LLVM 20.0.0git
InferAddressSpaces.cpp
Go to the documentation of this file.
1//===- InferAddressSpace.cpp - --------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// CUDA C/C++ includes memory space designation as variable type qualifers (such
10// as __global__ and __shared__). Knowing the space of a memory access allows
11// CUDA compilers to emit faster PTX loads and stores. For example, a load from
12// shared memory can be translated to `ld.shared` which is roughly 10% faster
13// than a generic `ld` on an NVIDIA Tesla K40c.
14//
15// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16// compilers must infer the memory space of an address expression from
17// type-qualified variables.
18//
19// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21// places only type-qualified variables in specific address spaces, and then
22// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23// (so-called the generic address space) for other instructions to use.
24//
25// For example, the Clang translates the following CUDA code
26// __shared__ float a[10];
27// float v = a[i];
28// to
29// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31// %v = load float, float* %1 ; emits ld.f32
32// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33// redirected to %0 (the generic version of @a).
34//
35// The optimization implemented in this file propagates specific address spaces
36// from type-qualified variable declarations to its users. For example, it
37// optimizes the above IR to
38// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41// codegen is able to emit ld.shared.f32 for %v.
42//
43// Address space inference works in two steps. First, it uses a data-flow
44// analysis to infer as many generic pointers as possible to point to only one
45// specific address space. In the above example, it can prove that %1 only
46// points to addrspace(3). This algorithm was published in
47// CUDA: Compiling and optimizing for a GPU platform
48// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49// ICCS 2012
50//
51// Then, address space inference replaces all refinable generic pointers with
52// equivalent specific pointers.
53//
54// The major challenge of implementing this optimization is handling PHINodes,
55// which may create loops in the data flow graph. This brings two complications.
56//
57// First, the data flow analysis in Step 1 needs to be circular. For example,
58// %generic.input = addrspacecast float addrspace(3)* %input to float*
59// loop:
60// %y = phi [ %generic.input, %y2 ]
61// %y2 = getelementptr %y, 1
62// %v = load %y2
63// br ..., label %loop, ...
64// proving %y specific requires proving both %generic.input and %y2 specific,
65// but proving %y2 specific circles back to %y. To address this complication,
66// the data flow analysis operates on a lattice:
67// uninitialized > specific address spaces > generic.
68// All address expressions (our implementation only considers phi, bitcast,
69// addrspacecast, and getelementptr) start with the uninitialized address space.
70// The monotone transfer function moves the address space of a pointer down a
71// lattice path from uninitialized to specific and then to generic. A join
72// operation of two different specific address spaces pushes the expression down
73// to the generic address space. The analysis completes once it reaches a fixed
74// point.
75//
76// Second, IR rewriting in Step 2 also needs to be circular. For example,
77// converting %y to addrspace(3) requires the compiler to know the converted
78// %y2, but converting %y2 needs the converted %y. To address this complication,
79// we break these cycles using "poison" placeholders. When converting an
80// instruction `I` to a new address space, if its operand `Op` is not converted
81// yet, we let `I` temporarily use `poison` and fix all the uses later.
82// For instance, our algorithm first converts %y to
83// %y' = phi float addrspace(3)* [ %input, poison ]
84// Then, it converts %y2 to
85// %y2' = getelementptr %y', 1
86// Finally, it fixes the poison in %y' so that
87// %y' = phi float addrspace(3)* [ %input, %y2' ]
88//
89//===----------------------------------------------------------------------===//
90
92#include "llvm/ADT/ArrayRef.h"
93#include "llvm/ADT/DenseMap.h"
94#include "llvm/ADT/DenseSet.h"
95#include "llvm/ADT/SetVector.h"
100#include "llvm/IR/BasicBlock.h"
101#include "llvm/IR/Constant.h"
102#include "llvm/IR/Constants.h"
103#include "llvm/IR/Dominators.h"
104#include "llvm/IR/Function.h"
105#include "llvm/IR/IRBuilder.h"
106#include "llvm/IR/InstIterator.h"
107#include "llvm/IR/Instruction.h"
108#include "llvm/IR/Instructions.h"
110#include "llvm/IR/Intrinsics.h"
111#include "llvm/IR/LLVMContext.h"
112#include "llvm/IR/Operator.h"
113#include "llvm/IR/PassManager.h"
114#include "llvm/IR/Type.h"
115#include "llvm/IR/Use.h"
116#include "llvm/IR/User.h"
117#include "llvm/IR/Value.h"
118#include "llvm/IR/ValueHandle.h"
120#include "llvm/Pass.h"
121#include "llvm/Support/Casting.h"
124#include "llvm/Support/Debug.h"
130#include <cassert>
131#include <iterator>
132#include <limits>
133#include <utility>
134#include <vector>
135
136#define DEBUG_TYPE "infer-address-spaces"
137
138using namespace llvm;
139
141 "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
142 cl::desc("The default address space is assumed as the flat address space. "
143 "This is mainly for test purpose."));
144
145static const unsigned UninitializedAddressSpace =
146 std::numeric_limits<unsigned>::max();
147
148namespace {
149
150using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
151// Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
152// the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
153// addrspace is inferred on the *use* of a pointer. This map is introduced to
154// infer addrspace from the addrspace predicate assumption built from assume
155// intrinsic. In that scenario, only specific uses (under valid assumption
156// context) could be inferred with a new addrspace.
157using PredicatedAddrSpaceMapTy =
159using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
160
161class InferAddressSpaces : public FunctionPass {
162 unsigned FlatAddrSpace = 0;
163
164public:
165 static char ID;
166
167 InferAddressSpaces()
168 : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {
170 }
171 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {
173 }
174
175 void getAnalysisUsage(AnalysisUsage &AU) const override {
176 AU.setPreservesCFG();
180 }
181
182 bool runOnFunction(Function &F) override;
183};
184
185class InferAddressSpacesImpl {
186 AssumptionCache &AC;
187 Function *F = nullptr;
188 const DominatorTree *DT = nullptr;
189 const TargetTransformInfo *TTI = nullptr;
190 const DataLayout *DL = nullptr;
191
192 /// Target specific address space which uses of should be replaced if
193 /// possible.
194 unsigned FlatAddrSpace = 0;
195
196 // Try to update the address space of V. If V is updated, returns true and
197 // false otherwise.
198 bool updateAddressSpace(const Value &V,
199 ValueToAddrSpaceMapTy &InferredAddrSpace,
200 PredicatedAddrSpaceMapTy &PredicatedAS) const;
201
202 // Tries to infer the specific address space of each address expression in
203 // Postorder.
204 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
205 ValueToAddrSpaceMapTy &InferredAddrSpace,
206 PredicatedAddrSpaceMapTy &PredicatedAS) const;
207
208 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
209
210 Value *cloneInstructionWithNewAddressSpace(
211 Instruction *I, unsigned NewAddrSpace,
212 const ValueToValueMapTy &ValueWithNewAddrSpace,
213 const PredicatedAddrSpaceMapTy &PredicatedAS,
214 SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
215
216 void performPointerReplacement(
217 Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace,
218 SmallVectorImpl<Instruction *> &DeadInstructions) const;
219
220 // Changes the flat address expressions in function F to point to specific
221 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
222 // all flat expressions in the use-def graph of function F.
223 bool rewriteWithNewAddressSpaces(
224 ArrayRef<WeakTrackingVH> Postorder,
225 const ValueToAddrSpaceMapTy &InferredAddrSpace,
226 const PredicatedAddrSpaceMapTy &PredicatedAS) const;
227
228 void appendsFlatAddressExpressionToPostorderStack(
229 Value *V, PostorderStackTy &PostorderStack,
230 DenseSet<Value *> &Visited) const;
231
232 bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV,
233 Value *NewV) const;
234 void collectRewritableIntrinsicOperands(IntrinsicInst *II,
235 PostorderStackTy &PostorderStack,
236 DenseSet<Value *> &Visited) const;
237
238 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
239
240 Value *cloneValueWithNewAddressSpace(
241 Value *V, unsigned NewAddrSpace,
242 const ValueToValueMapTy &ValueWithNewAddrSpace,
243 const PredicatedAddrSpaceMapTy &PredicatedAS,
244 SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
245 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
246
247 unsigned getPredicatedAddrSpace(const Value &PtrV,
248 const Value *UserCtx) const;
249
250public:
251 InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT,
252 const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
253 : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
254 bool run(Function &F);
255};
256
257} // end anonymous namespace
258
259char InferAddressSpaces::ID = 0;
260
261INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
262 false, false)
265INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
267
268static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) {
269 assert(Ty->isPtrOrPtrVectorTy());
270 PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace);
271 return Ty->getWithNewType(NPT);
272}
273
274// Check whether that's no-op pointer bicast using a pair of
275// `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
276// different address spaces.
277static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
278 const TargetTransformInfo *TTI) {
279 assert(I2P->getOpcode() == Instruction::IntToPtr);
280 auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
281 if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
282 return false;
283 // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
284 // no-op cast. Besides checking both of them are no-op casts, as the
285 // reinterpreted pointer may be used in other pointer arithmetic, we also
286 // need to double-check that through the target-specific hook. That ensures
287 // the underlying target also agrees that's a no-op address space cast and
288 // pointer bits are preserved.
289 // The current IR spec doesn't have clear rules on address space casts,
290 // especially a clear definition for pointer bits in non-default address
291 // spaces. It would be undefined if that pointer is dereferenced after an
292 // invalid reinterpret cast. Also, due to the unclearness for the meaning of
293 // bits in non-default address spaces in the current spec, the pointer
294 // arithmetic may also be undefined after invalid pointer reinterpret cast.
295 // However, as we confirm through the target hooks that it's a no-op
296 // addrspacecast, it doesn't matter since the bits should be the same.
297 unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace();
298 unsigned I2PAS = I2P->getType()->getPointerAddressSpace();
300 I2P->getOperand(0)->getType(), I2P->getType(),
301 DL) &&
303 P2I->getOperand(0)->getType(), P2I->getType(),
304 DL) &&
305 (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS));
306}
307
308// Returns true if V is an address expression.
309// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
310// getelementptr operators.
311static bool isAddressExpression(const Value &V, const DataLayout &DL,
312 const TargetTransformInfo *TTI) {
313 const Operator *Op = dyn_cast<Operator>(&V);
314 if (!Op)
315 return false;
316
317 switch (Op->getOpcode()) {
318 case Instruction::PHI:
319 assert(Op->getType()->isPtrOrPtrVectorTy());
320 return true;
321 case Instruction::BitCast:
322 case Instruction::AddrSpaceCast:
323 case Instruction::GetElementPtr:
324 return true;
325 case Instruction::Select:
326 return Op->getType()->isPtrOrPtrVectorTy();
327 case Instruction::Call: {
328 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
329 return II && II->getIntrinsicID() == Intrinsic::ptrmask;
330 }
331 case Instruction::IntToPtr:
332 return isNoopPtrIntCastPair(Op, DL, TTI);
333 default:
334 // That value is an address expression if it has an assumed address space.
336 }
337}
338
339// Returns the pointer operands of V.
340//
341// Precondition: V is an address expression.
344 const TargetTransformInfo *TTI) {
345 const Operator &Op = cast<Operator>(V);
346 switch (Op.getOpcode()) {
347 case Instruction::PHI: {
348 auto IncomingValues = cast<PHINode>(Op).incoming_values();
349 return {IncomingValues.begin(), IncomingValues.end()};
350 }
351 case Instruction::BitCast:
352 case Instruction::AddrSpaceCast:
353 case Instruction::GetElementPtr:
354 return {Op.getOperand(0)};
355 case Instruction::Select:
356 return {Op.getOperand(1), Op.getOperand(2)};
357 case Instruction::Call: {
358 const IntrinsicInst &II = cast<IntrinsicInst>(Op);
359 assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
360 "unexpected intrinsic call");
361 return {II.getArgOperand(0)};
362 }
363 case Instruction::IntToPtr: {
365 auto *P2I = cast<Operator>(Op.getOperand(0));
366 return {P2I->getOperand(0)};
367 }
368 default:
369 llvm_unreachable("Unexpected instruction type.");
370 }
371}
372
373bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
374 Value *OldV,
375 Value *NewV) const {
376 Module *M = II->getParent()->getParent()->getParent();
377 Intrinsic::ID IID = II->getIntrinsicID();
378 switch (IID) {
379 case Intrinsic::objectsize:
380 case Intrinsic::masked_load: {
381 Type *DestTy = II->getType();
382 Type *SrcTy = NewV->getType();
383 Function *NewDecl = Intrinsic::getDeclaration(M, IID, {DestTy, SrcTy});
384 II->setArgOperand(0, NewV);
385 II->setCalledFunction(NewDecl);
386 return true;
387 }
388 case Intrinsic::ptrmask:
389 // This is handled as an address expression, not as a use memory operation.
390 return false;
391 case Intrinsic::masked_gather: {
392 Type *RetTy = II->getType();
393 Type *NewPtrTy = NewV->getType();
394 Function *NewDecl = Intrinsic::getDeclaration(M, IID, {RetTy, NewPtrTy});
395 II->setArgOperand(0, NewV);
396 II->setCalledFunction(NewDecl);
397 return true;
398 }
399 case Intrinsic::masked_store:
400 case Intrinsic::masked_scatter: {
401 Type *ValueTy = II->getOperand(0)->getType();
402 Type *NewPtrTy = NewV->getType();
403 Function *NewDecl =
404 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {ValueTy, NewPtrTy});
405 II->setArgOperand(1, NewV);
406 II->setCalledFunction(NewDecl);
407 return true;
408 }
409 case Intrinsic::prefetch:
410 case Intrinsic::is_constant: {
411 Function *NewDecl =
412 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {NewV->getType()});
413 II->setArgOperand(0, NewV);
414 II->setCalledFunction(NewDecl);
415 return true;
416 }
417 default: {
418 Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
419 if (!Rewrite)
420 return false;
421 if (Rewrite != II)
422 II->replaceAllUsesWith(Rewrite);
423 return true;
424 }
425 }
426}
427
428void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
429 IntrinsicInst *II, PostorderStackTy &PostorderStack,
430 DenseSet<Value *> &Visited) const {
431 auto IID = II->getIntrinsicID();
432 switch (IID) {
433 case Intrinsic::ptrmask:
434 case Intrinsic::objectsize:
435 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
436 PostorderStack, Visited);
437 break;
438 case Intrinsic::is_constant: {
439 Value *Ptr = II->getArgOperand(0);
440 if (Ptr->getType()->isPtrOrPtrVectorTy()) {
441 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
442 Visited);
443 }
444
445 break;
446 }
447 case Intrinsic::masked_load:
448 case Intrinsic::masked_gather:
449 case Intrinsic::prefetch:
450 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
451 PostorderStack, Visited);
452 break;
453 case Intrinsic::masked_store:
454 case Intrinsic::masked_scatter:
455 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1),
456 PostorderStack, Visited);
457 break;
458 default:
459 SmallVector<int, 2> OpIndexes;
460 if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
461 for (int Idx : OpIndexes) {
462 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
463 PostorderStack, Visited);
464 }
465 }
466 break;
467 }
468}
469
470// Returns all flat address expressions in function F. The elements are
471// If V is an unvisited flat address expression, appends V to PostorderStack
472// and marks it as visited.
473void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
474 Value *V, PostorderStackTy &PostorderStack,
475 DenseSet<Value *> &Visited) const {
476 assert(V->getType()->isPtrOrPtrVectorTy());
477
478 // Generic addressing expressions may be hidden in nested constant
479 // expressions.
480 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
481 // TODO: Look in non-address parts, like icmp operands.
482 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
483 PostorderStack.emplace_back(CE, false);
484
485 return;
486 }
487
488 if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
489 isAddressExpression(*V, *DL, TTI)) {
490 if (Visited.insert(V).second) {
491 PostorderStack.emplace_back(V, false);
492
493 Operator *Op = cast<Operator>(V);
494 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
495 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
496 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
497 PostorderStack.emplace_back(CE, false);
498 }
499 }
500 }
501 }
502}
503
504// Returns all flat address expressions in function F. The elements are ordered
505// in postorder.
506std::vector<WeakTrackingVH>
507InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
508 // This function implements a non-recursive postorder traversal of a partial
509 // use-def graph of function F.
510 PostorderStackTy PostorderStack;
511 // The set of visited expressions.
512 DenseSet<Value *> Visited;
513
514 auto PushPtrOperand = [&](Value *Ptr) {
515 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited);
516 };
517
518 // Look at operations that may be interesting accelerate by moving to a known
519 // address space. We aim at generating after loads and stores, but pure
520 // addressing calculations may also be faster.
521 for (Instruction &I : instructions(F)) {
522 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
523 PushPtrOperand(GEP->getPointerOperand());
524 } else if (auto *LI = dyn_cast<LoadInst>(&I))
525 PushPtrOperand(LI->getPointerOperand());
526 else if (auto *SI = dyn_cast<StoreInst>(&I))
527 PushPtrOperand(SI->getPointerOperand());
528 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
529 PushPtrOperand(RMW->getPointerOperand());
530 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
531 PushPtrOperand(CmpX->getPointerOperand());
532 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
533 // For memset/memcpy/memmove, any pointer operand can be replaced.
534 PushPtrOperand(MI->getRawDest());
535
536 // Handle 2nd operand for memcpy/memmove.
537 if (auto *MTI = dyn_cast<MemTransferInst>(MI))
538 PushPtrOperand(MTI->getRawSource());
539 } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
540 collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
541 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
542 if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) {
543 PushPtrOperand(Cmp->getOperand(0));
544 PushPtrOperand(Cmp->getOperand(1));
545 }
546 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
547 PushPtrOperand(ASC->getPointerOperand());
548 } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
549 if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
550 PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0));
551 } else if (auto *RI = dyn_cast<ReturnInst>(&I)) {
552 if (auto *RV = RI->getReturnValue();
553 RV && RV->getType()->isPtrOrPtrVectorTy())
554 PushPtrOperand(RV);
555 }
556 }
557
558 std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
559 while (!PostorderStack.empty()) {
560 Value *TopVal = PostorderStack.back().getPointer();
561 // If the operands of the expression on the top are already explored,
562 // adds that expression to the resultant postorder.
563 if (PostorderStack.back().getInt()) {
564 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
565 Postorder.push_back(TopVal);
566 PostorderStack.pop_back();
567 continue;
568 }
569 // Otherwise, adds its operands to the stack and explores them.
570 PostorderStack.back().setInt(true);
571 // Skip values with an assumed address space.
573 for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
574 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
575 Visited);
576 }
577 }
578 }
579 return Postorder;
580}
581
582// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
583// of OperandUse.get() in the new address space. If the clone is not ready yet,
584// returns poison in the new address space as a placeholder.
586 const Use &OperandUse, unsigned NewAddrSpace,
587 const ValueToValueMapTy &ValueWithNewAddrSpace,
588 const PredicatedAddrSpaceMapTy &PredicatedAS,
589 SmallVectorImpl<const Use *> *PoisonUsesToFix) {
590 Value *Operand = OperandUse.get();
591
592 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace);
593
594 if (Constant *C = dyn_cast<Constant>(Operand))
595 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
596
597 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
598 return NewOperand;
599
600 Instruction *Inst = cast<Instruction>(OperandUse.getUser());
601 auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
602 if (I != PredicatedAS.end()) {
603 // Insert an addrspacecast on that operand before the user.
604 unsigned NewAS = I->second;
605 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS);
606 auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
607 NewI->insertBefore(Inst);
608 NewI->setDebugLoc(Inst->getDebugLoc());
609 return NewI;
610 }
611
612 PoisonUsesToFix->push_back(&OperandUse);
613 return PoisonValue::get(NewPtrTy);
614}
615
616// Returns a clone of `I` with its operands converted to those specified in
617// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
618// operand whose address space needs to be modified might not exist in
619// ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and
620// adds that operand use to PoisonUsesToFix so that caller can fix them later.
621//
622// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
623// from a pointer whose type already matches. Therefore, this function returns a
624// Value* instead of an Instruction*.
625//
626// This may also return nullptr in the case the instruction could not be
627// rewritten.
628Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
629 Instruction *I, unsigned NewAddrSpace,
630 const ValueToValueMapTy &ValueWithNewAddrSpace,
631 const PredicatedAddrSpaceMapTy &PredicatedAS,
632 SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
633 Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace);
634
635 if (I->getOpcode() == Instruction::AddrSpaceCast) {
636 Value *Src = I->getOperand(0);
637 // Because `I` is flat, the source address space must be specific.
638 // Therefore, the inferred address space must be the source space, according
639 // to our algorithm.
640 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
641 if (Src->getType() != NewPtrType)
642 return new BitCastInst(Src, NewPtrType);
643 return Src;
644 }
645
646 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
647 // Technically the intrinsic ID is a pointer typed argument, so specially
648 // handle calls early.
649 assert(II->getIntrinsicID() == Intrinsic::ptrmask);
651 II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
652 PredicatedAS, PoisonUsesToFix);
653 Value *Rewrite =
654 TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
655 if (Rewrite) {
656 assert(Rewrite != II && "cannot modify this pointer operation in place");
657 return Rewrite;
658 }
659
660 return nullptr;
661 }
662
663 unsigned AS = TTI->getAssumedAddrSpace(I);
664 if (AS != UninitializedAddressSpace) {
665 // For the assumed address space, insert an `addrspacecast` to make that
666 // explicit.
667 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS);
668 auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
669 NewI->insertAfter(I);
670 NewI->setDebugLoc(I->getDebugLoc());
671 return NewI;
672 }
673
674 // Computes the converted pointer operands.
675 SmallVector<Value *, 4> NewPointerOperands;
676 for (const Use &OperandUse : I->operands()) {
677 if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy())
678 NewPointerOperands.push_back(nullptr);
679 else
681 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
682 PoisonUsesToFix));
683 }
684
685 switch (I->getOpcode()) {
686 case Instruction::BitCast:
687 return new BitCastInst(NewPointerOperands[0], NewPtrType);
688 case Instruction::PHI: {
689 assert(I->getType()->isPtrOrPtrVectorTy());
690 PHINode *PHI = cast<PHINode>(I);
691 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
692 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
693 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
694 NewPHI->addIncoming(NewPointerOperands[OperandNo],
695 PHI->getIncomingBlock(Index));
696 }
697 return NewPHI;
698 }
699 case Instruction::GetElementPtr: {
700 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
702 GEP->getSourceElementType(), NewPointerOperands[0],
703 SmallVector<Value *, 4>(GEP->indices()));
704 NewGEP->setIsInBounds(GEP->isInBounds());
705 return NewGEP;
706 }
707 case Instruction::Select:
708 assert(I->getType()->isPtrOrPtrVectorTy());
709 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
710 NewPointerOperands[2], "", nullptr, I);
711 case Instruction::IntToPtr: {
712 assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
713 Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
714 if (Src->getType() == NewPtrType)
715 return Src;
716
717 // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a
718 // source address space from a generic pointer source need to insert a cast
719 // back.
720 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType);
721 }
722 default:
723 llvm_unreachable("Unexpected opcode");
724 }
725}
726
727// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
728// constant expression `CE` with its operands replaced as specified in
729// ValueWithNewAddrSpace.
731 ConstantExpr *CE, unsigned NewAddrSpace,
732 const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
733 const TargetTransformInfo *TTI) {
734 Type *TargetType =
735 CE->getType()->isPtrOrPtrVectorTy()
736 ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace)
737 : CE->getType();
738
739 if (CE->getOpcode() == Instruction::AddrSpaceCast) {
740 // Because CE is flat, the source address space must be specific.
741 // Therefore, the inferred address space must be the source space according
742 // to our algorithm.
743 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
744 NewAddrSpace);
745 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
746 }
747
748 if (CE->getOpcode() == Instruction::BitCast) {
749 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
750 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
751 return ConstantExpr::getAddrSpaceCast(CE, TargetType);
752 }
753
754 if (CE->getOpcode() == Instruction::IntToPtr) {
755 assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
756 Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
757 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
758 return ConstantExpr::getBitCast(Src, TargetType);
759 }
760
761 // Computes the operands of the new constant expression.
762 bool IsNew = false;
763 SmallVector<Constant *, 4> NewOperands;
764 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
765 Constant *Operand = CE->getOperand(Index);
766 // If the address space of `Operand` needs to be modified, the new operand
767 // with the new address space should already be in ValueWithNewAddrSpace
768 // because (1) the constant expressions we consider (i.e. addrspacecast,
769 // bitcast, and getelementptr) do not incur cycles in the data flow graph
770 // and (2) this function is called on constant expressions in postorder.
771 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
772 IsNew = true;
773 NewOperands.push_back(cast<Constant>(NewOperand));
774 continue;
775 }
776 if (auto *CExpr = dyn_cast<ConstantExpr>(Operand))
778 CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
779 IsNew = true;
780 NewOperands.push_back(cast<Constant>(NewOperand));
781 continue;
782 }
783 // Otherwise, reuses the old operand.
784 NewOperands.push_back(Operand);
785 }
786
787 // If !IsNew, we will replace the Value with itself. However, replaced values
788 // are assumed to wrapped in an addrspacecast cast later so drop it now.
789 if (!IsNew)
790 return nullptr;
791
792 if (CE->getOpcode() == Instruction::GetElementPtr) {
793 // Needs to specify the source type while constructing a getelementptr
794 // constant expression.
795 return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
796 cast<GEPOperator>(CE)->getSourceElementType());
797 }
798
799 return CE->getWithOperands(NewOperands, TargetType);
800}
801
802// Returns a clone of the value `V`, with its operands replaced as specified in
803// ValueWithNewAddrSpace. This function is called on every flat address
804// expression whose address space needs to be modified, in postorder.
805//
806// See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix.
807Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
808 Value *V, unsigned NewAddrSpace,
809 const ValueToValueMapTy &ValueWithNewAddrSpace,
810 const PredicatedAddrSpaceMapTy &PredicatedAS,
811 SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
812 // All values in Postorder are flat address expressions.
813 assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
814 isAddressExpression(*V, *DL, TTI));
815
816 if (Instruction *I = dyn_cast<Instruction>(V)) {
817 Value *NewV = cloneInstructionWithNewAddressSpace(
818 I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix);
819 if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
820 if (NewI->getParent() == nullptr) {
821 NewI->insertBefore(I);
822 NewI->takeName(I);
823 NewI->setDebugLoc(I->getDebugLoc());
824 }
825 }
826 return NewV;
827 }
828
830 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
831}
832
833// Defines the join operation on the address space lattice (see the file header
834// comments).
835unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
836 unsigned AS2) const {
837 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
838 return FlatAddrSpace;
839
840 if (AS1 == UninitializedAddressSpace)
841 return AS2;
842 if (AS2 == UninitializedAddressSpace)
843 return AS1;
844
845 // The join of two different specific address spaces is flat.
846 return (AS1 == AS2) ? AS1 : FlatAddrSpace;
847}
848
849bool InferAddressSpacesImpl::run(Function &CurFn) {
850 F = &CurFn;
851 DL = &F->getDataLayout();
852
854 FlatAddrSpace = 0;
855
856 if (FlatAddrSpace == UninitializedAddressSpace) {
857 FlatAddrSpace = TTI->getFlatAddressSpace();
858 if (FlatAddrSpace == UninitializedAddressSpace)
859 return false;
860 }
861
862 // Collects all flat address expressions in postorder.
863 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(*F);
864
865 // Runs a data-flow analysis to refine the address spaces of every expression
866 // in Postorder.
867 ValueToAddrSpaceMapTy InferredAddrSpace;
868 PredicatedAddrSpaceMapTy PredicatedAS;
869 inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
870
871 // Changes the address spaces of the flat address expressions who are inferred
872 // to point to a specific address space.
873 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace,
874 PredicatedAS);
875}
876
877// Constants need to be tracked through RAUW to handle cases with nested
878// constant expressions, so wrap values in WeakTrackingVH.
879void InferAddressSpacesImpl::inferAddressSpaces(
880 ArrayRef<WeakTrackingVH> Postorder,
881 ValueToAddrSpaceMapTy &InferredAddrSpace,
882 PredicatedAddrSpaceMapTy &PredicatedAS) const {
883 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
884 // Initially, all expressions are in the uninitialized address space.
885 for (Value *V : Postorder)
886 InferredAddrSpace[V] = UninitializedAddressSpace;
887
888 while (!Worklist.empty()) {
889 Value *V = Worklist.pop_back_val();
890
891 // Try to update the address space of the stack top according to the
892 // address spaces of its operands.
893 if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
894 continue;
895
896 for (Value *User : V->users()) {
897 // Skip if User is already in the worklist.
898 if (Worklist.count(User))
899 continue;
900
901 auto Pos = InferredAddrSpace.find(User);
902 // Our algorithm only updates the address spaces of flat address
903 // expressions, which are those in InferredAddrSpace.
904 if (Pos == InferredAddrSpace.end())
905 continue;
906
907 // Function updateAddressSpace moves the address space down a lattice
908 // path. Therefore, nothing to do if User is already inferred as flat (the
909 // bottom element in the lattice).
910 if (Pos->second == FlatAddrSpace)
911 continue;
912
913 Worklist.insert(User);
914 }
915 }
916}
917
918unsigned
919InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &Ptr,
920 const Value *UserCtx) const {
921 const Instruction *UserCtxI = dyn_cast<Instruction>(UserCtx);
922 if (!UserCtxI)
924
925 const Value *StrippedPtr = Ptr.stripInBoundsOffsets();
926 for (auto &AssumeVH : AC.assumptionsFor(StrippedPtr)) {
927 if (!AssumeVH)
928 continue;
929 CallInst *CI = cast<CallInst>(AssumeVH);
930 if (!isValidAssumeForContext(CI, UserCtxI, DT))
931 continue;
932
933 const Value *Ptr;
934 unsigned AS;
935 std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
936 if (Ptr)
937 return AS;
938 }
939
941}
942
943bool InferAddressSpacesImpl::updateAddressSpace(
944 const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
945 PredicatedAddrSpaceMapTy &PredicatedAS) const {
946 assert(InferredAddrSpace.count(&V));
947
948 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << V << '\n');
949
950 // The new inferred address space equals the join of the address spaces
951 // of all its pointer operands.
952 unsigned NewAS = UninitializedAddressSpace;
953
954 const Operator &Op = cast<Operator>(V);
955 if (Op.getOpcode() == Instruction::Select) {
956 Value *Src0 = Op.getOperand(1);
957 Value *Src1 = Op.getOperand(2);
958
959 auto I = InferredAddrSpace.find(Src0);
960 unsigned Src0AS = (I != InferredAddrSpace.end())
961 ? I->second
962 : Src0->getType()->getPointerAddressSpace();
963
964 auto J = InferredAddrSpace.find(Src1);
965 unsigned Src1AS = (J != InferredAddrSpace.end())
966 ? J->second
967 : Src1->getType()->getPointerAddressSpace();
968
969 auto *C0 = dyn_cast<Constant>(Src0);
970 auto *C1 = dyn_cast<Constant>(Src1);
971
972 // If one of the inputs is a constant, we may be able to do a constant
973 // addrspacecast of it. Defer inferring the address space until the input
974 // address space is known.
975 if ((C1 && Src0AS == UninitializedAddressSpace) ||
976 (C0 && Src1AS == UninitializedAddressSpace))
977 return false;
978
979 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
980 NewAS = Src1AS;
981 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
982 NewAS = Src0AS;
983 else
984 NewAS = joinAddressSpaces(Src0AS, Src1AS);
985 } else {
986 unsigned AS = TTI->getAssumedAddrSpace(&V);
987 if (AS != UninitializedAddressSpace) {
988 // Use the assumed address space directly.
989 NewAS = AS;
990 } else {
991 // Otherwise, infer the address space from its pointer operands.
992 for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
993 auto I = InferredAddrSpace.find(PtrOperand);
994 unsigned OperandAS;
995 if (I == InferredAddrSpace.end()) {
996 OperandAS = PtrOperand->getType()->getPointerAddressSpace();
997 if (OperandAS == FlatAddrSpace) {
998 // Check AC for assumption dominating V.
999 unsigned AS = getPredicatedAddrSpace(*PtrOperand, &V);
1000 if (AS != UninitializedAddressSpace) {
1002 << " deduce operand AS from the predicate addrspace "
1003 << AS << '\n');
1004 OperandAS = AS;
1005 // Record this use with the predicated AS.
1006 PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
1007 }
1008 }
1009 } else
1010 OperandAS = I->second;
1011
1012 // join(flat, *) = flat. So we can break if NewAS is already flat.
1013 NewAS = joinAddressSpaces(NewAS, OperandAS);
1014 if (NewAS == FlatAddrSpace)
1015 break;
1016 }
1017 }
1018 }
1019
1020 unsigned OldAS = InferredAddrSpace.lookup(&V);
1021 assert(OldAS != FlatAddrSpace);
1022 if (OldAS == NewAS)
1023 return false;
1024
1025 // If any updates are made, grabs its users to the worklist because
1026 // their address spaces can also be possibly updated.
1027 LLVM_DEBUG(dbgs() << " to " << NewAS << '\n');
1028 InferredAddrSpace[&V] = NewAS;
1029 return true;
1030}
1031
1032/// Replace operand \p OpIdx in \p Inst, if the value is the same as \p OldVal
1033/// with \p NewVal.
1034static bool replaceOperandIfSame(Instruction *Inst, unsigned OpIdx,
1035 Value *OldVal, Value *NewVal) {
1036 Use &U = Inst->getOperandUse(OpIdx);
1037 if (U.get() == OldVal) {
1038 U.set(NewVal);
1039 return true;
1040 }
1041
1042 return false;
1043}
1044
1045template <typename InstrType>
1047 InstrType *MemInstr, unsigned AddrSpace,
1048 Value *OldV, Value *NewV) {
1049 if (!MemInstr->isVolatile() || TTI.hasVolatileVariant(MemInstr, AddrSpace)) {
1050 return replaceOperandIfSame(MemInstr, InstrType::getPointerOperandIndex(),
1051 OldV, NewV);
1052 }
1053
1054 return false;
1055}
1056
1057/// If \p OldV is used as the pointer operand of a compatible memory operation
1058/// \p Inst, replaces the pointer operand with NewV.
1059///
1060/// This covers memory instructions with a single pointer operand that can have
1061/// its address space changed by simply mutating the use to a new value.
1062///
1063/// \p returns true the user replacement was made.
1065 User *Inst, unsigned AddrSpace,
1066 Value *OldV, Value *NewV) {
1067 if (auto *LI = dyn_cast<LoadInst>(Inst))
1068 return replaceSimplePointerUse(TTI, LI, AddrSpace, OldV, NewV);
1069
1070 if (auto *SI = dyn_cast<StoreInst>(Inst))
1071 return replaceSimplePointerUse(TTI, SI, AddrSpace, OldV, NewV);
1072
1073 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1074 return replaceSimplePointerUse(TTI, RMW, AddrSpace, OldV, NewV);
1075
1076 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
1077 return replaceSimplePointerUse(TTI, CmpX, AddrSpace, OldV, NewV);
1078
1079 return false;
1080}
1081
1082/// Update memory intrinsic uses that require more complex processing than
1083/// simple memory instructions. These require re-mangling and may have multiple
1084/// pointer operands.
1086 Value *NewV) {
1087 IRBuilder<> B(MI);
1088 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
1089 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
1090 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
1091
1092 if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1093 B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(),
1094 false, // isVolatile
1095 TBAA, ScopeMD, NoAliasMD);
1096 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
1097 Value *Src = MTI->getRawSource();
1098 Value *Dest = MTI->getRawDest();
1099
1100 // Be careful in case this is a self-to-self copy.
1101 if (Src == OldV)
1102 Src = NewV;
1103
1104 if (Dest == OldV)
1105 Dest = NewV;
1106
1107 if (isa<MemCpyInlineInst>(MTI)) {
1108 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1109 B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
1110 MTI->getSourceAlign(), MTI->getLength(),
1111 false, // isVolatile
1112 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1113 } else if (isa<MemCpyInst>(MTI)) {
1114 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1115 B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1116 MTI->getLength(),
1117 false, // isVolatile
1118 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1119 } else {
1120 assert(isa<MemMoveInst>(MTI));
1121 B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1122 MTI->getLength(),
1123 false, // isVolatile
1124 TBAA, ScopeMD, NoAliasMD);
1125 }
1126 } else
1127 llvm_unreachable("unhandled MemIntrinsic");
1128
1129 MI->eraseFromParent();
1130 return true;
1131}
1132
1133// \p returns true if it is OK to change the address space of constant \p C with
1134// a ConstantExpr addrspacecast.
1135bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1136 unsigned NewAS) const {
1138
1139 unsigned SrcAS = C->getType()->getPointerAddressSpace();
1140 if (SrcAS == NewAS || isa<UndefValue>(C))
1141 return true;
1142
1143 // Prevent illegal casts between different non-flat address spaces.
1144 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
1145 return false;
1146
1147 if (isa<ConstantPointerNull>(C))
1148 return true;
1149
1150 if (auto *Op = dyn_cast<Operator>(C)) {
1151 // If we already have a constant addrspacecast, it should be safe to cast it
1152 // off.
1153 if (Op->getOpcode() == Instruction::AddrSpaceCast)
1154 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)),
1155 NewAS);
1156
1157 if (Op->getOpcode() == Instruction::IntToPtr &&
1158 Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
1159 return true;
1160 }
1161
1162 return false;
1163}
1164
1167 User *CurUser = I->getUser();
1168 ++I;
1169
1170 while (I != End && I->getUser() == CurUser)
1171 ++I;
1172
1173 return I;
1174}
1175
1176void InferAddressSpacesImpl::performPointerReplacement(
1177 Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace,
1178 SmallVectorImpl<Instruction *> &DeadInstructions) const {
1179
1180 User *CurUser = U.getUser();
1181
1182 unsigned AddrSpace = V->getType()->getPointerAddressSpace();
1183 if (replaceIfSimplePointerUse(*TTI, CurUser, AddrSpace, V, NewV))
1184 return;
1185
1186 // Skip if the current user is the new value itself.
1187 if (CurUser == NewV)
1188 return;
1189
1190 auto *CurUserI = dyn_cast<Instruction>(CurUser);
1191 if (!CurUserI || CurUserI->getFunction() != F)
1192 return;
1193
1194 // Handle more complex cases like intrinsic that need to be remangled.
1195 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
1196 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
1197 return;
1198 }
1199
1200 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
1201 if (rewriteIntrinsicOperands(II, V, NewV))
1202 return;
1203 }
1204
1205 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUserI)) {
1206 // If we can infer that both pointers are in the same addrspace,
1207 // transform e.g.
1208 // %cmp = icmp eq float* %p, %q
1209 // into
1210 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
1211
1212 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1213 int SrcIdx = U.getOperandNo();
1214 int OtherIdx = (SrcIdx == 0) ? 1 : 0;
1215 Value *OtherSrc = Cmp->getOperand(OtherIdx);
1216
1217 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
1218 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
1219 Cmp->setOperand(OtherIdx, OtherNewV);
1220 Cmp->setOperand(SrcIdx, NewV);
1221 return;
1222 }
1223 }
1224
1225 // Even if the type mismatches, we can cast the constant.
1226 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
1227 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
1228 Cmp->setOperand(SrcIdx, NewV);
1229 Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast(
1230 KOtherSrc, NewV->getType()));
1231 return;
1232 }
1233 }
1234 }
1235
1236 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUserI)) {
1237 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1238 if (ASC->getDestAddressSpace() == NewAS) {
1239 ASC->replaceAllUsesWith(NewV);
1240 DeadInstructions.push_back(ASC);
1241 return;
1242 }
1243 }
1244
1245 // Otherwise, replaces the use with flat(NewV).
1246 if (Instruction *VInst = dyn_cast<Instruction>(V)) {
1247 // Don't create a copy of the original addrspacecast.
1248 if (U == V && isa<AddrSpaceCastInst>(V))
1249 return;
1250
1251 // Insert the addrspacecast after NewV.
1252 BasicBlock::iterator InsertPos;
1253 if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
1254 InsertPos = std::next(NewVInst->getIterator());
1255 else
1256 InsertPos = std::next(VInst->getIterator());
1257
1258 while (isa<PHINode>(InsertPos))
1259 ++InsertPos;
1260 // This instruction may contain multiple uses of V, update them all.
1261 CurUser->replaceUsesOfWith(
1262 V, new AddrSpaceCastInst(NewV, V->getType(), "", InsertPos));
1263 } else {
1264 CurUserI->replaceUsesOfWith(
1265 V, ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), V->getType()));
1266 }
1267}
1268
1269bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
1270 ArrayRef<WeakTrackingVH> Postorder,
1271 const ValueToAddrSpaceMapTy &InferredAddrSpace,
1272 const PredicatedAddrSpaceMapTy &PredicatedAS) const {
1273 // For each address expression to be modified, creates a clone of it with its
1274 // pointer operands converted to the new address space. Since the pointer
1275 // operands are converted, the clone is naturally in the new address space by
1276 // construction.
1277 ValueToValueMapTy ValueWithNewAddrSpace;
1278 SmallVector<const Use *, 32> PoisonUsesToFix;
1279 for (Value *V : Postorder) {
1280 unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
1281
1282 // In some degenerate cases (e.g. invalid IR in unreachable code), we may
1283 // not even infer the value to have its original address space.
1284 if (NewAddrSpace == UninitializedAddressSpace)
1285 continue;
1286
1287 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1288 Value *New =
1289 cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1290 PredicatedAS, &PoisonUsesToFix);
1291 if (New)
1292 ValueWithNewAddrSpace[V] = New;
1293 }
1294 }
1295
1296 if (ValueWithNewAddrSpace.empty())
1297 return false;
1298
1299 // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace.
1300 for (const Use *PoisonUse : PoisonUsesToFix) {
1301 User *V = PoisonUse->getUser();
1302 User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1303 if (!NewV)
1304 continue;
1305
1306 unsigned OperandNo = PoisonUse->getOperandNo();
1307 assert(isa<PoisonValue>(NewV->getOperand(OperandNo)));
1308 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get()));
1309 }
1310
1311 SmallVector<Instruction *, 16> DeadInstructions;
1312 ValueToValueMapTy VMap;
1314
1315 // Replaces the uses of the old address expressions with the new ones.
1316 for (const WeakTrackingVH &WVH : Postorder) {
1317 assert(WVH && "value was unexpectedly deleted");
1318 Value *V = WVH;
1319 Value *NewV = ValueWithNewAddrSpace.lookup(V);
1320 if (NewV == nullptr)
1321 continue;
1322
1323 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n "
1324 << *NewV << '\n');
1325
1326 if (Constant *C = dyn_cast<Constant>(V)) {
1327 Constant *Replace =
1328 ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType());
1329 if (C != Replace) {
1330 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1331 << ": " << *Replace << '\n');
1332 SmallVector<User *, 16> WorkList;
1333 for (User *U : make_early_inc_range(C->users())) {
1334 if (auto *I = dyn_cast<Instruction>(U)) {
1335 if (I->getFunction() == F)
1336 I->replaceUsesOfWith(C, Replace);
1337 } else {
1338 WorkList.append(U->user_begin(), U->user_end());
1339 }
1340 }
1341 if (!WorkList.empty()) {
1342 VMap[C] = Replace;
1343 DenseSet<User *> Visited{WorkList.begin(), WorkList.end()};
1344 while (!WorkList.empty()) {
1345 User *U = WorkList.pop_back_val();
1346 if (auto *I = dyn_cast<Instruction>(U)) {
1347 if (I->getFunction() == F)
1348 VMapper.remapInstruction(*I);
1349 continue;
1350 }
1351 for (User *U2 : U->users())
1352 if (Visited.insert(U2).second)
1353 WorkList.push_back(U2);
1354 }
1355 }
1356 V = Replace;
1357 }
1358 }
1359
1360 Value::use_iterator I, E, Next;
1361 for (I = V->use_begin(), E = V->use_end(); I != E;) {
1362 Use &U = *I;
1363
1364 // Some users may see the same pointer operand in multiple operands. Skip
1365 // to the next instruction.
1366 I = skipToNextUser(I, E);
1367
1368 performPointerReplacement(V, NewV, U, ValueWithNewAddrSpace,
1369 DeadInstructions);
1370 }
1371
1372 if (V->use_empty()) {
1373 if (Instruction *I = dyn_cast<Instruction>(V))
1374 DeadInstructions.push_back(I);
1375 }
1376 }
1377
1378 for (Instruction *I : DeadInstructions)
1380
1381 return true;
1382}
1383
1384bool InferAddressSpaces::runOnFunction(Function &F) {
1385 if (skipFunction(F))
1386 return false;
1387
1388 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1389 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1390 return InferAddressSpacesImpl(
1391 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1392 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1393 FlatAddrSpace)
1394 .run(F);
1395}
1396
1398 return new InferAddressSpaces(AddressSpace);
1399}
1400
1402 : FlatAddrSpace(UninitializedAddressSpace) {}
1404 : FlatAddrSpace(AddressSpace) {}
1405
1408 bool Changed =
1409 InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1411 &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1412 .run(F);
1413 if (Changed) {
1417 return PA;
1418 }
1419 return PreservedAnalyses::all();
1420}
Rewrite undef for PHI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Expand Atomic instructions
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
bool End
Definition: ELF_riscv.cpp:480
Hexagon Common GEP
IRTranslator LLVM IR MI
This defines the Use class.
static bool replaceIfSimplePointerUse(const TargetTransformInfo &TTI, User *Inst, unsigned AddrSpace, Value *OldV, Value *NewV)
If OldV is used as the pointer operand of a compatible memory operation Inst, replaces the pointer op...
static bool replaceOperandIfSame(Instruction *Inst, unsigned OpIdx, Value *OldVal, Value *NewVal)
Replace operand OpIdx in Inst, if the value is the same as OldVal with NewVal.
static cl::opt< bool > AssumeDefaultIsFlatAddressSpace("assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden, cl::desc("The default address space is assumed as the flat address space. " "This is mainly for test purpose."))
static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL, const TargetTransformInfo *TTI)
static bool isAddressExpression(const Value &V, const DataLayout &DL, const TargetTransformInfo *TTI)
static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, Value *NewV)
Update memory intrinsic uses that require more complex processing than simple memory instructions.
Infer address spaces
static SmallVector< Value *, 2 > getPointerOperands(const Value &V, const DataLayout &DL, const TargetTransformInfo *TTI)
static Value * operandWithNewAddressSpaceOrCreatePoison(const Use &OperandUse, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, const PredicatedAddrSpaceMapTy &PredicatedAS, SmallVectorImpl< const Use * > *PoisonUsesToFix)
static Value * cloneConstantExprWithNewAddressSpace(ConstantExpr *CE, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL, const TargetTransformInfo *TTI)
static Value::use_iterator skipToNextUser(Value::use_iterator I, Value::use_iterator End)
Infer address static false Type * getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace)
static bool replaceSimplePointerUse(const TargetTransformInfo &TTI, InstrType *MemInstr, unsigned AddrSpace, Value *OldV, Value *NewV)
#define DEBUG_TYPE
static const unsigned UninitializedAddressSpace
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
This header defines various interfaces for pass management in LLVM.
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallVector class.
This pass exposes codegen information to IR-level passes.
This class represents a conversion between pointers from one address space to another.
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
Definition: PassManager.h:424
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:405
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:256
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator end() const
Definition: ArrayRef.h:154
iterator begin() const
Definition: ArrayRef.h:153
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
This class represents a no-op cast from one type to another.
Represents analyses that only rely on functions' control flow.
Definition: Analysis.h:72
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1410
This class represents a function call, abstracting a target machine's calling convention.
static CastInst * CreatePointerBitCastOrAddrSpaceCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast or an AddrSpaceCast cast instruction.
static bool isNoopCast(Instruction::CastOps Opcode, Type *SrcTy, Type *DstTy, const DataLayout &DL)
A no-op cast is one that can be effected without changing any bits.
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:1097
static Constant * getAddrSpaceCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2307
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2295
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:317
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:915
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Definition: Instructions.h:938
void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
This instruction compares its operands according to the predicate given to the constructor.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2686
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:466
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
Metadata node.
Definition: Metadata.h:1069
This is the common base class for memset/memcpy/memmove.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
This is a utility class that provides an abstraction for the common functionality between Instruction...
Definition: Operator.h:32
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition: Operator.h:42
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static unsigned getOperandNumForIncomingValue(unsigned i)
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1852
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
void preserveSet()
Mark an analysis set as preserved.
Definition: Analysis.h:146
void preserve()
Mark an analysis as preserved.
Definition: Analysis.h:131
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
A vector that has set insertion semantics.
Definition: SetVector.h:57
bool empty() const
Definition: SmallVector.h:94
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:696
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
Analysis pass providing the TargetTransformInfo.
Wrapper pass for TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
unsigned getAssumedAddrSpace(const Value *V) const
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const
bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
Return any intrinsic address operand indexes which may be rewritten if they use a flat address space ...
Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
Rewrite intrinsic call II such that OldV will be replaced with NewV, which has a different address sp...
unsigned getFlatAddressSpace() const
Returns the address space ID for a target's 'flat' address space.
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const
Return true if the given instruction (assumed to be a memory access instruction) has a volatile varia...
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
User * getUser() const
Returns the User that contains this Use.
Definition: Use.h:72
Value * get() const
Definition: Use.h:66
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition: User.cpp:21
const Use & getOperandUse(unsigned i) const
Definition: User.h:182
void setOperand(unsigned i, Value *Val)
Definition: User.h:174
Value * getOperand(unsigned i) const
Definition: User.h:169
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: ValueMap.h:164
bool empty() const
Definition: ValueMap.h:139
Context for (re-)mapping values (and metadata).
Definition: ValueMapper.h:149
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
use_iterator_impl< Use > use_iterator
Definition: Value.h:353
Value handle that is nullable, but tries to track the Value.
Definition: ValueHandle.h:204
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
InstrType
This represents what is and is not supported when finding similarity in Instructions.
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1539
@ ReallyHidden
Definition: CommandLine.h:138
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
Definition: Local.cpp:540
AddressSpace
Definition: NVPTXBaseInfo.h:21
void initializeInferAddressSpacesPass(PassRegistry &)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:656
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
Definition: ValueMapper.h:94
@ RF_NoModuleLevelChanges
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:76
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
FunctionPass * createInferAddressSpacesPass(unsigned AddressSpace=~0u)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)