTables() const override
bool isTargetIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx) const override
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) const override
unsigned getEpilogueVectorizationMinVF() const override
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index, TTI::TargetCostKind CostKind) const override
InstructionCost getVectorSplitCost() const
bool isTruncateFree(Type *Ty1, Type *Ty2) const override
std::optional< unsigned > getMaxVScale() const override
unsigned getFlatAddressSpace() const override
InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const override
Compute a cost of the given call instruction.
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const override
InstructionCost getTreeReductionCost(unsigned Opcode, VectorType *Ty, TTI::TargetCostKind CostKind) const
Try to calculate arithmetic and shuffle op costs for reduction intrinsics.
~BasicTTIImplBase() override=default
std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const override
unsigned getMaxPrefetchIterationsAhead() const override
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
InstructionCost getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
Get intrinsic cost based on argument types.
bool hasBranchDivergence(const Function *F=nullptr) const override
InstructionCost getOrderedReductionCost(unsigned Opcode, VectorType *Ty, TTI::TargetCostKind CostKind) const
Try to calculate the cost of performing strict (in-order) reductions, which involves doing a sequence...
bool isTargetIntrinsicTriviallyScalarizable(Intrinsic::ID ID) const override
bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const override
std::optional< unsigned > getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const override
bool shouldPrefetchAddressSpace(unsigned AS) const override
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, Align Alignment, unsigned *Fast) const override
unsigned getCacheLineSize() const override
std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const override
bool shouldDropLSRSolutionIfLessProfitable() const override
int getInlinerVectorBonusPercent() const override
bool isVScaleKnownToBeAPowerOfTwo() const override
InstructionCost getMulAccReductionCost(bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind) const override
InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const override
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
std::pair< InstructionCost, MVT > getTypeLegalizationCost(Type *Ty) const
Estimate the cost of type-legalization and the legalized type.
bool isLegalAddImmediate(int64_t imm) const override
InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind) const override
unsigned getMaxInterleaveFactor(ElementCount VF) const override
bool isSingleThreaded() const override
InstructionCost getScalarizationOverhead(VectorType *InTy, bool Insert, bool Extract, TTI::TargetCostKind CostKind) const
Helper wrapper for the DemandedElts variant of getScalarizationOverhead.
InstructionCost getMaskedMemoryOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const override
bool isProfitableLSRChainElement(Instruction *I) const override
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override
bool isTargetIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx) const override
bool isTargetIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx) const override
std::optional< unsigned > getVScaleForTuning() const override
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
Get intrinsic cost based on arguments.
TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const override
std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const override
InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *, const SCEV *, TTI::TargetCostKind) const override
bool isSourceOfDivergence(const Value *V) const override
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const override
InstructionCost getScalarizationOverhead(VectorType *RetTy, ArrayRef< const Value * > Args, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing the inputs and outputs of an instruction, with return type RetTy...
std::optional< unsigned > getCacheSize(TargetTransformInfo::CacheLevel Level) const override
bool isAlwaysUniform(const Value *V) const override
bool isLegalICmpImmediate(int64_t imm) const override
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const override
unsigned getRegUsageForType(Type *Ty) const override
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
bool isTypeLegal(Type *Ty) const override
bool enableWritePrefetching() const override
bool isLSRCostLess(const TTI::LSRCost &C1, const TTI::LSRCost &C2) const override
InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const override
Estimate the overhead of scalarizing an instruction's operands.
bool isNumRegsMajorCostOfLSR() const override
BasicTTIImpl(const TargetMachine *TM, const Function &F)
size_type count() const
count - Returns the number of bits which are set.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ ICMP_ULT
unsigned less than
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
static CmpInst::Predicate getGTPredicate(Intrinsic::ID ID)
static CmpInst::Predicate getLTPredicate(Intrinsic::ID ID)
This class represents a range of values.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
Container class for subtarget features.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
AttributeList getAttributes() const
Return the attribute list for this Function.
The core instruction combiner logic.
static InstructionCost getInvalid(CostType Val=0)
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
FastMathFlags getFlags() const
const TargetLibraryInfo * getLibInfo() const
const SmallVectorImpl< Type * > & getArgTypes() const
Type * getReturnType() const
bool skipScalarizationCost() const
const SmallVectorImpl< const Value * > & getArgs() const
InstructionCost getScalarizationCost() const
const IntrinsicInst * getInst() const
Intrinsic::ID getID() const
bool isTypeBasedOnly() const
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
const FeatureBitset & getFeatureBits() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Information for memory intrinsic cost model.
Align getAlignment() const
Type * getDataType() const
Intrinsic::ID getID() const
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Analysis providing profile information.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
static LLVM_ABI bool isZeroEltSplatMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses all elements with the same value as the first element of exa...
static LLVM_ABI bool isSpliceMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is a splice mask, concatenating the two inputs together and then ext...
static LLVM_ABI bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
static LLVM_ABI bool isExtractSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is an extract subvector mask.
static LLVM_ABI bool isReverseMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask swaps the order of elements from exactly one source vector.
static LLVM_ABI bool isTransposeMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask is a transpose mask.
static LLVM_ABI bool isInsertSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &NumSubElts, int &Index)
Return true if this shuffle mask is an insert subvector mask.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
static StackOffset getScalable(int64_t Scalable)
static StackOffset getFixed(int64_t Fixed)
static LLVM_ABI StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool preferSelectsOverBooleanArithmetic(EVT VT) const
Should we prefer selects to doing arithmetic on boolean types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
@ TypeScalarizeScalableVector
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
virtual bool areJTsAllowed(const Function *Fn) const
Return true if lowering to a jump table is allowed.
bool isOperationLegalOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal using promotion.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
bool isSuitableForBitTests(const DenseMap< const BasicBlock *, unsigned int > &DestCmps, const APInt &Low, const APInt &High, const DataLayout &DL) const
Return true if lowering to a bit test is suitable for a set of case clusters which contains NumDests ...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const
Return how this store with truncation should be treated: either it is legal, needs to be promoted to ...
LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return how this load with extension should be treated: either it is legal, needs to be promoted to a ...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
const Triple & getTargetTriple() const
virtual const TargetSubtargetInfo * getSubtargetImpl(const Function &) const
Virtual method implemented by subclasses that returns a reference to that target's TargetSubtargetInf...
CodeModel::Model getCodeModel() const
Returns the code model.
TargetSubtargetInfo - Generic base class for all target subtargets.
Triple - Helper class for working with autoconf configuration names.
ArchType getArch() const
Get the parsed architecture type of this triple.
LLVM_ABI bool isArch64Bit() const
Test whether the architecture is 64-bit.
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
bool isVoidTy() const
Return true if this is 'void'.
Value * getOperand(unsigned i) const
static LLVM_ABI bool isVPBinOp(Intrinsic::ID ID)
static LLVM_ABI bool isVPCast(Intrinsic::ID ID)
static LLVM_ABI bool isVPCmp(Intrinsic::ID ID)
static LLVM_ABI std::optional< unsigned > getFunctionalOpcodeForVP(Intrinsic::ID ID)
static LLVM_ABI std::optional< Intrinsic::ID > getFunctionalIntrinsicIDForVP(Intrinsic::ID ID)
static LLVM_ABI bool isVPIntrinsic(Intrinsic::ID)
static LLVM_ABI bool isVPReduction(Intrinsic::ID ID)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
Base class of all SIMD vector types.
static VectorType * getHalfElementsVectorType(VectorType *VTy)
This static method returns a VectorType with half as many elements as the input type and the same ele...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ SMULO
Same for multiplication.
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isTargetIntrinsic(ID IID)
isTargetIntrinsic - Returns true if IID is an intrinsic specific to a certain target.
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMODF(EVT RetVT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
DiagnosticInfoOptimizationBase::Argument NV
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Type * toScalarizedTy(Type *Ty)
A helper for converting vectorized types to scalarized (non-vector) types.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_ABI unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID)
Returns the arithmetic instruction opcode used when expanding a reduction.
bool isVectorizedTy(Type *Ty)
Returns true if Ty is a vector type or a struct of vector types where all vector types share the same...
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
auto dyn_cast_or_null(const Y &Val)
constexpr bool has_single_bit(T Value) noexcept
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
ElementCount getVectorizedTypeVF(Type *Ty)
Returns the number of vector elements for a vectorized type.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
FunctionAddr VTableAddr uintptr_t uintptr_t Data
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
cl::opt< unsigned > PartialUnrollingThreshold
LLVM_ABI bool isVectorizedStructTy(StructType *StructTy)
Returns true if StructTy is an unpacked literal struct where all elements are vectors of matching ele...
This struct is a compact representation of a valid (non-zero power of two) alignment.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
ElementCount getVectorElementCount() const
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
Attributes of a target dependent hardware loop.
static bool hasVectorMaskArgument(RTLIB::LibcallImpl Impl)
Returns true if the function has a vector mask argument, which is assumed to be the last argument.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...