LLVM 18.0.0git
AArch64StackTagging.cpp
Go to the documentation of this file.
1//===- AArch64StackTagging.cpp - Stack tagging in IR --===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//===----------------------------------------------------------------------===//
9
10#include "AArch64.h"
11#include "AArch64InstrInfo.h"
12#include "AArch64Subtarget.h"
14#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/CFG.h"
38#include "llvm/IR/DebugLoc.h"
39#include "llvm/IR/Dominators.h"
40#include "llvm/IR/Function.h"
42#include "llvm/IR/IRBuilder.h"
44#include "llvm/IR/Instruction.h"
47#include "llvm/IR/IntrinsicsAArch64.h"
48#include "llvm/IR/Metadata.h"
49#include "llvm/IR/ValueHandle.h"
51#include "llvm/Pass.h"
53#include "llvm/Support/Debug.h"
57#include <cassert>
58#include <iterator>
59#include <memory>
60#include <utility>
61
62using namespace llvm;
63
64#define DEBUG_TYPE "aarch64-stack-tagging"
65
67 "stack-tagging-merge-init", cl::Hidden, cl::init(true),
68 cl::desc("merge stack variable initializers with tagging when possible"));
69
70static cl::opt<bool>
71 ClUseStackSafety("stack-tagging-use-stack-safety", cl::Hidden,
72 cl::init(true),
73 cl::desc("Use Stack Safety analysis results"));
74
75static cl::opt<unsigned> ClScanLimit("stack-tagging-merge-init-scan-limit",
76 cl::init(40), cl::Hidden);
77
79 ClMergeInitSizeLimit("stack-tagging-merge-init-size-limit", cl::init(272),
81
83 "stack-tagging-max-lifetimes-for-alloca", cl::Hidden, cl::init(3),
85 cl::desc("How many lifetime ends to handle for a single alloca."),
87
88static const Align kTagGranuleSize = Align(16);
89
90namespace {
91
92class InitializerBuilder {
93 uint64_t Size;
94 const DataLayout *DL;
95 Value *BasePtr;
96 Function *SetTagFn;
97 Function *SetTagZeroFn;
98 Function *StgpFn;
99
100 // List of initializers sorted by start offset.
101 struct Range {
102 uint64_t Start, End;
103 Instruction *Inst;
104 };
106 // 8-aligned offset => 8-byte initializer
107 // Missing keys are zero initialized.
108 std::map<uint64_t, Value *> Out;
109
110public:
111 InitializerBuilder(uint64_t Size, const DataLayout *DL, Value *BasePtr,
112 Function *SetTagFn, Function *SetTagZeroFn,
113 Function *StgpFn)
114 : Size(Size), DL(DL), BasePtr(BasePtr), SetTagFn(SetTagFn),
115 SetTagZeroFn(SetTagZeroFn), StgpFn(StgpFn) {}
116
117 bool addRange(uint64_t Start, uint64_t End, Instruction *Inst) {
118 auto I =
119 llvm::lower_bound(Ranges, Start, [](const Range &LHS, uint64_t RHS) {
120 return LHS.End <= RHS;
121 });
122 if (I != Ranges.end() && End > I->Start) {
123 // Overlap - bail.
124 return false;
125 }
126 Ranges.insert(I, {Start, End, Inst});
127 return true;
128 }
129
130 bool addStore(uint64_t Offset, StoreInst *SI, const DataLayout *DL) {
131 int64_t StoreSize = DL->getTypeStoreSize(SI->getOperand(0)->getType());
132 if (!addRange(Offset, Offset + StoreSize, SI))
133 return false;
134 IRBuilder<> IRB(SI);
135 applyStore(IRB, Offset, Offset + StoreSize, SI->getOperand(0));
136 return true;
137 }
138
139 bool addMemSet(uint64_t Offset, MemSetInst *MSI) {
140 uint64_t StoreSize = cast<ConstantInt>(MSI->getLength())->getZExtValue();
141 if (!addRange(Offset, Offset + StoreSize, MSI))
142 return false;
143 IRBuilder<> IRB(MSI);
144 applyMemSet(IRB, Offset, Offset + StoreSize,
145 cast<ConstantInt>(MSI->getValue()));
146 return true;
147 }
148
149 void applyMemSet(IRBuilder<> &IRB, int64_t Start, int64_t End,
150 ConstantInt *V) {
151 // Out[] does not distinguish between zero and undef, and we already know
152 // that this memset does not overlap with any other initializer. Nothing to
153 // do for memset(0).
154 if (V->isZero())
155 return;
156 for (int64_t Offset = Start - Start % 8; Offset < End; Offset += 8) {
157 uint64_t Cst = 0x0101010101010101UL;
158 int LowBits = Offset < Start ? (Start - Offset) * 8 : 0;
159 if (LowBits)
160 Cst = (Cst >> LowBits) << LowBits;
161 int HighBits = End - Offset < 8 ? (8 - (End - Offset)) * 8 : 0;
162 if (HighBits)
163 Cst = (Cst << HighBits) >> HighBits;
164 ConstantInt *C =
165 ConstantInt::get(IRB.getInt64Ty(), Cst * V->getZExtValue());
166
167 Value *&CurrentV = Out[Offset];
168 if (!CurrentV) {
169 CurrentV = C;
170 } else {
171 CurrentV = IRB.CreateOr(CurrentV, C);
172 }
173 }
174 }
175
176 // Take a 64-bit slice of the value starting at the given offset (in bytes).
177 // Offset can be negative. Pad with zeroes on both sides when necessary.
178 Value *sliceValue(IRBuilder<> &IRB, Value *V, int64_t Offset) {
179 if (Offset > 0) {
180 V = IRB.CreateLShr(V, Offset * 8);
181 V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
182 } else if (Offset < 0) {
183 V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
184 V = IRB.CreateShl(V, -Offset * 8);
185 } else {
186 V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
187 }
188 return V;
189 }
190
191 void applyStore(IRBuilder<> &IRB, int64_t Start, int64_t End,
192 Value *StoredValue) {
193 StoredValue = flatten(IRB, StoredValue);
194 for (int64_t Offset = Start - Start % 8; Offset < End; Offset += 8) {
195 Value *V = sliceValue(IRB, StoredValue, Offset - Start);
196 Value *&CurrentV = Out[Offset];
197 if (!CurrentV) {
198 CurrentV = V;
199 } else {
200 CurrentV = IRB.CreateOr(CurrentV, V);
201 }
202 }
203 }
204
205 void generate(IRBuilder<> &IRB) {
206 LLVM_DEBUG(dbgs() << "Combined initializer\n");
207 // No initializers => the entire allocation is undef.
208 if (Ranges.empty()) {
209 emitUndef(IRB, 0, Size);
210 return;
211 }
212
213 // Look through 8-byte initializer list 16 bytes at a time;
214 // If one of the two 8-byte halfs is non-zero non-undef, emit STGP.
215 // Otherwise, emit zeroes up to next available item.
216 uint64_t LastOffset = 0;
217 for (uint64_t Offset = 0; Offset < Size; Offset += 16) {
218 auto I1 = Out.find(Offset);
219 auto I2 = Out.find(Offset + 8);
220 if (I1 == Out.end() && I2 == Out.end())
221 continue;
222
223 if (Offset > LastOffset)
224 emitZeroes(IRB, LastOffset, Offset - LastOffset);
225
226 Value *Store1 = I1 == Out.end() ? Constant::getNullValue(IRB.getInt64Ty())
227 : I1->second;
228 Value *Store2 = I2 == Out.end() ? Constant::getNullValue(IRB.getInt64Ty())
229 : I2->second;
230 emitPair(IRB, Offset, Store1, Store2);
231 LastOffset = Offset + 16;
232 }
233
234 // memset(0) does not update Out[], therefore the tail can be either undef
235 // or zero.
236 if (LastOffset < Size)
237 emitZeroes(IRB, LastOffset, Size - LastOffset);
238
239 for (const auto &R : Ranges) {
240 R.Inst->eraseFromParent();
241 }
242 }
243
244 void emitZeroes(IRBuilder<> &IRB, uint64_t Offset, uint64_t Size) {
245 LLVM_DEBUG(dbgs() << " [" << Offset << ", " << Offset + Size
246 << ") zero\n");
247 Value *Ptr = BasePtr;
248 if (Offset)
250 IRB.CreateCall(SetTagZeroFn,
251 {Ptr, ConstantInt::get(IRB.getInt64Ty(), Size)});
252 }
253
254 void emitUndef(IRBuilder<> &IRB, uint64_t Offset, uint64_t Size) {
255 LLVM_DEBUG(dbgs() << " [" << Offset << ", " << Offset + Size
256 << ") undef\n");
257 Value *Ptr = BasePtr;
258 if (Offset)
260 IRB.CreateCall(SetTagFn, {Ptr, ConstantInt::get(IRB.getInt64Ty(), Size)});
261 }
262
263 void emitPair(IRBuilder<> &IRB, uint64_t Offset, Value *A, Value *B) {
264 LLVM_DEBUG(dbgs() << " [" << Offset << ", " << Offset + 16 << "):\n");
265 LLVM_DEBUG(dbgs() << " " << *A << "\n " << *B << "\n");
266 Value *Ptr = BasePtr;
267 if (Offset)
269 IRB.CreateCall(StgpFn, {Ptr, A, B});
270 }
271
272 Value *flatten(IRBuilder<> &IRB, Value *V) {
273 if (V->getType()->isIntegerTy())
274 return V;
275 // vector of pointers -> vector of ints
276 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) {
277 LLVMContext &Ctx = IRB.getContext();
278 Type *EltTy = VecTy->getElementType();
279 if (EltTy->isPointerTy()) {
280 uint32_t EltSize = DL->getTypeSizeInBits(EltTy);
281 auto *NewTy = FixedVectorType::get(
282 IntegerType::get(Ctx, EltSize),
283 cast<FixedVectorType>(VecTy)->getNumElements());
284 V = IRB.CreatePointerCast(V, NewTy);
285 }
286 }
287 return IRB.CreateBitOrPointerCast(
288 V, IRB.getIntNTy(DL->getTypeStoreSize(V->getType()) * 8));
289 }
290};
291
292class AArch64StackTagging : public FunctionPass {
293 const bool MergeInit;
294 const bool UseStackSafety;
295
296public:
297 static char ID; // Pass ID, replacement for typeid
298
299 AArch64StackTagging(bool IsOptNone = false)
300 : FunctionPass(ID),
301 MergeInit(ClMergeInit.getNumOccurrences() ? ClMergeInit : !IsOptNone),
302 UseStackSafety(ClUseStackSafety.getNumOccurrences() ? ClUseStackSafety
303 : !IsOptNone) {
305 }
306
307 void tagAlloca(AllocaInst *AI, Instruction *InsertBefore, Value *Ptr,
308 uint64_t Size);
309 void untagAlloca(AllocaInst *AI, Instruction *InsertBefore, uint64_t Size);
310
311 Instruction *collectInitializers(Instruction *StartInst, Value *StartPtr,
312 uint64_t Size, InitializerBuilder &IB);
313
314 Instruction *insertBaseTaggedPointer(
316 const DominatorTree *DT);
317 bool runOnFunction(Function &F) override;
318
319 StringRef getPassName() const override { return "AArch64 Stack Tagging"; }
320
321private:
322 Function *F = nullptr;
323 Function *SetTagFunc = nullptr;
324 const DataLayout *DL = nullptr;
325 AAResults *AA = nullptr;
326 const StackSafetyGlobalInfo *SSI = nullptr;
327
328 void getAnalysisUsage(AnalysisUsage &AU) const override {
329 AU.setPreservesCFG();
330 if (UseStackSafety)
332 if (MergeInit)
334 }
335};
336
337} // end anonymous namespace
338
339char AArch64StackTagging::ID = 0;
340
341INITIALIZE_PASS_BEGIN(AArch64StackTagging, DEBUG_TYPE, "AArch64 Stack Tagging",
342 false, false)
345INITIALIZE_PASS_END(AArch64StackTagging, DEBUG_TYPE, "AArch64 Stack Tagging",
347
349 return new AArch64StackTagging(IsOptNone);
350}
351
352Instruction *AArch64StackTagging::collectInitializers(Instruction *StartInst,
353 Value *StartPtr,
355 InitializerBuilder &IB) {
356 MemoryLocation AllocaLoc{StartPtr, Size};
357 Instruction *LastInst = StartInst;
358 BasicBlock::iterator BI(StartInst);
359
360 unsigned Count = 0;
361 for (; Count < ClScanLimit && !BI->isTerminator(); ++BI) {
362 if (!isa<DbgInfoIntrinsic>(*BI))
363 ++Count;
364
365 if (isNoModRef(AA->getModRefInfo(&*BI, AllocaLoc)))
366 continue;
367
368 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
369 // If the instruction is readnone, ignore it, otherwise bail out. We
370 // don't even allow readonly here because we don't want something like:
371 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
372 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
373 break;
374 continue;
375 }
376
377 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
378 if (!NextStore->isSimple())
379 break;
380
381 // Check to see if this store is to a constant offset from the start ptr.
382 std::optional<int64_t> Offset =
383 NextStore->getPointerOperand()->getPointerOffsetFrom(StartPtr, *DL);
384 if (!Offset)
385 break;
386
387 if (!IB.addStore(*Offset, NextStore, DL))
388 break;
389 LastInst = NextStore;
390 } else {
391 MemSetInst *MSI = cast<MemSetInst>(BI);
392
393 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
394 break;
395
396 if (!isa<ConstantInt>(MSI->getValue()))
397 break;
398
399 // Check to see if this store is to a constant offset from the start ptr.
400 std::optional<int64_t> Offset =
401 MSI->getDest()->getPointerOffsetFrom(StartPtr, *DL);
402 if (!Offset)
403 break;
404
405 if (!IB.addMemSet(*Offset, MSI))
406 break;
407 LastInst = MSI;
408 }
409 }
410 return LastInst;
411}
412
413void AArch64StackTagging::tagAlloca(AllocaInst *AI, Instruction *InsertBefore,
415 auto SetTagZeroFunc =
416 Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_settag_zero);
417 auto StgpFunc =
418 Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_stgp);
419
420 InitializerBuilder IB(Size, DL, Ptr, SetTagFunc, SetTagZeroFunc, StgpFunc);
421 bool LittleEndian =
423 // Current implementation of initializer merging assumes little endianness.
424 if (MergeInit && !F->hasOptNone() && LittleEndian &&
426 LLVM_DEBUG(dbgs() << "collecting initializers for " << *AI
427 << ", size = " << Size << "\n");
428 InsertBefore = collectInitializers(InsertBefore, Ptr, Size, IB);
429 }
430
431 IRBuilder<> IRB(InsertBefore);
432 IB.generate(IRB);
433}
434
435void AArch64StackTagging::untagAlloca(AllocaInst *AI, Instruction *InsertBefore,
436 uint64_t Size) {
437 IRBuilder<> IRB(InsertBefore);
438 IRB.CreateCall(SetTagFunc, {IRB.CreatePointerCast(AI, IRB.getPtrTy()),
440}
441
442Instruction *AArch64StackTagging::insertBaseTaggedPointer(
443 const MapVector<AllocaInst *, memtag::AllocaInfo> &AllocasToInstrument,
444 const DominatorTree *DT) {
445 BasicBlock *PrologueBB = nullptr;
446 // Try sinking IRG as deep as possible to avoid hurting shrink wrap.
447 for (auto &I : AllocasToInstrument) {
448 const memtag::AllocaInfo &Info = I.second;
449 AllocaInst *AI = Info.AI;
450 if (!PrologueBB) {
451 PrologueBB = AI->getParent();
452 continue;
453 }
454 PrologueBB = DT->findNearestCommonDominator(PrologueBB, AI->getParent());
455 }
456 assert(PrologueBB);
457
458 IRBuilder<> IRB(&PrologueBB->front());
459 Function *IRG_SP =
460 Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_irg_sp);
462 IRB.CreateCall(IRG_SP, {Constant::getNullValue(IRB.getInt64Ty())});
463 Base->setName("basetag");
464 return Base;
465}
466
467// FIXME: check for MTE extension
468bool AArch64StackTagging::runOnFunction(Function &Fn) {
469 if (!Fn.hasFnAttribute(Attribute::SanitizeMemTag))
470 return false;
471
472 if (UseStackSafety)
473 SSI = &getAnalysis<StackSafetyGlobalInfoWrapperPass>().getResult();
474 F = &Fn;
475 DL = &Fn.getParent()->getDataLayout();
476 if (MergeInit)
477 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
478
480 for (Instruction &I : instructions(F))
481 SIB.visit(I);
482 memtag::StackInfo &SInfo = SIB.get();
483
484 if (SInfo.AllocasToInstrument.empty())
485 return false;
486
487 std::unique_ptr<DominatorTree> DeleteDT;
488 DominatorTree *DT = nullptr;
489 if (auto *P = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
490 DT = &P->getDomTree();
491
492 if (DT == nullptr) {
493 DeleteDT = std::make_unique<DominatorTree>(*F);
494 DT = DeleteDT.get();
495 }
496
497 std::unique_ptr<PostDominatorTree> DeletePDT;
498 PostDominatorTree *PDT = nullptr;
499 if (auto *P = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>())
500 PDT = &P->getPostDomTree();
501
502 if (PDT == nullptr) {
503 DeletePDT = std::make_unique<PostDominatorTree>(*F);
504 PDT = DeletePDT.get();
505 }
506
507 std::unique_ptr<LoopInfo> DeleteLI;
508 LoopInfo *LI = nullptr;
509 if (auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>()) {
510 LI = &LIWP->getLoopInfo();
511 } else {
512 DeleteLI = std::make_unique<LoopInfo>(*DT);
513 LI = DeleteLI.get();
514 }
515
516 SetTagFunc =
517 Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_settag);
518
519 Instruction *Base = insertBaseTaggedPointer(SInfo.AllocasToInstrument, DT);
520
521 int NextTag = 0;
522 for (auto &I : SInfo.AllocasToInstrument) {
523 memtag::AllocaInfo &Info = I.second;
524 assert(Info.AI && SIB.isInterestingAlloca(*Info.AI));
525 TrackingVH<Instruction> OldAI = Info.AI;
527 AllocaInst *AI = Info.AI;
528 int Tag = NextTag;
529 NextTag = (NextTag + 1) % 16;
530 // Replace alloca with tagp(alloca).
531 IRBuilder<> IRB(Info.AI->getNextNode());
533 F->getParent(), Intrinsic::aarch64_tagp, {Info.AI->getType()});
534 Instruction *TagPCall =
535 IRB.CreateCall(TagP, {Constant::getNullValue(Info.AI->getType()), Base,
537 if (Info.AI->hasName())
538 TagPCall->setName(Info.AI->getName() + ".tag");
539 Info.AI->replaceAllUsesWith(TagPCall);
540 TagPCall->setOperand(0, Info.AI);
541
542 // Calls to functions that may return twice (e.g. setjmp) confuse the
543 // postdominator analysis, and will leave us to keep memory tagged after
544 // function return. Work around this by always untagging at every return
545 // statement if return_twice functions are called.
546 bool StandardLifetime =
547 SInfo.UnrecognizedLifetimes.empty() &&
548 memtag::isStandardLifetime(Info.LifetimeStart, Info.LifetimeEnd, DT, LI,
550 !SInfo.CallsReturnTwice;
551 if (StandardLifetime) {
552 IntrinsicInst *Start = Info.LifetimeStart[0];
553 uint64_t Size =
554 cast<ConstantInt>(Start->getArgOperand(0))->getZExtValue();
556 tagAlloca(AI, Start->getNextNode(), Start->getArgOperand(1), Size);
557
558 auto TagEnd = [&](Instruction *Node) { untagAlloca(AI, Node, Size); };
559 if (!DT || !PDT ||
560 !memtag::forAllReachableExits(*DT, *PDT, *LI, Start, Info.LifetimeEnd,
561 SInfo.RetVec, TagEnd)) {
562 for (auto *End : Info.LifetimeEnd)
563 End->eraseFromParent();
564 }
565 } else {
566 uint64_t Size = *Info.AI->getAllocationSize(*DL);
567 Value *Ptr = IRB.CreatePointerCast(TagPCall, IRB.getPtrTy());
568 tagAlloca(AI, &*IRB.GetInsertPoint(), Ptr, Size);
569 for (auto *RI : SInfo.RetVec) {
570 untagAlloca(AI, RI, Size);
571 }
572 // We may have inserted tag/untag outside of any lifetime interval.
573 // Remove all lifetime intrinsics for this alloca.
574 for (auto *II : Info.LifetimeStart)
575 II->eraseFromParent();
576 for (auto *II : Info.LifetimeEnd)
577 II->eraseFromParent();
578 }
579
580 // Fixup debug intrinsics to point to the new alloca.
581 for (auto *DVI : Info.DbgVariableIntrinsics)
582 DVI->replaceVariableLocationOp(OldAI, Info.AI);
583 }
584
585 // If we have instrumented at least one alloca, all unrecognized lifetime
586 // intrinsics have to go.
587 for (auto *I : SInfo.UnrecognizedLifetimes)
588 I->eraseFromParent();
589
590 return true;
591}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< bool > ClMergeInit("stack-tagging-merge-init", cl::Hidden, cl::init(true), cl::desc("merge stack variable initializers with tagging when possible"))
static cl::opt< unsigned > ClMergeInitSizeLimit("stack-tagging-merge-init-size-limit", cl::init(272), cl::Hidden)
static cl::opt< unsigned > ClScanLimit("stack-tagging-merge-init-scan-limit", cl::init(40), cl::Hidden)
static cl::opt< bool > ClUseStackSafety("stack-tagging-use-stack-safety", cl::Hidden, cl::init(true), cl::desc("Use Stack Safety analysis results"))
static cl::opt< size_t > ClMaxLifetimes("stack-tagging-max-lifetimes-for-alloca", cl::Hidden, cl::init(3), cl::ReallyHidden, cl::desc("How many lifetime ends to handle for a single alloca."), cl::Optional)
AArch64 Stack Tagging
#define DEBUG_TYPE
static const Align kTagGranuleSize
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
uint64_t Size
bool End
Definition: ELF_riscv.cpp:469
Select target instructions out of generic instructions
A set of register units.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file implements a map that provides insertion order iteration.
static void addRange(SmallVectorImpl< ConstantInt * > &EndPoints, ConstantInt *Low, ConstantInt *High)
Definition: Metadata.cpp:1168
This file contains the declarations for metadata subclasses.
#define P(N)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:59
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
Target-Independent Code Generator Pass Configuration Options pass.
Value * RHS
Value * LHS
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
ModRefInfo getModRefInfo(const Instruction *I, const std::optional< MemoryLocation > &OptLoc)
Check whether or not an instruction may read or write the optionally specified memory location.
an instruction to allocate memory on the stack
Definition: Instructions.h:58
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:269
LLVM Basic Block Representation.
Definition: BasicBlock.h:56
const Instruction & front() const
Definition: BasicBlock.h:347
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:87
This is the shared class of boolean and integer constants.
Definition: Constants.h:78
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:888
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:356
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:166
Instruction * findNearestCommonDominator(Instruction *I1, Instruction *I2) const
Find the nearest instruction I that dominates both I1 and I2, in the sense that a result produced bef...
Definition: Dominators.cpp:344
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition: Type.cpp:693
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:645
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:652
Value * CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0, const Twine &Name="")
Definition: IRBuilder.h:1877
IntegerType * getIntNTy(unsigned N)
Fetch the type representing an N-bit integer.
Definition: IRBuilder.h:525
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:2007
Value * CreatePointerCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2132
BasicBlock::iterator GetInsertPoint() const
Definition: IRBuilder.h:175
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1428
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Definition: IRBuilder.h:517
Value * CreateBitOrPointerCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2164
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1407
LLVMContext & getContext() const
Definition: IRBuilder.h:176
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1488
PointerType * getPtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer.
Definition: IRBuilder.h:555
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args=std::nullopt, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2371
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
Definition: IRBuilder.h:502
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2625
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:71
const BasicBlock * getParent() const
Definition: Instruction.h:90
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:279
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:47
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
Value * getLength() const
Value * getDest() const
This is just like getRawDest, but it strips off any cast instructions (including addrspacecast) that ...
bool isVolatile() const
Value * getValue() const
This class wraps the llvm.memset and llvm.memset.inline intrinsics.
Representation for a specific memory location.
const std::string & getTargetTriple() const
Get the target triple which is a string describing the target host.
Definition: Module.h:258
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
Definition: Module.h:254
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
This pass performs the global (interprocedural) stack safety analysis (legacy pass manager).
An instruction for storing to memory.
Definition: Instructions.h:301
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Value handle that tracks a Value across RAUW.
Definition: ValueHandle.h:331
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
bool isLittleEndian() const
Tests whether the target triple is little endian.
Definition: Triple.cpp:1744
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:255
void setOperand(unsigned i, Value *Val)
Definition: User.h:174
LLVM Value Representation.
Definition: Value.h:74
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:378
std::optional< int64_t > getPointerOffsetFrom(const Value *Other, const DataLayout &DL) const
If this ptr is provably equal to Other plus a constant offset, return that offset in bytes.
Definition: Value.cpp:1022
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1422
@ ReallyHidden
Definition: CommandLine.h:139
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:445
bool isStandardLifetime(const SmallVectorImpl< IntrinsicInst * > &LifetimeStart, const SmallVectorImpl< IntrinsicInst * > &LifetimeEnd, const DominatorTree *DT, const LoopInfo *LI, size_t MaxLifetimes)
bool forAllReachableExits(const DominatorTree &DT, const PostDominatorTree &PDT, const LoopInfo &LI, const Instruction *Start, const SmallVectorImpl< IntrinsicInst * > &Ends, const SmallVectorImpl< Instruction * > &RetVec, llvm::function_ref< void(Instruction *)> Callback)
void alignAndPadAlloca(memtag::AllocaInfo &Info, llvm::Align Align)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:440
void initializeAArch64StackTaggingPass(PassRegistry &)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1946
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
FunctionPass * createAArch64StackTaggingPass(bool IsOptNone)
bool isNoModRef(const ModRefInfo MRI)
Definition: ModRef.h:39
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
MapVector< AllocaInst *, AllocaInfo > AllocasToInstrument
SmallVector< Instruction *, 4 > UnrecognizedLifetimes
SmallVector< Instruction *, 8 > RetVec