LLVM 22.0.0git
BasicTTIImpl.h
Go to the documentation of this file.
1//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file provides a helper that implements much of the TTI interface in
11/// terms of the target-independent code generator and TargetLowering
12/// interfaces.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
17#define LLVM_CODEGEN_BASICTTIIMPL_H
18
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/STLExtras.h"
35#include "llvm/IR/BasicBlock.h"
36#include "llvm/IR/Constant.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/Operator.h"
45#include "llvm/IR/Type.h"
46#include "llvm/IR/Value.h"
54#include <algorithm>
55#include <cassert>
56#include <cstdint>
57#include <limits>
58#include <optional>
59#include <utility>
60
61namespace llvm {
62
63class Function;
64class GlobalValue;
65class LLVMContext;
66class ScalarEvolution;
67class SCEV;
68class TargetMachine;
69
71
72/// Base class which can be used to help build a TTI implementation.
73///
74/// This class provides as much implementation of the TTI interface as is
75/// possible using the target independent parts of the code generator.
76///
77/// In order to subclass it, your class must implement a getST() method to
78/// return the subtarget, and a getTLI() method to return the target lowering.
79/// We need these methods implemented in the derived class so that this class
80/// doesn't have to duplicate storage for them.
81template <typename T>
83private:
85 using TTI = TargetTransformInfo;
86
87 /// Helper function to access this as a T.
88 const T *thisT() const { return static_cast<const T *>(this); }
89
90 /// Estimate a cost of Broadcast as an extract and sequence of insert
91 /// operations.
93 getBroadcastShuffleOverhead(FixedVectorType *VTy,
96 // Broadcast cost is equal to the cost of extracting the zero'th element
97 // plus the cost of inserting it into every element of the result vector.
98 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
99 CostKind, 0, nullptr, nullptr);
100
101 for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
102 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
103 CostKind, i, nullptr, nullptr);
104 }
105 return Cost;
106 }
107
108 /// Estimate a cost of shuffle as a sequence of extract and insert
109 /// operations.
111 getPermuteShuffleOverhead(FixedVectorType *VTy,
114 // Shuffle cost is equal to the cost of extracting element from its argument
115 // plus the cost of inserting them onto the result vector.
116
117 // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
118 // index 0 of first vector, index 1 of second vector,index 2 of first
119 // vector and finally index 3 of second vector and insert them at index
120 // <0,1,2,3> of result vector.
121 for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
122 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
123 CostKind, i, nullptr, nullptr);
124 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
125 CostKind, i, nullptr, nullptr);
126 }
127 return Cost;
128 }
129
130 /// Estimate a cost of subvector extraction as a sequence of extract and
131 /// insert operations.
132 InstructionCost getExtractSubvectorOverhead(VectorType *VTy,
134 int Index,
135 FixedVectorType *SubVTy) const {
136 assert(VTy && SubVTy &&
137 "Can only extract subvectors from vectors");
138 int NumSubElts = SubVTy->getNumElements();
140 (Index + NumSubElts) <=
142 "SK_ExtractSubvector index out of range");
143
145 // Subvector extraction cost is equal to the cost of extracting element from
146 // the source type plus the cost of inserting them into the result vector
147 // type.
148 for (int i = 0; i != NumSubElts; ++i) {
149 Cost +=
150 thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
151 CostKind, i + Index, nullptr, nullptr);
152 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, SubVTy,
153 CostKind, i, nullptr, nullptr);
154 }
155 return Cost;
156 }
157
158 /// Estimate a cost of subvector insertion as a sequence of extract and
159 /// insert operations.
160 InstructionCost getInsertSubvectorOverhead(VectorType *VTy,
162 int Index,
163 FixedVectorType *SubVTy) const {
164 assert(VTy && SubVTy &&
165 "Can only insert subvectors into vectors");
166 int NumSubElts = SubVTy->getNumElements();
168 (Index + NumSubElts) <=
170 "SK_InsertSubvector index out of range");
171
173 // Subvector insertion cost is equal to the cost of extracting element from
174 // the source type plus the cost of inserting them into the result vector
175 // type.
176 for (int i = 0; i != NumSubElts; ++i) {
177 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVTy,
178 CostKind, i, nullptr, nullptr);
179 Cost +=
180 thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, CostKind,
181 i + Index, nullptr, nullptr);
182 }
183 return Cost;
184 }
185
186 /// Local query method delegates up to T which *must* implement this!
187 const TargetSubtargetInfo *getST() const {
188 return static_cast<const T *>(this)->getST();
189 }
190
191 /// Local query method delegates up to T which *must* implement this!
192 const TargetLoweringBase *getTLI() const {
193 return static_cast<const T *>(this)->getTLI();
194 }
195
196 static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
197 switch (M) {
199 return ISD::UNINDEXED;
200 case TTI::MIM_PreInc:
201 return ISD::PRE_INC;
202 case TTI::MIM_PreDec:
203 return ISD::PRE_DEC;
204 case TTI::MIM_PostInc:
205 return ISD::POST_INC;
206 case TTI::MIM_PostDec:
207 return ISD::POST_DEC;
208 }
209 llvm_unreachable("Unexpected MemIndexedMode");
210 }
211
212 InstructionCost getCommonMaskedMemoryOpCost(unsigned Opcode, Type *DataTy,
213 Align Alignment,
214 bool VariableMask,
215 bool IsGatherScatter,
217 unsigned AddressSpace = 0) const {
218 // We cannot scalarize scalable vectors, so return Invalid.
219 if (isa<ScalableVectorType>(DataTy))
221
222 auto *VT = cast<FixedVectorType>(DataTy);
223 unsigned VF = VT->getNumElements();
224
225 // Assume the target does not have support for gather/scatter operations
226 // and provide a rough estimate.
227 //
228 // First, compute the cost of the individual memory operations.
229 InstructionCost AddrExtractCost =
230 IsGatherScatter ? getScalarizationOverhead(
232 PointerType::get(VT->getContext(), 0), VF),
233 /*Insert=*/false, /*Extract=*/true, CostKind)
234 : 0;
235
236 // The cost of the scalar loads/stores.
237 InstructionCost MemoryOpCost =
238 VF * thisT()->getMemoryOpCost(Opcode, VT->getElementType(), Alignment,
240
241 // Next, compute the cost of packing the result in a vector.
242 InstructionCost PackingCost =
243 getScalarizationOverhead(VT, Opcode != Instruction::Store,
244 Opcode == Instruction::Store, CostKind);
245
246 InstructionCost ConditionalCost = 0;
247 if (VariableMask) {
248 // Compute the cost of conditionally executing the memory operations with
249 // variable masks. This includes extracting the individual conditions, a
250 // branches and PHIs to combine the results.
251 // NOTE: Estimating the cost of conditionally executing the memory
252 // operations accurately is quite difficult and the current solution
253 // provides a very rough estimate only.
254 ConditionalCost =
257 /*Insert=*/false, /*Extract=*/true, CostKind) +
258 VF * (thisT()->getCFInstrCost(Instruction::Br, CostKind) +
259 thisT()->getCFInstrCost(Instruction::PHI, CostKind));
260 }
261
262 return AddrExtractCost + MemoryOpCost + PackingCost + ConditionalCost;
263 }
264
265 /// Checks if the provided mask \p is a splat mask, i.e. it contains only -1
266 /// or same non -1 index value and this index value contained at least twice.
267 /// So, mask <0, -1,-1, -1> is not considered splat (it is just identity),
268 /// same for <-1, 0, -1, -1> (just a slide), while <2, -1, 2, -1> is a splat
269 /// with \p Index=2.
270 static bool isSplatMask(ArrayRef<int> Mask, unsigned NumSrcElts, int &Index) {
271 // Check that the broadcast index meets at least twice.
272 bool IsCompared = false;
273 if (int SplatIdx = PoisonMaskElem;
274 all_of(enumerate(Mask), [&](const auto &P) {
275 if (P.value() == PoisonMaskElem)
276 return P.index() != Mask.size() - 1 || IsCompared;
277 if (static_cast<unsigned>(P.value()) >= NumSrcElts * 2)
278 return false;
279 if (SplatIdx == PoisonMaskElem) {
280 SplatIdx = P.value();
281 return P.index() != Mask.size() - 1;
282 }
283 IsCompared = true;
284 return SplatIdx == P.value();
285 })) {
286 Index = SplatIdx;
287 return true;
288 }
289 return false;
290 }
291
292 /// Several intrinsics that return structs (including llvm.sincos[pi] and
293 /// llvm.modf) can be lowered to a vector library call (for certain VFs). The
294 /// vector library functions correspond to the scalar calls (e.g. sincos or
295 /// modf), which unlike the intrinsic return values via output pointers. This
296 /// helper checks if a vector call exists for the given intrinsic, and returns
297 /// the cost, which includes the cost of the mask (if required), and the loads
298 /// for values returned via output pointers. \p LC is the scalar libcall and
299 /// \p CallRetElementIndex (optional) is the struct element which is mapped to
300 /// the call return value. If std::nullopt is returned, then no vector library
301 /// call is available, so the intrinsic should be assigned the default cost
302 /// (e.g. scalarization).
303 std::optional<InstructionCost> getMultipleResultIntrinsicVectorLibCallCost(
305 std::optional<unsigned> CallRetElementIndex = {}) const {
306 Type *RetTy = ICA.getReturnType();
307 // Vector variants of the intrinsic can be mapped to a vector library call.
308 auto const *LibInfo = ICA.getLibInfo();
309 if (!LibInfo || !isa<StructType>(RetTy) ||
311 return std::nullopt;
312
313 Type *Ty = getContainedTypes(RetTy).front();
314 EVT VT = getTLI()->getValueType(DL, Ty);
315
316 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
317
318 switch (ICA.getID()) {
319 case Intrinsic::modf:
320 LC = RTLIB::getMODF(VT);
321 break;
322 case Intrinsic::sincospi:
323 LC = RTLIB::getSINCOSPI(VT);
324 break;
325 case Intrinsic::sincos:
326 LC = RTLIB::getSINCOS(VT);
327 break;
328 default:
329 return std::nullopt;
330 }
331
332 // Find associated libcall.
333 RTLIB::LibcallImpl LibcallImpl = getTLI()->getLibcallImpl(LC);
334 if (LibcallImpl == RTLIB::Unsupported)
335 return std::nullopt;
336
337 LLVMContext &Ctx = RetTy->getContext();
338
339 // Cost the call + mask.
340 auto Cost =
341 thisT()->getCallInstrCost(nullptr, RetTy, ICA.getArgTypes(), CostKind);
342
345 auto VecTy = VectorType::get(IntegerType::getInt1Ty(Ctx), VF);
346 Cost += thisT()->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy,
347 VecTy, {}, CostKind, 0, nullptr, {});
348 }
349
350 // Lowering to a library call (with output pointers) may require us to emit
351 // reloads for the results.
352 for (auto [Idx, VectorTy] : enumerate(getContainedTypes(RetTy))) {
353 if (Idx == CallRetElementIndex)
354 continue;
355 Cost += thisT()->getMemoryOpCost(
356 Instruction::Load, VectorTy,
357 thisT()->getDataLayout().getABITypeAlign(VectorTy), 0, CostKind);
358 }
359 return Cost;
360 }
361
362 /// Filter out constant and duplicated entries in \p Ops and return a vector
363 /// containing the types from \p Tys corresponding to the remaining operands.
365 filterConstantAndDuplicatedOperands(ArrayRef<const Value *> Ops,
366 ArrayRef<Type *> Tys) {
367 SmallPtrSet<const Value *, 4> UniqueOperands;
368 SmallVector<Type *, 4> FilteredTys;
369 for (const auto &[Op, Ty] : zip_equal(Ops, Tys)) {
370 if (isa<Constant>(Op) || !UniqueOperands.insert(Op).second)
371 continue;
372 FilteredTys.push_back(Ty);
373 }
374 return FilteredTys;
375 }
376
377protected:
378 explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
379 : BaseT(DL) {}
380 ~BasicTTIImplBase() override = default;
381
383
384public:
385 /// \name Scalar TTI Implementations
386 /// @{
388 unsigned AddressSpace, Align Alignment,
389 unsigned *Fast) const override {
390 EVT E = EVT::getIntegerVT(Context, BitWidth);
391 return getTLI()->allowsMisalignedMemoryAccesses(
393 }
394
395 bool areInlineCompatible(const Function *Caller,
396 const Function *Callee) const override {
397 const TargetMachine &TM = getTLI()->getTargetMachine();
398
399 const FeatureBitset &CallerBits =
400 TM.getSubtargetImpl(*Caller)->getFeatureBits();
401 const FeatureBitset &CalleeBits =
402 TM.getSubtargetImpl(*Callee)->getFeatureBits();
403
404 // Inline a callee if its target-features are a subset of the callers
405 // target-features.
406 return (CallerBits & CalleeBits) == CalleeBits;
407 }
408
409 bool hasBranchDivergence(const Function *F = nullptr) const override {
410 return false;
411 }
412
413 bool isSourceOfDivergence(const Value *V) const override { return false; }
414
415 bool isAlwaysUniform(const Value *V) const override { return false; }
416
417 bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
418 return false;
419 }
420
421 bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const override {
422 return true;
423 }
424
425 unsigned getFlatAddressSpace() const override {
426 // Return an invalid address space.
427 return -1;
428 }
429
431 Intrinsic::ID IID) const override {
432 return false;
433 }
434
435 bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
436 return getTLI()->getTargetMachine().isNoopAddrSpaceCast(FromAS, ToAS);
437 }
438
439 unsigned getAssumedAddrSpace(const Value *V) const override {
440 return getTLI()->getTargetMachine().getAssumedAddrSpace(V);
441 }
442
443 bool isSingleThreaded() const override {
444 return getTLI()->getTargetMachine().Options.ThreadModel ==
446 }
447
448 std::pair<const Value *, unsigned>
449 getPredicatedAddrSpace(const Value *V) const override {
450 return getTLI()->getTargetMachine().getPredicatedAddrSpace(V);
451 }
452
454 Value *NewV) const override {
455 return nullptr;
456 }
457
458 bool isLegalAddImmediate(int64_t imm) const override {
459 return getTLI()->isLegalAddImmediate(imm);
460 }
461
462 bool isLegalAddScalableImmediate(int64_t Imm) const override {
463 return getTLI()->isLegalAddScalableImmediate(Imm);
464 }
465
466 bool isLegalICmpImmediate(int64_t imm) const override {
467 return getTLI()->isLegalICmpImmediate(imm);
468 }
469
470 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
471 bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
472 Instruction *I = nullptr,
473 int64_t ScalableOffset = 0) const override {
475 AM.BaseGV = BaseGV;
476 AM.BaseOffs = BaseOffset;
477 AM.HasBaseReg = HasBaseReg;
478 AM.Scale = Scale;
479 AM.ScalableOffset = ScalableOffset;
480 return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
481 }
482
483 int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset, int64_t MaxOffset) {
484 return getTLI()->getPreferredLargeGEPBaseOffset(MinOffset, MaxOffset);
485 }
486
487 unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
488 Type *ScalarValTy) const override {
489 auto &&IsSupportedByTarget = [this, ScalarMemTy, ScalarValTy](unsigned VF) {
490 auto *SrcTy = FixedVectorType::get(ScalarMemTy, VF / 2);
491 EVT VT = getTLI()->getValueType(DL, SrcTy);
492 if (getTLI()->isOperationLegal(ISD::STORE, VT) ||
493 getTLI()->isOperationCustom(ISD::STORE, VT))
494 return true;
495
496 EVT ValVT =
497 getTLI()->getValueType(DL, FixedVectorType::get(ScalarValTy, VF / 2));
498 EVT LegalizedVT =
499 getTLI()->getTypeToTransformTo(ScalarMemTy->getContext(), VT);
500 return getTLI()->isTruncStoreLegal(LegalizedVT, ValVT);
501 };
502 while (VF > 2 && IsSupportedByTarget(VF))
503 VF /= 2;
504 return VF;
505 }
506
507 bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty) const override {
508 EVT VT = getTLI()->getValueType(DL, Ty, /*AllowUnknown=*/true);
509 return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
510 }
511
512 bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty) const override {
513 EVT VT = getTLI()->getValueType(DL, Ty, /*AllowUnknown=*/true);
514 return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
515 }
516
518 const TTI::LSRCost &C2) const override {
520 }
521
525
529
533
535 StackOffset BaseOffset, bool HasBaseReg,
536 int64_t Scale,
537 unsigned AddrSpace) const override {
539 AM.BaseGV = BaseGV;
540 AM.BaseOffs = BaseOffset.getFixed();
541 AM.HasBaseReg = HasBaseReg;
542 AM.Scale = Scale;
543 AM.ScalableOffset = BaseOffset.getScalable();
544 if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace))
545 return 0;
547 }
548
549 bool isTruncateFree(Type *Ty1, Type *Ty2) const override {
550 return getTLI()->isTruncateFree(Ty1, Ty2);
551 }
552
553 bool isProfitableToHoist(Instruction *I) const override {
554 return getTLI()->isProfitableToHoist(I);
555 }
556
557 bool useAA() const override { return getST()->useAA(); }
558
559 bool isTypeLegal(Type *Ty) const override {
560 EVT VT = getTLI()->getValueType(DL, Ty, /*AllowUnknown=*/true);
561 return getTLI()->isTypeLegal(VT);
562 }
563
564 unsigned getRegUsageForType(Type *Ty) const override {
565 EVT ETy = getTLI()->getValueType(DL, Ty);
566 return getTLI()->getNumRegisters(Ty->getContext(), ETy);
567 }
568
569 InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
570 ArrayRef<const Value *> Operands, Type *AccessType,
571 TTI::TargetCostKind CostKind) const override {
572 return BaseT::getGEPCost(PointeeType, Ptr, Operands, AccessType, CostKind);
573 }
574
576 const SwitchInst &SI, unsigned &JumpTableSize, ProfileSummaryInfo *PSI,
577 BlockFrequencyInfo *BFI) const override {
578 /// Try to find the estimated number of clusters. Note that the number of
579 /// clusters identified in this function could be different from the actual
580 /// numbers found in lowering. This function ignore switches that are
581 /// lowered with a mix of jump table / bit test / BTree. This function was
582 /// initially intended to be used when estimating the cost of switch in
583 /// inline cost heuristic, but it's a generic cost model to be used in other
584 /// places (e.g., in loop unrolling).
585 unsigned N = SI.getNumCases();
586 const TargetLoweringBase *TLI = getTLI();
587 const DataLayout &DL = this->getDataLayout();
588
589 JumpTableSize = 0;
590 bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
591
592 // Early exit if both a jump table and bit test are not allowed.
593 if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
594 return N;
595
596 APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
597 APInt MinCaseVal = MaxCaseVal;
598 for (auto CI : SI.cases()) {
599 const APInt &CaseVal = CI.getCaseValue()->getValue();
600 if (CaseVal.sgt(MaxCaseVal))
601 MaxCaseVal = CaseVal;
602 if (CaseVal.slt(MinCaseVal))
603 MinCaseVal = CaseVal;
604 }
605
606 // Check if suitable for a bit test
607 if (N <= DL.getIndexSizeInBits(0u)) {
609 for (auto I : SI.cases()) {
610 const BasicBlock *BB = I.getCaseSuccessor();
611 ++DestMap[BB];
612 }
613
614 if (TLI->isSuitableForBitTests(DestMap, MinCaseVal, MaxCaseVal, DL))
615 return 1;
616 }
617
618 // Check if suitable for a jump table.
619 if (IsJTAllowed) {
620 if (N < 2 || N < TLI->getMinimumJumpTableEntries())
621 return N;
623 (MaxCaseVal - MinCaseVal)
624 .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
625 // Check whether a range of clusters is dense enough for a jump table
626 if (TLI->isSuitableForJumpTable(&SI, N, Range, PSI, BFI)) {
627 JumpTableSize = Range;
628 return 1;
629 }
630 }
631 return N;
632 }
633
634 bool shouldBuildLookupTables() const override {
635 const TargetLoweringBase *TLI = getTLI();
636 return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
637 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
638 }
639
640 bool shouldBuildRelLookupTables() const override {
641 const TargetMachine &TM = getTLI()->getTargetMachine();
642 // If non-PIC mode, do not generate a relative lookup table.
643 if (!TM.isPositionIndependent())
644 return false;
645
646 /// Relative lookup table entries consist of 32-bit offsets.
647 /// Do not generate relative lookup tables for large code models
648 /// in 64-bit achitectures where 32-bit offsets might not be enough.
649 if (TM.getCodeModel() == CodeModel::Medium ||
651 return false;
652
653 const Triple &TargetTriple = TM.getTargetTriple();
654 if (!TargetTriple.isArch64Bit())
655 return false;
656
657 // TODO: Triggers issues on aarch64 on darwin, so temporarily disable it
658 // there.
659 if (TargetTriple.getArch() == Triple::aarch64 && TargetTriple.isOSDarwin())
660 return false;
661
662 return true;
663 }
664
665 bool haveFastSqrt(Type *Ty) const override {
666 const TargetLoweringBase *TLI = getTLI();
667 EVT VT = TLI->getValueType(DL, Ty);
668 return TLI->isTypeLegal(VT) &&
669 TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
670 }
671
672 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const override { return true; }
673
674 InstructionCost getFPOpCost(Type *Ty) const override {
675 // Check whether FADD is available, as a proxy for floating-point in
676 // general.
677 const TargetLoweringBase *TLI = getTLI();
678 EVT VT = TLI->getValueType(DL, Ty);
682 }
683
685 const Function &Fn) const override {
686 switch (Inst.getOpcode()) {
687 default:
688 break;
689 case Instruction::SDiv:
690 case Instruction::SRem:
691 case Instruction::UDiv:
692 case Instruction::URem: {
693 if (!isa<ConstantInt>(Inst.getOperand(1)))
694 return false;
695 EVT VT = getTLI()->getValueType(DL, Inst.getType());
696 return !getTLI()->isIntDivCheap(VT, Fn.getAttributes());
697 }
698 };
699
700 return false;
701 }
702
703 unsigned getInliningThresholdMultiplier() const override { return 1; }
704 unsigned adjustInliningThreshold(const CallBase *CB) const override {
705 return 0;
706 }
707 unsigned getCallerAllocaCost(const CallBase *CB,
708 const AllocaInst *AI) const override {
709 return 0;
710 }
711
712 int getInlinerVectorBonusPercent() const override { return 150; }
713
716 OptimizationRemarkEmitter *ORE) const override {
717 // This unrolling functionality is target independent, but to provide some
718 // motivation for its intended use, for x86:
719
720 // According to the Intel 64 and IA-32 Architectures Optimization Reference
721 // Manual, Intel Core models and later have a loop stream detector (and
722 // associated uop queue) that can benefit from partial unrolling.
723 // The relevant requirements are:
724 // - The loop must have no more than 4 (8 for Nehalem and later) branches
725 // taken, and none of them may be calls.
726 // - The loop can have no more than 18 (28 for Nehalem and later) uops.
727
728 // According to the Software Optimization Guide for AMD Family 15h
729 // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
730 // and loop buffer which can benefit from partial unrolling.
731 // The relevant requirements are:
732 // - The loop must have fewer than 16 branches
733 // - The loop must have less than 40 uops in all executed loop branches
734
735 // The number of taken branches in a loop is hard to estimate here, and
736 // benchmarking has revealed that it is better not to be conservative when
737 // estimating the branch count. As a result, we'll ignore the branch limits
738 // until someone finds a case where it matters in practice.
739
740 unsigned MaxOps;
741 const TargetSubtargetInfo *ST = getST();
742 if (PartialUnrollingThreshold.getNumOccurrences() > 0)
744 else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
745 MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
746 else
747 return;
748
749 // Scan the loop: don't unroll loops with calls.
750 for (BasicBlock *BB : L->blocks()) {
751 for (Instruction &I : *BB) {
752 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
753 if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
754 if (!thisT()->isLoweredToCall(F))
755 continue;
756 }
757
758 if (ORE) {
759 ORE->emit([&]() {
760 return OptimizationRemark("TTI", "DontUnroll", L->getStartLoc(),
761 L->getHeader())
762 << "advising against unrolling the loop because it "
763 "contains a "
764 << ore::NV("Call", &I);
765 });
766 }
767 return;
768 }
769 }
770 }
771
772 // Enable runtime and partial unrolling up to the specified size.
773 // Enable using trip count upper bound to unroll loops.
774 UP.Partial = UP.Runtime = UP.UpperBound = true;
775 UP.PartialThreshold = MaxOps;
776
777 // Avoid unrolling when optimizing for size.
778 UP.OptSizeThreshold = 0;
780
781 // Set number of instructions optimized when "back edge"
782 // becomes "fall through" to default value of 2.
783 UP.BEInsns = 2;
784 }
785
787 TTI::PeelingPreferences &PP) const override {
788 PP.PeelCount = 0;
789 PP.AllowPeeling = true;
790 PP.AllowLoopNestsPeeling = false;
791 PP.PeelProfiledIterations = true;
792 }
793
796 HardwareLoopInfo &HWLoopInfo) const override {
797 return BaseT::isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
798 }
799
800 unsigned getEpilogueVectorizationMinVF() const override {
802 }
803
806 }
807
809 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const override {
810 return BaseT::getPreferredTailFoldingStyle(IVUpdateMayOverflow);
811 }
812
813 std::optional<Instruction *>
816 }
817
818 std::optional<Value *>
820 APInt DemandedMask, KnownBits &Known,
821 bool &KnownBitsComputed) const override {
822 return BaseT::simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
823 KnownBitsComputed);
824 }
825
827 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
828 APInt &UndefElts2, APInt &UndefElts3,
829 std::function<void(Instruction *, unsigned, APInt, APInt &)>
830 SimplifyAndSetOp) const override {
832 IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
833 SimplifyAndSetOp);
834 }
835
836 std::optional<unsigned>
838 return std::optional<unsigned>(
839 getST()->getCacheSize(static_cast<unsigned>(Level)));
840 }
841
842 std::optional<unsigned>
844 std::optional<unsigned> TargetResult =
845 getST()->getCacheAssociativity(static_cast<unsigned>(Level));
846
847 if (TargetResult)
848 return TargetResult;
849
850 return BaseT::getCacheAssociativity(Level);
851 }
852
853 unsigned getCacheLineSize() const override {
854 return getST()->getCacheLineSize();
855 }
856
857 unsigned getPrefetchDistance() const override {
858 return getST()->getPrefetchDistance();
859 }
860
861 unsigned getMinPrefetchStride(unsigned NumMemAccesses,
862 unsigned NumStridedMemAccesses,
863 unsigned NumPrefetches,
864 bool HasCall) const override {
865 return getST()->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
866 NumPrefetches, HasCall);
867 }
868
869 unsigned getMaxPrefetchIterationsAhead() const override {
870 return getST()->getMaxPrefetchIterationsAhead();
871 }
872
873 bool enableWritePrefetching() const override {
874 return getST()->enableWritePrefetching();
875 }
876
877 bool shouldPrefetchAddressSpace(unsigned AS) const override {
878 return getST()->shouldPrefetchAddressSpace(AS);
879 }
880
881 /// @}
882
883 /// \name Vector TTI Implementations
884 /// @{
885
890
891 std::optional<unsigned> getMaxVScale() const override { return std::nullopt; }
892 std::optional<unsigned> getVScaleForTuning() const override {
893 return std::nullopt;
894 }
895 bool isVScaleKnownToBeAPowerOfTwo() const override { return false; }
896
897 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
898 /// are set if the demanded result elements need to be inserted and/or
899 /// extracted from vectors.
901 VectorType *InTy, const APInt &DemandedElts, bool Insert, bool Extract,
902 TTI::TargetCostKind CostKind, bool ForPoisonSrc = true,
903 ArrayRef<Value *> VL = {}) const override {
904 /// FIXME: a bitfield is not a reasonable abstraction for talking about
905 /// which elements are needed from a scalable vector
906 if (isa<ScalableVectorType>(InTy))
908 auto *Ty = cast<FixedVectorType>(InTy);
909
910 assert(DemandedElts.getBitWidth() == Ty->getNumElements() &&
911 (VL.empty() || VL.size() == Ty->getNumElements()) &&
912 "Vector size mismatch");
913
915
916 for (int i = 0, e = Ty->getNumElements(); i < e; ++i) {
917 if (!DemandedElts[i])
918 continue;
919 if (Insert) {
920 Value *InsertedVal = VL.empty() ? nullptr : VL[i];
921 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, Ty,
922 CostKind, i, nullptr, InsertedVal);
923 }
924 if (Extract)
925 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
926 CostKind, i, nullptr, nullptr);
927 }
928
929 return Cost;
930 }
931
933 return false;
934 }
935
936 bool
938 unsigned ScalarOpdIdx) const override {
939 return false;
940 }
941
943 int OpdIdx) const override {
944 return OpdIdx == -1;
945 }
946
947 bool
949 int RetIdx) const override {
950 return RetIdx == 0;
951 }
952
953 /// Helper wrapper for the DemandedElts variant of getScalarizationOverhead.
955 bool Extract,
957 if (isa<ScalableVectorType>(InTy))
959 auto *Ty = cast<FixedVectorType>(InTy);
960
961 APInt DemandedElts = APInt::getAllOnes(Ty->getNumElements());
962 return thisT()->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
963 CostKind);
964 }
965
966 /// Estimate the overhead of scalarizing an instruction's
967 /// operands. The (potentially vector) types to use for each of
968 /// argument are passes via Tys.
970 ArrayRef<Type *> Tys, TTI::TargetCostKind CostKind) const override {
972 for (Type *Ty : Tys) {
973 // Disregard things like metadata arguments.
974 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy() &&
975 !Ty->isPtrOrPtrVectorTy())
976 continue;
977
978 if (auto *VecTy = dyn_cast<VectorType>(Ty))
979 Cost += getScalarizationOverhead(VecTy, /*Insert*/ false,
980 /*Extract*/ true, CostKind);
981 }
982
983 return Cost;
984 }
985
986 /// Estimate the overhead of scalarizing the inputs and outputs of an
987 /// instruction, with return type RetTy and arguments Args of type Tys. If
988 /// Args are unknown (empty), then the cost associated with one argument is
989 /// added as a heuristic.
995 RetTy, /*Insert*/ true, /*Extract*/ false, CostKind);
996 if (!Args.empty())
998 filterConstantAndDuplicatedOperands(Args, Tys), CostKind);
999 else
1000 // When no information on arguments is provided, we add the cost
1001 // associated with one argument as a heuristic.
1002 Cost += getScalarizationOverhead(RetTy, /*Insert*/ false,
1003 /*Extract*/ true, CostKind);
1004
1005 return Cost;
1006 }
1007
1008 /// Estimate the cost of type-legalization and the legalized type.
1009 std::pair<InstructionCost, MVT> getTypeLegalizationCost(Type *Ty) const {
1010 LLVMContext &C = Ty->getContext();
1011 EVT MTy = getTLI()->getValueType(DL, Ty);
1012
1014 // We keep legalizing the type until we find a legal kind. We assume that
1015 // the only operation that costs anything is the split. After splitting
1016 // we need to handle two types.
1017 while (true) {
1018 TargetLoweringBase::LegalizeKind LK = getTLI()->getTypeConversion(C, MTy);
1019
1021 // Ensure we return a sensible simple VT here, since many callers of
1022 // this function require it.
1023 MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64;
1024 return std::make_pair(InstructionCost::getInvalid(), VT);
1025 }
1026
1027 if (LK.first == TargetLoweringBase::TypeLegal)
1028 return std::make_pair(Cost, MTy.getSimpleVT());
1029
1030 if (LK.first == TargetLoweringBase::TypeSplitVector ||
1032 Cost *= 2;
1033
1034 // Do not loop with f128 type.
1035 if (MTy == LK.second)
1036 return std::make_pair(Cost, MTy.getSimpleVT());
1037
1038 // Keep legalizing the type.
1039 MTy = LK.second;
1040 }
1041 }
1042
1043 unsigned getMaxInterleaveFactor(ElementCount VF) const override { return 1; }
1044
1046 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1049 ArrayRef<const Value *> Args = {},
1050 const Instruction *CxtI = nullptr) const override {
1051 // Check if any of the operands are vector operands.
1052 const TargetLoweringBase *TLI = getTLI();
1053 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1054 assert(ISD && "Invalid opcode");
1055
1056 // TODO: Handle more cost kinds.
1058 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind,
1059 Opd1Info, Opd2Info,
1060 Args, CxtI);
1061
1062 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
1063
1064 bool IsFloat = Ty->isFPOrFPVectorTy();
1065 // Assume that floating point arithmetic operations cost twice as much as
1066 // integer operations.
1067 InstructionCost OpCost = (IsFloat ? 2 : 1);
1068
1069 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
1070 // The operation is legal. Assume it costs 1.
1071 // TODO: Once we have extract/insert subvector cost we need to use them.
1072 return LT.first * OpCost;
1073 }
1074
1075 if (!TLI->isOperationExpand(ISD, LT.second)) {
1076 // If the operation is custom lowered, then assume that the code is twice
1077 // as expensive.
1078 return LT.first * 2 * OpCost;
1079 }
1080
1081 // An 'Expand' of URem and SRem is special because it may default
1082 // to expanding the operation into a sequence of sub-operations
1083 // i.e. X % Y -> X-(X/Y)*Y.
1084 if (ISD == ISD::UREM || ISD == ISD::SREM) {
1085 bool IsSigned = ISD == ISD::SREM;
1086 if (TLI->isOperationLegalOrCustom(IsSigned ? ISD::SDIVREM : ISD::UDIVREM,
1087 LT.second) ||
1088 TLI->isOperationLegalOrCustom(IsSigned ? ISD::SDIV : ISD::UDIV,
1089 LT.second)) {
1090 unsigned DivOpc = IsSigned ? Instruction::SDiv : Instruction::UDiv;
1091 InstructionCost DivCost = thisT()->getArithmeticInstrCost(
1092 DivOpc, Ty, CostKind, Opd1Info, Opd2Info);
1093 InstructionCost MulCost =
1094 thisT()->getArithmeticInstrCost(Instruction::Mul, Ty, CostKind);
1095 InstructionCost SubCost =
1096 thisT()->getArithmeticInstrCost(Instruction::Sub, Ty, CostKind);
1097 return DivCost + MulCost + SubCost;
1098 }
1099 }
1100
1101 // We cannot scalarize scalable vectors, so return Invalid.
1104
1105 // Else, assume that we need to scalarize this op.
1106 // TODO: If one of the types get legalized by splitting, handle this
1107 // similarly to what getCastInstrCost() does.
1108 if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
1109 InstructionCost Cost = thisT()->getArithmeticInstrCost(
1110 Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
1111 Args, CxtI);
1112 // Return the cost of multiple scalar invocation plus the cost of
1113 // inserting and extracting the values.
1114 SmallVector<Type *> Tys(Args.size(), Ty);
1115 return getScalarizationOverhead(VTy, Args, Tys, CostKind) +
1116 VTy->getNumElements() * Cost;
1117 }
1118
1119 // We don't know anything about this scalar instruction.
1120 return OpCost;
1121 }
1122
1124 ArrayRef<int> Mask,
1125 VectorType *SrcTy, int &Index,
1126 VectorType *&SubTy) const {
1127 if (Mask.empty())
1128 return Kind;
1129 int NumDstElts = Mask.size();
1130 int NumSrcElts = SrcTy->getElementCount().getKnownMinValue();
1131 switch (Kind) {
1133 if (ShuffleVectorInst::isReverseMask(Mask, NumSrcElts))
1134 return TTI::SK_Reverse;
1135 if (ShuffleVectorInst::isZeroEltSplatMask(Mask, NumSrcElts))
1136 return TTI::SK_Broadcast;
1137 if (isSplatMask(Mask, NumSrcElts, Index))
1138 return TTI::SK_Broadcast;
1139 if (ShuffleVectorInst::isExtractSubvectorMask(Mask, NumSrcElts, Index) &&
1140 (Index + NumDstElts) <= NumSrcElts) {
1141 SubTy = FixedVectorType::get(SrcTy->getElementType(), NumDstElts);
1143 }
1144 break;
1145 }
1146 case TTI::SK_PermuteTwoSrc: {
1147 if (all_of(Mask, [NumSrcElts](int M) { return M < NumSrcElts; }))
1149 Index, SubTy);
1150 int NumSubElts;
1151 if (NumDstElts > 2 && ShuffleVectorInst::isInsertSubvectorMask(
1152 Mask, NumSrcElts, NumSubElts, Index)) {
1153 if (Index + NumSubElts > NumSrcElts)
1154 return Kind;
1155 SubTy = FixedVectorType::get(SrcTy->getElementType(), NumSubElts);
1157 }
1158 if (ShuffleVectorInst::isSelectMask(Mask, NumSrcElts))
1159 return TTI::SK_Select;
1160 if (ShuffleVectorInst::isTransposeMask(Mask, NumSrcElts))
1161 return TTI::SK_Transpose;
1162 if (ShuffleVectorInst::isSpliceMask(Mask, NumSrcElts, Index))
1163 return TTI::SK_Splice;
1164 break;
1165 }
1166 case TTI::SK_Select:
1167 case TTI::SK_Reverse:
1168 case TTI::SK_Broadcast:
1169 case TTI::SK_Transpose:
1172 case TTI::SK_Splice:
1173 break;
1174 }
1175 return Kind;
1176 }
1177
1181 VectorType *SubTp, ArrayRef<const Value *> Args = {},
1182 const Instruction *CxtI = nullptr) const override {
1183 switch (improveShuffleKindFromMask(Kind, Mask, SrcTy, Index, SubTp)) {
1184 case TTI::SK_Broadcast:
1185 if (auto *FVT = dyn_cast<FixedVectorType>(SrcTy))
1186 return getBroadcastShuffleOverhead(FVT, CostKind);
1188 case TTI::SK_Select:
1189 case TTI::SK_Splice:
1190 case TTI::SK_Reverse:
1191 case TTI::SK_Transpose:
1194 if (auto *FVT = dyn_cast<FixedVectorType>(SrcTy))
1195 return getPermuteShuffleOverhead(FVT, CostKind);
1198 return getExtractSubvectorOverhead(SrcTy, CostKind, Index,
1199 cast<FixedVectorType>(SubTp));
1201 return getInsertSubvectorOverhead(DstTy, CostKind, Index,
1202 cast<FixedVectorType>(SubTp));
1203 }
1204 llvm_unreachable("Unknown TTI::ShuffleKind");
1205 }
1206
1208 getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1210 const Instruction *I = nullptr) const override {
1211 if (BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I) == 0)
1212 return 0;
1213
1214 const TargetLoweringBase *TLI = getTLI();
1215 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1216 assert(ISD && "Invalid opcode");
1217 std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Src);
1218 std::pair<InstructionCost, MVT> DstLT = getTypeLegalizationCost(Dst);
1219
1220 TypeSize SrcSize = SrcLT.second.getSizeInBits();
1221 TypeSize DstSize = DstLT.second.getSizeInBits();
1222 bool IntOrPtrSrc = Src->isIntegerTy() || Src->isPointerTy();
1223 bool IntOrPtrDst = Dst->isIntegerTy() || Dst->isPointerTy();
1224
1225 switch (Opcode) {
1226 default:
1227 break;
1228 case Instruction::Trunc:
1229 // Check for NOOP conversions.
1230 if (TLI->isTruncateFree(SrcLT.second, DstLT.second))
1231 return 0;
1232 [[fallthrough]];
1233 case Instruction::BitCast:
1234 // Bitcast between types that are legalized to the same type are free and
1235 // assume int to/from ptr of the same size is also free.
1236 if (SrcLT.first == DstLT.first && IntOrPtrSrc == IntOrPtrDst &&
1237 SrcSize == DstSize)
1238 return 0;
1239 break;
1240 case Instruction::FPExt:
1241 if (I && getTLI()->isExtFree(I))
1242 return 0;
1243 break;
1244 case Instruction::ZExt:
1245 if (TLI->isZExtFree(SrcLT.second, DstLT.second))
1246 return 0;
1247 [[fallthrough]];
1248 case Instruction::SExt:
1249 if (I && getTLI()->isExtFree(I))
1250 return 0;
1251
1252 // If this is a zext/sext of a load, return 0 if the corresponding
1253 // extending load exists on target and the result type is legal.
1254 if (CCH == TTI::CastContextHint::Normal) {
1255 EVT ExtVT = EVT::getEVT(Dst);
1256 EVT LoadVT = EVT::getEVT(Src);
1257 unsigned LType =
1258 ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
1259 if (DstLT.first == SrcLT.first &&
1260 TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
1261 return 0;
1262 }
1263 break;
1264 case Instruction::AddrSpaceCast:
1265 if (TLI->isFreeAddrSpaceCast(Src->getPointerAddressSpace(),
1266 Dst->getPointerAddressSpace()))
1267 return 0;
1268 break;
1269 }
1270
1271 auto *SrcVTy = dyn_cast<VectorType>(Src);
1272 auto *DstVTy = dyn_cast<VectorType>(Dst);
1273
1274 // If the cast is marked as legal (or promote) then assume low cost.
1275 if (SrcLT.first == DstLT.first &&
1276 TLI->isOperationLegalOrPromote(ISD, DstLT.second))
1277 return SrcLT.first;
1278
1279 // Handle scalar conversions.
1280 if (!SrcVTy && !DstVTy) {
1281 // Just check the op cost. If the operation is legal then assume it costs
1282 // 1.
1283 if (!TLI->isOperationExpand(ISD, DstLT.second))
1284 return 1;
1285
1286 // Assume that illegal scalar instruction are expensive.
1287 return 4;
1288 }
1289
1290 // Check vector-to-vector casts.
1291 if (DstVTy && SrcVTy) {
1292 // If the cast is between same-sized registers, then the check is simple.
1293 if (SrcLT.first == DstLT.first && SrcSize == DstSize) {
1294
1295 // Assume that Zext is done using AND.
1296 if (Opcode == Instruction::ZExt)
1297 return SrcLT.first;
1298
1299 // Assume that sext is done using SHL and SRA.
1300 if (Opcode == Instruction::SExt)
1301 return SrcLT.first * 2;
1302
1303 // Just check the op cost. If the operation is legal then assume it
1304 // costs
1305 // 1 and multiply by the type-legalization overhead.
1306 if (!TLI->isOperationExpand(ISD, DstLT.second))
1307 return SrcLT.first * 1;
1308 }
1309
1310 // If we are legalizing by splitting, query the concrete TTI for the cost
1311 // of casting the original vector twice. We also need to factor in the
1312 // cost of the split itself. Count that as 1, to be consistent with
1313 // getTypeLegalizationCost().
1314 bool SplitSrc =
1315 TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
1317 bool SplitDst =
1318 TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
1320 if ((SplitSrc || SplitDst) && SrcVTy->getElementCount().isKnownEven() &&
1321 DstVTy->getElementCount().isKnownEven()) {
1322 Type *SplitDstTy = VectorType::getHalfElementsVectorType(DstVTy);
1323 Type *SplitSrcTy = VectorType::getHalfElementsVectorType(SrcVTy);
1324 const T *TTI = thisT();
1325 // If both types need to be split then the split is free.
1326 InstructionCost SplitCost =
1327 (!SplitSrc || !SplitDst) ? TTI->getVectorSplitCost() : 0;
1328 return SplitCost +
1329 (2 * TTI->getCastInstrCost(Opcode, SplitDstTy, SplitSrcTy, CCH,
1330 CostKind, I));
1331 }
1332
1333 // Scalarization cost is Invalid, can't assume any num elements.
1334 if (isa<ScalableVectorType>(DstVTy))
1336
1337 // In other cases where the source or destination are illegal, assume
1338 // the operation will get scalarized.
1339 unsigned Num = cast<FixedVectorType>(DstVTy)->getNumElements();
1340 InstructionCost Cost = thisT()->getCastInstrCost(
1341 Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind, I);
1342
1343 // Return the cost of multiple scalar invocation plus the cost of
1344 // inserting and extracting the values.
1345 return getScalarizationOverhead(DstVTy, /*Insert*/ true, /*Extract*/ true,
1346 CostKind) +
1347 Num * Cost;
1348 }
1349
1350 // We already handled vector-to-vector and scalar-to-scalar conversions.
1351 // This
1352 // is where we handle bitcast between vectors and scalars. We need to assume
1353 // that the conversion is scalarized in one way or another.
1354 if (Opcode == Instruction::BitCast) {
1355 // Illegal bitcasts are done by storing and loading from a stack slot.
1356 return (SrcVTy ? getScalarizationOverhead(SrcVTy, /*Insert*/ false,
1357 /*Extract*/ true, CostKind)
1358 : 0) +
1359 (DstVTy ? getScalarizationOverhead(DstVTy, /*Insert*/ true,
1360 /*Extract*/ false, CostKind)
1361 : 0);
1362 }
1363
1364 llvm_unreachable("Unhandled cast");
1365 }
1366
1368 getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1369 unsigned Index,
1370 TTI::TargetCostKind CostKind) const override {
1371 return thisT()->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1372 CostKind, Index, nullptr, nullptr) +
1373 thisT()->getCastInstrCost(Opcode, Dst, VecTy->getElementType(),
1375 }
1376
1379 const Instruction *I = nullptr) const override {
1380 return BaseT::getCFInstrCost(Opcode, CostKind, I);
1381 }
1382
1384 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
1388 const Instruction *I = nullptr) const override {
1389 const TargetLoweringBase *TLI = getTLI();
1390 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1391 assert(ISD && "Invalid opcode");
1392
1393 if (getTLI()->getValueType(DL, ValTy, true) == MVT::Other)
1394 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
1395 Op1Info, Op2Info, I);
1396
1397 // Selects on vectors are actually vector selects.
1398 if (ISD == ISD::SELECT) {
1399 assert(CondTy && "CondTy must exist");
1400 if (CondTy->isVectorTy())
1401 ISD = ISD::VSELECT;
1402 }
1403 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1404
1405 if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
1406 !TLI->isOperationExpand(ISD, LT.second)) {
1407 // The operation is legal. Assume it costs 1. Multiply
1408 // by the type-legalization overhead.
1409 return LT.first * 1;
1410 }
1411
1412 // Otherwise, assume that the cast is scalarized.
1413 // TODO: If one of the types get legalized by splitting, handle this
1414 // similarly to what getCastInstrCost() does.
1415 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
1416 if (isa<ScalableVectorType>(ValTy))
1418
1419 unsigned Num = cast<FixedVectorType>(ValVTy)->getNumElements();
1420 InstructionCost Cost = thisT()->getCmpSelInstrCost(
1421 Opcode, ValVTy->getScalarType(), CondTy->getScalarType(), VecPred,
1422 CostKind, Op1Info, Op2Info, I);
1423
1424 // Return the cost of multiple scalar invocation plus the cost of
1425 // inserting and extracting the values.
1426 return getScalarizationOverhead(ValVTy, /*Insert*/ true,
1427 /*Extract*/ false, CostKind) +
1428 Num * Cost;
1429 }
1430
1431 // Unknown scalar opcode.
1432 return 1;
1433 }
1434
1437 unsigned Index, const Value *Op0,
1438 const Value *Op1) const override {
1439 return getRegUsageForType(Val->getScalarType());
1440 }
1441
1442 /// \param ScalarUserAndIdx encodes the information about extracts from a
1443 /// vector with 'Scalar' being the value being extracted,'User' being the user
1444 /// of the extract(nullptr if user is not known before vectorization) and
1445 /// 'Idx' being the extract lane.
1448 unsigned Index, Value *Scalar,
1449 ArrayRef<std::tuple<Value *, User *, int>>
1450 ScalarUserAndIdx) const override {
1451 return thisT()->getVectorInstrCost(Opcode, Val, CostKind, Index, nullptr,
1452 nullptr);
1453 }
1454
1457 unsigned Index) const override {
1458 Value *Op0 = nullptr;
1459 Value *Op1 = nullptr;
1460 if (auto *IE = dyn_cast<InsertElementInst>(&I)) {
1461 Op0 = IE->getOperand(0);
1462 Op1 = IE->getOperand(1);
1463 }
1464 return thisT()->getVectorInstrCost(I.getOpcode(), Val, CostKind, Index, Op0,
1465 Op1);
1466 }
1467
1471 unsigned Index) const override {
1472 unsigned NewIndex = -1;
1473 if (auto *FVTy = dyn_cast<FixedVectorType>(Val)) {
1474 assert(Index < FVTy->getNumElements() &&
1475 "Unexpected index from end of vector");
1476 NewIndex = FVTy->getNumElements() - 1 - Index;
1477 }
1478 return thisT()->getVectorInstrCost(Opcode, Val, CostKind, NewIndex, nullptr,
1479 nullptr);
1480 }
1481
1483 getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
1484 const APInt &DemandedDstElts,
1485 TTI::TargetCostKind CostKind) const override {
1486 assert(DemandedDstElts.getBitWidth() == (unsigned)VF * ReplicationFactor &&
1487 "Unexpected size of DemandedDstElts.");
1488
1490
1491 auto *SrcVT = FixedVectorType::get(EltTy, VF);
1492 auto *ReplicatedVT = FixedVectorType::get(EltTy, VF * ReplicationFactor);
1493
1494 // The Mask shuffling cost is extract all the elements of the Mask
1495 // and insert each of them Factor times into the wide vector:
1496 //
1497 // E.g. an interleaved group with factor 3:
1498 // %mask = icmp ult <8 x i32> %vec1, %vec2
1499 // %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
1500 // <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
1501 // The cost is estimated as extract all mask elements from the <8xi1> mask
1502 // vector and insert them factor times into the <24xi1> shuffled mask
1503 // vector.
1504 APInt DemandedSrcElts = APIntOps::ScaleBitMask(DemandedDstElts, VF);
1505 Cost += thisT()->getScalarizationOverhead(SrcVT, DemandedSrcElts,
1506 /*Insert*/ false,
1507 /*Extract*/ true, CostKind);
1508 Cost += thisT()->getScalarizationOverhead(ReplicatedVT, DemandedDstElts,
1509 /*Insert*/ true,
1510 /*Extract*/ false, CostKind);
1511
1512 return Cost;
1513 }
1514
1516 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1519 const Instruction *I = nullptr) const override {
1520 assert(!Src->isVoidTy() && "Invalid type");
1521 // Assume types, such as structs, are expensive.
1522 if (getTLI()->getValueType(DL, Src, true) == MVT::Other)
1523 return 4;
1524 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
1525
1526 // Assuming that all loads of legal types cost 1.
1527 InstructionCost Cost = LT.first;
1529 return Cost;
1530
1531 const DataLayout &DL = this->getDataLayout();
1532 if (Src->isVectorTy() &&
1533 // In practice it's not currently possible to have a change in lane
1534 // length for extending loads or truncating stores so both types should
1535 // have the same scalable property.
1536 TypeSize::isKnownLT(DL.getTypeStoreSizeInBits(Src),
1537 LT.second.getSizeInBits())) {
1538 // This is a vector load that legalizes to a larger type than the vector
1539 // itself. Unless the corresponding extending load or truncating store is
1540 // legal, then this will scalarize.
1542 EVT MemVT = getTLI()->getValueType(DL, Src);
1543 if (Opcode == Instruction::Store)
1544 LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
1545 else
1546 LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
1547
1548 if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
1549 // This is a vector load/store for some illegal type that is scalarized.
1550 // We must account for the cost of building or decomposing the vector.
1552 cast<VectorType>(Src), Opcode != Instruction::Store,
1553 Opcode == Instruction::Store, CostKind);
1554 }
1555 }
1556
1557 return Cost;
1558 }
1559
1562 TTI::TargetCostKind CostKind) const override {
1563 Type *DataTy = MICA.getDataType();
1564 Align Alignment = MICA.getAlignment();
1565 unsigned Opcode = MICA.getID() == Intrinsic::masked_load
1566 ? Instruction::Load
1567 : Instruction::Store;
1568 // TODO: Pass on AddressSpace when we have test coverage.
1569 return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, true, false,
1570 CostKind);
1571 }
1572
1574 getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
1575 bool VariableMask, Align Alignment,
1577 const Instruction *I = nullptr) const override {
1578 return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, VariableMask,
1579 true, CostKind);
1580 }
1581
1583 getExpandCompressMemoryOpCost(unsigned Opcode, Type *DataTy,
1584 bool VariableMask, Align Alignment,
1586 const Instruction *I = nullptr) const override {
1587 // Treat expand load/compress store as gather/scatter operation.
1588 // TODO: implement more precise cost estimation for these intrinsics.
1589 return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, VariableMask,
1590 /*IsGatherScatter*/ true, CostKind);
1591 }
1592
1594 const Value *Ptr, bool VariableMask,
1595 Align Alignment,
1597 const Instruction *I) const override {
1598 // For a target without strided memory operations (or for an illegal
1599 // operation type on one which does), assume we lower to a gather/scatter
1600 // operation. (Which may in turn be scalarized.)
1601 return thisT()->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1602 Alignment, CostKind, I);
1603 }
1604
1606 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1607 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1608 bool UseMaskForCond = false, bool UseMaskForGaps = false) const override {
1609
1610 // We cannot scalarize scalable vectors, so return Invalid.
1611 if (isa<ScalableVectorType>(VecTy))
1613
1614 auto *VT = cast<FixedVectorType>(VecTy);
1615
1616 unsigned NumElts = VT->getNumElements();
1617 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
1618
1619 unsigned NumSubElts = NumElts / Factor;
1620 auto *SubVT = FixedVectorType::get(VT->getElementType(), NumSubElts);
1621
1622 // Firstly, the cost of load/store operation.
1624 if (UseMaskForCond || UseMaskForGaps) {
1625 unsigned IID = Opcode == Instruction::Load ? Intrinsic::masked_load
1626 : Intrinsic::masked_store;
1627 Cost = thisT()->getMaskedMemoryOpCost(
1628 {IID, VecTy, Alignment, AddressSpace}, CostKind);
1629 } else
1630 Cost = thisT()->getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace,
1631 CostKind);
1632
1633 // Legalize the vector type, and get the legalized and unlegalized type
1634 // sizes.
1635 MVT VecTyLT = getTypeLegalizationCost(VecTy).second;
1636 unsigned VecTySize = thisT()->getDataLayout().getTypeStoreSize(VecTy);
1637 unsigned VecTyLTSize = VecTyLT.getStoreSize();
1638
1639 // Scale the cost of the memory operation by the fraction of legalized
1640 // instructions that will actually be used. We shouldn't account for the
1641 // cost of dead instructions since they will be removed.
1642 //
1643 // E.g., An interleaved load of factor 8:
1644 // %vec = load <16 x i64>, <16 x i64>* %ptr
1645 // %v0 = shufflevector %vec, undef, <0, 8>
1646 //
1647 // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
1648 // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
1649 // type). The other loads are unused.
1650 //
1651 // TODO: Note that legalization can turn masked loads/stores into unmasked
1652 // (legalized) loads/stores. This can be reflected in the cost.
1653 if (Cost.isValid() && VecTySize > VecTyLTSize) {
1654 // The number of loads of a legal type it will take to represent a load
1655 // of the unlegalized vector type.
1656 unsigned NumLegalInsts = divideCeil(VecTySize, VecTyLTSize);
1657
1658 // The number of elements of the unlegalized type that correspond to a
1659 // single legal instruction.
1660 unsigned NumEltsPerLegalInst = divideCeil(NumElts, NumLegalInsts);
1661
1662 // Determine which legal instructions will be used.
1663 BitVector UsedInsts(NumLegalInsts, false);
1664 for (unsigned Index : Indices)
1665 for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
1666 UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
1667
1668 // Scale the cost of the load by the fraction of legal instructions that
1669 // will be used.
1670 Cost = divideCeil(UsedInsts.count() * Cost.getValue(), NumLegalInsts);
1671 }
1672
1673 // Then plus the cost of interleave operation.
1674 assert(Indices.size() <= Factor &&
1675 "Interleaved memory op has too many members");
1676
1677 const APInt DemandedAllSubElts = APInt::getAllOnes(NumSubElts);
1678 const APInt DemandedAllResultElts = APInt::getAllOnes(NumElts);
1679
1680 APInt DemandedLoadStoreElts = APInt::getZero(NumElts);
1681 for (unsigned Index : Indices) {
1682 assert(Index < Factor && "Invalid index for interleaved memory op");
1683 for (unsigned Elm = 0; Elm < NumSubElts; Elm++)
1684 DemandedLoadStoreElts.setBit(Index + Elm * Factor);
1685 }
1686
1687 if (Opcode == Instruction::Load) {
1688 // The interleave cost is similar to extract sub vectors' elements
1689 // from the wide vector, and insert them into sub vectors.
1690 //
1691 // E.g. An interleaved load of factor 2 (with one member of index 0):
1692 // %vec = load <8 x i32>, <8 x i32>* %ptr
1693 // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
1694 // The cost is estimated as extract elements at 0, 2, 4, 6 from the
1695 // <8 x i32> vector and insert them into a <4 x i32> vector.
1696 InstructionCost InsSubCost = thisT()->getScalarizationOverhead(
1697 SubVT, DemandedAllSubElts,
1698 /*Insert*/ true, /*Extract*/ false, CostKind);
1699 Cost += Indices.size() * InsSubCost;
1700 Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts,
1701 /*Insert*/ false,
1702 /*Extract*/ true, CostKind);
1703 } else {
1704 // The interleave cost is extract elements from sub vectors, and
1705 // insert them into the wide vector.
1706 //
1707 // E.g. An interleaved store of factor 3 with 2 members at indices 0,1:
1708 // (using VF=4):
1709 // %v0_v1 = shuffle %v0, %v1, <0,4,undef,1,5,undef,2,6,undef,3,7,undef>
1710 // %gaps.mask = <true, true, false, true, true, false,
1711 // true, true, false, true, true, false>
1712 // call llvm.masked.store <12 x i32> %v0_v1, <12 x i32>* %ptr,
1713 // i32 Align, <12 x i1> %gaps.mask
1714 // The cost is estimated as extract all elements (of actual members,
1715 // excluding gaps) from both <4 x i32> vectors and insert into the <12 x
1716 // i32> vector.
1717 InstructionCost ExtSubCost = thisT()->getScalarizationOverhead(
1718 SubVT, DemandedAllSubElts,
1719 /*Insert*/ false, /*Extract*/ true, CostKind);
1720 Cost += ExtSubCost * Indices.size();
1721 Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts,
1722 /*Insert*/ true,
1723 /*Extract*/ false, CostKind);
1724 }
1725
1726 if (!UseMaskForCond)
1727 return Cost;
1728
1729 Type *I8Type = Type::getInt8Ty(VT->getContext());
1730
1731 Cost += thisT()->getReplicationShuffleCost(
1732 I8Type, Factor, NumSubElts,
1733 UseMaskForGaps ? DemandedLoadStoreElts : DemandedAllResultElts,
1734 CostKind);
1735
1736 // The Gaps mask is invariant and created outside the loop, therefore the
1737 // cost of creating it is not accounted for here. However if we have both
1738 // a MaskForGaps and some other mask that guards the execution of the
1739 // memory access, we need to account for the cost of And-ing the two masks
1740 // inside the loop.
1741 if (UseMaskForGaps) {
1742 auto *MaskVT = FixedVectorType::get(I8Type, NumElts);
1743 Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, MaskVT,
1744 CostKind);
1745 }
1746
1747 return Cost;
1748 }
1749
1750 /// Get intrinsic cost based on arguments.
1753 TTI::TargetCostKind CostKind) const override {
1754 // Check for generically free intrinsics.
1756 return 0;
1757
1758 // Assume that target intrinsics are cheap.
1759 Intrinsic::ID IID = ICA.getID();
1762
1763 // VP Intrinsics should have the same cost as their non-vp counterpart.
1764 // TODO: Adjust the cost to make the vp intrinsic cheaper than its non-vp
1765 // counterpart when the vector length argument is smaller than the maximum
1766 // vector length.
1767 // TODO: Support other kinds of VPIntrinsics
1768 if (VPIntrinsic::isVPIntrinsic(ICA.getID())) {
1769 std::optional<unsigned> FOp =
1771 if (FOp) {
1772 if (ICA.getID() == Intrinsic::vp_load) {
1773 Align Alignment;
1774 if (auto *VPI = dyn_cast_or_null<VPIntrinsic>(ICA.getInst()))
1775 Alignment = VPI->getPointerAlignment().valueOrOne();
1776 unsigned AS = 0;
1777 if (ICA.getArgTypes().size() > 1)
1778 if (auto *PtrTy = dyn_cast<PointerType>(ICA.getArgTypes()[0]))
1779 AS = PtrTy->getAddressSpace();
1780 return thisT()->getMemoryOpCost(*FOp, ICA.getReturnType(), Alignment,
1781 AS, CostKind);
1782 }
1783 if (ICA.getID() == Intrinsic::vp_store) {
1784 Align Alignment;
1785 if (auto *VPI = dyn_cast_or_null<VPIntrinsic>(ICA.getInst()))
1786 Alignment = VPI->getPointerAlignment().valueOrOne();
1787 unsigned AS = 0;
1788 if (ICA.getArgTypes().size() >= 2)
1789 if (auto *PtrTy = dyn_cast<PointerType>(ICA.getArgTypes()[1]))
1790 AS = PtrTy->getAddressSpace();
1791 return thisT()->getMemoryOpCost(*FOp, ICA.getArgTypes()[0], Alignment,
1792 AS, CostKind);
1793 }
1795 ICA.getID() == Intrinsic::vp_fneg) {
1796 return thisT()->getArithmeticInstrCost(*FOp, ICA.getReturnType(),
1797 CostKind);
1798 }
1799 if (VPCastIntrinsic::isVPCast(ICA.getID())) {
1800 return thisT()->getCastInstrCost(
1801 *FOp, ICA.getReturnType(), ICA.getArgTypes()[0],
1803 }
1804 if (VPCmpIntrinsic::isVPCmp(ICA.getID())) {
1805 // We can only handle vp_cmp intrinsics with underlying instructions.
1806 if (ICA.getInst()) {
1807 assert(FOp);
1808 auto *UI = cast<VPCmpIntrinsic>(ICA.getInst());
1809 return thisT()->getCmpSelInstrCost(*FOp, ICA.getArgTypes()[0],
1810 ICA.getReturnType(),
1811 UI->getPredicate(), CostKind);
1812 }
1813 }
1814 }
1815
1816 if (ICA.getID() == Intrinsic::vp_scatter) {
1817 if (ICA.isTypeBasedOnly()) {
1818 IntrinsicCostAttributes MaskedScatter(
1821 ICA.getFlags());
1822 return getTypeBasedIntrinsicInstrCost(MaskedScatter, CostKind);
1823 }
1824 Align Alignment;
1825 if (auto *VPI = dyn_cast_or_null<VPIntrinsic>(ICA.getInst()))
1826 Alignment = VPI->getPointerAlignment().valueOrOne();
1827 bool VarMask = isa<Constant>(ICA.getArgs()[2]);
1828 return thisT()->getGatherScatterOpCost(
1829 Instruction::Store, ICA.getArgTypes()[0], ICA.getArgs()[1], VarMask,
1830 Alignment, CostKind, nullptr);
1831 }
1832 if (ICA.getID() == Intrinsic::vp_gather) {
1833 if (ICA.isTypeBasedOnly()) {
1834 IntrinsicCostAttributes MaskedGather(
1837 ICA.getFlags());
1838 return getTypeBasedIntrinsicInstrCost(MaskedGather, CostKind);
1839 }
1840 Align Alignment;
1841 if (auto *VPI = dyn_cast_or_null<VPIntrinsic>(ICA.getInst()))
1842 Alignment = VPI->getPointerAlignment().valueOrOne();
1843 bool VarMask = isa<Constant>(ICA.getArgs()[1]);
1844 return thisT()->getGatherScatterOpCost(
1845 Instruction::Load, ICA.getReturnType(), ICA.getArgs()[0], VarMask,
1846 Alignment, CostKind, nullptr);
1847 }
1848
1849 if (ICA.getID() == Intrinsic::vp_select ||
1850 ICA.getID() == Intrinsic::vp_merge) {
1851 TTI::OperandValueInfo OpInfoX, OpInfoY;
1852 if (!ICA.isTypeBasedOnly()) {
1853 OpInfoX = TTI::getOperandInfo(ICA.getArgs()[0]);
1854 OpInfoY = TTI::getOperandInfo(ICA.getArgs()[1]);
1855 }
1856 return getCmpSelInstrCost(
1857 Instruction::Select, ICA.getReturnType(), ICA.getArgTypes()[0],
1858 CmpInst::BAD_ICMP_PREDICATE, CostKind, OpInfoX, OpInfoY);
1859 }
1860
1861 std::optional<Intrinsic::ID> FID =
1863
1864 // Not functionally equivalent but close enough for cost modelling.
1865 if (ICA.getID() == Intrinsic::experimental_vp_reverse)
1866 FID = Intrinsic::vector_reverse;
1867
1868 if (FID) {
1869 // Non-vp version will have same arg types except mask and vector
1870 // length.
1871 assert(ICA.getArgTypes().size() >= 2 &&
1872 "Expected VPIntrinsic to have Mask and Vector Length args and "
1873 "types");
1874
1875 ArrayRef<const Value *> NewArgs = ArrayRef(ICA.getArgs());
1876 if (!ICA.isTypeBasedOnly())
1877 NewArgs = NewArgs.drop_back(2);
1879
1880 // VPReduction intrinsics have a start value argument that their non-vp
1881 // counterparts do not have, except for the fadd and fmul non-vp
1882 // counterpart.
1884 *FID != Intrinsic::vector_reduce_fadd &&
1885 *FID != Intrinsic::vector_reduce_fmul) {
1886 if (!ICA.isTypeBasedOnly())
1887 NewArgs = NewArgs.drop_front();
1888 NewTys = NewTys.drop_front();
1889 }
1890
1891 IntrinsicCostAttributes NewICA(*FID, ICA.getReturnType(), NewArgs,
1892 NewTys, ICA.getFlags());
1893 return thisT()->getIntrinsicInstrCost(NewICA, CostKind);
1894 }
1895 }
1896
1897 if (ICA.isTypeBasedOnly())
1899
1900 Type *RetTy = ICA.getReturnType();
1901
1902 ElementCount RetVF = isVectorizedTy(RetTy) ? getVectorizedTypeVF(RetTy)
1904
1905 const IntrinsicInst *I = ICA.getInst();
1906 const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
1907 FastMathFlags FMF = ICA.getFlags();
1908 switch (IID) {
1909 default:
1910 break;
1911
1912 case Intrinsic::powi:
1913 if (auto *RHSC = dyn_cast<ConstantInt>(Args[1])) {
1914 bool ShouldOptForSize = I->getParent()->getParent()->hasOptSize();
1915 if (getTLI()->isBeneficialToExpandPowI(RHSC->getSExtValue(),
1916 ShouldOptForSize)) {
1917 // The cost is modeled on the expansion performed by ExpandPowI in
1918 // SelectionDAGBuilder.
1919 APInt Exponent = RHSC->getValue().abs();
1920 unsigned ActiveBits = Exponent.getActiveBits();
1921 unsigned PopCount = Exponent.popcount();
1922 InstructionCost Cost = (ActiveBits + PopCount - 2) *
1923 thisT()->getArithmeticInstrCost(
1924 Instruction::FMul, RetTy, CostKind);
1925 if (RHSC->isNegative())
1926 Cost += thisT()->getArithmeticInstrCost(Instruction::FDiv, RetTy,
1927 CostKind);
1928 return Cost;
1929 }
1930 }
1931 break;
1932 case Intrinsic::cttz:
1933 // FIXME: If necessary, this should go in target-specific overrides.
1934 if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCttz(RetTy))
1936 break;
1937
1938 case Intrinsic::ctlz:
1939 // FIXME: If necessary, this should go in target-specific overrides.
1940 if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCtlz(RetTy))
1942 break;
1943
1944 case Intrinsic::memcpy:
1945 return thisT()->getMemcpyCost(ICA.getInst());
1946
1947 case Intrinsic::masked_scatter: {
1948 const Value *Mask = Args[2];
1949 bool VarMask = !isa<Constant>(Mask);
1950 Align Alignment = I->getParamAlign(1).valueOrOne();
1951 return thisT()->getGatherScatterOpCost(Instruction::Store,
1952 ICA.getArgTypes()[0], Args[1],
1953 VarMask, Alignment, CostKind, I);
1954 }
1955 case Intrinsic::masked_gather: {
1956 const Value *Mask = Args[1];
1957 bool VarMask = !isa<Constant>(Mask);
1958 Align Alignment = I->getParamAlign(0).valueOrOne();
1959 return thisT()->getGatherScatterOpCost(Instruction::Load, RetTy, Args[0],
1960 VarMask, Alignment, CostKind, I);
1961 }
1962 case Intrinsic::masked_compressstore: {
1963 const Value *Data = Args[0];
1964 const Value *Mask = Args[2];
1965 Align Alignment = I->getParamAlign(1).valueOrOne();
1966 return thisT()->getExpandCompressMemoryOpCost(
1967 Instruction::Store, Data->getType(), !isa<Constant>(Mask), Alignment,
1968 CostKind, I);
1969 }
1970 case Intrinsic::masked_expandload: {
1971 const Value *Mask = Args[1];
1972 Align Alignment = I->getParamAlign(0).valueOrOne();
1973 return thisT()->getExpandCompressMemoryOpCost(Instruction::Load, RetTy,
1974 !isa<Constant>(Mask),
1975 Alignment, CostKind, I);
1976 }
1977 case Intrinsic::experimental_vp_strided_store: {
1978 const Value *Data = Args[0];
1979 const Value *Ptr = Args[1];
1980 const Value *Mask = Args[3];
1981 const Value *EVL = Args[4];
1982 bool VarMask = !isa<Constant>(Mask) || !isa<Constant>(EVL);
1983 Type *EltTy = cast<VectorType>(Data->getType())->getElementType();
1984 Align Alignment =
1985 I->getParamAlign(1).value_or(thisT()->DL.getABITypeAlign(EltTy));
1986 return thisT()->getStridedMemoryOpCost(Instruction::Store,
1987 Data->getType(), Ptr, VarMask,
1988 Alignment, CostKind, I);
1989 }
1990 case Intrinsic::experimental_vp_strided_load: {
1991 const Value *Ptr = Args[0];
1992 const Value *Mask = Args[2];
1993 const Value *EVL = Args[3];
1994 bool VarMask = !isa<Constant>(Mask) || !isa<Constant>(EVL);
1995 Type *EltTy = cast<VectorType>(RetTy)->getElementType();
1996 Align Alignment =
1997 I->getParamAlign(0).value_or(thisT()->DL.getABITypeAlign(EltTy));
1998 return thisT()->getStridedMemoryOpCost(Instruction::Load, RetTy, Ptr,
1999 VarMask, Alignment, CostKind, I);
2000 }
2001 case Intrinsic::stepvector: {
2002 if (isa<ScalableVectorType>(RetTy))
2004 // The cost of materialising a constant integer vector.
2006 }
2007 case Intrinsic::vector_extract: {
2008 // FIXME: Handle case where a scalable vector is extracted from a scalable
2009 // vector
2010 if (isa<ScalableVectorType>(RetTy))
2012 unsigned Index = cast<ConstantInt>(Args[1])->getZExtValue();
2013 return thisT()->getShuffleCost(TTI::SK_ExtractSubvector,
2014 cast<VectorType>(RetTy),
2015 cast<VectorType>(Args[0]->getType()), {},
2016 CostKind, Index, cast<VectorType>(RetTy));
2017 }
2018 case Intrinsic::vector_insert: {
2019 // FIXME: Handle case where a scalable vector is inserted into a scalable
2020 // vector
2021 if (isa<ScalableVectorType>(Args[1]->getType()))
2023 unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue();
2024 return thisT()->getShuffleCost(
2026 cast<VectorType>(Args[0]->getType()), {}, CostKind, Index,
2027 cast<VectorType>(Args[1]->getType()));
2028 }
2029 case Intrinsic::vector_splice: {
2030 unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue();
2031 return thisT()->getShuffleCost(TTI::SK_Splice, cast<VectorType>(RetTy),
2032 cast<VectorType>(Args[0]->getType()), {},
2033 CostKind, Index, cast<VectorType>(RetTy));
2034 }
2035 case Intrinsic::vector_reduce_add:
2036 case Intrinsic::vector_reduce_mul:
2037 case Intrinsic::vector_reduce_and:
2038 case Intrinsic::vector_reduce_or:
2039 case Intrinsic::vector_reduce_xor:
2040 case Intrinsic::vector_reduce_smax:
2041 case Intrinsic::vector_reduce_smin:
2042 case Intrinsic::vector_reduce_fmax:
2043 case Intrinsic::vector_reduce_fmin:
2044 case Intrinsic::vector_reduce_fmaximum:
2045 case Intrinsic::vector_reduce_fminimum:
2046 case Intrinsic::vector_reduce_umax:
2047 case Intrinsic::vector_reduce_umin: {
2048 IntrinsicCostAttributes Attrs(IID, RetTy, Args[0]->getType(), FMF, I, 1);
2050 }
2051 case Intrinsic::vector_reduce_fadd:
2052 case Intrinsic::vector_reduce_fmul: {
2054 IID, RetTy, {Args[0]->getType(), Args[1]->getType()}, FMF, I, 1);
2056 }
2057 case Intrinsic::fshl:
2058 case Intrinsic::fshr: {
2059 const Value *X = Args[0];
2060 const Value *Y = Args[1];
2061 const Value *Z = Args[2];
2064 const TTI::OperandValueInfo OpInfoZ = TTI::getOperandInfo(Z);
2065
2066 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2067 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2069 Cost +=
2070 thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind);
2071 Cost +=
2072 thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy, CostKind);
2073 Cost += thisT()->getArithmeticInstrCost(
2074 BinaryOperator::Shl, RetTy, CostKind, OpInfoX,
2075 {OpInfoZ.Kind, TTI::OP_None});
2076 Cost += thisT()->getArithmeticInstrCost(
2077 BinaryOperator::LShr, RetTy, CostKind, OpInfoY,
2078 {OpInfoZ.Kind, TTI::OP_None});
2079 // Non-constant shift amounts requires a modulo. If the typesize is a
2080 // power-2 then this will be converted to an and, otherwise it will use a
2081 // urem.
2082 if (!OpInfoZ.isConstant())
2083 Cost += thisT()->getArithmeticInstrCost(
2084 isPowerOf2_32(RetTy->getScalarSizeInBits()) ? BinaryOperator::And
2085 : BinaryOperator::URem,
2086 RetTy, CostKind, OpInfoZ,
2087 {TTI::OK_UniformConstantValue, TTI::OP_None});
2088 // For non-rotates (X != Y) we must add shift-by-zero handling costs.
2089 if (X != Y) {
2090 Type *CondTy = RetTy->getWithNewBitWidth(1);
2091 Cost +=
2092 thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2094 Cost +=
2095 thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2097 }
2098 return Cost;
2099 }
2100 case Intrinsic::experimental_cttz_elts: {
2101 EVT ArgType = getTLI()->getValueType(DL, ICA.getArgTypes()[0], true);
2102
2103 // If we're not expanding the intrinsic then we assume this is cheap
2104 // to implement.
2105 if (!getTLI()->shouldExpandCttzElements(ArgType))
2106 return getTypeLegalizationCost(RetTy).first;
2107
2108 // TODO: The costs below reflect the expansion code in
2109 // SelectionDAGBuilder, but we may want to sacrifice some accuracy in
2110 // favour of compile time.
2111
2112 // Find the smallest "sensible" element type to use for the expansion.
2113 bool ZeroIsPoison = !cast<ConstantInt>(Args[1])->isZero();
2114 ConstantRange VScaleRange(APInt(64, 1), APInt::getZero(64));
2115 if (isa<ScalableVectorType>(ICA.getArgTypes()[0]) && I && I->getCaller())
2116 VScaleRange = getVScaleRange(I->getCaller(), 64);
2117
2118 unsigned EltWidth = getTLI()->getBitWidthForCttzElements(
2119 RetTy, ArgType.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
2120 Type *NewEltTy = IntegerType::getIntNTy(RetTy->getContext(), EltWidth);
2121
2122 // Create the new vector type & get the vector length
2123 Type *NewVecTy = VectorType::get(
2124 NewEltTy, cast<VectorType>(Args[0]->getType())->getElementCount());
2125
2126 IntrinsicCostAttributes StepVecAttrs(Intrinsic::stepvector, NewVecTy, {},
2127 FMF);
2129 thisT()->getIntrinsicInstrCost(StepVecAttrs, CostKind);
2130
2131 Cost +=
2132 thisT()->getArithmeticInstrCost(Instruction::Sub, NewVecTy, CostKind);
2133 Cost += thisT()->getCastInstrCost(Instruction::SExt, NewVecTy,
2134 Args[0]->getType(),
2136 Cost +=
2137 thisT()->getArithmeticInstrCost(Instruction::And, NewVecTy, CostKind);
2138
2139 IntrinsicCostAttributes ReducAttrs(Intrinsic::vector_reduce_umax,
2140 NewEltTy, NewVecTy, FMF, I, 1);
2141 Cost += thisT()->getTypeBasedIntrinsicInstrCost(ReducAttrs, CostKind);
2142 Cost +=
2143 thisT()->getArithmeticInstrCost(Instruction::Sub, NewEltTy, CostKind);
2144
2145 return Cost;
2146 }
2147 case Intrinsic::get_active_lane_mask:
2148 case Intrinsic::experimental_vector_match:
2149 case Intrinsic::experimental_vector_histogram_add:
2150 case Intrinsic::experimental_vector_histogram_uadd_sat:
2151 case Intrinsic::experimental_vector_histogram_umax:
2152 case Intrinsic::experimental_vector_histogram_umin:
2153 return thisT()->getTypeBasedIntrinsicInstrCost(ICA, CostKind);
2154 case Intrinsic::modf:
2155 case Intrinsic::sincos:
2156 case Intrinsic::sincospi: {
2157 std::optional<unsigned> CallRetElementIndex;
2158 // The first element of the modf result is returned by value in the
2159 // libcall.
2160 if (ICA.getID() == Intrinsic::modf)
2161 CallRetElementIndex = 0;
2162
2163 if (auto Cost = getMultipleResultIntrinsicVectorLibCallCost(
2164 ICA, CostKind, CallRetElementIndex))
2165 return *Cost;
2166 // Otherwise, fallback to default scalarization cost.
2167 break;
2168 }
2169 }
2170
2171 // Assume that we need to scalarize this intrinsic.)
2172 // Compute the scalarization overhead based on Args for a vector
2173 // intrinsic.
2174 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
2175 if (RetVF.isVector() && !RetVF.isScalable()) {
2176 ScalarizationCost = 0;
2177 if (!RetTy->isVoidTy()) {
2178 for (Type *VectorTy : getContainedTypes(RetTy)) {
2179 ScalarizationCost += getScalarizationOverhead(
2180 cast<VectorType>(VectorTy),
2181 /*Insert=*/true, /*Extract=*/false, CostKind);
2182 }
2183 }
2184 ScalarizationCost += getOperandsScalarizationOverhead(
2185 filterConstantAndDuplicatedOperands(Args, ICA.getArgTypes()),
2186 CostKind);
2187 }
2188
2189 IntrinsicCostAttributes Attrs(IID, RetTy, ICA.getArgTypes(), FMF, I,
2190 ScalarizationCost);
2191 return thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
2192 }
2193
2194 /// Get intrinsic cost based on argument types.
2195 /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
2196 /// cost of scalarizing the arguments and the return value will be computed
2197 /// based on types.
2201 Intrinsic::ID IID = ICA.getID();
2202 Type *RetTy = ICA.getReturnType();
2203 const SmallVectorImpl<Type *> &Tys = ICA.getArgTypes();
2204 FastMathFlags FMF = ICA.getFlags();
2205 InstructionCost ScalarizationCostPassed = ICA.getScalarizationCost();
2206 bool SkipScalarizationCost = ICA.skipScalarizationCost();
2207
2208 VectorType *VecOpTy = nullptr;
2209 if (!Tys.empty()) {
2210 // The vector reduction operand is operand 0 except for fadd/fmul.
2211 // Their operand 0 is a scalar start value, so the vector op is operand 1.
2212 unsigned VecTyIndex = 0;
2213 if (IID == Intrinsic::vector_reduce_fadd ||
2214 IID == Intrinsic::vector_reduce_fmul)
2215 VecTyIndex = 1;
2216 assert(Tys.size() > VecTyIndex && "Unexpected IntrinsicCostAttributes");
2217 VecOpTy = dyn_cast<VectorType>(Tys[VecTyIndex]);
2218 }
2219
2220 // Library call cost - other than size, make it expensive.
2221 unsigned SingleCallCost = CostKind == TTI::TCK_CodeSize ? 1 : 10;
2222 unsigned ISD = 0;
2223 switch (IID) {
2224 default: {
2225 // Scalable vectors cannot be scalarized, so return Invalid.
2226 if (isa<ScalableVectorType>(RetTy) || any_of(Tys, [](const Type *Ty) {
2227 return isa<ScalableVectorType>(Ty);
2228 }))
2230
2231 // Assume that we need to scalarize this intrinsic.
2232 InstructionCost ScalarizationCost =
2233 SkipScalarizationCost ? ScalarizationCostPassed : 0;
2234 unsigned ScalarCalls = 1;
2235 Type *ScalarRetTy = RetTy;
2236 if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
2237 if (!SkipScalarizationCost)
2238 ScalarizationCost = getScalarizationOverhead(
2239 RetVTy, /*Insert*/ true, /*Extract*/ false, CostKind);
2240 ScalarCalls = std::max(ScalarCalls,
2242 ScalarRetTy = RetTy->getScalarType();
2243 }
2244 SmallVector<Type *, 4> ScalarTys;
2245 for (Type *Ty : Tys) {
2246 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2247 if (!SkipScalarizationCost)
2248 ScalarizationCost += getScalarizationOverhead(
2249 VTy, /*Insert*/ false, /*Extract*/ true, CostKind);
2250 ScalarCalls = std::max(ScalarCalls,
2252 Ty = Ty->getScalarType();
2253 }
2254 ScalarTys.push_back(Ty);
2255 }
2256 if (ScalarCalls == 1)
2257 return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
2258
2259 IntrinsicCostAttributes ScalarAttrs(IID, ScalarRetTy, ScalarTys, FMF);
2260 InstructionCost ScalarCost =
2261 thisT()->getIntrinsicInstrCost(ScalarAttrs, CostKind);
2262
2263 return ScalarCalls * ScalarCost + ScalarizationCost;
2264 }
2265 // Look for intrinsics that can be lowered directly or turned into a scalar
2266 // intrinsic call.
2267 case Intrinsic::sqrt:
2268 ISD = ISD::FSQRT;
2269 break;
2270 case Intrinsic::sin:
2271 ISD = ISD::FSIN;
2272 break;
2273 case Intrinsic::cos:
2274 ISD = ISD::FCOS;
2275 break;
2276 case Intrinsic::sincos:
2277 ISD = ISD::FSINCOS;
2278 break;
2279 case Intrinsic::sincospi:
2280 ISD = ISD::FSINCOSPI;
2281 break;
2282 case Intrinsic::modf:
2283 ISD = ISD::FMODF;
2284 break;
2285 case Intrinsic::tan:
2286 ISD = ISD::FTAN;
2287 break;
2288 case Intrinsic::asin:
2289 ISD = ISD::FASIN;
2290 break;
2291 case Intrinsic::acos:
2292 ISD = ISD::FACOS;
2293 break;
2294 case Intrinsic::atan:
2295 ISD = ISD::FATAN;
2296 break;
2297 case Intrinsic::atan2:
2298 ISD = ISD::FATAN2;
2299 break;
2300 case Intrinsic::sinh:
2301 ISD = ISD::FSINH;
2302 break;
2303 case Intrinsic::cosh:
2304 ISD = ISD::FCOSH;
2305 break;
2306 case Intrinsic::tanh:
2307 ISD = ISD::FTANH;
2308 break;
2309 case Intrinsic::exp:
2310 ISD = ISD::FEXP;
2311 break;
2312 case Intrinsic::exp2:
2313 ISD = ISD::FEXP2;
2314 break;
2315 case Intrinsic::exp10:
2316 ISD = ISD::FEXP10;
2317 break;
2318 case Intrinsic::log:
2319 ISD = ISD::FLOG;
2320 break;
2321 case Intrinsic::log10:
2322 ISD = ISD::FLOG10;
2323 break;
2324 case Intrinsic::log2:
2325 ISD = ISD::FLOG2;
2326 break;
2327 case Intrinsic::ldexp:
2328 ISD = ISD::FLDEXP;
2329 break;
2330 case Intrinsic::fabs:
2331 ISD = ISD::FABS;
2332 break;
2333 case Intrinsic::canonicalize:
2335 break;
2336 case Intrinsic::minnum:
2337 ISD = ISD::FMINNUM;
2338 break;
2339 case Intrinsic::maxnum:
2340 ISD = ISD::FMAXNUM;
2341 break;
2342 case Intrinsic::minimum:
2343 ISD = ISD::FMINIMUM;
2344 break;
2345 case Intrinsic::maximum:
2346 ISD = ISD::FMAXIMUM;
2347 break;
2348 case Intrinsic::minimumnum:
2349 ISD = ISD::FMINIMUMNUM;
2350 break;
2351 case Intrinsic::maximumnum:
2352 ISD = ISD::FMAXIMUMNUM;
2353 break;
2354 case Intrinsic::copysign:
2356 break;
2357 case Intrinsic::floor:
2358 ISD = ISD::FFLOOR;
2359 break;
2360 case Intrinsic::ceil:
2361 ISD = ISD::FCEIL;
2362 break;
2363 case Intrinsic::trunc:
2364 ISD = ISD::FTRUNC;
2365 break;
2366 case Intrinsic::nearbyint:
2367 ISD = ISD::FNEARBYINT;
2368 break;
2369 case Intrinsic::rint:
2370 ISD = ISD::FRINT;
2371 break;
2372 case Intrinsic::lrint:
2373 ISD = ISD::LRINT;
2374 break;
2375 case Intrinsic::llrint:
2376 ISD = ISD::LLRINT;
2377 break;
2378 case Intrinsic::round:
2379 ISD = ISD::FROUND;
2380 break;
2381 case Intrinsic::roundeven:
2382 ISD = ISD::FROUNDEVEN;
2383 break;
2384 case Intrinsic::lround:
2385 ISD = ISD::LROUND;
2386 break;
2387 case Intrinsic::llround:
2388 ISD = ISD::LLROUND;
2389 break;
2390 case Intrinsic::pow:
2391 ISD = ISD::FPOW;
2392 break;
2393 case Intrinsic::fma:
2394 ISD = ISD::FMA;
2395 break;
2396 case Intrinsic::fmuladd:
2397 ISD = ISD::FMA;
2398 break;
2399 case Intrinsic::experimental_constrained_fmuladd:
2401 break;
2402 // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
2403 case Intrinsic::lifetime_start:
2404 case Intrinsic::lifetime_end:
2405 case Intrinsic::sideeffect:
2406 case Intrinsic::pseudoprobe:
2407 case Intrinsic::arithmetic_fence:
2408 return 0;
2409 case Intrinsic::masked_store: {
2410 Type *Ty = Tys[0];
2411 Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
2412 return thisT()->getMaskedMemoryOpCost({IID, Ty, TyAlign, 0}, CostKind);
2413 }
2414 case Intrinsic::masked_load: {
2415 Type *Ty = RetTy;
2416 Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
2417 return thisT()->getMaskedMemoryOpCost({IID, Ty, TyAlign, 0}, CostKind);
2418 }
2419 case Intrinsic::experimental_vp_strided_store: {
2420 auto *Ty = cast<VectorType>(ICA.getArgTypes()[0]);
2421 Align Alignment = thisT()->DL.getABITypeAlign(Ty->getElementType());
2422 return thisT()->getStridedMemoryOpCost(
2423 Instruction::Store, Ty, /*Ptr=*/nullptr, /*VariableMask=*/true,
2424 Alignment, CostKind, ICA.getInst());
2425 }
2426 case Intrinsic::experimental_vp_strided_load: {
2427 auto *Ty = cast<VectorType>(ICA.getReturnType());
2428 Align Alignment = thisT()->DL.getABITypeAlign(Ty->getElementType());
2429 return thisT()->getStridedMemoryOpCost(
2430 Instruction::Load, Ty, /*Ptr=*/nullptr, /*VariableMask=*/true,
2431 Alignment, CostKind, ICA.getInst());
2432 }
2433 case Intrinsic::vector_reduce_add:
2434 case Intrinsic::vector_reduce_mul:
2435 case Intrinsic::vector_reduce_and:
2436 case Intrinsic::vector_reduce_or:
2437 case Intrinsic::vector_reduce_xor:
2438 return thisT()->getArithmeticReductionCost(
2439 getArithmeticReductionInstruction(IID), VecOpTy, std::nullopt,
2440 CostKind);
2441 case Intrinsic::vector_reduce_fadd:
2442 case Intrinsic::vector_reduce_fmul:
2443 return thisT()->getArithmeticReductionCost(
2444 getArithmeticReductionInstruction(IID), VecOpTy, FMF, CostKind);
2445 case Intrinsic::vector_reduce_smax:
2446 case Intrinsic::vector_reduce_smin:
2447 case Intrinsic::vector_reduce_umax:
2448 case Intrinsic::vector_reduce_umin:
2449 case Intrinsic::vector_reduce_fmax:
2450 case Intrinsic::vector_reduce_fmin:
2451 case Intrinsic::vector_reduce_fmaximum:
2452 case Intrinsic::vector_reduce_fminimum:
2453 return thisT()->getMinMaxReductionCost(getMinMaxReductionIntrinsicOp(IID),
2454 VecOpTy, ICA.getFlags(), CostKind);
2455 case Intrinsic::experimental_vector_match: {
2456 auto *SearchTy = cast<VectorType>(ICA.getArgTypes()[0]);
2457 auto *NeedleTy = cast<FixedVectorType>(ICA.getArgTypes()[1]);
2458 unsigned SearchSize = NeedleTy->getNumElements();
2459
2460 // If we're not expanding the intrinsic then we assume this is cheap to
2461 // implement.
2462 EVT SearchVT = getTLI()->getValueType(DL, SearchTy);
2463 if (!getTLI()->shouldExpandVectorMatch(SearchVT, SearchSize))
2464 return getTypeLegalizationCost(RetTy).first;
2465
2466 // Approximate the cost based on the expansion code in
2467 // SelectionDAGBuilder.
2469 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, NeedleTy,
2470 CostKind, 1, nullptr, nullptr);
2471 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, SearchTy,
2472 CostKind, 0, nullptr, nullptr);
2473 Cost += thisT()->getShuffleCost(TTI::SK_Broadcast, SearchTy, SearchTy, {},
2474 CostKind, 0, nullptr);
2475 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SearchTy, RetTy,
2477 Cost +=
2478 thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind);
2479 Cost *= SearchSize;
2480 Cost +=
2481 thisT()->getArithmeticInstrCost(BinaryOperator::And, RetTy, CostKind);
2482 return Cost;
2483 }
2484 case Intrinsic::vector_reverse:
2485 return thisT()->getShuffleCost(TTI::SK_Reverse, cast<VectorType>(RetTy),
2486 cast<VectorType>(ICA.getArgTypes()[0]), {},
2487 CostKind, 0, cast<VectorType>(RetTy));
2488 case Intrinsic::experimental_vector_histogram_add:
2489 case Intrinsic::experimental_vector_histogram_uadd_sat:
2490 case Intrinsic::experimental_vector_histogram_umax:
2491 case Intrinsic::experimental_vector_histogram_umin: {
2493 Type *EltTy = ICA.getArgTypes()[1];
2494
2495 // Targets with scalable vectors must handle this on their own.
2496 if (!PtrsTy)
2498
2499 Align Alignment = thisT()->DL.getABITypeAlign(EltTy);
2501 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, PtrsTy,
2502 CostKind, 1, nullptr, nullptr);
2503 Cost += thisT()->getMemoryOpCost(Instruction::Load, EltTy, Alignment, 0,
2504 CostKind);
2505 switch (IID) {
2506 default:
2507 llvm_unreachable("Unhandled histogram update operation.");
2508 case Intrinsic::experimental_vector_histogram_add:
2509 Cost +=
2510 thisT()->getArithmeticInstrCost(Instruction::Add, EltTy, CostKind);
2511 break;
2512 case Intrinsic::experimental_vector_histogram_uadd_sat: {
2513 IntrinsicCostAttributes UAddSat(Intrinsic::uadd_sat, EltTy, {EltTy});
2514 Cost += thisT()->getIntrinsicInstrCost(UAddSat, CostKind);
2515 break;
2516 }
2517 case Intrinsic::experimental_vector_histogram_umax: {
2518 IntrinsicCostAttributes UMax(Intrinsic::umax, EltTy, {EltTy});
2519 Cost += thisT()->getIntrinsicInstrCost(UMax, CostKind);
2520 break;
2521 }
2522 case Intrinsic::experimental_vector_histogram_umin: {
2523 IntrinsicCostAttributes UMin(Intrinsic::umin, EltTy, {EltTy});
2524 Cost += thisT()->getIntrinsicInstrCost(UMin, CostKind);
2525 break;
2526 }
2527 }
2528 Cost += thisT()->getMemoryOpCost(Instruction::Store, EltTy, Alignment, 0,
2529 CostKind);
2530 Cost *= PtrsTy->getNumElements();
2531 return Cost;
2532 }
2533 case Intrinsic::get_active_lane_mask: {
2534 Type *ArgTy = ICA.getArgTypes()[0];
2535 EVT ResVT = getTLI()->getValueType(DL, RetTy, true);
2536 EVT ArgVT = getTLI()->getValueType(DL, ArgTy, true);
2537
2538 // If we're not expanding the intrinsic then we assume this is cheap
2539 // to implement.
2540 if (!getTLI()->shouldExpandGetActiveLaneMask(ResVT, ArgVT))
2541 return getTypeLegalizationCost(RetTy).first;
2542
2543 // Create the expanded types that will be used to calculate the uadd_sat
2544 // operation.
2545 Type *ExpRetTy =
2546 VectorType::get(ArgTy, cast<VectorType>(RetTy)->getElementCount());
2547 IntrinsicCostAttributes Attrs(Intrinsic::uadd_sat, ExpRetTy, {}, FMF);
2549 thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
2550 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, ExpRetTy, RetTy,
2552 return Cost;
2553 }
2554 case Intrinsic::experimental_memset_pattern:
2555 // This cost is set to match the cost of the memset_pattern16 libcall.
2556 // It should likely be re-evaluated after migration to this intrinsic
2557 // is complete.
2558 return TTI::TCC_Basic * 4;
2559 case Intrinsic::abs:
2560 ISD = ISD::ABS;
2561 break;
2562 case Intrinsic::fshl:
2563 ISD = ISD::FSHL;
2564 break;
2565 case Intrinsic::fshr:
2566 ISD = ISD::FSHR;
2567 break;
2568 case Intrinsic::smax:
2569 ISD = ISD::SMAX;
2570 break;
2571 case Intrinsic::smin:
2572 ISD = ISD::SMIN;
2573 break;
2574 case Intrinsic::umax:
2575 ISD = ISD::UMAX;
2576 break;
2577 case Intrinsic::umin:
2578 ISD = ISD::UMIN;
2579 break;
2580 case Intrinsic::sadd_sat:
2581 ISD = ISD::SADDSAT;
2582 break;
2583 case Intrinsic::ssub_sat:
2584 ISD = ISD::SSUBSAT;
2585 break;
2586 case Intrinsic::uadd_sat:
2587 ISD = ISD::UADDSAT;
2588 break;
2589 case Intrinsic::usub_sat:
2590 ISD = ISD::USUBSAT;
2591 break;
2592 case Intrinsic::smul_fix:
2593 ISD = ISD::SMULFIX;
2594 break;
2595 case Intrinsic::umul_fix:
2596 ISD = ISD::UMULFIX;
2597 break;
2598 case Intrinsic::sadd_with_overflow:
2599 ISD = ISD::SADDO;
2600 break;
2601 case Intrinsic::ssub_with_overflow:
2602 ISD = ISD::SSUBO;
2603 break;
2604 case Intrinsic::uadd_with_overflow:
2605 ISD = ISD::UADDO;
2606 break;
2607 case Intrinsic::usub_with_overflow:
2608 ISD = ISD::USUBO;
2609 break;
2610 case Intrinsic::smul_with_overflow:
2611 ISD = ISD::SMULO;
2612 break;
2613 case Intrinsic::umul_with_overflow:
2614 ISD = ISD::UMULO;
2615 break;
2616 case Intrinsic::fptosi_sat:
2617 case Intrinsic::fptoui_sat: {
2618 std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Tys[0]);
2619 std::pair<InstructionCost, MVT> RetLT = getTypeLegalizationCost(RetTy);
2620
2621 // For cast instructions, types are different between source and
2622 // destination. Also need to check if the source type can be legalize.
2623 if (!SrcLT.first.isValid() || !RetLT.first.isValid())
2625 ISD = IID == Intrinsic::fptosi_sat ? ISD::FP_TO_SINT_SAT
2627 break;
2628 }
2629 case Intrinsic::ctpop:
2630 ISD = ISD::CTPOP;
2631 // In case of legalization use TCC_Expensive. This is cheaper than a
2632 // library call but still not a cheap instruction.
2633 SingleCallCost = TargetTransformInfo::TCC_Expensive;
2634 break;
2635 case Intrinsic::ctlz:
2636 ISD = ISD::CTLZ;
2637 break;
2638 case Intrinsic::cttz:
2639 ISD = ISD::CTTZ;
2640 break;
2641 case Intrinsic::bswap:
2642 ISD = ISD::BSWAP;
2643 break;
2644 case Intrinsic::bitreverse:
2646 break;
2647 case Intrinsic::ucmp:
2648 ISD = ISD::UCMP;
2649 break;
2650 case Intrinsic::scmp:
2651 ISD = ISD::SCMP;
2652 break;
2653 }
2654
2655 auto *ST = dyn_cast<StructType>(RetTy);
2656 Type *LegalizeTy = ST ? ST->getContainedType(0) : RetTy;
2657 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(LegalizeTy);
2658
2659 const TargetLoweringBase *TLI = getTLI();
2660
2661 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
2662 if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
2663 TLI->isFAbsFree(LT.second)) {
2664 return 0;
2665 }
2666
2667 // The operation is legal. Assume it costs 1.
2668 // If the type is split to multiple registers, assume that there is some
2669 // overhead to this.
2670 // TODO: Once we have extract/insert subvector cost we need to use them.
2671 if (LT.first > 1)
2672 return (LT.first * 2);
2673 else
2674 return (LT.first * 1);
2675 } else if (TLI->isOperationCustom(ISD, LT.second)) {
2676 // If the operation is custom lowered then assume
2677 // that the code is twice as expensive.
2678 return (LT.first * 2);
2679 }
2680
2681 switch (IID) {
2682 case Intrinsic::fmuladd: {
2683 // If we can't lower fmuladd into an FMA estimate the cost as a floating
2684 // point mul followed by an add.
2685
2686 return thisT()->getArithmeticInstrCost(BinaryOperator::FMul, RetTy,
2687 CostKind) +
2688 thisT()->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy,
2689 CostKind);
2690 }
2691 case Intrinsic::experimental_constrained_fmuladd: {
2692 IntrinsicCostAttributes FMulAttrs(
2693 Intrinsic::experimental_constrained_fmul, RetTy, Tys);
2694 IntrinsicCostAttributes FAddAttrs(
2695 Intrinsic::experimental_constrained_fadd, RetTy, Tys);
2696 return thisT()->getIntrinsicInstrCost(FMulAttrs, CostKind) +
2697 thisT()->getIntrinsicInstrCost(FAddAttrs, CostKind);
2698 }
2699 case Intrinsic::smin:
2700 case Intrinsic::smax:
2701 case Intrinsic::umin:
2702 case Intrinsic::umax: {
2703 // minmax(X,Y) = select(icmp(X,Y),X,Y)
2704 Type *CondTy = RetTy->getWithNewBitWidth(1);
2705 bool IsUnsigned = IID == Intrinsic::umax || IID == Intrinsic::umin;
2706 CmpInst::Predicate Pred =
2707 IsUnsigned ? CmpInst::ICMP_UGT : CmpInst::ICMP_SGT;
2709 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2710 Pred, CostKind);
2711 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2712 Pred, CostKind);
2713 return Cost;
2714 }
2715 case Intrinsic::sadd_with_overflow:
2716 case Intrinsic::ssub_with_overflow: {
2717 Type *SumTy = RetTy->getContainedType(0);
2718 Type *OverflowTy = RetTy->getContainedType(1);
2719 unsigned Opcode = IID == Intrinsic::sadd_with_overflow
2720 ? BinaryOperator::Add
2721 : BinaryOperator::Sub;
2722
2723 // Add:
2724 // Overflow -> (Result < LHS) ^ (RHS < 0)
2725 // Sub:
2726 // Overflow -> (Result < LHS) ^ (RHS > 0)
2728 Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
2729 Cost +=
2730 2 * thisT()->getCmpSelInstrCost(Instruction::ICmp, SumTy, OverflowTy,
2732 Cost += thisT()->getArithmeticInstrCost(BinaryOperator::Xor, OverflowTy,
2733 CostKind);
2734 return Cost;
2735 }
2736 case Intrinsic::uadd_with_overflow:
2737 case Intrinsic::usub_with_overflow: {
2738 Type *SumTy = RetTy->getContainedType(0);
2739 Type *OverflowTy = RetTy->getContainedType(1);
2740 unsigned Opcode = IID == Intrinsic::uadd_with_overflow
2741 ? BinaryOperator::Add
2742 : BinaryOperator::Sub;
2743 CmpInst::Predicate Pred = IID == Intrinsic::uadd_with_overflow
2746
2748 Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
2749 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy,
2750 OverflowTy, Pred, CostKind);
2751 return Cost;
2752 }
2753 case Intrinsic::smul_with_overflow:
2754 case Intrinsic::umul_with_overflow: {
2755 Type *MulTy = RetTy->getContainedType(0);
2756 Type *OverflowTy = RetTy->getContainedType(1);
2757 unsigned ExtSize = MulTy->getScalarSizeInBits() * 2;
2758 Type *ExtTy = MulTy->getWithNewBitWidth(ExtSize);
2759 bool IsSigned = IID == Intrinsic::smul_with_overflow;
2760
2761 unsigned ExtOp = IsSigned ? Instruction::SExt : Instruction::ZExt;
2763
2765 Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, MulTy, CCH, CostKind);
2766 Cost +=
2767 thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
2768 Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy,
2769 CCH, CostKind);
2770 Cost += thisT()->getArithmeticInstrCost(
2771 Instruction::LShr, ExtTy, CostKind, {TTI::OK_AnyValue, TTI::OP_None},
2773
2774 if (IsSigned)
2775 Cost += thisT()->getArithmeticInstrCost(
2776 Instruction::AShr, MulTy, CostKind,
2779
2780 Cost += thisT()->getCmpSelInstrCost(
2781 BinaryOperator::ICmp, MulTy, OverflowTy, CmpInst::ICMP_NE, CostKind);
2782 return Cost;
2783 }
2784 case Intrinsic::sadd_sat:
2785 case Intrinsic::ssub_sat: {
2786 // Assume a default expansion.
2787 Type *CondTy = RetTy->getWithNewBitWidth(1);
2788
2789 Type *OpTy = StructType::create({RetTy, CondTy});
2790 Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat
2791 ? Intrinsic::sadd_with_overflow
2792 : Intrinsic::ssub_with_overflow;
2794
2795 // SatMax -> Overflow && SumDiff < 0
2796 // SatMin -> Overflow && SumDiff >= 0
2798 IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
2799 nullptr, ScalarizationCostPassed);
2800 Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
2801 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2802 Pred, CostKind);
2803 Cost += 2 * thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
2804 CondTy, Pred, CostKind);
2805 return Cost;
2806 }
2807 case Intrinsic::uadd_sat:
2808 case Intrinsic::usub_sat: {
2809 Type *CondTy = RetTy->getWithNewBitWidth(1);
2810
2811 Type *OpTy = StructType::create({RetTy, CondTy});
2812 Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat
2813 ? Intrinsic::uadd_with_overflow
2814 : Intrinsic::usub_with_overflow;
2815
2817 IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
2818 nullptr, ScalarizationCostPassed);
2819 Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
2820 Cost +=
2821 thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2823 return Cost;
2824 }
2825 case Intrinsic::smul_fix:
2826 case Intrinsic::umul_fix: {
2827 unsigned ExtSize = RetTy->getScalarSizeInBits() * 2;
2828 Type *ExtTy = RetTy->getWithNewBitWidth(ExtSize);
2829
2830 unsigned ExtOp =
2831 IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
2833
2835 Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, RetTy, CCH, CostKind);
2836 Cost +=
2837 thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
2838 Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy,
2839 CCH, CostKind);
2840 Cost += thisT()->getArithmeticInstrCost(
2841 Instruction::LShr, RetTy, CostKind, {TTI::OK_AnyValue, TTI::OP_None},
2843 Cost += thisT()->getArithmeticInstrCost(
2844 Instruction::Shl, RetTy, CostKind, {TTI::OK_AnyValue, TTI::OP_None},
2846 Cost += thisT()->getArithmeticInstrCost(Instruction::Or, RetTy, CostKind);
2847 return Cost;
2848 }
2849 case Intrinsic::abs: {
2850 // abs(X) = select(icmp(X,0),X,sub(0,X))
2851 Type *CondTy = RetTy->getWithNewBitWidth(1);
2854 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2855 Pred, CostKind);
2856 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2857 Pred, CostKind);
2858 // TODO: Should we add an OperandValueProperties::OP_Zero property?
2859 Cost += thisT()->getArithmeticInstrCost(
2860 BinaryOperator::Sub, RetTy, CostKind,
2862 return Cost;
2863 }
2864 case Intrinsic::fshl:
2865 case Intrinsic::fshr: {
2866 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2867 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2868 Type *CondTy = RetTy->getWithNewBitWidth(1);
2870 Cost +=
2871 thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind);
2872 Cost +=
2873 thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy, CostKind);
2874 Cost +=
2875 thisT()->getArithmeticInstrCost(BinaryOperator::Shl, RetTy, CostKind);
2876 Cost += thisT()->getArithmeticInstrCost(BinaryOperator::LShr, RetTy,
2877 CostKind);
2878 // Non-constant shift amounts requires a modulo. If the typesize is a
2879 // power-2 then this will be converted to an and, otherwise it will use a
2880 // urem.
2881 Cost += thisT()->getArithmeticInstrCost(
2882 isPowerOf2_32(RetTy->getScalarSizeInBits()) ? BinaryOperator::And
2883 : BinaryOperator::URem,
2884 RetTy, CostKind, {TTI::OK_AnyValue, TTI::OP_None},
2885 {TTI::OK_UniformConstantValue, TTI::OP_None});
2886 // Shift-by-zero handling.
2887 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2889 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2891 return Cost;
2892 }
2893 case Intrinsic::fptosi_sat:
2894 case Intrinsic::fptoui_sat: {
2895 if (Tys.empty())
2896 break;
2897 Type *FromTy = Tys[0];
2898 bool IsSigned = IID == Intrinsic::fptosi_sat;
2899
2901 IntrinsicCostAttributes Attrs1(Intrinsic::minnum, FromTy,
2902 {FromTy, FromTy});
2903 Cost += thisT()->getIntrinsicInstrCost(Attrs1, CostKind);
2904 IntrinsicCostAttributes Attrs2(Intrinsic::maxnum, FromTy,
2905 {FromTy, FromTy});
2906 Cost += thisT()->getIntrinsicInstrCost(Attrs2, CostKind);
2907 Cost += thisT()->getCastInstrCost(
2908 IsSigned ? Instruction::FPToSI : Instruction::FPToUI, RetTy, FromTy,
2910 if (IsSigned) {
2911 Type *CondTy = RetTy->getWithNewBitWidth(1);
2912 Cost += thisT()->getCmpSelInstrCost(
2913 BinaryOperator::FCmp, FromTy, CondTy, CmpInst::FCMP_UNO, CostKind);
2914 Cost += thisT()->getCmpSelInstrCost(
2915 BinaryOperator::Select, RetTy, CondTy, CmpInst::FCMP_UNO, CostKind);
2916 }
2917 return Cost;
2918 }
2919 case Intrinsic::ucmp:
2920 case Intrinsic::scmp: {
2921 Type *CmpTy = Tys[0];
2922 Type *CondTy = RetTy->getWithNewBitWidth(1);
2924 thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, CmpTy, CondTy,
2926 CostKind) +
2927 thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, CmpTy, CondTy,
2929 CostKind);
2930
2931 EVT VT = TLI->getValueType(DL, CmpTy, true);
2933 // x < y ? -1 : (x > y ? 1 : 0)
2934 Cost += 2 * thisT()->getCmpSelInstrCost(
2935 BinaryOperator::Select, RetTy, CondTy,
2937 } else {
2938 // zext(x > y) - zext(x < y)
2939 Cost +=
2940 2 * thisT()->getCastInstrCost(CastInst::ZExt, RetTy, CondTy,
2942 Cost += thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy,
2943 CostKind);
2944 }
2945 return Cost;
2946 }
2947 case Intrinsic::maximumnum:
2948 case Intrinsic::minimumnum: {
2949 // On platform that support FMAXNUM_IEEE/FMINNUM_IEEE, we expand
2950 // maximumnum/minimumnum to
2951 // ARG0 = fcanonicalize ARG0, ARG0 // to quiet ARG0
2952 // ARG1 = fcanonicalize ARG1, ARG1 // to quiet ARG1
2953 // RESULT = MAXNUM_IEEE ARG0, ARG1 // or MINNUM_IEEE
2954 // FIXME: In LangRef, we claimed FMAXNUM has the same behaviour of
2955 // FMAXNUM_IEEE, while the backend hasn't migrated the code yet.
2956 // Finally, we will remove FMAXNUM_IEEE and FMINNUM_IEEE.
2957 int IeeeISD =
2958 IID == Intrinsic::maximumnum ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
2959 if (TLI->isOperationLegal(IeeeISD, LT.second)) {
2960 IntrinsicCostAttributes FCanonicalizeAttrs(Intrinsic::canonicalize,
2961 RetTy, Tys[0]);
2962 InstructionCost FCanonicalizeCost =
2963 thisT()->getIntrinsicInstrCost(FCanonicalizeAttrs, CostKind);
2964 return LT.first + FCanonicalizeCost * 2;
2965 }
2966 break;
2967 }
2968 default:
2969 break;
2970 }
2971
2972 // Else, assume that we need to scalarize this intrinsic. For math builtins
2973 // this will emit a costly libcall, adding call overhead and spills. Make it
2974 // very expensive.
2975 if (isVectorizedTy(RetTy)) {
2976 ArrayRef<Type *> RetVTys = getContainedTypes(RetTy);
2977
2978 // Scalable vectors cannot be scalarized, so return Invalid.
2979 if (any_of(concat<Type *const>(RetVTys, Tys),
2980 [](Type *Ty) { return isa<ScalableVectorType>(Ty); }))
2982
2983 InstructionCost ScalarizationCost = ScalarizationCostPassed;
2984 if (!SkipScalarizationCost) {
2985 ScalarizationCost = 0;
2986 for (Type *RetVTy : RetVTys) {
2987 ScalarizationCost += getScalarizationOverhead(
2988 cast<VectorType>(RetVTy), /*Insert=*/true,
2989 /*Extract=*/false, CostKind);
2990 }
2991 }
2992
2993 unsigned ScalarCalls = getVectorizedTypeVF(RetTy).getFixedValue();
2994 SmallVector<Type *, 4> ScalarTys;
2995 for (Type *Ty : Tys) {
2996 if (Ty->isVectorTy())
2997 Ty = Ty->getScalarType();
2998 ScalarTys.push_back(Ty);
2999 }
3000 IntrinsicCostAttributes Attrs(IID, toScalarizedTy(RetTy), ScalarTys, FMF);
3001 InstructionCost ScalarCost =
3002 thisT()->getIntrinsicInstrCost(Attrs, CostKind);
3003 for (Type *Ty : Tys) {
3004 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
3005 if (!ICA.skipScalarizationCost())
3006 ScalarizationCost += getScalarizationOverhead(
3007 VTy, /*Insert*/ false, /*Extract*/ true, CostKind);
3008 ScalarCalls = std::max(ScalarCalls,
3010 }
3011 }
3012 return ScalarCalls * ScalarCost + ScalarizationCost;
3013 }
3014
3015 // This is going to be turned into a library call, make it expensive.
3016 return SingleCallCost;
3017 }
3018
3019 /// Compute a cost of the given call instruction.
3020 ///
3021 /// Compute the cost of calling function F with return type RetTy and
3022 /// argument types Tys. F might be nullptr, in this case the cost of an
3023 /// arbitrary call with the specified signature will be returned.
3024 /// This is used, for instance, when we estimate call of a vector
3025 /// counterpart of the given function.
3026 /// \param F Called function, might be nullptr.
3027 /// \param RetTy Return value types.
3028 /// \param Tys Argument types.
3029 /// \returns The cost of Call instruction.
3032 TTI::TargetCostKind CostKind) const override {
3033 return 10;
3034 }
3035
3036 unsigned getNumberOfParts(Type *Tp) const override {
3037 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
3038 if (!LT.first.isValid())
3039 return 0;
3040 // Try to find actual number of parts for non-power-of-2 elements as
3041 // ceil(num-of-elements/num-of-subtype-elements).
3042 if (auto *FTp = dyn_cast<FixedVectorType>(Tp);
3043 Tp && LT.second.isFixedLengthVector() &&
3044 !has_single_bit(FTp->getNumElements())) {
3045 if (auto *SubTp = dyn_cast_if_present<FixedVectorType>(
3046 EVT(LT.second).getTypeForEVT(Tp->getContext()));
3047 SubTp && SubTp->getElementType() == FTp->getElementType())
3048 return divideCeil(FTp->getNumElements(), SubTp->getNumElements());
3049 }
3050 return LT.first.getValue();
3051 }
3052
3055 TTI::TargetCostKind) const override {
3056 return 0;
3057 }
3058
3059 /// Try to calculate arithmetic and shuffle op costs for reduction intrinsics.
3060 /// We're assuming that reduction operation are performing the following way:
3061 ///
3062 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
3063 /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
3064 /// \----------------v-------------/ \----------v------------/
3065 /// n/2 elements n/2 elements
3066 /// %red1 = op <n x t> %val, <n x t> val1
3067 /// After this operation we have a vector %red1 where only the first n/2
3068 /// elements are meaningful, the second n/2 elements are undefined and can be
3069 /// dropped. All other operations are actually working with the vector of
3070 /// length n/2, not n, though the real vector length is still n.
3071 /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
3072 /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
3073 /// \----------------v-------------/ \----------v------------/
3074 /// n/4 elements 3*n/4 elements
3075 /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
3076 /// length n/2, the resulting vector has length n/4 etc.
3077 ///
3078 /// The cost model should take into account that the actual length of the
3079 /// vector is reduced on each iteration.
3082 // Targets must implement a default value for the scalable case, since
3083 // we don't know how many lanes the vector has.
3086
3087 Type *ScalarTy = Ty->getElementType();
3088 unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
3089 if ((Opcode == Instruction::Or || Opcode == Instruction::And) &&
3090 ScalarTy == IntegerType::getInt1Ty(Ty->getContext()) &&
3091 NumVecElts >= 2) {
3092 // Or reduction for i1 is represented as:
3093 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3094 // %res = cmp ne iReduxWidth %val, 0
3095 // And reduction for i1 is represented as:
3096 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3097 // %res = cmp eq iReduxWidth %val, 11111
3098 Type *ValTy = IntegerType::get(Ty->getContext(), NumVecElts);
3099 return thisT()->getCastInstrCost(Instruction::BitCast, ValTy, Ty,
3101 thisT()->getCmpSelInstrCost(Instruction::ICmp, ValTy,
3104 }
3105 unsigned NumReduxLevels = Log2_32(NumVecElts);
3106 InstructionCost ArithCost = 0;
3107 InstructionCost ShuffleCost = 0;
3108 std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty);
3109 unsigned LongVectorCount = 0;
3110 unsigned MVTLen =
3111 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
3112 while (NumVecElts > MVTLen) {
3113 NumVecElts /= 2;
3114 VectorType *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
3115 ShuffleCost += thisT()->getShuffleCost(
3116 TTI::SK_ExtractSubvector, SubTy, Ty, {}, CostKind, NumVecElts, SubTy);
3117 ArithCost += thisT()->getArithmeticInstrCost(Opcode, SubTy, CostKind);
3118 Ty = SubTy;
3119 ++LongVectorCount;
3120 }
3121
3122 NumReduxLevels -= LongVectorCount;
3123
3124 // The minimal length of the vector is limited by the real length of vector
3125 // operations performed on the current platform. That's why several final
3126 // reduction operations are performed on the vectors with the same
3127 // architecture-dependent length.
3128
3129 // By default reductions need one shuffle per reduction level.
3130 ShuffleCost +=
3131 NumReduxLevels * thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
3132 Ty, {}, CostKind, 0, Ty);
3133 ArithCost +=
3134 NumReduxLevels * thisT()->getArithmeticInstrCost(Opcode, Ty, CostKind);
3135 return ShuffleCost + ArithCost +
3136 thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
3137 CostKind, 0, nullptr, nullptr);
3138 }
3139
3140 /// Try to calculate the cost of performing strict (in-order) reductions,
3141 /// which involves doing a sequence of floating point additions in lane
3142 /// order, starting with an initial value. For example, consider a scalar
3143 /// initial value 'InitVal' of type float and a vector of type <4 x float>:
3144 ///
3145 /// Vector = <float %v0, float %v1, float %v2, float %v3>
3146 ///
3147 /// %add1 = %InitVal + %v0
3148 /// %add2 = %add1 + %v1
3149 /// %add3 = %add2 + %v2
3150 /// %add4 = %add3 + %v3
3151 ///
3152 /// As a simple estimate we can say the cost of such a reduction is 4 times
3153 /// the cost of a scalar FP addition. We can only estimate the costs for
3154 /// fixed-width vectors here because for scalable vectors we do not know the
3155 /// runtime number of operations.
3158 // Targets must implement a default value for the scalable case, since
3159 // we don't know how many lanes the vector has.
3162
3163 auto *VTy = cast<FixedVectorType>(Ty);
3165 VTy, /*Insert=*/false, /*Extract=*/true, CostKind);
3166 InstructionCost ArithCost = thisT()->getArithmeticInstrCost(
3167 Opcode, VTy->getElementType(), CostKind);
3168 ArithCost *= VTy->getNumElements();
3169
3170 return ExtractCost + ArithCost;
3171 }
3172
3175 std::optional<FastMathFlags> FMF,
3176 TTI::TargetCostKind CostKind) const override {
3177 assert(Ty && "Unknown reduction vector type");
3179 return getOrderedReductionCost(Opcode, Ty, CostKind);
3180 return getTreeReductionCost(Opcode, Ty, CostKind);
3181 }
3182
3183 /// Try to calculate op costs for min/max reduction operations.
3184 /// \param CondTy Conditional type for the Select instruction.
3187 TTI::TargetCostKind CostKind) const override {
3188 // Targets must implement a default value for the scalable case, since
3189 // we don't know how many lanes the vector has.
3192
3193 Type *ScalarTy = Ty->getElementType();
3194 unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
3195 unsigned NumReduxLevels = Log2_32(NumVecElts);
3196 InstructionCost MinMaxCost = 0;
3197 InstructionCost ShuffleCost = 0;
3198 std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty);
3199 unsigned LongVectorCount = 0;
3200 unsigned MVTLen =
3201 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
3202 while (NumVecElts > MVTLen) {
3203 NumVecElts /= 2;
3204 auto *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
3205
3206 ShuffleCost += thisT()->getShuffleCost(
3207 TTI::SK_ExtractSubvector, SubTy, Ty, {}, CostKind, NumVecElts, SubTy);
3208
3209 IntrinsicCostAttributes Attrs(IID, SubTy, {SubTy, SubTy}, FMF);
3210 MinMaxCost += getIntrinsicInstrCost(Attrs, CostKind);
3211 Ty = SubTy;
3212 ++LongVectorCount;
3213 }
3214
3215 NumReduxLevels -= LongVectorCount;
3216
3217 // The minimal length of the vector is limited by the real length of vector
3218 // operations performed on the current platform. That's why several final
3219 // reduction opertions are perfomed on the vectors with the same
3220 // architecture-dependent length.
3221 ShuffleCost +=
3222 NumReduxLevels * thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
3223 Ty, {}, CostKind, 0, Ty);
3224 IntrinsicCostAttributes Attrs(IID, Ty, {Ty, Ty}, FMF);
3225 MinMaxCost += NumReduxLevels * getIntrinsicInstrCost(Attrs, CostKind);
3226 // The last min/max should be in vector registers and we counted it above.
3227 // So just need a single extractelement.
3228 return ShuffleCost + MinMaxCost +
3229 thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
3230 CostKind, 0, nullptr, nullptr);
3231 }
3232
3234 getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy,
3235 VectorType *Ty, std::optional<FastMathFlags> FMF,
3236 TTI::TargetCostKind CostKind) const override {
3237 if (auto *FTy = dyn_cast<FixedVectorType>(Ty);
3238 FTy && IsUnsigned && Opcode == Instruction::Add &&
3239 FTy->getElementType() == IntegerType::getInt1Ty(Ty->getContext())) {
3240 // Represent vector_reduce_add(ZExt(<n x i1>)) as
3241 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3242 auto *IntTy =
3243 IntegerType::get(ResTy->getContext(), FTy->getNumElements());
3244 IntrinsicCostAttributes ICA(Intrinsic::ctpop, IntTy, {IntTy},
3245 FMF ? *FMF : FastMathFlags());
3246 return thisT()->getCastInstrCost(Instruction::BitCast, IntTy, FTy,
3248 thisT()->getIntrinsicInstrCost(ICA, CostKind);
3249 }
3250 // Without any native support, this is equivalent to the cost of
3251 // vecreduce.opcode(ext(Ty A)).
3252 VectorType *ExtTy = VectorType::get(ResTy, Ty);
3253 InstructionCost RedCost =
3254 thisT()->getArithmeticReductionCost(Opcode, ExtTy, FMF, CostKind);
3255 InstructionCost ExtCost = thisT()->getCastInstrCost(
3256 IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
3258
3259 return RedCost + ExtCost;
3260 }
3261
3263 getMulAccReductionCost(bool IsUnsigned, unsigned RedOpcode, Type *ResTy,
3264 VectorType *Ty,
3265 TTI::TargetCostKind CostKind) const override {
3266 // Without any native support, this is equivalent to the cost of
3267 // vecreduce.add(mul(ext(Ty A), ext(Ty B))) or
3268 // vecreduce.add(mul(A, B)).
3269 assert((RedOpcode == Instruction::Add || RedOpcode == Instruction::Sub) &&
3270 "The reduction opcode is expected to be Add or Sub.");
3271 VectorType *ExtTy = VectorType::get(ResTy, Ty);
3272 InstructionCost RedCost = thisT()->getArithmeticReductionCost(
3273 RedOpcode, ExtTy, std::nullopt, CostKind);
3274 InstructionCost ExtCost = thisT()->getCastInstrCost(
3275 IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
3277
3278 InstructionCost MulCost =
3279 thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
3280
3281 return RedCost + MulCost + 2 * ExtCost;
3282 }
3283
3285
3286 /// @}
3287};
3288
3289/// Concrete BasicTTIImpl that can be used if no further customization
3290/// is needed.
3291class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
3292 using BaseT = BasicTTIImplBase<BasicTTIImpl>;
3293
3294 friend class BasicTTIImplBase<BasicTTIImpl>;
3295
3296 const TargetSubtargetInfo *ST;
3297 const TargetLoweringBase *TLI;
3298
3299 const TargetSubtargetInfo *getST() const { return ST; }
3300 const TargetLoweringBase *getTLI() const { return TLI; }
3301
3302public:
3303 explicit BasicTTIImpl(const TargetMachine *TM, const Function &F);
3304};
3305
3306} // end namespace llvm
3307
3308#endif // LLVM_CODEGEN_BASICTTIIMPL_H
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static const Function * getCalledFunction(const Value *V)
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
static unsigned getNumElements(Type *Ty)
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This file describes how to lower LLVM code to machine code.
This file provides helpers for the implementation of a TargetTransformInfo-conforming class.
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1331
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition APInt.h:1202
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition APInt.h:1131
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:201
an instruction to allocate memory on the stack
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition ArrayRef.h:195
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
Definition ArrayRef.h:201
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
InstructionCost getFPOpCost(Type *Ty) const override
bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const override
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false) const override
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
Try to calculate op costs for min/max reduction operations.
bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty) const override
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType, TTI::TargetCostKind CostKind) const override
unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const override
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const override
bool shouldBuildLookupTables() const override
InstructionCost getScalarizationOverhead(VectorType *InTy, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const override
Estimate the overhead of scalarizing an instruction.
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override
bool isProfitableToHoist(Instruction *I) const override
unsigned getNumberOfParts(Type *Tp) const override
unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const override
InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const override
InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const override
bool useAA() const override
unsigned getPrefetchDistance() const override
TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind, ArrayRef< int > Mask, VectorType *SrcTy, int &Index, VectorType *&SubTy) const
unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const override
bool isLegalAddScalableImmediate(int64_t Imm) const override
unsigned getAssumedAddrSpace(const Value *V) const override
std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const override
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I=nullptr, int64_t ScalableOffset=0) const override
bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const override
bool areInlineCompatible(const Function *Caller, const Function *Callee) const override
bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty) const override
bool haveFastSqrt(Type *Ty) const override
bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const override
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Scalar, ArrayRef< std::tuple< Value *, User *, int > > ScalarUserAndIdx) const override
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JumpTableSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const override
Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const override
unsigned adjustInliningThreshold(const CallBase *CB) const override
unsigned getInliningThresholdMultiplier() const override
InstructionCost getExpandCompressMemoryOpCost(unsigned Opcode, Type *DataTy, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset, int64_t MaxOffset)
bool shouldBuildRelLookupTables() const override
bool isTargetIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx) const override
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) const override
unsigned getEpilogueVectorizationMinVF() const override
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index, TTI::TargetCostKind CostKind) const override
InstructionCost getVectorSplitCost() const
bool isTruncateFree(Type *Ty1, Type *Ty2) const override
std::optional< unsigned > getMaxVScale() const override
unsigned getFlatAddressSpace() const override
InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const override
Compute a cost of the given call instruction.
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const override
InstructionCost getTreeReductionCost(unsigned Opcode, VectorType *Ty, TTI::TargetCostKind CostKind) const
Try to calculate arithmetic and shuffle op costs for reduction intrinsics.
~BasicTTIImplBase() override=default
std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const override
unsigned getMaxPrefetchIterationsAhead() const override
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
InstructionCost getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
Get intrinsic cost based on argument types.
bool hasBranchDivergence(const Function *F=nullptr) const override
InstructionCost getOrderedReductionCost(unsigned Opcode, VectorType *Ty, TTI::TargetCostKind CostKind) const
Try to calculate the cost of performing strict (in-order) reductions, which involves doing a sequence...
bool isTargetIntrinsicTriviallyScalarizable(Intrinsic::ID ID) const override
bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const override
std::optional< unsigned > getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const override
bool shouldPrefetchAddressSpace(unsigned AS) const override
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, Align Alignment, unsigned *Fast) const override
unsigned getCacheLineSize() const override
std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const override
bool shouldDropLSRSolutionIfLessProfitable() const override
int getInlinerVectorBonusPercent() const override
bool isVScaleKnownToBeAPowerOfTwo() const override
InstructionCost getMulAccReductionCost(bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind) const override
InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const override
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
std::pair< InstructionCost, MVT > getTypeLegalizationCost(Type *Ty) const
Estimate the cost of type-legalization and the legalized type.
bool isLegalAddImmediate(int64_t imm) const override
InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind) const override
unsigned getMaxInterleaveFactor(ElementCount VF) const override
bool isSingleThreaded() const override
InstructionCost getScalarizationOverhead(VectorType *InTy, bool Insert, bool Extract, TTI::TargetCostKind CostKind) const
Helper wrapper for the DemandedElts variant of getScalarizationOverhead.
InstructionCost getMaskedMemoryOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const override
bool isProfitableLSRChainElement(Instruction *I) const override
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override
bool isTargetIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx) const override
bool isTargetIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx) const override
std::optional< unsigned > getVScaleForTuning() const override
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
Get intrinsic cost based on arguments.
TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const override
std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const override
InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *, const SCEV *, TTI::TargetCostKind) const override
bool isSourceOfDivergence(const Value *V) const override
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const override
InstructionCost getScalarizationOverhead(VectorType *RetTy, ArrayRef< const Value * > Args, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing the inputs and outputs of an instruction, with return type RetTy...
std::optional< unsigned > getCacheSize(TargetTransformInfo::CacheLevel Level) const override
bool isAlwaysUniform(const Value *V) const override
bool isLegalICmpImmediate(int64_t imm) const override
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const override
unsigned getRegUsageForType(Type *Ty) const override
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
bool isTypeLegal(Type *Ty) const override
bool enableWritePrefetching() const override
bool isLSRCostLess(const TTI::LSRCost &C1, const TTI::LSRCost &C2) const override
InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const override
Estimate the overhead of scalarizing an instruction's operands.
bool isNumRegsMajorCostOfLSR() const override
BasicTTIImpl(const TargetMachine *TM, const Function &F)
size_type count() const
count - Returns the number of bits which are set.
Definition BitVector.h:181
BitVector & set()
Definition BitVector.h:370
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:686
static CmpInst::Predicate getGTPredicate(Intrinsic::ID ID)
static CmpInst::Predicate getLTPredicate(Intrinsic::ID ID)
This class represents a range of values.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
Container class for subtarget features.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:802
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
The core instruction combiner logic.
static InstructionCost getInvalid(CostType Val=0)
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
const TargetLibraryInfo * getLibInfo() const
const SmallVectorImpl< Type * > & getArgTypes() const
const SmallVectorImpl< const Value * > & getArgs() const
InstructionCost getScalarizationCost() const
const IntrinsicInst * getInst() const
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
const FeatureBitset & getFeatureBits() const
Machine Value Type.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Information for memory intrinsic cost model.
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for applied optimization remarks.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Analysis providing profile information.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
static LLVM_ABI bool isZeroEltSplatMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses all elements with the same value as the first element of exa...
static LLVM_ABI bool isSpliceMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is a splice mask, concatenating the two inputs together and then ext...
static LLVM_ABI bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
static LLVM_ABI bool isExtractSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is an extract subvector mask.
static LLVM_ABI bool isReverseMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask swaps the order of elements from exactly one source vector.
static LLVM_ABI bool isTransposeMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask is a transpose mask.
static LLVM_ABI bool isInsertSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &NumSubElts, int &Index)
Return true if this shuffle mask is an insert subvector mask.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
Definition TypeSize.h:30
static StackOffset getScalable(int64_t Scalable)
Definition TypeSize.h:40
static StackOffset getFixed(int64_t Fixed)
Definition TypeSize.h:39
static LLVM_ABI StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition Type.cpp:619
Multiway switch.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool preferSelectsOverBooleanArithmetic(EVT VT) const
Should we prefer selects to doing arithmetic on boolean types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
virtual bool areJTsAllowed(const Function *Fn) const
Return true if lowering to a jump table is allowed.
bool isOperationLegalOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal using promotion.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
bool isSuitableForBitTests(const DenseMap< const BasicBlock *, unsigned int > &DestCmps, const APInt &Low, const APInt &High, const DataLayout &DL) const
Return true if lowering to a bit test is suitable for a set of case clusters which contains NumDests ...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const
Return how this store with truncation should be treated: either it is legal, needs to be promoted to ...
LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return how this load with extension should be treated: either it is legal, needs to be promoted to a ...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
const Triple & getTargetTriple() const
virtual const TargetSubtargetInfo * getSubtargetImpl(const Function &) const
Virtual method implemented by subclasses that returns a reference to that target's TargetSubtargetInf...
CodeModel::Model getCodeModel() const
Returns the code model.
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual bool isProfitableLSRChainElement(Instruction *I) const
virtual const DataLayout & getDataLayout() const
virtual std::optional< unsigned > getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const
virtual std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
virtual bool shouldDropLSRSolutionIfLessProfitable() const
virtual bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const
virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const
virtual std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const
virtual std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
virtual unsigned getEpilogueVectorizationMinVF() const
virtual bool isLoweredToCall(const Function *F) const
virtual InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info, TTI::OperandValueInfo Opd2Info, ArrayRef< const Value * > Args, const Instruction *CxtI=nullptr) const
virtual InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const
virtual bool isLSRCostLess(const TTI::LSRCost &C1, const TTI::LSRCost &C2) const
virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I) const
virtual InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, const Instruction *I) const
virtual TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType, TTI::TargetCostKind CostKind) const override
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
static bool requiresOrderedReduction(std::optional< FastMathFlags > FMF)
A helper function to determine the type of reduction algorithm used for a given Opcode and set of Fas...
@ TCC_Expensive
The cost of a 'div' instruction on x86.
@ TCC_Basic
The cost of a typical 'add' instruction.
MemIndexedMode
The type of load/store indexing.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Transpose
Transpose two vectors.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
CastContextHint
Represents a hint about the context in which a cast is used.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
CacheLevel
The possible cache levels.
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
ArchType getArch() const
Get the parsed architecture type of this triple.
Definition Triple.h:413
LLVM_ABI bool isArch64Bit() const
Test whether the architecture is 64-bit.
Definition Triple.cpp:1791
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Definition Triple.h:627
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:294
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition Type.h:225
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
Definition Type.h:381
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
Value * getOperand(unsigned i) const
Definition User.h:232
static LLVM_ABI bool isVPBinOp(Intrinsic::ID ID)
static LLVM_ABI bool isVPCast(Intrinsic::ID ID)
static LLVM_ABI bool isVPCmp(Intrinsic::ID ID)
static LLVM_ABI std::optional< unsigned > getFunctionalOpcodeForVP(Intrinsic::ID ID)
static LLVM_ABI std::optional< Intrinsic::ID > getFunctionalIntrinsicIDForVP(Intrinsic::ID ID)
static LLVM_ABI bool isVPIntrinsic(Intrinsic::ID)
static LLVM_ABI bool isVPReduction(Intrinsic::ID ID)
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Base class of all SIMD vector types.
static VectorType * getHalfElementsVectorType(VectorType *VTy)
This static method returns a VectorType with half as many elements as the input type and the same ele...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition APInt.cpp:3009
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
Definition ISDOpcodes.h:24
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:771
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:387
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition ISDOpcodes.h:275
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:534
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:793
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:732
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:933
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isTargetIntrinsic(ID IID)
isTargetIntrinsic - Returns true if IID is an intrinsic specific to a certain target.
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMODF(EVT RetVT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
DiagnosticInfoOptimizationBase::Argument NV
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
Definition STLExtras.h:839
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2472
Type * toScalarizedTy(Type *Ty)
A helper for converting vectorized types to scalarized (non-vector) types.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:732
LLVM_ABI unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID)
Returns the arithmetic instruction opcode used when expanding a reduction.
bool isVectorizedTy(Type *Ty)
Returns true if Ty is a vector type or a struct of vector types where all vector types share the same...
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
Definition STLExtras.h:1150
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:331
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
ElementCount getVectorizedTypeVF(Type *Ty)
Returns the number of vector elements for a vectorized type.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
constexpr int PoisonMaskElem
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
cl::opt< unsigned > PartialUnrollingThreshold
LLVM_ABI bool isVectorizedStructTy(StructType *StructTy)
Returns true if StructTy is an unpacked literal struct where all elements are vectors of matching ele...
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
Attributes of a target dependent hardware loop.
static bool hasVectorMaskArgument(RTLIB::LibcallImpl Impl)
Returns true if the function has a vector mask argument, which is assumed to be the last argument.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
bool AllowPeeling
Allow peeling off loop iterations.
bool AllowLoopNestsPeeling
Allow peeling off loop iterations for loop nests.
bool PeelProfiledIterations
Allow peeling basing on profile.
unsigned PeelCount
A forced peeling factor (the number of bodied of the original loop that should be peeled off before t...
Parameters that control the generic loop unrolling transformation.
bool UpperBound
Allow using trip count upper bound to unroll loops.
unsigned PartialOptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size, like OptSizeThreshold,...
unsigned PartialThreshold
The cost threshold for the unrolled loop, like Threshold, but used for partial/runtime unrolling (set...
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...
unsigned OptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size (set to UINT_MAX to disable).