LLVM 20.0.0git
StackLifetime.cpp
Go to the documentation of this file.
1//===- StackLifetime.cpp - Alloca Lifetime Analysis -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
11#include "llvm/ADT/STLExtras.h"
15#include "llvm/Config/llvm-config.h"
17#include "llvm/IR/BasicBlock.h"
18#include "llvm/IR/CFG.h"
22#include "llvm/IR/Value.h"
25#include "llvm/Support/Debug.h"
27#include <algorithm>
28#include <tuple>
29
30using namespace llvm;
31
32#define DEBUG_TYPE "stack-lifetime"
33
36 const auto IT = AllocaNumbering.find(AI);
37 assert(IT != AllocaNumbering.end());
38 return LiveRanges[IT->second];
39}
40
42 return BlockInstRange.contains(I->getParent());
43}
44
46 const Instruction *I) const {
47 const BasicBlock *BB = I->getParent();
48 auto ItBB = BlockInstRange.find(BB);
49 assert(ItBB != BlockInstRange.end() && "Unreachable is not expected");
50
51 // Search the block for the first instruction following 'I'.
52 auto It = std::upper_bound(Instructions.begin() + ItBB->getSecond().first + 1,
53 Instructions.begin() + ItBB->getSecond().second, I,
54 [](const Instruction *L, const Instruction *R) {
55 return L->comesBefore(R);
56 });
57 --It;
58 unsigned InstNum = It - Instructions.begin();
59 return getLiveRange(AI).test(InstNum);
60}
61
62// Returns unique alloca annotated by lifetime marker only if
63// markers has the same size and points to the alloca start.
65 const DataLayout &DL) {
66 const AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
67 if (!AI)
68 return nullptr;
69
70 auto AllocaSize = AI->getAllocationSize(DL);
71 if (!AllocaSize)
72 return nullptr;
73
74 auto *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
75 if (!Size)
76 return nullptr;
77 int64_t LifetimeSize = Size->getSExtValue();
78
79 if (LifetimeSize != -1 && uint64_t(LifetimeSize) != *AllocaSize)
80 return nullptr;
81
82 return AI;
83}
84
85void StackLifetime::collectMarkers() {
86 InterestingAllocas.resize(NumAllocas);
88 BBMarkerSet;
89
90 const DataLayout &DL = F.getDataLayout();
91
92 // Compute the set of start/end markers per basic block.
93 for (const BasicBlock *BB : depth_first(&F)) {
94 for (const Instruction &I : *BB) {
95 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
96 if (!II || !II->isLifetimeStartOrEnd())
97 continue;
98 const AllocaInst *AI = findMatchingAlloca(*II, DL);
99 if (!AI) {
100 HasUnknownLifetimeStartOrEnd = true;
101 continue;
102 }
103 auto It = AllocaNumbering.find(AI);
104 if (It == AllocaNumbering.end())
105 continue;
106 auto AllocaNo = It->second;
107 bool IsStart = II->getIntrinsicID() == Intrinsic::lifetime_start;
108 if (IsStart)
109 InterestingAllocas.set(AllocaNo);
110 BBMarkerSet[BB][II] = {AllocaNo, IsStart};
111 }
112 }
113
114 // Compute instruction numbering. Only the following instructions are
115 // considered:
116 // * Basic block entries
117 // * Lifetime markers
118 // For each basic block, compute
119 // * the list of markers in the instruction order
120 // * the sets of allocas whose lifetime starts or ends in this BB
121 LLVM_DEBUG(dbgs() << "Instructions:\n");
122 for (const BasicBlock *BB : depth_first(&F)) {
123 LLVM_DEBUG(dbgs() << " " << Instructions.size() << ": BB " << BB->getName()
124 << "\n");
125 auto BBStart = Instructions.size();
126 Instructions.push_back(nullptr);
127
128 BlockLifetimeInfo &BlockInfo =
129 BlockLiveness.try_emplace(BB, NumAllocas).first->getSecond();
130
131 auto &BlockMarkerSet = BBMarkerSet[BB];
132 if (BlockMarkerSet.empty()) {
133 BlockInstRange[BB] = std::make_pair(BBStart, Instructions.size());
134 continue;
135 }
136
137 auto ProcessMarker = [&](const IntrinsicInst *I, const Marker &M) {
138 LLVM_DEBUG(dbgs() << " " << Instructions.size() << ": "
139 << (M.IsStart ? "start " : "end ") << M.AllocaNo
140 << ", " << *I << "\n");
141
142 BBMarkers[BB].push_back({Instructions.size(), M});
143 Instructions.push_back(I);
144
145 if (M.IsStart) {
146 BlockInfo.End.reset(M.AllocaNo);
147 BlockInfo.Begin.set(M.AllocaNo);
148 } else {
149 BlockInfo.Begin.reset(M.AllocaNo);
150 BlockInfo.End.set(M.AllocaNo);
151 }
152 };
153
154 if (BlockMarkerSet.size() == 1) {
155 ProcessMarker(BlockMarkerSet.begin()->getFirst(),
156 BlockMarkerSet.begin()->getSecond());
157 } else {
158 // Scan the BB to determine the marker order.
159 for (const Instruction &I : *BB) {
160 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
161 if (!II)
162 continue;
163 auto It = BlockMarkerSet.find(II);
164 if (It == BlockMarkerSet.end())
165 continue;
166 ProcessMarker(II, It->getSecond());
167 }
168 }
169
170 BlockInstRange[BB] = std::make_pair(BBStart, Instructions.size());
171 }
172}
173
174void StackLifetime::calculateLocalLiveness() {
175 bool Changed = true;
176
177 // LiveIn, LiveOut and BitsIn have a different meaning deppends on type.
178 // ::Maybe true bits represent "may be alive" allocas, ::Must true bits
179 // represent "may be dead". After the loop we will convert ::Must bits from
180 // "may be dead" to "must be alive".
181 while (Changed) {
182 // TODO: Consider switching to worklist instead of traversing entire graph.
183 Changed = false;
184
185 for (const BasicBlock *BB : depth_first(&F)) {
186 BlockLifetimeInfo &BlockInfo = BlockLiveness.find(BB)->getSecond();
187
188 // Compute BitsIn by unioning together the LiveOut sets of all preds.
189 BitVector BitsIn;
190 for (const auto *PredBB : predecessors(BB)) {
191 LivenessMap::const_iterator I = BlockLiveness.find(PredBB);
192 // If a predecessor is unreachable, ignore it.
193 if (I == BlockLiveness.end())
194 continue;
195 BitsIn |= I->second.LiveOut;
196 }
197
198 // Everything is "may be dead" for entry without predecessors.
199 if (Type == LivenessType::Must && BitsIn.empty())
200 BitsIn.resize(NumAllocas, true);
201
202 // Update block LiveIn set, noting whether it has changed.
203 if (BitsIn.test(BlockInfo.LiveIn)) {
204 BlockInfo.LiveIn |= BitsIn;
205 }
206
207 // Compute LiveOut by subtracting out lifetimes that end in this
208 // block, then adding in lifetimes that begin in this block. If
209 // we have both BEGIN and END markers in the same basic block
210 // then we know that the BEGIN marker comes after the END,
211 // because we already handle the case where the BEGIN comes
212 // before the END when collecting the markers (and building the
213 // BEGIN/END vectors).
214 switch (Type) {
216 BitsIn.reset(BlockInfo.End);
217 // "may be alive" is set by lifetime start.
218 BitsIn |= BlockInfo.Begin;
219 break;
221 BitsIn.reset(BlockInfo.Begin);
222 // "may be dead" is set by lifetime end.
223 BitsIn |= BlockInfo.End;
224 break;
225 }
226
227 // Update block LiveOut set, noting whether it has changed.
228 if (BitsIn.test(BlockInfo.LiveOut)) {
229 Changed = true;
230 BlockInfo.LiveOut |= BitsIn;
231 }
232 }
233 } // while changed.
234
235 if (Type == LivenessType::Must) {
236 // Convert from "may be dead" to "must be alive".
237 for (auto &[BB, BlockInfo] : BlockLiveness) {
238 BlockInfo.LiveIn.flip();
239 BlockInfo.LiveOut.flip();
240 }
241 }
242}
243
244void StackLifetime::calculateLiveIntervals() {
245 for (auto IT : BlockLiveness) {
246 const BasicBlock *BB = IT.getFirst();
247 BlockLifetimeInfo &BlockInfo = IT.getSecond();
248 unsigned BBStart, BBEnd;
249 std::tie(BBStart, BBEnd) = BlockInstRange[BB];
250
251 BitVector Started, Ended;
252 Started.resize(NumAllocas);
253 Ended.resize(NumAllocas);
255 Start.resize(NumAllocas);
256
257 // LiveIn ranges start at the first instruction.
258 for (unsigned AllocaNo = 0; AllocaNo < NumAllocas; ++AllocaNo) {
259 if (BlockInfo.LiveIn.test(AllocaNo)) {
260 Started.set(AllocaNo);
261 Start[AllocaNo] = BBStart;
262 }
263 }
264
265 for (auto &It : BBMarkers[BB]) {
266 unsigned InstNo = It.first;
267 bool IsStart = It.second.IsStart;
268 unsigned AllocaNo = It.second.AllocaNo;
269
270 if (IsStart) {
271 if (!Started.test(AllocaNo)) {
272 Started.set(AllocaNo);
273 Ended.reset(AllocaNo);
274 Start[AllocaNo] = InstNo;
275 }
276 } else {
277 if (Started.test(AllocaNo)) {
278 LiveRanges[AllocaNo].addRange(Start[AllocaNo], InstNo);
279 Started.reset(AllocaNo);
280 }
281 Ended.set(AllocaNo);
282 }
283 }
284
285 for (unsigned AllocaNo = 0; AllocaNo < NumAllocas; ++AllocaNo)
286 if (Started.test(AllocaNo))
287 LiveRanges[AllocaNo].addRange(Start[AllocaNo], BBEnd);
288 }
289}
290
291#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
292LLVM_DUMP_METHOD void StackLifetime::dumpAllocas() const {
293 dbgs() << "Allocas:\n";
294 for (unsigned AllocaNo = 0; AllocaNo < NumAllocas; ++AllocaNo)
295 dbgs() << " " << AllocaNo << ": " << *Allocas[AllocaNo] << "\n";
296}
297
298LLVM_DUMP_METHOD void StackLifetime::dumpBlockLiveness() const {
299 dbgs() << "Block liveness:\n";
300 for (auto IT : BlockLiveness) {
301 const BasicBlock *BB = IT.getFirst();
302 const BlockLifetimeInfo &BlockInfo = BlockLiveness.find(BB)->getSecond();
303 auto BlockRange = BlockInstRange.find(BB)->getSecond();
304 dbgs() << " BB (" << BB->getName() << ") [" << BlockRange.first << ", " << BlockRange.second
305 << "): begin " << BlockInfo.Begin << ", end " << BlockInfo.End
306 << ", livein " << BlockInfo.LiveIn << ", liveout "
307 << BlockInfo.LiveOut << "\n";
308 }
309}
310
311LLVM_DUMP_METHOD void StackLifetime::dumpLiveRanges() const {
312 dbgs() << "Alloca liveness:\n";
313 for (unsigned AllocaNo = 0; AllocaNo < NumAllocas; ++AllocaNo)
314 dbgs() << " " << AllocaNo << ": " << LiveRanges[AllocaNo] << "\n";
315}
316#endif
317
321 : F(F), Type(Type), Allocas(Allocas), NumAllocas(Allocas.size()) {
322 LLVM_DEBUG(dumpAllocas());
323
324 for (unsigned I = 0; I < NumAllocas; ++I)
325 AllocaNumbering[Allocas[I]] = I;
326
327 collectMarkers();
328}
329
331 if (HasUnknownLifetimeStartOrEnd) {
332 // There is marker which we can't assign to a specific alloca, so we
333 // fallback to the most conservative results for the type.
334 switch (Type) {
336 LiveRanges.resize(NumAllocas, getFullLiveRange());
337 break;
339 LiveRanges.resize(NumAllocas, LiveRange(Instructions.size()));
340 break;
341 }
342 return;
343 }
344
345 LiveRanges.resize(NumAllocas, LiveRange(Instructions.size()));
346 for (unsigned I = 0; I < NumAllocas; ++I)
347 if (!InterestingAllocas.test(I))
348 LiveRanges[I] = getFullLiveRange();
349
350 calculateLocalLiveness();
351 LLVM_DEBUG(dumpBlockLiveness());
352 calculateLiveIntervals();
353 LLVM_DEBUG(dumpLiveRanges());
354}
355
357 : public AssemblyAnnotationWriter {
358 const StackLifetime &SL;
359
360 void printInstrAlive(unsigned InstrNo, formatted_raw_ostream &OS) {
362 for (const auto &KV : SL.AllocaNumbering) {
363 if (SL.LiveRanges[KV.getSecond()].test(InstrNo))
364 Names.push_back(KV.getFirst()->getName());
365 }
366 llvm::sort(Names);
367 OS << " ; Alive: <" << llvm::join(Names, " ") << ">\n";
368 }
369
370 void emitBasicBlockStartAnnot(const BasicBlock *BB,
371 formatted_raw_ostream &OS) override {
372 auto ItBB = SL.BlockInstRange.find(BB);
373 if (ItBB == SL.BlockInstRange.end())
374 return; // Unreachable.
375 printInstrAlive(ItBB->getSecond().first, OS);
376 }
377
378 void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
379 const Instruction *Instr = dyn_cast<Instruction>(&V);
380 if (!Instr || !SL.isReachable(Instr))
381 return;
382
384 for (const auto &KV : SL.AllocaNumbering) {
385 if (SL.isAliveAfter(KV.getFirst(), Instr))
386 Names.push_back(KV.getFirst()->getName());
387 }
388 llvm::sort(Names);
389 OS << "\n ; Alive: <" << llvm::join(Names, " ") << ">\n";
390 }
391
392public:
394};
395
397 LifetimeAnnotationWriter AAW(*this);
398 F.print(OS, &AAW);
399}
400
404 for (auto &I : instructions(F))
405 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I))
406 Allocas.push_back(AI);
407 StackLifetime SL(F, Allocas, Type);
408 SL.run();
409 SL.print(OS);
410 return PreservedAnalyses::all();
411}
412
414 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
416 OS, MapClassName2PassName);
417 OS << '<';
418 switch (Type) {
420 OS << "may";
421 break;
423 OS << "must";
424 break;
425 }
426 OS << '>';
427}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Expand Atomic instructions
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:533
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
uint64_t Size
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallVector class.
static const AllocaInst * findMatchingAlloca(const IntrinsicInst &II, const DataLayout &DL)
This file contains some functions that are useful when dealing with strings.
an instruction to allocate memory on the stack
Definition: Instructions.h:61
std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
bool test(unsigned Idx) const
Definition: BitVector.h:461
BitVector & reset()
Definition: BitVector.h:392
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition: BitVector.h:341
BitVector & set()
Definition: BitVector.h:351
BitVector & flip()
Definition: BitVector.h:431
bool empty() const
empty - Tests whether there are no bits in this bitvector.
Definition: BitVector.h:156
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&... Args)
Definition: DenseMap.h:226
iterator end()
Definition: DenseMap.h:84
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT, true > const_iterator
Definition: DenseMap.h:73
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Definition: Function.cpp:384
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the function to an output stream with an optional AssemblyAnnotationWriter.
Definition: AsmWriter.cpp:4852
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
This class represents a set of interesting instructions where an alloca is live.
Definition: StackLifetime.h:63
bool test(unsigned Idx) const
Definition: StackLifetime.h:78
Compute live ranges of allocas.
Definition: StackLifetime.h:37
void print(raw_ostream &O)
StackLifetime(const Function &F, ArrayRef< const AllocaInst * > Allocas, LivenessType Type)
bool isReachable(const Instruction *I) const
Returns true if instruction is reachable from entry.
LiveRange getFullLiveRange() const
Returns a live range that represents an alloca that is live throughout the entire function.
const LiveRange & getLiveRange(const AllocaInst *AI) const
Returns a set of "interesting" instructions where the given alloca is live.
bool isAliveAfter(const AllocaInst *AI, const Instruction *I) const
Returns true if the alloca is alive after the instruction.
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:74
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
formatted_raw_ostream - A raw_ostream that wraps another one and keeps track of line and column posit...
An efficient, type-erasing, non-owning reference to a callable.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1680
AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1647
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
auto predecessors(const MachineBasicBlock *BB)
iterator_range< df_iterator< T > > depth_first(const T &G)
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition: PassManager.h:69