LLVM 20.0.0git
YAMLParser.cpp
Go to the documentation of this file.
1//===- YAMLParser.cpp - Simple YAML parser --------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements a YAML parser.
10//
11//===----------------------------------------------------------------------===//
12
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/Twine.h"
25#include "llvm/Support/SMLoc.h"
29#include <cassert>
30#include <cstddef>
31#include <cstdint>
32#include <map>
33#include <memory>
34#include <string>
35#include <system_error>
36#include <utility>
37
38using namespace llvm;
39using namespace yaml;
40
42 UEF_UTF32_LE, ///< UTF-32 Little Endian
43 UEF_UTF32_BE, ///< UTF-32 Big Endian
44 UEF_UTF16_LE, ///< UTF-16 Little Endian
45 UEF_UTF16_BE, ///< UTF-16 Big Endian
46 UEF_UTF8, ///< UTF-8 or ascii.
47 UEF_Unknown ///< Not a valid Unicode encoding.
48};
49
50/// EncodingInfo - Holds the encoding type and length of the byte order mark if
51/// it exists. Length is in {0, 2, 3, 4}.
52using EncodingInfo = std::pair<UnicodeEncodingForm, unsigned>;
53
54/// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
55/// encoding form of \a Input.
56///
57/// @param Input A string of length 0 or more.
58/// @returns An EncodingInfo indicating the Unicode encoding form of the input
59/// and how long the byte order mark is if one exists.
61 if (Input.empty())
62 return std::make_pair(UEF_Unknown, 0);
63
64 switch (uint8_t(Input[0])) {
65 case 0x00:
66 if (Input.size() >= 4) {
67 if ( Input[1] == 0
68 && uint8_t(Input[2]) == 0xFE
69 && uint8_t(Input[3]) == 0xFF)
70 return std::make_pair(UEF_UTF32_BE, 4);
71 if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
72 return std::make_pair(UEF_UTF32_BE, 0);
73 }
74
75 if (Input.size() >= 2 && Input[1] != 0)
76 return std::make_pair(UEF_UTF16_BE, 0);
77 return std::make_pair(UEF_Unknown, 0);
78 case 0xFF:
79 if ( Input.size() >= 4
80 && uint8_t(Input[1]) == 0xFE
81 && Input[2] == 0
82 && Input[3] == 0)
83 return std::make_pair(UEF_UTF32_LE, 4);
84
85 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
86 return std::make_pair(UEF_UTF16_LE, 2);
87 return std::make_pair(UEF_Unknown, 0);
88 case 0xFE:
89 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
90 return std::make_pair(UEF_UTF16_BE, 2);
91 return std::make_pair(UEF_Unknown, 0);
92 case 0xEF:
93 if ( Input.size() >= 3
94 && uint8_t(Input[1]) == 0xBB
95 && uint8_t(Input[2]) == 0xBF)
96 return std::make_pair(UEF_UTF8, 3);
97 return std::make_pair(UEF_Unknown, 0);
98 }
99
100 // It could still be utf-32 or utf-16.
101 if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
102 return std::make_pair(UEF_UTF32_LE, 0);
103
104 if (Input.size() >= 2 && Input[1] == 0)
105 return std::make_pair(UEF_UTF16_LE, 0);
106
107 return std::make_pair(UEF_UTF8, 0);
108}
109
110/// Pin the vtables to this file.
111void Node::anchor() {}
112void NullNode::anchor() {}
113void ScalarNode::anchor() {}
114void BlockScalarNode::anchor() {}
115void KeyValueNode::anchor() {}
116void MappingNode::anchor() {}
117void SequenceNode::anchor() {}
118void AliasNode::anchor() {}
119
120namespace llvm {
121namespace yaml {
122
123/// Token - A single YAML token.
124struct Token {
126 TK_Error, // Uninitialized token.
148 TK_Tag
149 } Kind = TK_Error;
150
151 /// A string of length 0 or more whose begin() points to the logical location
152 /// of the token in the input.
154
155 /// The value of a block scalar node.
156 std::string Value;
157
158 Token() = default;
159};
160
161} // end namespace yaml
162} // end namespace llvm
163
165
166namespace {
167
168/// This struct is used to track simple keys.
169///
170/// Simple keys are handled by creating an entry in SimpleKeys for each Token
171/// which could legally be the start of a simple key. When peekNext is called,
172/// if the Token To be returned is referenced by a SimpleKey, we continue
173/// tokenizing until that potential simple key has either been found to not be
174/// a simple key (we moved on to the next line or went further than 1024 chars).
175/// Or when we run into a Value, and then insert a Key token (and possibly
176/// others) before the SimpleKey's Tok.
177struct SimpleKey {
179 unsigned Column = 0;
180 unsigned Line = 0;
181 unsigned FlowLevel = 0;
182 bool IsRequired = false;
183
184 bool operator ==(const SimpleKey &Other) {
185 return Tok == Other.Tok;
186 }
187};
188
189} // end anonymous namespace
190
191/// The Unicode scalar value of a UTF-8 minimal well-formed code unit
192/// subsequence and the subsequence's length in code units (uint8_t).
193/// A length of 0 represents an error.
194using UTF8Decoded = std::pair<uint32_t, unsigned>;
195
197 StringRef::iterator Position= Range.begin();
199 // 1 byte: [0x00, 0x7f]
200 // Bit pattern: 0xxxxxxx
201 if (Position < End && (*Position & 0x80) == 0) {
202 return std::make_pair(*Position, 1);
203 }
204 // 2 bytes: [0x80, 0x7ff]
205 // Bit pattern: 110xxxxx 10xxxxxx
206 if (Position + 1 < End && ((*Position & 0xE0) == 0xC0) &&
207 ((*(Position + 1) & 0xC0) == 0x80)) {
208 uint32_t codepoint = ((*Position & 0x1F) << 6) |
209 (*(Position + 1) & 0x3F);
210 if (codepoint >= 0x80)
211 return std::make_pair(codepoint, 2);
212 }
213 // 3 bytes: [0x8000, 0xffff]
214 // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
215 if (Position + 2 < End && ((*Position & 0xF0) == 0xE0) &&
216 ((*(Position + 1) & 0xC0) == 0x80) &&
217 ((*(Position + 2) & 0xC0) == 0x80)) {
218 uint32_t codepoint = ((*Position & 0x0F) << 12) |
219 ((*(Position + 1) & 0x3F) << 6) |
220 (*(Position + 2) & 0x3F);
221 // Codepoints between 0xD800 and 0xDFFF are invalid, as
222 // they are high / low surrogate halves used by UTF-16.
223 if (codepoint >= 0x800 &&
224 (codepoint < 0xD800 || codepoint > 0xDFFF))
225 return std::make_pair(codepoint, 3);
226 }
227 // 4 bytes: [0x10000, 0x10FFFF]
228 // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
229 if (Position + 3 < End && ((*Position & 0xF8) == 0xF0) &&
230 ((*(Position + 1) & 0xC0) == 0x80) &&
231 ((*(Position + 2) & 0xC0) == 0x80) &&
232 ((*(Position + 3) & 0xC0) == 0x80)) {
233 uint32_t codepoint = ((*Position & 0x07) << 18) |
234 ((*(Position + 1) & 0x3F) << 12) |
235 ((*(Position + 2) & 0x3F) << 6) |
236 (*(Position + 3) & 0x3F);
237 if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
238 return std::make_pair(codepoint, 4);
239 }
240 return std::make_pair(0, 0);
241}
242
243namespace llvm {
244namespace yaml {
245
246/// Scans YAML tokens from a MemoryBuffer.
247class Scanner {
248public:
249 Scanner(StringRef Input, SourceMgr &SM, bool ShowColors = true,
250 std::error_code *EC = nullptr);
251 Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors = true,
252 std::error_code *EC = nullptr);
253
254 /// Parse the next token and return it without popping it.
255 Token &peekNext();
256
257 /// Parse the next token and pop it from the queue.
258 Token getNext();
259
260 void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
261 ArrayRef<SMRange> Ranges = {}) {
262 SM.PrintMessage(Loc, Kind, Message, Ranges, /* FixIts= */ {}, ShowColors);
263 }
264
265 void setError(const Twine &Message, StringRef::iterator Position) {
266 if (Position >= End)
267 Position = End - 1;
268
269 // propagate the error if possible
270 if (EC)
271 *EC = make_error_code(std::errc::invalid_argument);
272
273 // Don't print out more errors after the first one we encounter. The rest
274 // are just the result of the first, and have no meaning.
275 if (!Failed)
276 printError(SMLoc::getFromPointer(Position), SourceMgr::DK_Error, Message);
277 Failed = true;
278 }
279
280 /// Returns true if an error occurred while parsing.
281 bool failed() {
282 return Failed;
283 }
284
285private:
286 void init(MemoryBufferRef Buffer);
287
288 StringRef currentInput() {
289 return StringRef(Current, End - Current);
290 }
291
292 /// Decode a UTF-8 minimal well-formed code unit subsequence starting
293 /// at \a Position.
294 ///
295 /// If the UTF-8 code units starting at Position do not form a well-formed
296 /// code unit subsequence, then the Unicode scalar value is 0, and the length
297 /// is 0.
299 return ::decodeUTF8(StringRef(Position, End - Position));
300 }
301
302 // The following functions are based on the gramar rules in the YAML spec. The
303 // style of the function names it meant to closely match how they are written
304 // in the spec. The number within the [] is the number of the grammar rule in
305 // the spec.
306 //
307 // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
308 //
309 // c-
310 // A production starting and ending with a special character.
311 // b-
312 // A production matching a single line break.
313 // nb-
314 // A production starting and ending with a non-break character.
315 // s-
316 // A production starting and ending with a white space character.
317 // ns-
318 // A production starting and ending with a non-space character.
319 // l-
320 // A production matching complete line(s).
321
322 /// Skip a single nb-char[27] starting at Position.
323 ///
324 /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
325 /// | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
326 ///
327 /// @returns The code unit after the nb-char, or Position if it's not an
328 /// nb-char.
329 StringRef::iterator skip_nb_char(StringRef::iterator Position);
330
331 /// Skip a single b-break[28] starting at Position.
332 ///
333 /// A b-break is 0xD 0xA | 0xD | 0xA
334 ///
335 /// @returns The code unit after the b-break, or Position if it's not a
336 /// b-break.
337 StringRef::iterator skip_b_break(StringRef::iterator Position);
338
339 /// Skip a single s-space[31] starting at Position.
340 ///
341 /// An s-space is 0x20
342 ///
343 /// @returns The code unit after the s-space, or Position if it's not a
344 /// s-space.
345 StringRef::iterator skip_s_space(StringRef::iterator Position);
346
347 /// Skip a single s-white[33] starting at Position.
348 ///
349 /// A s-white is 0x20 | 0x9
350 ///
351 /// @returns The code unit after the s-white, or Position if it's not a
352 /// s-white.
353 StringRef::iterator skip_s_white(StringRef::iterator Position);
354
355 /// Skip a single ns-char[34] starting at Position.
356 ///
357 /// A ns-char is nb-char - s-white
358 ///
359 /// @returns The code unit after the ns-char, or Position if it's not a
360 /// ns-char.
361 StringRef::iterator skip_ns_char(StringRef::iterator Position);
362
363 using SkipWhileFunc = StringRef::iterator (Scanner::*)(StringRef::iterator);
364
365 /// Skip minimal well-formed code unit subsequences until Func
366 /// returns its input.
367 ///
368 /// @returns The code unit after the last minimal well-formed code unit
369 /// subsequence that Func accepted.
370 StringRef::iterator skip_while( SkipWhileFunc Func
371 , StringRef::iterator Position);
372
373 /// Skip minimal well-formed code unit subsequences until Func returns its
374 /// input.
375 void advanceWhile(SkipWhileFunc Func);
376
377 /// Scan ns-uri-char[39]s starting at Cur.
378 ///
379 /// This updates Cur and Column while scanning.
380 void scan_ns_uri_char();
381
382 /// Consume a minimal well-formed code unit subsequence starting at
383 /// \a Cur. Return false if it is not the same Unicode scalar value as
384 /// \a Expected. This updates \a Column.
386
387 /// Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
388 void skip(uint32_t Distance);
389
390 /// Return true if the minimal well-formed code unit subsequence at
391 /// Pos is whitespace or a new line
392 bool isBlankOrBreak(StringRef::iterator Position);
393
394 /// Return true if the minimal well-formed code unit subsequence at
395 /// Pos is considered a "safe" character for plain scalars.
396 bool isPlainSafeNonBlank(StringRef::iterator Position);
397
398 /// Return true if the line is a line break, false otherwise.
399 bool isLineEmpty(StringRef Line);
400
401 /// Consume a single b-break[28] if it's present at the current position.
402 ///
403 /// Return false if the code unit at the current position isn't a line break.
404 bool consumeLineBreakIfPresent();
405
406 /// If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
407 void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
408 , unsigned AtColumn
409 , bool IsRequired);
410
411 /// Remove simple keys that can no longer be valid simple keys.
412 ///
413 /// Invalid simple keys are not on the current line or are further than 1024
414 /// columns back.
415 void removeStaleSimpleKeyCandidates();
416
417 /// Remove all simple keys on FlowLevel \a Level.
418 void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
419
420 /// Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
421 /// tokens if needed.
422 bool unrollIndent(int ToColumn);
423
424 /// Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
425 /// if needed.
426 bool rollIndent( int ToColumn
427 , Token::TokenKind Kind
428 , TokenQueueT::iterator InsertPoint);
429
430 /// Skip a single-line comment when the comment starts at the current
431 /// position of the scanner.
432 void skipComment();
433
434 /// Skip whitespace and comments until the start of the next token.
435 void scanToNextToken();
436
437 /// Must be the first token generated.
438 bool scanStreamStart();
439
440 /// Generate tokens needed to close out the stream.
441 bool scanStreamEnd();
442
443 /// Scan a %BLAH directive.
444 bool scanDirective();
445
446 /// Scan a ... or ---.
447 bool scanDocumentIndicator(bool IsStart);
448
449 /// Scan a [ or { and generate the proper flow collection start token.
450 bool scanFlowCollectionStart(bool IsSequence);
451
452 /// Scan a ] or } and generate the proper flow collection end token.
453 bool scanFlowCollectionEnd(bool IsSequence);
454
455 /// Scan the , that separates entries in a flow collection.
456 bool scanFlowEntry();
457
458 /// Scan the - that starts block sequence entries.
459 bool scanBlockEntry();
460
461 /// Scan an explicit ? indicating a key.
462 bool scanKey();
463
464 /// Scan an explicit : indicating a value.
465 bool scanValue();
466
467 /// Scan a quoted scalar.
468 bool scanFlowScalar(bool IsDoubleQuoted);
469
470 /// Scan an unquoted scalar.
471 bool scanPlainScalar();
472
473 /// Scan an Alias or Anchor starting with * or &.
474 bool scanAliasOrAnchor(bool IsAlias);
475
476 /// Scan a block scalar starting with | or >.
477 bool scanBlockScalar(bool IsLiteral);
478
479 /// Scan a block scalar style indicator and header.
480 ///
481 /// Note: This is distinct from scanBlockScalarHeader to mirror the fact that
482 /// YAML does not consider the style indicator to be a part of the header.
483 ///
484 /// Return false if an error occurred.
485 bool scanBlockScalarIndicators(char &StyleIndicator, char &ChompingIndicator,
486 unsigned &IndentIndicator, bool &IsDone);
487
488 /// Scan a style indicator in a block scalar header.
489 char scanBlockStyleIndicator();
490
491 /// Scan a chomping indicator in a block scalar header.
492 char scanBlockChompingIndicator();
493
494 /// Scan an indentation indicator in a block scalar header.
495 unsigned scanBlockIndentationIndicator();
496
497 /// Scan a block scalar header.
498 ///
499 /// Return false if an error occurred.
500 bool scanBlockScalarHeader(char &ChompingIndicator, unsigned &IndentIndicator,
501 bool &IsDone);
502
503 /// Look for the indentation level of a block scalar.
504 ///
505 /// Return false if an error occurred.
506 bool findBlockScalarIndent(unsigned &BlockIndent, unsigned BlockExitIndent,
507 unsigned &LineBreaks, bool &IsDone);
508
509 /// Scan the indentation of a text line in a block scalar.
510 ///
511 /// Return false if an error occurred.
512 bool scanBlockScalarIndent(unsigned BlockIndent, unsigned BlockExitIndent,
513 bool &IsDone);
514
515 /// Scan a tag of the form !stuff.
516 bool scanTag();
517
518 /// Dispatch to the next scanning function based on \a *Cur.
519 bool fetchMoreTokens();
520
521 /// The SourceMgr used for diagnostics and buffer management.
522 SourceMgr &SM;
523
524 /// The original input.
525 MemoryBufferRef InputBuffer;
526
527 /// The current position of the scanner.
528 StringRef::iterator Current;
529
530 /// The end of the input (one past the last character).
532
533 /// Current YAML indentation level in spaces.
534 int Indent;
535
536 /// Current column number in Unicode code points.
537 unsigned Column;
538
539 /// Current line number.
540 unsigned Line;
541
542 /// How deep we are in flow style containers. 0 Means at block level.
543 unsigned FlowLevel;
544
545 /// Are we at the start of the stream?
546 bool IsStartOfStream;
547
548 /// Can the next token be the start of a simple key?
549 bool IsSimpleKeyAllowed;
550
551 /// Can the next token be a value indicator even if it does not have a
552 /// trailing space?
553 bool IsAdjacentValueAllowedInFlow;
554
555 /// True if an error has occurred.
556 bool Failed;
557
558 /// Should colors be used when printing out the diagnostic messages?
559 bool ShowColors;
560
561 /// Queue of tokens. This is required to queue up tokens while looking
562 /// for the end of a simple key. And for cases where a single character
563 /// can produce multiple tokens (e.g. BlockEnd).
564 TokenQueueT TokenQueue;
565
566 /// Indentation levels.
567 SmallVector<int, 4> Indents;
568
569 /// Potential simple keys.
570 SmallVector<SimpleKey, 4> SimpleKeys;
571
572 std::error_code *EC;
573};
574
575} // end namespace yaml
576} // end namespace llvm
577
578/// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
579static void encodeUTF8( uint32_t UnicodeScalarValue
580 , SmallVectorImpl<char> &Result) {
581 if (UnicodeScalarValue <= 0x7F) {
582 Result.push_back(UnicodeScalarValue & 0x7F);
583 } else if (UnicodeScalarValue <= 0x7FF) {
584 uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
585 uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
586 Result.push_back(FirstByte);
587 Result.push_back(SecondByte);
588 } else if (UnicodeScalarValue <= 0xFFFF) {
589 uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
590 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
591 uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
592 Result.push_back(FirstByte);
593 Result.push_back(SecondByte);
594 Result.push_back(ThirdByte);
595 } else if (UnicodeScalarValue <= 0x10FFFF) {
596 uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
597 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
598 uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
599 uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
600 Result.push_back(FirstByte);
601 Result.push_back(SecondByte);
602 Result.push_back(ThirdByte);
603 Result.push_back(FourthByte);
604 }
605}
606
608 SourceMgr SM;
609 Scanner scanner(Input, SM);
610 while (true) {
611 Token T = scanner.getNext();
612 switch (T.Kind) {
614 OS << "Stream-Start: ";
615 break;
617 OS << "Stream-End: ";
618 break;
620 OS << "Version-Directive: ";
621 break;
623 OS << "Tag-Directive: ";
624 break;
626 OS << "Document-Start: ";
627 break;
629 OS << "Document-End: ";
630 break;
632 OS << "Block-Entry: ";
633 break;
635 OS << "Block-End: ";
636 break;
638 OS << "Block-Sequence-Start: ";
639 break;
641 OS << "Block-Mapping-Start: ";
642 break;
644 OS << "Flow-Entry: ";
645 break;
647 OS << "Flow-Sequence-Start: ";
648 break;
650 OS << "Flow-Sequence-End: ";
651 break;
653 OS << "Flow-Mapping-Start: ";
654 break;
656 OS << "Flow-Mapping-End: ";
657 break;
658 case Token::TK_Key:
659 OS << "Key: ";
660 break;
661 case Token::TK_Value:
662 OS << "Value: ";
663 break;
664 case Token::TK_Scalar:
665 OS << "Scalar: ";
666 break;
668 OS << "Block Scalar: ";
669 break;
670 case Token::TK_Alias:
671 OS << "Alias: ";
672 break;
673 case Token::TK_Anchor:
674 OS << "Anchor: ";
675 break;
676 case Token::TK_Tag:
677 OS << "Tag: ";
678 break;
679 case Token::TK_Error:
680 break;
681 }
682 OS << T.Range << "\n";
683 if (T.Kind == Token::TK_StreamEnd)
684 break;
685 else if (T.Kind == Token::TK_Error)
686 return false;
687 }
688 return true;
689}
690
692 SourceMgr SM;
693 Scanner scanner(Input, SM);
694 while (true) {
695 Token T = scanner.getNext();
696 if (T.Kind == Token::TK_StreamEnd)
697 break;
698 else if (T.Kind == Token::TK_Error)
699 return false;
700 }
701 return true;
702}
703
704std::string yaml::escape(StringRef Input, bool EscapePrintable) {
705 std::string EscapedInput;
706 for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
707 if (*i == '\\')
708 EscapedInput += "\\\\";
709 else if (*i == '"')
710 EscapedInput += "\\\"";
711 else if (*i == 0)
712 EscapedInput += "\\0";
713 else if (*i == 0x07)
714 EscapedInput += "\\a";
715 else if (*i == 0x08)
716 EscapedInput += "\\b";
717 else if (*i == 0x09)
718 EscapedInput += "\\t";
719 else if (*i == 0x0A)
720 EscapedInput += "\\n";
721 else if (*i == 0x0B)
722 EscapedInput += "\\v";
723 else if (*i == 0x0C)
724 EscapedInput += "\\f";
725 else if (*i == 0x0D)
726 EscapedInput += "\\r";
727 else if (*i == 0x1B)
728 EscapedInput += "\\e";
729 else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
730 std::string HexStr = utohexstr(*i);
731 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
732 } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
733 UTF8Decoded UnicodeScalarValue
734 = decodeUTF8(StringRef(i, Input.end() - i));
735 if (UnicodeScalarValue.second == 0) {
736 // Found invalid char.
737 SmallString<4> Val;
738 encodeUTF8(0xFFFD, Val);
739 llvm::append_range(EscapedInput, Val);
740 // FIXME: Error reporting.
741 return EscapedInput;
742 }
743 if (UnicodeScalarValue.first == 0x85)
744 EscapedInput += "\\N";
745 else if (UnicodeScalarValue.first == 0xA0)
746 EscapedInput += "\\_";
747 else if (UnicodeScalarValue.first == 0x2028)
748 EscapedInput += "\\L";
749 else if (UnicodeScalarValue.first == 0x2029)
750 EscapedInput += "\\P";
751 else if (!EscapePrintable &&
752 sys::unicode::isPrintable(UnicodeScalarValue.first))
753 EscapedInput += StringRef(i, UnicodeScalarValue.second);
754 else {
755 std::string HexStr = utohexstr(UnicodeScalarValue.first);
756 if (HexStr.size() <= 2)
757 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
758 else if (HexStr.size() <= 4)
759 EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
760 else if (HexStr.size() <= 8)
761 EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
762 }
763 i += UnicodeScalarValue.second - 1;
764 } else
765 EscapedInput.push_back(*i);
766 }
767 return EscapedInput;
768}
769
770std::optional<bool> yaml::parseBool(StringRef S) {
771 switch (S.size()) {
772 case 1:
773 switch (S.front()) {
774 case 'y':
775 case 'Y':
776 return true;
777 case 'n':
778 case 'N':
779 return false;
780 default:
781 return std::nullopt;
782 }
783 case 2:
784 switch (S.front()) {
785 case 'O':
786 if (S[1] == 'N') // ON
787 return true;
788 [[fallthrough]];
789 case 'o':
790 if (S[1] == 'n') //[Oo]n
791 return true;
792 return std::nullopt;
793 case 'N':
794 if (S[1] == 'O') // NO
795 return false;
796 [[fallthrough]];
797 case 'n':
798 if (S[1] == 'o') //[Nn]o
799 return false;
800 return std::nullopt;
801 default:
802 return std::nullopt;
803 }
804 case 3:
805 switch (S.front()) {
806 case 'O':
807 if (S.drop_front() == "FF") // OFF
808 return false;
809 [[fallthrough]];
810 case 'o':
811 if (S.drop_front() == "ff") //[Oo]ff
812 return false;
813 return std::nullopt;
814 case 'Y':
815 if (S.drop_front() == "ES") // YES
816 return true;
817 [[fallthrough]];
818 case 'y':
819 if (S.drop_front() == "es") //[Yy]es
820 return true;
821 return std::nullopt;
822 default:
823 return std::nullopt;
824 }
825 case 4:
826 switch (S.front()) {
827 case 'T':
828 if (S.drop_front() == "RUE") // TRUE
829 return true;
830 [[fallthrough]];
831 case 't':
832 if (S.drop_front() == "rue") //[Tt]rue
833 return true;
834 return std::nullopt;
835 default:
836 return std::nullopt;
837 }
838 case 5:
839 switch (S.front()) {
840 case 'F':
841 if (S.drop_front() == "ALSE") // FALSE
842 return false;
843 [[fallthrough]];
844 case 'f':
845 if (S.drop_front() == "alse") //[Ff]alse
846 return false;
847 return std::nullopt;
848 default:
849 return std::nullopt;
850 }
851 default:
852 return std::nullopt;
853 }
854}
855
856Scanner::Scanner(StringRef Input, SourceMgr &sm, bool ShowColors,
857 std::error_code *EC)
858 : SM(sm), ShowColors(ShowColors), EC(EC) {
859 init(MemoryBufferRef(Input, "YAML"));
860}
861
862Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors,
863 std::error_code *EC)
864 : SM(SM_), ShowColors(ShowColors), EC(EC) {
865 init(Buffer);
866}
867
868void Scanner::init(MemoryBufferRef Buffer) {
869 InputBuffer = Buffer;
870 Current = InputBuffer.getBufferStart();
871 End = InputBuffer.getBufferEnd();
872 Indent = -1;
873 Column = 0;
874 Line = 0;
875 FlowLevel = 0;
876 IsStartOfStream = true;
877 IsSimpleKeyAllowed = true;
878 IsAdjacentValueAllowedInFlow = false;
879 Failed = false;
880 std::unique_ptr<MemoryBuffer> InputBufferOwner =
881 MemoryBuffer::getMemBuffer(Buffer, /*RequiresNullTerminator=*/false);
882 SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc());
883}
884
886 // If the current token is a possible simple key, keep parsing until we
887 // can confirm.
888 bool NeedMore = false;
889 while (true) {
890 if (TokenQueue.empty() || NeedMore) {
891 if (!fetchMoreTokens()) {
892 TokenQueue.clear();
893 SimpleKeys.clear();
894 TokenQueue.push_back(Token());
895 return TokenQueue.front();
896 }
897 }
898 assert(!TokenQueue.empty() &&
899 "fetchMoreTokens lied about getting tokens!");
900
901 removeStaleSimpleKeyCandidates();
902 SimpleKey SK;
903 SK.Tok = TokenQueue.begin();
904 if (!is_contained(SimpleKeys, SK))
905 break;
906 else
907 NeedMore = true;
908 }
909 return TokenQueue.front();
910}
911
913 Token Ret = peekNext();
914 // TokenQueue can be empty if there was an error getting the next token.
915 if (!TokenQueue.empty())
916 TokenQueue.pop_front();
917
918 // There cannot be any referenced Token's if the TokenQueue is empty. So do a
919 // quick deallocation of them all.
920 if (TokenQueue.empty())
921 TokenQueue.resetAlloc();
922
923 return Ret;
924}
925
926StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
927 if (Position == End)
928 return Position;
929 // Check 7 bit c-printable - b-char.
930 if ( *Position == 0x09
931 || (*Position >= 0x20 && *Position <= 0x7E))
932 return Position + 1;
933
934 // Check for valid UTF-8.
935 if (uint8_t(*Position) & 0x80) {
936 UTF8Decoded u8d = decodeUTF8(Position);
937 if ( u8d.second != 0
938 && u8d.first != 0xFEFF
939 && ( u8d.first == 0x85
940 || ( u8d.first >= 0xA0
941 && u8d.first <= 0xD7FF)
942 || ( u8d.first >= 0xE000
943 && u8d.first <= 0xFFFD)
944 || ( u8d.first >= 0x10000
945 && u8d.first <= 0x10FFFF)))
946 return Position + u8d.second;
947 }
948 return Position;
949}
950
951StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
952 if (Position == End)
953 return Position;
954 if (*Position == 0x0D) {
955 if (Position + 1 != End && *(Position + 1) == 0x0A)
956 return Position + 2;
957 return Position + 1;
958 }
959
960 if (*Position == 0x0A)
961 return Position + 1;
962 return Position;
963}
964
965StringRef::iterator Scanner::skip_s_space(StringRef::iterator Position) {
966 if (Position == End)
967 return Position;
968 if (*Position == ' ')
969 return Position + 1;
970 return Position;
971}
972
973StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
974 if (Position == End)
975 return Position;
976 if (*Position == ' ' || *Position == '\t')
977 return Position + 1;
978 return Position;
979}
980
981StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
982 if (Position == End)
983 return Position;
984 if (*Position == ' ' || *Position == '\t')
985 return Position;
986 return skip_nb_char(Position);
987}
988
989StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
990 , StringRef::iterator Position) {
991 while (true) {
992 StringRef::iterator i = (this->*Func)(Position);
993 if (i == Position)
994 break;
995 Position = i;
996 }
997 return Position;
998}
999
1000void Scanner::advanceWhile(SkipWhileFunc Func) {
1001 auto Final = skip_while(Func, Current);
1002 Column += Final - Current;
1003 Current = Final;
1004}
1005
1006static bool is_ns_hex_digit(const char C) { return isAlnum(C); }
1007
1008static bool is_ns_word_char(const char C) { return C == '-' || isAlpha(C); }
1009
1010void Scanner::scan_ns_uri_char() {
1011 while (true) {
1012 if (Current == End)
1013 break;
1014 if (( *Current == '%'
1015 && Current + 2 < End
1016 && is_ns_hex_digit(*(Current + 1))
1017 && is_ns_hex_digit(*(Current + 2)))
1018 || is_ns_word_char(*Current)
1019 || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
1020 != StringRef::npos) {
1021 ++Current;
1022 ++Column;
1023 } else
1024 break;
1025 }
1026}
1027
1028bool Scanner::consume(uint32_t Expected) {
1029 if (Expected >= 0x80) {
1030 setError("Cannot consume non-ascii characters", Current);
1031 return false;
1032 }
1033 if (Current == End)
1034 return false;
1035 if (uint8_t(*Current) >= 0x80) {
1036 setError("Cannot consume non-ascii characters", Current);
1037 return false;
1038 }
1039 if (uint8_t(*Current) == Expected) {
1040 ++Current;
1041 ++Column;
1042 return true;
1043 }
1044 return false;
1045}
1046
1047void Scanner::skip(uint32_t Distance) {
1048 Current += Distance;
1049 Column += Distance;
1050 assert(Current <= End && "Skipped past the end");
1051}
1052
1053bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
1054 if (Position == End)
1055 return false;
1056 return *Position == ' ' || *Position == '\t' || *Position == '\r' ||
1057 *Position == '\n';
1058}
1059
1060bool Scanner::isPlainSafeNonBlank(StringRef::iterator Position) {
1061 if (Position == End || isBlankOrBreak(Position))
1062 return false;
1063 if (FlowLevel &&
1064 StringRef(Position, 1).find_first_of(",[]{}") != StringRef::npos)
1065 return false;
1066 return true;
1067}
1068
1069bool Scanner::isLineEmpty(StringRef Line) {
1070 for (const auto *Position = Line.begin(); Position != Line.end(); ++Position)
1071 if (!isBlankOrBreak(Position))
1072 return false;
1073 return true;
1074}
1075
1076bool Scanner::consumeLineBreakIfPresent() {
1077 auto Next = skip_b_break(Current);
1078 if (Next == Current)
1079 return false;
1080 Column = 0;
1081 ++Line;
1082 Current = Next;
1083 return true;
1084}
1085
1086void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
1087 , unsigned AtColumn
1088 , bool IsRequired) {
1089 if (IsSimpleKeyAllowed) {
1090 SimpleKey SK;
1091 SK.Tok = Tok;
1092 SK.Line = Line;
1093 SK.Column = AtColumn;
1094 SK.IsRequired = IsRequired;
1095 SK.FlowLevel = FlowLevel;
1096 SimpleKeys.push_back(SK);
1097 }
1098}
1099
1100void Scanner::removeStaleSimpleKeyCandidates() {
1101 for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
1102 i != SimpleKeys.end();) {
1103 if (i->Line != Line || i->Column + 1024 < Column) {
1104 if (i->IsRequired)
1105 setError( "Could not find expected : for simple key"
1106 , i->Tok->Range.begin());
1107 i = SimpleKeys.erase(i);
1108 } else
1109 ++i;
1110 }
1111}
1112
1113void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
1114 if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
1115 SimpleKeys.pop_back();
1116}
1117
1118bool Scanner::unrollIndent(int ToColumn) {
1119 Token T;
1120 // Indentation is ignored in flow.
1121 if (FlowLevel != 0)
1122 return true;
1123
1124 while (Indent > ToColumn) {
1125 T.Kind = Token::TK_BlockEnd;
1126 T.Range = StringRef(Current, 1);
1127 TokenQueue.push_back(T);
1128 Indent = Indents.pop_back_val();
1129 }
1130
1131 return true;
1132}
1133
1134bool Scanner::rollIndent( int ToColumn
1135 , Token::TokenKind Kind
1136 , TokenQueueT::iterator InsertPoint) {
1137 if (FlowLevel)
1138 return true;
1139 if (Indent < ToColumn) {
1140 Indents.push_back(Indent);
1141 Indent = ToColumn;
1142
1143 Token T;
1144 T.Kind = Kind;
1145 T.Range = StringRef(Current, 0);
1146 TokenQueue.insert(InsertPoint, T);
1147 }
1148 return true;
1149}
1150
1151void Scanner::skipComment() {
1152 if (Current == End || *Current != '#')
1153 return;
1154 while (true) {
1155 // This may skip more than one byte, thus Column is only incremented
1156 // for code points.
1157 StringRef::iterator I = skip_nb_char(Current);
1158 if (I == Current)
1159 break;
1160 Current = I;
1161 ++Column;
1162 }
1163}
1164
1165void Scanner::scanToNextToken() {
1166 while (true) {
1167 while (Current != End && (*Current == ' ' || *Current == '\t')) {
1168 skip(1);
1169 }
1170
1171 skipComment();
1172
1173 // Skip EOL.
1174 StringRef::iterator i = skip_b_break(Current);
1175 if (i == Current)
1176 break;
1177 Current = i;
1178 ++Line;
1179 Column = 0;
1180 // New lines may start a simple key.
1181 if (!FlowLevel)
1182 IsSimpleKeyAllowed = true;
1183 }
1184}
1185
1186bool Scanner::scanStreamStart() {
1187 IsStartOfStream = false;
1188
1189 EncodingInfo EI = getUnicodeEncoding(currentInput());
1190
1191 Token T;
1192 T.Kind = Token::TK_StreamStart;
1193 T.Range = StringRef(Current, EI.second);
1194 TokenQueue.push_back(T);
1195 Current += EI.second;
1196 return true;
1197}
1198
1199bool Scanner::scanStreamEnd() {
1200 // Force an ending new line if one isn't present.
1201 if (Column != 0) {
1202 Column = 0;
1203 ++Line;
1204 }
1205
1206 unrollIndent(-1);
1207 SimpleKeys.clear();
1208 IsSimpleKeyAllowed = false;
1209 IsAdjacentValueAllowedInFlow = false;
1210
1211 Token T;
1212 T.Kind = Token::TK_StreamEnd;
1213 T.Range = StringRef(Current, 0);
1214 TokenQueue.push_back(T);
1215 return true;
1216}
1217
1218bool Scanner::scanDirective() {
1219 // Reset the indentation level.
1220 unrollIndent(-1);
1221 SimpleKeys.clear();
1222 IsSimpleKeyAllowed = false;
1223 IsAdjacentValueAllowedInFlow = false;
1224
1225 StringRef::iterator Start = Current;
1226 consume('%');
1227 StringRef::iterator NameStart = Current;
1228 Current = skip_while(&Scanner::skip_ns_char, Current);
1229 StringRef Name(NameStart, Current - NameStart);
1230 Current = skip_while(&Scanner::skip_s_white, Current);
1231
1232 Token T;
1233 if (Name == "YAML") {
1234 Current = skip_while(&Scanner::skip_ns_char, Current);
1236 T.Range = StringRef(Start, Current - Start);
1237 TokenQueue.push_back(T);
1238 return true;
1239 } else if(Name == "TAG") {
1240 Current = skip_while(&Scanner::skip_ns_char, Current);
1241 Current = skip_while(&Scanner::skip_s_white, Current);
1242 Current = skip_while(&Scanner::skip_ns_char, Current);
1244 T.Range = StringRef(Start, Current - Start);
1245 TokenQueue.push_back(T);
1246 return true;
1247 }
1248 return false;
1249}
1250
1251bool Scanner::scanDocumentIndicator(bool IsStart) {
1252 unrollIndent(-1);
1253 SimpleKeys.clear();
1254 IsSimpleKeyAllowed = false;
1255 IsAdjacentValueAllowedInFlow = false;
1256
1257 Token T;
1259 T.Range = StringRef(Current, 3);
1260 skip(3);
1261 TokenQueue.push_back(T);
1262 return true;
1263}
1264
1265bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1266 Token T;
1267 T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1269 T.Range = StringRef(Current, 1);
1270 skip(1);
1271 TokenQueue.push_back(T);
1272
1273 // [ and { may begin a simple key.
1274 saveSimpleKeyCandidate(--TokenQueue.end(), Column - 1, false);
1275
1276 // And may also be followed by a simple key.
1277 IsSimpleKeyAllowed = true;
1278 // Adjacent values are allowed in flows only after JSON-style keys.
1279 IsAdjacentValueAllowedInFlow = false;
1280 ++FlowLevel;
1281 return true;
1282}
1283
1284bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1285 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1286 IsSimpleKeyAllowed = false;
1287 IsAdjacentValueAllowedInFlow = true;
1288 Token T;
1289 T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1291 T.Range = StringRef(Current, 1);
1292 skip(1);
1293 TokenQueue.push_back(T);
1294 if (FlowLevel)
1295 --FlowLevel;
1296 return true;
1297}
1298
1299bool Scanner::scanFlowEntry() {
1300 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1301 IsSimpleKeyAllowed = true;
1302 IsAdjacentValueAllowedInFlow = false;
1303 Token T;
1304 T.Kind = Token::TK_FlowEntry;
1305 T.Range = StringRef(Current, 1);
1306 skip(1);
1307 TokenQueue.push_back(T);
1308 return true;
1309}
1310
1311bool Scanner::scanBlockEntry() {
1312 rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
1313 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1314 IsSimpleKeyAllowed = true;
1315 IsAdjacentValueAllowedInFlow = false;
1316 Token T;
1317 T.Kind = Token::TK_BlockEntry;
1318 T.Range = StringRef(Current, 1);
1319 skip(1);
1320 TokenQueue.push_back(T);
1321 return true;
1322}
1323
1324bool Scanner::scanKey() {
1325 if (!FlowLevel)
1326 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1327
1328 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1329 IsSimpleKeyAllowed = !FlowLevel;
1330 IsAdjacentValueAllowedInFlow = false;
1331
1332 Token T;
1333 T.Kind = Token::TK_Key;
1334 T.Range = StringRef(Current, 1);
1335 skip(1);
1336 TokenQueue.push_back(T);
1337 return true;
1338}
1339
1340bool Scanner::scanValue() {
1341 // If the previous token could have been a simple key, insert the key token
1342 // into the token queue.
1343 if (!SimpleKeys.empty()) {
1344 SimpleKey SK = SimpleKeys.pop_back_val();
1345 Token T;
1346 T.Kind = Token::TK_Key;
1347 T.Range = SK.Tok->Range;
1349 for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1350 if (i == SK.Tok)
1351 break;
1352 }
1353 if (i == e) {
1354 Failed = true;
1355 return false;
1356 }
1357 i = TokenQueue.insert(i, T);
1358
1359 // We may also need to add a Block-Mapping-Start token.
1360 rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
1361
1362 IsSimpleKeyAllowed = false;
1363 } else {
1364 if (!FlowLevel)
1365 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1366 IsSimpleKeyAllowed = !FlowLevel;
1367 }
1368 IsAdjacentValueAllowedInFlow = false;
1369
1370 Token T;
1371 T.Kind = Token::TK_Value;
1372 T.Range = StringRef(Current, 1);
1373 skip(1);
1374 TokenQueue.push_back(T);
1375 return true;
1376}
1377
1378// Forbidding inlining improves performance by roughly 20%.
1379// FIXME: Remove once llvm optimizes this to the faster version without hints.
1380LLVM_ATTRIBUTE_NOINLINE static bool
1382
1383// Returns whether a character at 'Position' was escaped with a leading '\'.
1384// 'First' specifies the position of the first character in the string.
1386 StringRef::iterator Position) {
1387 assert(Position - 1 >= First);
1388 StringRef::iterator I = Position - 1;
1389 // We calculate the number of consecutive '\'s before the current position
1390 // by iterating backwards through our string.
1391 while (I >= First && *I == '\\') --I;
1392 // (Position - 1 - I) now contains the number of '\'s before the current
1393 // position. If it is odd, the character at 'Position' was escaped.
1394 return (Position - 1 - I) % 2 == 1;
1395}
1396
1397bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1398 StringRef::iterator Start = Current;
1399 unsigned ColStart = Column;
1400 if (IsDoubleQuoted) {
1401 do {
1402 ++Current;
1403 while (Current != End && *Current != '"')
1404 ++Current;
1405 // Repeat until the previous character was not a '\' or was an escaped
1406 // backslash.
1407 } while ( Current != End
1408 && *(Current - 1) == '\\'
1409 && wasEscaped(Start + 1, Current));
1410 } else {
1411 skip(1);
1412 while (Current != End) {
1413 // Skip a ' followed by another '.
1414 if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1415 skip(2);
1416 continue;
1417 } else if (*Current == '\'')
1418 break;
1419 StringRef::iterator i = skip_nb_char(Current);
1420 if (i == Current) {
1421 i = skip_b_break(Current);
1422 if (i == Current)
1423 break;
1424 Current = i;
1425 Column = 0;
1426 ++Line;
1427 } else {
1428 if (i == End)
1429 break;
1430 Current = i;
1431 ++Column;
1432 }
1433 }
1434 }
1435
1436 if (Current == End) {
1437 setError("Expected quote at end of scalar", Current);
1438 return false;
1439 }
1440
1441 skip(1); // Skip ending quote.
1442 Token T;
1443 T.Kind = Token::TK_Scalar;
1444 T.Range = StringRef(Start, Current - Start);
1445 TokenQueue.push_back(T);
1446
1447 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1448
1449 IsSimpleKeyAllowed = false;
1450 IsAdjacentValueAllowedInFlow = true;
1451
1452 return true;
1453}
1454
1455bool Scanner::scanPlainScalar() {
1456 StringRef::iterator Start = Current;
1457 unsigned ColStart = Column;
1458 unsigned LeadingBlanks = 0;
1459 assert(Indent >= -1 && "Indent must be >= -1 !");
1460 unsigned indent = static_cast<unsigned>(Indent + 1);
1461 while (Current != End) {
1462 if (*Current == '#')
1463 break;
1464
1465 while (Current != End &&
1466 ((*Current != ':' && isPlainSafeNonBlank(Current)) ||
1467 (*Current == ':' && isPlainSafeNonBlank(Current + 1)))) {
1468 StringRef::iterator i = skip_nb_char(Current);
1469 if (i == Current)
1470 break;
1471 Current = i;
1472 ++Column;
1473 }
1474
1475 // Are we at the end?
1476 if (!isBlankOrBreak(Current))
1477 break;
1478
1479 // Eat blanks.
1480 StringRef::iterator Tmp = Current;
1481 while (isBlankOrBreak(Tmp)) {
1482 StringRef::iterator i = skip_s_white(Tmp);
1483 if (i != Tmp) {
1484 if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1485 setError("Found invalid tab character in indentation", Tmp);
1486 return false;
1487 }
1488 Tmp = i;
1489 ++Column;
1490 } else {
1491 i = skip_b_break(Tmp);
1492 if (!LeadingBlanks)
1493 LeadingBlanks = 1;
1494 Tmp = i;
1495 Column = 0;
1496 ++Line;
1497 }
1498 }
1499
1500 if (!FlowLevel && Column < indent)
1501 break;
1502
1503 Current = Tmp;
1504 }
1505 if (Start == Current) {
1506 setError("Got empty plain scalar", Start);
1507 return false;
1508 }
1509 Token T;
1510 T.Kind = Token::TK_Scalar;
1511 T.Range = StringRef(Start, Current - Start);
1512 TokenQueue.push_back(T);
1513
1514 // Plain scalars can be simple keys.
1515 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1516
1517 IsSimpleKeyAllowed = false;
1518 IsAdjacentValueAllowedInFlow = false;
1519
1520 return true;
1521}
1522
1523bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1524 StringRef::iterator Start = Current;
1525 unsigned ColStart = Column;
1526 skip(1);
1527 while (Current != End) {
1528 if ( *Current == '[' || *Current == ']'
1529 || *Current == '{' || *Current == '}'
1530 || *Current == ','
1531 || *Current == ':')
1532 break;
1533 StringRef::iterator i = skip_ns_char(Current);
1534 if (i == Current)
1535 break;
1536 Current = i;
1537 ++Column;
1538 }
1539
1540 if (Start + 1 == Current) {
1541 setError("Got empty alias or anchor", Start);
1542 return false;
1543 }
1544
1545 Token T;
1547 T.Range = StringRef(Start, Current - Start);
1548 TokenQueue.push_back(T);
1549
1550 // Alias and anchors can be simple keys.
1551 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1552
1553 IsSimpleKeyAllowed = false;
1554 IsAdjacentValueAllowedInFlow = false;
1555
1556 return true;
1557}
1558
1559bool Scanner::scanBlockScalarIndicators(char &StyleIndicator,
1560 char &ChompingIndicator,
1561 unsigned &IndentIndicator,
1562 bool &IsDone) {
1563 StyleIndicator = scanBlockStyleIndicator();
1564 if (!scanBlockScalarHeader(ChompingIndicator, IndentIndicator, IsDone))
1565 return false;
1566 return true;
1567}
1568
1569char Scanner::scanBlockStyleIndicator() {
1570 char Indicator = ' ';
1571 if (Current != End && (*Current == '>' || *Current == '|')) {
1572 Indicator = *Current;
1573 skip(1);
1574 }
1575 return Indicator;
1576}
1577
1578char Scanner::scanBlockChompingIndicator() {
1579 char Indicator = ' ';
1580 if (Current != End && (*Current == '+' || *Current == '-')) {
1581 Indicator = *Current;
1582 skip(1);
1583 }
1584 return Indicator;
1585}
1586
1587/// Get the number of line breaks after chomping.
1588///
1589/// Return the number of trailing line breaks to emit, depending on
1590/// \p ChompingIndicator.
1591static unsigned getChompedLineBreaks(char ChompingIndicator,
1592 unsigned LineBreaks, StringRef Str) {
1593 if (ChompingIndicator == '-') // Strip all line breaks.
1594 return 0;
1595 if (ChompingIndicator == '+') // Keep all line breaks.
1596 return LineBreaks;
1597 // Clip trailing lines.
1598 return Str.empty() ? 0 : 1;
1599}
1600
1601unsigned Scanner::scanBlockIndentationIndicator() {
1602 unsigned Indent = 0;
1603 if (Current != End && (*Current >= '1' && *Current <= '9')) {
1604 Indent = unsigned(*Current - '0');
1605 skip(1);
1606 }
1607 return Indent;
1608}
1609
1610bool Scanner::scanBlockScalarHeader(char &ChompingIndicator,
1611 unsigned &IndentIndicator, bool &IsDone) {
1612 auto Start = Current;
1613
1614 ChompingIndicator = scanBlockChompingIndicator();
1615 IndentIndicator = scanBlockIndentationIndicator();
1616 // Check for the chomping indicator once again.
1617 if (ChompingIndicator == ' ')
1618 ChompingIndicator = scanBlockChompingIndicator();
1619 Current = skip_while(&Scanner::skip_s_white, Current);
1620 skipComment();
1621
1622 if (Current == End) { // EOF, we have an empty scalar.
1623 Token T;
1624 T.Kind = Token::TK_BlockScalar;
1625 T.Range = StringRef(Start, Current - Start);
1626 TokenQueue.push_back(T);
1627 IsDone = true;
1628 return true;
1629 }
1630
1631 if (!consumeLineBreakIfPresent()) {
1632 setError("Expected a line break after block scalar header", Current);
1633 return false;
1634 }
1635 return true;
1636}
1637
1638bool Scanner::findBlockScalarIndent(unsigned &BlockIndent,
1639 unsigned BlockExitIndent,
1640 unsigned &LineBreaks, bool &IsDone) {
1641 unsigned MaxAllSpaceLineCharacters = 0;
1642 StringRef::iterator LongestAllSpaceLine;
1643
1644 while (true) {
1645 advanceWhile(&Scanner::skip_s_space);
1646 if (skip_nb_char(Current) != Current) {
1647 // This line isn't empty, so try and find the indentation.
1648 if (Column <= BlockExitIndent) { // End of the block literal.
1649 IsDone = true;
1650 return true;
1651 }
1652 // We found the block's indentation.
1653 BlockIndent = Column;
1654 if (MaxAllSpaceLineCharacters > BlockIndent) {
1655 setError(
1656 "Leading all-spaces line must be smaller than the block indent",
1657 LongestAllSpaceLine);
1658 return false;
1659 }
1660 return true;
1661 }
1662 if (skip_b_break(Current) != Current &&
1663 Column > MaxAllSpaceLineCharacters) {
1664 // Record the longest all-space line in case it's longer than the
1665 // discovered block indent.
1666 MaxAllSpaceLineCharacters = Column;
1667 LongestAllSpaceLine = Current;
1668 }
1669
1670 // Check for EOF.
1671 if (Current == End) {
1672 IsDone = true;
1673 return true;
1674 }
1675
1676 if (!consumeLineBreakIfPresent()) {
1677 IsDone = true;
1678 return true;
1679 }
1680 ++LineBreaks;
1681 }
1682 return true;
1683}
1684
1685bool Scanner::scanBlockScalarIndent(unsigned BlockIndent,
1686 unsigned BlockExitIndent, bool &IsDone) {
1687 // Skip the indentation.
1688 while (Column < BlockIndent) {
1689 auto I = skip_s_space(Current);
1690 if (I == Current)
1691 break;
1692 Current = I;
1693 ++Column;
1694 }
1695
1696 if (skip_nb_char(Current) == Current)
1697 return true;
1698
1699 if (Column <= BlockExitIndent) { // End of the block literal.
1700 IsDone = true;
1701 return true;
1702 }
1703
1704 if (Column < BlockIndent) {
1705 if (Current != End && *Current == '#') { // Trailing comment.
1706 IsDone = true;
1707 return true;
1708 }
1709 setError("A text line is less indented than the block scalar", Current);
1710 return false;
1711 }
1712 return true; // A normal text line.
1713}
1714
1715bool Scanner::scanBlockScalar(bool IsLiteral) {
1716 assert(*Current == '|' || *Current == '>');
1717 char StyleIndicator;
1718 char ChompingIndicator;
1719 unsigned BlockIndent;
1720 bool IsDone = false;
1721 if (!scanBlockScalarIndicators(StyleIndicator, ChompingIndicator, BlockIndent,
1722 IsDone))
1723 return false;
1724 if (IsDone)
1725 return true;
1726 bool IsFolded = StyleIndicator == '>';
1727
1728 const auto *Start = Current;
1729 unsigned BlockExitIndent = Indent < 0 ? 0 : (unsigned)Indent;
1730 unsigned LineBreaks = 0;
1731 if (BlockIndent == 0) {
1732 if (!findBlockScalarIndent(BlockIndent, BlockExitIndent, LineBreaks,
1733 IsDone))
1734 return false;
1735 }
1736
1737 // Scan the block's scalars body.
1738 SmallString<256> Str;
1739 while (!IsDone) {
1740 if (!scanBlockScalarIndent(BlockIndent, BlockExitIndent, IsDone))
1741 return false;
1742 if (IsDone)
1743 break;
1744
1745 // Parse the current line.
1746 auto LineStart = Current;
1747 advanceWhile(&Scanner::skip_nb_char);
1748 if (LineStart != Current) {
1749 if (LineBreaks && IsFolded && !Scanner::isLineEmpty(Str)) {
1750 // The folded style "folds" any single line break between content into a
1751 // single space, except when that content is "empty" (only contains
1752 // whitespace) in which case the line break is left as-is.
1753 if (LineBreaks == 1) {
1754 Str.append(LineBreaks,
1755 isLineEmpty(StringRef(LineStart, Current - LineStart))
1756 ? '\n'
1757 : ' ');
1758 }
1759 // If we saw a single line break, we are completely replacing it and so
1760 // want `LineBreaks == 0`. Otherwise this decrement accounts for the
1761 // fact that the first line break is "trimmed", only being used to
1762 // signal a sequence of line breaks which should not be folded.
1763 LineBreaks--;
1764 }
1765 Str.append(LineBreaks, '\n');
1766 Str.append(StringRef(LineStart, Current - LineStart));
1767 LineBreaks = 0;
1768 }
1769
1770 // Check for EOF.
1771 if (Current == End)
1772 break;
1773
1774 if (!consumeLineBreakIfPresent())
1775 break;
1776 ++LineBreaks;
1777 }
1778
1779 if (Current == End && !LineBreaks)
1780 // Ensure that there is at least one line break before the end of file.
1781 LineBreaks = 1;
1782 Str.append(getChompedLineBreaks(ChompingIndicator, LineBreaks, Str), '\n');
1783
1784 // New lines may start a simple key.
1785 if (!FlowLevel)
1786 IsSimpleKeyAllowed = true;
1787 IsAdjacentValueAllowedInFlow = false;
1788
1789 Token T;
1790 T.Kind = Token::TK_BlockScalar;
1791 T.Range = StringRef(Start, Current - Start);
1792 T.Value = std::string(Str);
1793 TokenQueue.push_back(T);
1794 return true;
1795}
1796
1797bool Scanner::scanTag() {
1798 StringRef::iterator Start = Current;
1799 unsigned ColStart = Column;
1800 skip(1); // Eat !.
1801 if (Current == End || isBlankOrBreak(Current)); // An empty tag.
1802 else if (*Current == '<') {
1803 skip(1);
1804 scan_ns_uri_char();
1805 if (!consume('>'))
1806 return false;
1807 } else {
1808 // FIXME: Actually parse the c-ns-shorthand-tag rule.
1809 Current = skip_while(&Scanner::skip_ns_char, Current);
1810 }
1811
1812 Token T;
1813 T.Kind = Token::TK_Tag;
1814 T.Range = StringRef(Start, Current - Start);
1815 TokenQueue.push_back(T);
1816
1817 // Tags can be simple keys.
1818 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1819
1820 IsSimpleKeyAllowed = false;
1821 IsAdjacentValueAllowedInFlow = false;
1822
1823 return true;
1824}
1825
1826bool Scanner::fetchMoreTokens() {
1827 if (IsStartOfStream)
1828 return scanStreamStart();
1829
1830 scanToNextToken();
1831
1832 if (Current == End)
1833 return scanStreamEnd();
1834
1835 removeStaleSimpleKeyCandidates();
1836
1837 unrollIndent(Column);
1838
1839 if (Column == 0 && *Current == '%')
1840 return scanDirective();
1841
1842 if (Column == 0 && Current + 4 <= End
1843 && *Current == '-'
1844 && *(Current + 1) == '-'
1845 && *(Current + 2) == '-'
1846 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1847 return scanDocumentIndicator(true);
1848
1849 if (Column == 0 && Current + 4 <= End
1850 && *Current == '.'
1851 && *(Current + 1) == '.'
1852 && *(Current + 2) == '.'
1853 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1854 return scanDocumentIndicator(false);
1855
1856 if (*Current == '[')
1857 return scanFlowCollectionStart(true);
1858
1859 if (*Current == '{')
1860 return scanFlowCollectionStart(false);
1861
1862 if (*Current == ']')
1863 return scanFlowCollectionEnd(true);
1864
1865 if (*Current == '}')
1866 return scanFlowCollectionEnd(false);
1867
1868 if (*Current == ',')
1869 return scanFlowEntry();
1870
1871 if (*Current == '-' && (isBlankOrBreak(Current + 1) || Current + 1 == End))
1872 return scanBlockEntry();
1873
1874 if (*Current == '?' && (Current + 1 == End || isBlankOrBreak(Current + 1)))
1875 return scanKey();
1876
1877 if (*Current == ':' &&
1878 (!isPlainSafeNonBlank(Current + 1) || IsAdjacentValueAllowedInFlow))
1879 return scanValue();
1880
1881 if (*Current == '*')
1882 return scanAliasOrAnchor(true);
1883
1884 if (*Current == '&')
1885 return scanAliasOrAnchor(false);
1886
1887 if (*Current == '!')
1888 return scanTag();
1889
1890 if (*Current == '|' && !FlowLevel)
1891 return scanBlockScalar(true);
1892
1893 if (*Current == '>' && !FlowLevel)
1894 return scanBlockScalar(false);
1895
1896 if (*Current == '\'')
1897 return scanFlowScalar(false);
1898
1899 if (*Current == '"')
1900 return scanFlowScalar(true);
1901
1902 // Get a plain scalar.
1903 StringRef FirstChar(Current, 1);
1904 if ((!isBlankOrBreak(Current) &&
1905 FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") == StringRef::npos) ||
1906 (FirstChar.find_first_of("?:-") != StringRef::npos &&
1907 isPlainSafeNonBlank(Current + 1)))
1908 return scanPlainScalar();
1909
1910 setError("Unrecognized character while tokenizing.", Current);
1911 return false;
1912}
1913
1914Stream::Stream(StringRef Input, SourceMgr &SM, bool ShowColors,
1915 std::error_code *EC)
1916 : scanner(new Scanner(Input, SM, ShowColors, EC)) {}
1917
1918Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM, bool ShowColors,
1919 std::error_code *EC)
1920 : scanner(new Scanner(InputBuffer, SM, ShowColors, EC)) {}
1921
1922Stream::~Stream() = default;
1923
1924bool Stream::failed() { return scanner->failed(); }
1925
1927 printError(N ? N->getSourceRange() : SMRange(), Msg, Kind);
1928}
1929
1930void Stream::printError(const SMRange &Range, const Twine &Msg,
1931 SourceMgr::DiagKind Kind) {
1932 scanner->printError(Range.Start, Kind, Msg, Range);
1933}
1934
1936 if (CurrentDoc)
1937 report_fatal_error("Can only iterate over the stream once");
1938
1939 // Skip Stream-Start.
1940 scanner->getNext();
1941
1942 CurrentDoc.reset(new Document(*this));
1943 return document_iterator(CurrentDoc);
1944}
1945
1947 return document_iterator();
1948}
1949
1951 for (Document &Doc : *this)
1952 Doc.skip();
1953}
1954
1955Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
1956 StringRef T)
1957 : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
1958 SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
1959 SourceRange = SMRange(Start, Start);
1960}
1961
1962std::string Node::getVerbatimTag() const {
1963 StringRef Raw = getRawTag();
1964 if (!Raw.empty() && Raw != "!") {
1965 std::string Ret;
1966 if (Raw.find_last_of('!') == 0) {
1967 Ret = std::string(Doc->getTagMap().find("!")->second);
1968 Ret += Raw.substr(1);
1969 return Ret;
1970 } else if (Raw.starts_with("!!")) {
1971 Ret = std::string(Doc->getTagMap().find("!!")->second);
1972 Ret += Raw.substr(2);
1973 return Ret;
1974 } else {
1975 StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
1976 std::map<StringRef, StringRef>::const_iterator It =
1977 Doc->getTagMap().find(TagHandle);
1978 if (It != Doc->getTagMap().end())
1979 Ret = std::string(It->second);
1980 else {
1981 Token T;
1982 T.Kind = Token::TK_Tag;
1983 T.Range = TagHandle;
1984 setError(Twine("Unknown tag handle ") + TagHandle, T);
1985 }
1986 Ret += Raw.substr(Raw.find_last_of('!') + 1);
1987 return Ret;
1988 }
1989 }
1990
1991 switch (getType()) {
1992 case NK_Null:
1993 return "tag:yaml.org,2002:null";
1994 case NK_Scalar:
1995 case NK_BlockScalar:
1996 // TODO: Tag resolution.
1997 return "tag:yaml.org,2002:str";
1998 case NK_Mapping:
1999 return "tag:yaml.org,2002:map";
2000 case NK_Sequence:
2001 return "tag:yaml.org,2002:seq";
2002 }
2003
2004 return "";
2005}
2006
2008 return Doc->peekNext();
2009}
2010
2012 return Doc->getNext();
2013}
2014
2016 return Doc->parseBlockNode();
2017}
2018
2020 return Doc->NodeAllocator;
2021}
2022
2023void Node::setError(const Twine &Msg, Token &Tok) const {
2024 Doc->setError(Msg, Tok);
2025}
2026
2027bool Node::failed() const {
2028 return Doc->failed();
2029}
2030
2032 if (Value[0] == '"')
2033 return getDoubleQuotedValue(Value, Storage);
2034 if (Value[0] == '\'')
2035 return getSingleQuotedValue(Value, Storage);
2036 return getPlainValue(Value, Storage);
2037}
2038
2039/// parseScalarValue - A common parsing routine for all flow scalar styles.
2040/// It handles line break characters by itself, adds regular content characters
2041/// to the result, and forwards escaped sequences to the provided routine for
2042/// the style-specific processing.
2043///
2044/// \param UnquotedValue - An input value without quotation marks.
2045/// \param Storage - A storage for the result if the input value is multiline or
2046/// contains escaped characters.
2047/// \param LookupChars - A set of special characters to search in the input
2048/// string. Should include line break characters and the escape character
2049/// specific for the processing scalar style, if any.
2050/// \param UnescapeCallback - This is called when the escape character is found
2051/// in the input.
2052/// \returns - The unfolded and unescaped value.
2053static StringRef
2055 StringRef LookupChars,
2056 std::function<StringRef(StringRef, SmallVectorImpl<char> &)>
2057 UnescapeCallback) {
2058 size_t I = UnquotedValue.find_first_of(LookupChars);
2059 if (I == StringRef::npos)
2060 return UnquotedValue;
2061
2062 Storage.clear();
2063 Storage.reserve(UnquotedValue.size());
2064 char LastNewLineAddedAs = '\0';
2065 for (; I != StringRef::npos; I = UnquotedValue.find_first_of(LookupChars)) {
2066 if (UnquotedValue[I] != '\r' && UnquotedValue[I] != '\n') {
2067 llvm::append_range(Storage, UnquotedValue.take_front(I));
2068 UnquotedValue = UnescapeCallback(UnquotedValue.drop_front(I), Storage);
2069 LastNewLineAddedAs = '\0';
2070 continue;
2071 }
2072 if (size_t LastNonSWhite = UnquotedValue.find_last_not_of(" \t", I);
2073 LastNonSWhite != StringRef::npos) {
2074 llvm::append_range(Storage, UnquotedValue.take_front(LastNonSWhite + 1));
2075 Storage.push_back(' ');
2076 LastNewLineAddedAs = ' ';
2077 } else {
2078 // Note: we can't just check if the last character in Storage is ' ',
2079 // '\n', or something else; that would give a wrong result for double
2080 // quoted values containing an escaped space character before a new-line
2081 // character.
2082 switch (LastNewLineAddedAs) {
2083 case ' ':
2084 assert(!Storage.empty() && Storage.back() == ' ');
2085 Storage.back() = '\n';
2086 LastNewLineAddedAs = '\n';
2087 break;
2088 case '\n':
2089 assert(!Storage.empty() && Storage.back() == '\n');
2090 Storage.push_back('\n');
2091 break;
2092 default:
2093 Storage.push_back(' ');
2094 LastNewLineAddedAs = ' ';
2095 break;
2096 }
2097 }
2098 // Handle Windows-style EOL
2099 if (UnquotedValue.substr(I, 2) == "\r\n")
2100 I++;
2101 UnquotedValue = UnquotedValue.drop_front(I + 1).ltrim(" \t");
2102 }
2103 llvm::append_range(Storage, UnquotedValue);
2104 return StringRef(Storage.begin(), Storage.size());
2105}
2106
2108ScalarNode::getDoubleQuotedValue(StringRef RawValue,
2109 SmallVectorImpl<char> &Storage) const {
2110 assert(RawValue.size() >= 2 && RawValue.front() == '"' &&
2111 RawValue.back() == '"');
2112 StringRef UnquotedValue = RawValue.substr(1, RawValue.size() - 2);
2113
2114 auto UnescapeFunc = [this](StringRef UnquotedValue,
2115 SmallVectorImpl<char> &Storage) {
2116 assert(UnquotedValue.take_front(1) == "\\");
2117 if (UnquotedValue.size() == 1) {
2118 Token T;
2119 T.Range = UnquotedValue;
2120 setError("Unrecognized escape code", T);
2121 Storage.clear();
2122 return StringRef();
2123 }
2124 UnquotedValue = UnquotedValue.drop_front(1);
2125 switch (UnquotedValue[0]) {
2126 default: {
2127 Token T;
2128 T.Range = UnquotedValue.take_front(1);
2129 setError("Unrecognized escape code", T);
2130 Storage.clear();
2131 return StringRef();
2132 }
2133 case '\r':
2134 // Shrink the Windows-style EOL.
2135 if (UnquotedValue.size() >= 2 && UnquotedValue[1] == '\n')
2136 UnquotedValue = UnquotedValue.drop_front(1);
2137 [[fallthrough]];
2138 case '\n':
2139 return UnquotedValue.drop_front(1).ltrim(" \t");
2140 case '0':
2141 Storage.push_back(0x00);
2142 break;
2143 case 'a':
2144 Storage.push_back(0x07);
2145 break;
2146 case 'b':
2147 Storage.push_back(0x08);
2148 break;
2149 case 't':
2150 case 0x09:
2151 Storage.push_back(0x09);
2152 break;
2153 case 'n':
2154 Storage.push_back(0x0A);
2155 break;
2156 case 'v':
2157 Storage.push_back(0x0B);
2158 break;
2159 case 'f':
2160 Storage.push_back(0x0C);
2161 break;
2162 case 'r':
2163 Storage.push_back(0x0D);
2164 break;
2165 case 'e':
2166 Storage.push_back(0x1B);
2167 break;
2168 case ' ':
2169 Storage.push_back(0x20);
2170 break;
2171 case '"':
2172 Storage.push_back(0x22);
2173 break;
2174 case '/':
2175 Storage.push_back(0x2F);
2176 break;
2177 case '\\':
2178 Storage.push_back(0x5C);
2179 break;
2180 case 'N':
2181 encodeUTF8(0x85, Storage);
2182 break;
2183 case '_':
2184 encodeUTF8(0xA0, Storage);
2185 break;
2186 case 'L':
2187 encodeUTF8(0x2028, Storage);
2188 break;
2189 case 'P':
2190 encodeUTF8(0x2029, Storage);
2191 break;
2192 case 'x': {
2193 if (UnquotedValue.size() < 3)
2194 // TODO: Report error.
2195 break;
2196 unsigned int UnicodeScalarValue;
2197 if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
2198 // TODO: Report error.
2199 UnicodeScalarValue = 0xFFFD;
2200 encodeUTF8(UnicodeScalarValue, Storage);
2201 return UnquotedValue.drop_front(3);
2202 }
2203 case 'u': {
2204 if (UnquotedValue.size() < 5)
2205 // TODO: Report error.
2206 break;
2207 unsigned int UnicodeScalarValue;
2208 if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
2209 // TODO: Report error.
2210 UnicodeScalarValue = 0xFFFD;
2211 encodeUTF8(UnicodeScalarValue, Storage);
2212 return UnquotedValue.drop_front(5);
2213 }
2214 case 'U': {
2215 if (UnquotedValue.size() < 9)
2216 // TODO: Report error.
2217 break;
2218 unsigned int UnicodeScalarValue;
2219 if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
2220 // TODO: Report error.
2221 UnicodeScalarValue = 0xFFFD;
2222 encodeUTF8(UnicodeScalarValue, Storage);
2223 return UnquotedValue.drop_front(9);
2224 }
2225 }
2226 return UnquotedValue.drop_front(1);
2227 };
2228
2229 return parseScalarValue(UnquotedValue, Storage, "\\\r\n", UnescapeFunc);
2230}
2231
2232StringRef ScalarNode::getSingleQuotedValue(StringRef RawValue,
2233 SmallVectorImpl<char> &Storage) {
2234 assert(RawValue.size() >= 2 && RawValue.front() == '\'' &&
2235 RawValue.back() == '\'');
2236 StringRef UnquotedValue = RawValue.substr(1, RawValue.size() - 2);
2237
2238 auto UnescapeFunc = [](StringRef UnquotedValue,
2239 SmallVectorImpl<char> &Storage) {
2240 assert(UnquotedValue.take_front(2) == "''");
2241 Storage.push_back('\'');
2242 return UnquotedValue.drop_front(2);
2243 };
2244
2245 return parseScalarValue(UnquotedValue, Storage, "'\r\n", UnescapeFunc);
2246}
2247
2248StringRef ScalarNode::getPlainValue(StringRef RawValue,
2249 SmallVectorImpl<char> &Storage) {
2250 // Trim trailing whitespace ('b-char' and 's-white').
2251 // NOTE: Alternatively we could change the scanner to not include whitespace
2252 // here in the first place.
2253 RawValue = RawValue.rtrim("\r\n \t");
2254 return parseScalarValue(RawValue, Storage, "\r\n", nullptr);
2255}
2256
2258 if (Key)
2259 return Key;
2260 // Handle implicit null keys.
2261 {
2262 Token &t = peekNext();
2263 if ( t.Kind == Token::TK_BlockEnd
2264 || t.Kind == Token::TK_Value
2265 || t.Kind == Token::TK_Error) {
2266 return Key = new (getAllocator()) NullNode(Doc);
2267 }
2268 if (t.Kind == Token::TK_Key)
2269 getNext(); // skip TK_Key.
2270 }
2271
2272 // Handle explicit null keys.
2273 Token &t = peekNext();
2274 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
2275 return Key = new (getAllocator()) NullNode(Doc);
2276 }
2277
2278 // We've got a normal key.
2279 return Key = parseBlockNode();
2280}
2281
2283 if (Value)
2284 return Value;
2285
2286 if (Node* Key = getKey())
2287 Key->skip();
2288 else {
2289 setError("Null key in Key Value.", peekNext());
2290 return Value = new (getAllocator()) NullNode(Doc);
2291 }
2292
2293 if (failed())
2294 return Value = new (getAllocator()) NullNode(Doc);
2295
2296 // Handle implicit null values.
2297 {
2298 Token &t = peekNext();
2299 if ( t.Kind == Token::TK_BlockEnd
2301 || t.Kind == Token::TK_Key
2303 || t.Kind == Token::TK_Error) {
2304 return Value = new (getAllocator()) NullNode(Doc);
2305 }
2306
2307 if (t.Kind != Token::TK_Value) {
2308 setError("Unexpected token in Key Value.", t);
2309 return Value = new (getAllocator()) NullNode(Doc);
2310 }
2311 getNext(); // skip TK_Value.
2312 }
2313
2314 // Handle explicit null values.
2315 Token &t = peekNext();
2316 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
2317 return Value = new (getAllocator()) NullNode(Doc);
2318 }
2319
2320 // We got a normal value.
2321 return Value = parseBlockNode();
2322}
2323
2324void MappingNode::increment() {
2325 if (failed()) {
2326 IsAtEnd = true;
2327 CurrentEntry = nullptr;
2328 return;
2329 }
2330 if (CurrentEntry) {
2331 CurrentEntry->skip();
2332 if (Type == MT_Inline) {
2333 IsAtEnd = true;
2334 CurrentEntry = nullptr;
2335 return;
2336 }
2337 }
2338 Token T = peekNext();
2339 if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
2340 // KeyValueNode eats the TK_Key. That way it can detect null keys.
2341 CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
2342 } else if (Type == MT_Block) {
2343 switch (T.Kind) {
2344 case Token::TK_BlockEnd:
2345 getNext();
2346 IsAtEnd = true;
2347 CurrentEntry = nullptr;
2348 break;
2349 default:
2350 setError("Unexpected token. Expected Key or Block End", T);
2351 [[fallthrough]];
2352 case Token::TK_Error:
2353 IsAtEnd = true;
2354 CurrentEntry = nullptr;
2355 }
2356 } else {
2357 switch (T.Kind) {
2359 // Eat the flow entry and recurse.
2360 getNext();
2361 return increment();
2363 getNext();
2364 [[fallthrough]];
2365 case Token::TK_Error:
2366 // Set this to end iterator.
2367 IsAtEnd = true;
2368 CurrentEntry = nullptr;
2369 break;
2370 default:
2371 setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
2372 "Mapping End."
2373 , T);
2374 IsAtEnd = true;
2375 CurrentEntry = nullptr;
2376 }
2377 }
2378}
2379
2381 if (failed()) {
2382 IsAtEnd = true;
2383 CurrentEntry = nullptr;
2384 return;
2385 }
2386 if (CurrentEntry)
2387 CurrentEntry->skip();
2388 Token T = peekNext();
2389 if (SeqType == ST_Block) {
2390 switch (T.Kind) {
2392 getNext();
2393 CurrentEntry = parseBlockNode();
2394 if (!CurrentEntry) { // An error occurred.
2395 IsAtEnd = true;
2396 CurrentEntry = nullptr;
2397 }
2398 break;
2399 case Token::TK_BlockEnd:
2400 getNext();
2401 IsAtEnd = true;
2402 CurrentEntry = nullptr;
2403 break;
2404 default:
2405 setError( "Unexpected token. Expected Block Entry or Block End."
2406 , T);
2407 [[fallthrough]];
2408 case Token::TK_Error:
2409 IsAtEnd = true;
2410 CurrentEntry = nullptr;
2411 }
2412 } else if (SeqType == ST_Indentless) {
2413 switch (T.Kind) {
2415 getNext();
2416 CurrentEntry = parseBlockNode();
2417 if (!CurrentEntry) { // An error occurred.
2418 IsAtEnd = true;
2419 CurrentEntry = nullptr;
2420 }
2421 break;
2422 default:
2423 case Token::TK_Error:
2424 IsAtEnd = true;
2425 CurrentEntry = nullptr;
2426 }
2427 } else if (SeqType == ST_Flow) {
2428 switch (T.Kind) {
2430 // Eat the flow entry and recurse.
2431 getNext();
2432 WasPreviousTokenFlowEntry = true;
2433 return increment();
2435 getNext();
2436 [[fallthrough]];
2437 case Token::TK_Error:
2438 // Set this to end iterator.
2439 IsAtEnd = true;
2440 CurrentEntry = nullptr;
2441 break;
2445 setError("Could not find closing ]!", T);
2446 // Set this to end iterator.
2447 IsAtEnd = true;
2448 CurrentEntry = nullptr;
2449 break;
2450 default:
2451 if (!WasPreviousTokenFlowEntry) {
2452 setError("Expected , between entries!", T);
2453 IsAtEnd = true;
2454 CurrentEntry = nullptr;
2455 break;
2456 }
2457 // Otherwise it must be a flow entry.
2458 CurrentEntry = parseBlockNode();
2459 if (!CurrentEntry) {
2460 IsAtEnd = true;
2461 }
2462 WasPreviousTokenFlowEntry = false;
2463 break;
2464 }
2465 }
2466}
2467
2468Document::Document(Stream &S) : stream(S), Root(nullptr) {
2469 // Tag maps starts with two default mappings.
2470 TagMap["!"] = "!";
2471 TagMap["!!"] = "tag:yaml.org,2002:";
2472
2473 if (parseDirectives())
2474 expectToken(Token::TK_DocumentStart);
2475 Token &T = peekNext();
2476 if (T.Kind == Token::TK_DocumentStart)
2477 getNext();
2478}
2479
2481 if (stream.scanner->failed())
2482 return false;
2483 if (!Root && !getRoot())
2484 return false;
2485 Root->skip();
2486 Token &T = peekNext();
2487 if (T.Kind == Token::TK_StreamEnd)
2488 return false;
2489 if (T.Kind == Token::TK_DocumentEnd) {
2490 getNext();
2491 return skip();
2492 }
2493 return true;
2494}
2495
2496Token &Document::peekNext() {
2497 return stream.scanner->peekNext();
2498}
2499
2500Token Document::getNext() {
2501 return stream.scanner->getNext();
2502}
2503
2504void Document::setError(const Twine &Message, Token &Location) const {
2505 stream.scanner->setError(Message, Location.Range.begin());
2506}
2507
2508bool Document::failed() const {
2509 return stream.scanner->failed();
2510}
2511
2513 Token T = peekNext();
2514 // Handle properties.
2515 Token AnchorInfo;
2516 Token TagInfo;
2517parse_property:
2518 switch (T.Kind) {
2519 case Token::TK_Alias:
2520 getNext();
2521 return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
2522 case Token::TK_Anchor:
2523 if (AnchorInfo.Kind == Token::TK_Anchor) {
2524 setError("Already encountered an anchor for this node!", T);
2525 return nullptr;
2526 }
2527 AnchorInfo = getNext(); // Consume TK_Anchor.
2528 T = peekNext();
2529 goto parse_property;
2530 case Token::TK_Tag:
2531 if (TagInfo.Kind == Token::TK_Tag) {
2532 setError("Already encountered a tag for this node!", T);
2533 return nullptr;
2534 }
2535 TagInfo = getNext(); // Consume TK_Tag.
2536 T = peekNext();
2537 goto parse_property;
2538 default:
2539 break;
2540 }
2541
2542 switch (T.Kind) {
2544 // We got an unindented BlockEntry sequence. This is not terminated with
2545 // a BlockEnd.
2546 // Don't eat the TK_BlockEntry, SequenceNode needs it.
2547 return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2548 , AnchorInfo.Range.substr(1)
2549 , TagInfo.Range
2552 getNext();
2553 return new (NodeAllocator)
2554 SequenceNode( stream.CurrentDoc
2555 , AnchorInfo.Range.substr(1)
2556 , TagInfo.Range
2559 getNext();
2560 return new (NodeAllocator)
2561 MappingNode( stream.CurrentDoc
2562 , AnchorInfo.Range.substr(1)
2563 , TagInfo.Range
2566 getNext();
2567 return new (NodeAllocator)
2568 SequenceNode( stream.CurrentDoc
2569 , AnchorInfo.Range.substr(1)
2570 , TagInfo.Range
2573 getNext();
2574 return new (NodeAllocator)
2575 MappingNode( stream.CurrentDoc
2576 , AnchorInfo.Range.substr(1)
2577 , TagInfo.Range
2579 case Token::TK_Scalar:
2580 getNext();
2581 return new (NodeAllocator)
2582 ScalarNode( stream.CurrentDoc
2583 , AnchorInfo.Range.substr(1)
2584 , TagInfo.Range
2585 , T.Range);
2586 case Token::TK_BlockScalar: {
2587 getNext();
2588 StringRef NullTerminatedStr(T.Value.c_str(), T.Value.length() + 1);
2589 StringRef StrCopy = NullTerminatedStr.copy(NodeAllocator).drop_back();
2590 return new (NodeAllocator)
2591 BlockScalarNode(stream.CurrentDoc, AnchorInfo.Range.substr(1),
2592 TagInfo.Range, StrCopy, T.Range);
2593 }
2594 case Token::TK_Key:
2595 // Don't eat the TK_Key, KeyValueNode expects it.
2596 return new (NodeAllocator)
2597 MappingNode( stream.CurrentDoc
2598 , AnchorInfo.Range.substr(1)
2599 , TagInfo.Range
2604 default:
2605 // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2606 // !!null null.
2607 return new (NodeAllocator) NullNode(stream.CurrentDoc);
2610 case Token::TK_FlowEntry: {
2611 if (Root && (isa<MappingNode>(Root) || isa<SequenceNode>(Root)))
2612 return new (NodeAllocator) NullNode(stream.CurrentDoc);
2613
2614 setError("Unexpected token", T);
2615 return nullptr;
2616 }
2617 case Token::TK_Error:
2618 return nullptr;
2619 }
2620 llvm_unreachable("Control flow shouldn't reach here.");
2621 return nullptr;
2622}
2623
2624bool Document::parseDirectives() {
2625 bool isDirective = false;
2626 while (true) {
2627 Token T = peekNext();
2628 if (T.Kind == Token::TK_TagDirective) {
2629 parseTAGDirective();
2630 isDirective = true;
2631 } else if (T.Kind == Token::TK_VersionDirective) {
2632 parseYAMLDirective();
2633 isDirective = true;
2634 } else
2635 break;
2636 }
2637 return isDirective;
2638}
2639
2640void Document::parseYAMLDirective() {
2641 getNext(); // Eat %YAML <version>
2642}
2643
2644void Document::parseTAGDirective() {
2645 Token Tag = getNext(); // %TAG <handle> <prefix>
2646 StringRef T = Tag.Range;
2647 // Strip %TAG
2648 T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
2649 std::size_t HandleEnd = T.find_first_of(" \t");
2650 StringRef TagHandle = T.substr(0, HandleEnd);
2651 StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
2652 TagMap[TagHandle] = TagPrefix;
2653}
2654
2655bool Document::expectToken(int TK) {
2656 Token T = getNext();
2657 if (T.Kind != TK) {
2658 setError("Unexpected token", T);
2659 return false;
2660 }
2661 return true;
2662}
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
#define LLVM_ATTRIBUTE_NOINLINE
LLVM_ATTRIBUTE_NOINLINE - On compilers where we have a directive to do so, mark a method "not for inl...
Definition: Compiler.h:330
std::string Name
std::optional< std::vector< StOtherPiece > > Other
Definition: ELFYAML.cpp:1315
bool End
Definition: ELF_riscv.cpp:480
#define I(x, y, z)
Definition: MD5.cpp:58
static Cursor skipComment(Cursor C)
Skip a line comment and return the updated cursor.
Definition: MILexer.cpp:94
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallString class.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
static EncodingInfo getUnicodeEncoding(StringRef Input)
getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode encoding form of Input.
Definition: YAMLParser.cpp:60
static bool is_ns_hex_digit(const char C)
static bool is_ns_word_char(const char C)
static unsigned getChompedLineBreaks(char ChompingIndicator, unsigned LineBreaks, StringRef Str)
Get the number of line breaks after chomping.
std::pair< uint32_t, unsigned > UTF8Decoded
The Unicode scalar value of a UTF-8 minimal well-formed code unit subsequence and the subsequence's l...
Definition: YAMLParser.cpp:194
UnicodeEncodingForm
Definition: YAMLParser.cpp:41
@ UEF_UTF32_LE
UTF-32 Little Endian.
Definition: YAMLParser.cpp:42
@ UEF_UTF16_BE
UTF-16 Big Endian.
Definition: YAMLParser.cpp:45
@ UEF_UTF16_LE
UTF-16 Little Endian.
Definition: YAMLParser.cpp:44
@ UEF_UTF32_BE
UTF-32 Big Endian.
Definition: YAMLParser.cpp:43
@ UEF_UTF8
UTF-8 or ascii.
Definition: YAMLParser.cpp:46
@ UEF_Unknown
Not a valid Unicode encoding.
Definition: YAMLParser.cpp:47
static LLVM_ATTRIBUTE_NOINLINE bool wasEscaped(StringRef::iterator First, StringRef::iterator Position)
static StringRef parseScalarValue(StringRef UnquotedValue, SmallVectorImpl< char > &Storage, StringRef LookupChars, std::function< StringRef(StringRef, SmallVectorImpl< char > &)> UnescapeCallback)
parseScalarValue - A common parsing routine for all flow scalar styles.
std::pair< UnicodeEncodingForm, unsigned > EncodingInfo
EncodingInfo - Holds the encoding type and length of the byte order mark if it exists.
Definition: YAMLParser.cpp:52
static UTF8Decoded decodeUTF8(StringRef Range)
Definition: YAMLParser.cpp:196
static void encodeUTF8(uint32_t UnicodeScalarValue, SmallVectorImpl< char > &Result)
encodeUTF8 - Encode UnicodeScalarValue in UTF-8 and append it to result.
Definition: YAMLParser.cpp:579
A linked-list with a custom, local allocator.
Definition: AllocatorList.h:33
void push_back(T &&V)
iterator insert(iterator I, T &&V)
void resetAlloc()
Reset the underlying allocator.
IteratorImpl< T, typename list_type::iterator > iterator
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:66
Tagged union holding either a T or a Error.
Definition: Error.h:481
const char * getBufferStart() const
const char * getBufferEnd() const
static std::unique_ptr< MemoryBuffer > getMemBuffer(StringRef InputData, StringRef BufferName="", bool RequiresNullTerminator=true)
Open the specified memory range as a MemoryBuffer.
Represents a location in source code.
Definition: SMLoc.h:23
static SMLoc getFromPointer(const char *Ptr)
Definition: SMLoc.h:36
Represents a range in source code.
Definition: SMLoc.h:48
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void reserve(size_type N)
Definition: SmallVector.h:663
iterator erase(const_iterator CI)
Definition: SmallVector.h:737
typename SuperClass::iterator iterator
Definition: SmallVector.h:577
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
This owns the files read by a parser, handles include stacks, and handles diagnostic wrangling.
Definition: SourceMgr.h:31
void PrintMessage(raw_ostream &OS, SMLoc Loc, DiagKind Kind, const Twine &Msg, ArrayRef< SMRange > Ranges={}, ArrayRef< SMFixIt > FixIts={}, bool ShowColors=true) const
Emit a message about the specified location with the specified string.
Definition: SourceMgr.cpp:352
unsigned AddNewSourceBuffer(std::unique_ptr< MemoryBuffer > F, SMLoc IncludeLoc)
Add a new source buffer to this source manager.
Definition: SourceMgr.h:144
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
size_t find_last_not_of(char C, size_t From=npos) const
Find the last character in the string that is not C, or npos if not found.
Definition: StringRef.cpp:291
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
Definition: StringRef.h:470
const char * iterator
Definition: StringRef.h:55
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:571
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition: StringRef.h:265
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:147
StringRef drop_front(size_t N=1) const
Return a StringRef equal to 'this' but with the first N elements dropped.
Definition: StringRef.h:609
iterator begin() const
Definition: StringRef.h:116
char back() const
back - Get the last character in the string.
Definition: StringRef.h:159
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:150
char front() const
front - Get the first character in the string.
Definition: StringRef.h:153
size_t find_last_of(char C, size_t From=npos) const
Find the last character in the string that is C, or npos if not found.
Definition: StringRef.h:400
StringRef ltrim(char Char) const
Return string with consecutive Char characters starting from the the left removed.
Definition: StringRef.h:791
size_t find_first_of(char C, size_t From=0) const
Find the first character in the string that is C, or npos if not found.
Definition: StringRef.h:377
iterator end() const
Definition: StringRef.h:118
StringRef rtrim(char Char) const
Return string with consecutive Char characters starting from the right removed.
Definition: StringRef.h:803
StringRef take_front(size_t N=1) const
Return a StringRef equal to 'this' but with only the first N elements remaining.
Definition: StringRef.h:580
StringRef copy(Allocator &A) const
Definition: StringRef.h:166
static constexpr size_t npos
Definition: StringRef.h:53
StringRef drop_back(size_t N=1) const
Return a StringRef equal to 'this' but with the last N elements dropped.
Definition: StringRef.h:616
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
TypeID
Definitions of all of the base types for the Type system.
Definition: Type.h:54
LLVM Value Representation.
Definition: Value.h:74
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
Represents an alias to a Node with an anchor.
Definition: YAMLParser.h:519
A block scalar node is an opaque datum that can be presented as a series of zero or more Unicode scal...
Definition: YAMLParser.h:260
A YAML Stream is a sequence of Documents.
Definition: YAMLParser.h:536
Node * parseBlockNode()
Root for parsing a node. Returns a single node.
bool skip()
Finish parsing the current document and return true if there are more.
Node * getRoot()
Parse and return the root level node.
Definition: YAMLParser.h:548
Document(Stream &ParentStream)
A key and value pair.
Definition: YAMLParser.h:290
Node * getValue()
Parse and return the value.
void skip() override
Definition: YAMLParser.h:311
Node * getKey()
Parse and return the key.
Represents a YAML map created from either a block map for a flow map.
Definition: YAMLParser.h:419
@ MT_Inline
An inline mapping node is used for "[key: value]".
Definition: YAMLParser.h:426
Abstract base class for all Nodes.
Definition: YAMLParser.h:119
StringRef getRawTag() const
Get the tag as it was written in the document.
Definition: YAMLParser.h:159
unsigned int getType() const
Definition: YAMLParser.h:178
std::string getVerbatimTag() const
Get the verbatium tag for a given Node.
bool failed() const
std::unique_ptr< Document > & Doc
Definition: YAMLParser.h:181
Node(unsigned int Type, std::unique_ptr< Document > &, StringRef Anchor, StringRef Tag)
virtual void skip()
Definition: YAMLParser.h:176
BumpPtrAllocator & getAllocator()
Node * parseBlockNode()
void setError(const Twine &Message, Token &Location) const
Token & peekNext()
A null value.
Definition: YAMLParser.h:197
A scalar node is an opaque datum that can be presented as a series of zero or more Unicode scalar val...
Definition: YAMLParser.h:212
StringRef getValue(SmallVectorImpl< char > &Storage) const
Gets the value of this node as a StringRef.
Scans YAML tokens from a MemoryBuffer.
Definition: YAMLParser.cpp:247
Scanner(StringRef Input, SourceMgr &SM, bool ShowColors=true, std::error_code *EC=nullptr)
Definition: YAMLParser.cpp:856
void setError(const Twine &Message, StringRef::iterator Position)
Definition: YAMLParser.cpp:265
Token getNext()
Parse the next token and pop it from the queue.
Definition: YAMLParser.cpp:912
bool failed()
Returns true if an error occurred while parsing.
Definition: YAMLParser.cpp:281
void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message, ArrayRef< SMRange > Ranges={})
Definition: YAMLParser.cpp:260
Token & peekNext()
Parse the next token and return it without popping it.
Definition: YAMLParser.cpp:885
Represents a YAML sequence created from either a block sequence for a flow sequence.
Definition: YAMLParser.h:467
This class represents a YAML stream potentially containing multiple documents.
Definition: YAMLParser.h:86
document_iterator end()
document_iterator begin()
Stream(StringRef Input, SourceMgr &, bool ShowColors=true, std::error_code *EC=nullptr)
This keeps a reference to the string referenced by Input.
friend class Document
Definition: YAMLParser.h:112
void printError(Node *N, const Twine &Msg, SourceMgr::DiagKind Kind=SourceMgr::DK_Error)
Iterator abstraction for Documents over a Stream.
Definition: YAMLParser.h:593
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
constexpr double e
Definition: MathExtras.h:47
bool isPrintable(int UCS)
Determines if a character is likely to be displayed correctly on the terminal.
Definition: Unicode.cpp:27
bool dumpTokens(StringRef Input, raw_ostream &)
Dump all the tokens in this stream to OS.
Definition: YAMLParser.cpp:607
std::optional< bool > parseBool(StringRef S)
Parse S as a bool according to https://yaml.org/type/bool.html.
Definition: YAMLParser.cpp:770
bool scanTokens(StringRef Input)
Scans all tokens in input without outputting anything.
Definition: YAMLParser.cpp:691
void skip(CollectionType &C)
Definition: YAMLParser.h:403
std::string escape(StringRef Input, bool EscapePrintable=true)
Escape Input for a double quoted scalar; if EscapePrintable is true, all UTF8 sequences will be escap...
Definition: YAMLParser.cpp:704
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
std::error_code make_error_code(BitcodeError E)
testing::Matcher< const detail::ErrorHolder & > Failed()
Definition: Error.h:198
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2115
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
#define N
Token - A single YAML token.
Definition: YAMLParser.cpp:124
enum llvm::yaml::Token::TokenKind Kind
std::string Value
The value of a block scalar node.
Definition: YAMLParser.cpp:156
StringRef Range
A string of length 0 or more whose begin() points to the logical location of the token in the input.
Definition: YAMLParser.cpp:153