64#define DEBUG_TYPE "memcpyopt"
67 "enable-memcpyopt-without-libcalls",
cl::Hidden,
68 cl::desc(
"Enable memcpyopt even when libcalls are disabled"));
70STATISTIC(NumMemCpyInstr,
"Number of memcpy instructions deleted");
71STATISTIC(NumMemMoveInstr,
"Number of memmove instructions deleted");
72STATISTIC(NumMemSetInfer,
"Number of memsets inferred");
73STATISTIC(NumMoveToCpy,
"Number of memmoves converted to memcpy");
74STATISTIC(NumCpyToSet,
"Number of memcpys converted to memset");
75STATISTIC(NumCallSlot,
"Number of call slot optimizations performed");
76STATISTIC(NumStackMove,
"Number of stack-move optimizations performed");
105 bool isProfitableToUseMemset(
const DataLayout &
DL)
const;
110bool MemsetRange::isProfitableToUseMemset(
const DataLayout &
DL)
const {
112 if (TheStores.size() >= 4 ||
End - Start >= 16)
116 if (TheStores.size() < 2)
122 if (!isa<StoreInst>(SI))
127 if (TheStores.size() == 2)
141 unsigned MaxIntSize =
DL.getLargestLegalIntTypeSizeInBits() / 8;
144 unsigned NumPointerStores = Bytes / MaxIntSize;
147 unsigned NumByteStores = Bytes % MaxIntSize;
152 return TheStores.size() > NumPointerStores + NumByteStores;
172 bool empty()
const {
return Ranges.empty(); }
174 void addInst(int64_t OffsetFromFirst,
Instruction *Inst) {
175 if (
auto *SI = dyn_cast<StoreInst>(Inst))
176 addStore(OffsetFromFirst, SI);
178 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
181 void addStore(int64_t OffsetFromFirst,
StoreInst *SI) {
182 TypeSize StoreSize =
DL.getTypeStoreSize(
SI->getOperand(0)->getType());
185 SI->getPointerOperand(),
SI->getAlign(), SI);
188 void addMemSet(int64_t OffsetFromFirst,
MemSetInst *MSI) {
189 int64_t
Size = cast<ConstantInt>(MSI->
getLength())->getZExtValue();
202void MemsetRanges::addRange(int64_t Start, int64_t
Size,
Value *
Ptr,
207 Ranges, [=](
const MemsetRange &O) {
return O.End < Start; });
212 if (
I ==
Ranges.end() || End < I->Start) {
213 MemsetRange &
R = *
Ranges.insert(
I, MemsetRange());
217 R.Alignment = Alignment;
218 R.TheStores.push_back(Inst);
223 I->TheStores.push_back(Inst);
227 if (
I->Start <= Start &&
I->End >=
End)
236 if (Start < I->Start) {
239 I->Alignment = Alignment;
247 range_iterator NextI =
I;
248 while (++NextI !=
Ranges.end() &&
End >= NextI->Start) {
250 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
251 if (NextI->End >
I->End)
267 assert(Start->getParent() ==
End->getParent() &&
"Must be in same block");
269 if (Start->getFunction()->doesNotThrow())
274 bool RequiresNoCaptureBeforeUnwind;
276 RequiresNoCaptureBeforeUnwind) &&
277 !RequiresNoCaptureBeforeUnwind)
288 I->eraseFromParent();
299 assert(Start->getBlock() ==
End->getBlock() &&
"Only local supported");
302 Instruction *
I = cast<MemoryUseOrDef>(MA).getMemoryInst();
304 auto *
II = dyn_cast<IntrinsicInst>(
I);
305 if (
II &&
II->getIntrinsicID() == Intrinsic::lifetime_start &&
306 SkippedLifetimeStart && !*SkippedLifetimeStart) {
307 *SkippedLifetimeStart =
I;
322 if (isa<MemoryUse>(
End)) {
326 return Start->getBlock() !=
End->getBlock() ||
328 make_range(std::next(Start->getIterator()),
End->getIterator()),
330 if (isa<MemoryUse>(&Acc))
332 Instruction *AccInst =
333 cast<MemoryUseOrDef>(&Acc)->getMemoryInst();
334 return isModSet(AA.getModRefInfo(AccInst, Loc));
340 End->getDefiningAccess(), Loc, AA);
348 unsigned KnownIDs[] = {
349 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
350 LLVMContext::MD_noalias, LLVMContext::MD_invariant_group,
351 LLVMContext::MD_access_group, LLVMContext::MD_prof,
352 LLVMContext::MD_memprof, LLVMContext::MD_callsite};
369 if (
auto *SI = dyn_cast<StoreInst>(StartInst))
370 if (
DL.getTypeStoreSize(
SI->getOperand(0)->getType()).isScalable())
385 for (++BI; !BI->isTerminator(); ++BI) {
389 MemInsertPoint = CurrentAcc;
393 if (
auto *CB = dyn_cast<CallBase>(BI)) {
394 if (CB->onlyAccessesInaccessibleMemory())
398 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
402 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
407 if (
auto *NextStore = dyn_cast<StoreInst>(BI)) {
409 if (!NextStore->isSimple())
412 Value *StoredVal = NextStore->getValueOperand();
420 if (
DL.getTypeStoreSize(StoredVal->
getType()).isScalable())
425 if (isa<UndefValue>(ByteVal) && StoredByte)
426 ByteVal = StoredByte;
427 if (ByteVal != StoredByte)
431 std::optional<int64_t>
Offset =
432 NextStore->getPointerOperand()->getPointerOffsetFrom(StartPtr,
DL);
438 auto *MSI = cast<MemSetInst>(BI);
440 if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
441 !isa<ConstantInt>(MSI->getLength()))
445 std::optional<int64_t>
Offset =
446 MSI->getDest()->getPointerOffsetFrom(StartPtr,
DL);
462 Ranges.addInst(0, StartInst);
472 for (
const MemsetRange &
Range : Ranges) {
473 if (
Range.TheStores.size() == 1)
477 if (!
Range.isProfitableToUseMemset(
DL))
482 StartPtr =
Range.StartPtr;
484 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal,
Range.End -
Range.Start,
491 dbgs() <<
"With: " << *AMemSet <<
'\n');
492 if (!
Range.TheStores.empty())
495 auto *NewDef = cast<MemoryDef>(
500 MemInsertPoint = NewDef;
504 eraseInstruction(SI);
525 auto AddArg = [&](
Value *Arg) {
526 auto *
I = dyn_cast<Instruction>(Arg);
527 if (
I &&
I->getParent() ==
SI->getParent()) {
535 if (!AddArg(
SI->getPointerOperand()))
549 for (
auto I = --
SI->getIterator(), E =
P->getIterator();
I != E; --
I) {
559 bool NeedLift =
false;
581 else if (
const auto *Call = dyn_cast<CallBase>(
C)) {
587 }
else if (isa<LoadInst>(
C) || isa<StoreInst>(
C) || isa<VAArgInst>(
C)) {
593 MemLocs.push_back(
ML);
614 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
630 assert(MemInsertPoint &&
"Must have found insert point");
652 if (
T->isAggregateType() &&
654 (TLI->
has(LibFunc_memcpy) && TLI->
has(LibFunc_memmove)))) {
663 StoreAccess->getDefiningAccess(), LoadLoc, BAA);
665 ? cast<MemoryUseOrDef>(Clobber)->getMemoryInst()
672 if (
P == SI || moveUp(SI,
P, LI)) {
677 bool UseMemMove =
false;
683 Builder.CreateTypeSize(Builder.getInt64Ty(),
DL.getTypeStoreSize(
T));
686 M = Builder.CreateMemMove(
SI->getPointerOperand(),
SI->getAlign(),
690 M = Builder.CreateMemCpy(
SI->getPointerOperand(),
SI->getAlign(),
692 M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
694 LLVM_DEBUG(
dbgs() <<
"Promoting " << *LI <<
" to " << *SI <<
" => " << *M
699 MSSAU->
insertDef(cast<MemoryDef>(NewAccess),
true);
701 eraseInstruction(SI);
702 eraseInstruction(LI);
706 BBI =
M->getIterator();
714 auto GetCall = [&]() ->
CallInst * {
717 if (
auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
719 return dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
723 bool Changed = performCallSlotOptzn(
724 LI, SI,
SI->getPointerOperand()->stripPointerCasts(),
726 DL.getTypeStoreSize(
SI->getOperand(0)->getType()),
727 std::min(
SI->getAlign(), LI->
getAlign()), BAA, GetCall);
729 eraseInstruction(SI);
730 eraseInstruction(LI);
738 if (
auto *DestAlloca = dyn_cast<AllocaInst>(
SI->getPointerOperand())) {
740 if (performStackMoveOptzn(LI, SI, DestAlloca, SrcAlloca,
741 DL.getTypeStoreSize(
T), BAA)) {
743 BBI =
SI->getNextNonDebugInstruction()->getIterator();
744 eraseInstruction(SI);
745 eraseInstruction(LI);
765 if (
SI->getMetadata(LLVMContext::MD_nontemporal))
770 Value *StoredVal =
SI->getValueOperand();
778 if (
auto *LI = dyn_cast<LoadInst>(StoredVal))
779 return processStoreOfLoad(SI, LI,
DL, BBI);
800 tryMergingIntoMemset(SI,
SI->getPointerOperand(), ByteVal)) {
801 BBI =
I->getIterator();
808 auto *
T =
V->getType();
809 if (!
T->isAggregateType())
813 if (
Size.isScalable())
817 auto *
M = Builder.CreateMemSet(
SI->getPointerOperand(), ByteVal,
Size,
819 M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
821 LLVM_DEBUG(
dbgs() <<
"Promoting " << *SI <<
" to " << *M <<
"\n");
827 MSSAU->
insertDef(cast<MemoryDef>(NewAccess),
false);
829 eraseInstruction(SI);
833 BBI =
M->getIterator();
843 BBI =
I->getIterator();
852bool MemCpyOptPass::performCallSlotOptzn(
Instruction *cpyLoad,
877 auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
881 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
886 TypeSize SrcAllocaSize =
DL.getTypeAllocSize(srcAlloca->getAllocatedType());
892 if (cpySize < srcSize)
901 if (
F->isIntrinsic() &&
F->getIntrinsicID() == Intrinsic::lifetime_start)
904 if (
C->getParent() != cpyStore->
getParent()) {
910 isa<StoreInst>(cpyStore)
919 LLVM_DEBUG(
dbgs() <<
"Call Slot: Dest pointer modified after call\n");
926 if (SkippedLifetimeStart) {
928 dyn_cast<Instruction>(SkippedLifetimeStart->
getOperand(1));
929 if (LifetimeArg && LifetimeArg->getParent() ==
C->getParent() &&
930 C->comesBefore(LifetimeArg))
936 bool ExplicitlyDereferenceableOnly;
938 ExplicitlyDereferenceableOnly) ||
941 LLVM_DEBUG(
dbgs() <<
"Call Slot: Dest pointer not dereferenceable\n");
960 LLVM_DEBUG(
dbgs() <<
"Call Slot: Dest may be visible through unwinding\n");
965 Align srcAlign = srcAlloca->getAlign();
966 bool isDestSufficientlyAligned = srcAlign <= cpyDestAlign;
969 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) {
970 LLVM_DEBUG(
dbgs() <<
"Call Slot: Dest not sufficiently aligned\n");
979 while (!srcUseList.empty()) {
980 User *
U = srcUseList.pop_back_val();
982 if (isa<AddrSpaceCastInst>(U)) {
986 if (
const auto *
IT = dyn_cast<IntrinsicInst>(U))
987 if (
IT->isLifetimeStartOrEnd())
990 if (U !=
C && U != cpyLoad) {
991 LLVM_DEBUG(
dbgs() <<
"Call slot: Source accessed by " << *U <<
"\n");
998 bool SrcIsCaptured =
any_of(
C->args(), [&](
Use &U) {
999 return U->stripPointerCasts() == cpySrc &&
1000 !C->doesNotCapture(C->getArgOperandNo(&U));
1006 if (SrcIsCaptured) {
1021 make_range(++
C->getIterator(),
C->getParent()->end())) {
1023 if (
auto *
II = dyn_cast<IntrinsicInst>(&
I)) {
1024 if (
II->getIntrinsicID() == Intrinsic::lifetime_end &&
1025 II->getArgOperand(1)->stripPointerCasts() == srcAlloca &&
1026 cast<ConstantInt>(
II->getArgOperand(0))->uge(srcSize))
1031 if (isa<ReturnInst>(&
I))
1049 bool NeedMoveGEP =
false;
1052 auto *
GEP = dyn_cast<GetElementPtrInst>(cpyDest);
1053 if (
GEP &&
GEP->hasAllConstantIndices() &&
1076 for (
unsigned ArgI = 0; ArgI <
C->arg_size(); ++ArgI)
1077 if (
C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
1078 cpySrc->
getType() !=
C->getArgOperand(ArgI)->getType())
1082 bool changedArgument =
false;
1083 for (
unsigned ArgI = 0; ArgI <
C->arg_size(); ++ArgI)
1084 if (
C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
1085 changedArgument =
true;
1086 C->setArgOperand(ArgI, cpyDest);
1089 if (!changedArgument)
1093 if (!isDestSufficientlyAligned) {
1094 assert(isa<AllocaInst>(cpyDest) &&
"Can only increase alloca alignment!");
1095 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
1099 auto *
GEP = dyn_cast<GetElementPtrInst>(cpyDest);
1103 if (SkippedLifetimeStart) {
1110 if (cpyLoad != cpyStore)
1119bool MemCpyOptPass::processMemCpyMemCpyDependence(
MemCpyInst *M,
1134 int64_t MForwardOffset = 0;
1138 if (
M->getSource() != MDep->
getDest()) {
1139 std::optional<int64_t>
Offset =
1140 M->getSource()->getPointerOffsetFrom(MDep->
getDest(),
DL);
1143 MForwardOffset = *
Offset;
1148 if (MForwardOffset != 0 || MDep->
getLength() !=
M->getLength()) {
1149 auto *MDepLen = dyn_cast<ConstantInt>(MDep->
getLength());
1150 auto *MLen = dyn_cast<ConstantInt>(
M->getLength());
1151 if (!MDepLen || !MLen ||
1152 MDepLen->getZExtValue() < MLen->getZExtValue() + MForwardOffset)
1160 if (NewCopySource && NewCopySource->
use_empty())
1166 eraseInstruction(NewCopySource);
1178 if (MForwardOffset > 0) {
1180 std::optional<int64_t> MDestOffset =
1182 if (MDestOffset == MForwardOffset)
1183 CopySource =
M->getDest();
1185 CopySource = Builder.CreateInBoundsPtrAdd(
1186 CopySource, Builder.getInt64(MForwardOffset));
1187 NewCopySource = dyn_cast<Instruction>(CopySource);
1190 MCopyLoc = MCopyLoc.getWithNewPtr(CopySource);
1191 if (CopySourceAlign)
1215 eraseInstruction(M);
1225 bool UseMemMove =
false;
1230 if (isa<MemCpyInlineInst>(M))
1236 LLVM_DEBUG(
dbgs() <<
"MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1245 Builder.CreateMemMove(
M->getDest(),
M->getDestAlign(), CopySource,
1246 CopySourceAlign,
M->getLength(),
M->isVolatile());
1247 else if (isa<MemCpyInlineInst>(M)) {
1251 NewM = Builder.CreateMemCpyInline(
M->getDest(),
M->getDestAlign(),
1252 CopySource, CopySourceAlign,
1253 M->getLength(),
M->isVolatile());
1256 Builder.CreateMemCpy(
M->getDest(),
M->getDestAlign(), CopySource,
1257 CopySourceAlign,
M->getLength(),
M->isVolatile());
1263 MSSAU->
insertDef(cast<MemoryDef>(NewAccess),
true);
1266 eraseInstruction(M);
1290bool MemCpyOptPass::processMemSetMemCpyDependence(
MemCpyInst *MemCpy,
1328 if (DestSize == SrcSize) {
1329 eraseInstruction(MemSet);
1340 if (
auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1351 "Preserving debug location based on moving memset within BB.");
1352 Builder.SetCurrentDebugLocation(MemSet->
getDebugLoc());
1358 SrcSize = Builder.CreateZExt(SrcSize, DestSize->
getType());
1360 DestSize = Builder.CreateZExt(DestSize, SrcSize->
getType());
1363 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1364 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1365 Value *MemsetLen = Builder.CreateSelect(
1368 Builder.CreateMemSet(Builder.CreatePtrAdd(Dest, SrcSize),
1369 MemSet->
getOperand(1), MemsetLen, Alignment);
1372 "MemCpy must be a MemoryDef");
1378 MSSAU->
insertDef(cast<MemoryDef>(NewAccess),
true);
1380 eraseInstruction(MemSet);
1391 if (
auto *
II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
1392 if (
II->getIntrinsicID() == Intrinsic::lifetime_start) {
1393 auto *LTSize = cast<ConstantInt>(
II->getArgOperand(0));
1395 if (
auto *CSize = dyn_cast<ConstantInt>(
Size)) {
1397 LTSize->getZExtValue() >= CSize->getZExtValue())
1408 if (std::optional<TypeSize> AllocaSize =
1409 Alloca->getAllocationSize(
DL))
1410 if (*AllocaSize == LTSize->getValue())
1432bool MemCpyOptPass::performMemCpyToMemSetOptzn(
MemCpyInst *MemCpy,
1443 if (MemSetSize != CopySize) {
1448 auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
1453 auto *CCopySize = dyn_cast<ConstantInt>(CopySize);
1456 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) {
1462 bool CanReduceSize =
false;
1466 if (
auto *MD = dyn_cast<MemoryDef>(Clobber))
1468 CanReduceSize =
true;
1472 CopySize = MemSetSize;
1482 MSSAU->
insertDef(cast<MemoryDef>(NewAccess),
true);
1515 if (!SrcSize ||
Size != *SrcSize) {
1516 LLVM_DEBUG(
dbgs() <<
"Stack Move: Source alloca size mismatch\n");
1520 if (!DestSize ||
Size != *DestSize) {
1521 LLVM_DEBUG(
dbgs() <<
"Stack Move: Destination alloca size mismatch\n");
1535 bool SrcNotDom =
false;
1539 bool CanBeNull, CanBeFreed;
1540 return V->getPointerDereferenceableBytes(
DL, CanBeNull, CanBeFreed);
1543 auto CaptureTrackingWithModRef =
1549 Worklist.
reserve(MaxUsesToExplore);
1551 while (!Worklist.
empty()) {
1554 for (
const Use &U :
I->uses()) {
1555 auto *UI = cast<Instruction>(
U.getUser());
1561 if (Visited.
size() >= MaxUsesToExplore) {
1564 <<
"Stack Move: Exceeded max uses to see ModRef, bailing\n");
1567 if (!Visited.
insert(&U).second)
1577 if (UI->isLifetimeStartOrEnd()) {
1583 int64_t
Size = cast<ConstantInt>(UI->getOperand(0))->getSExtValue();
1584 if (
Size < 0 ||
Size == DestSize) {
1589 if (UI->hasMetadata(LLVMContext::MD_noalias))
1590 NoAliasInstrs.
insert(UI);
1591 if (!ModRefCallback(UI))
1606 auto DestModRefCallback = [&](
Instruction *UI) ->
bool {
1616 if (UI->getParent() ==
Store->getParent()) {
1625 if (UI->comesBefore(Store))
1635 ReachabilityWorklist.
push_back(UI->getParent());
1641 if (!CaptureTrackingWithModRef(DestAlloca, DestModRefCallback))
1644 if (!ReachabilityWorklist.
empty() &&
1646 nullptr, DT,
nullptr))
1654 auto SrcModRefCallback = [&](
Instruction *UI) ->
bool {
1667 if (!CaptureTrackingWithModRef(SrcAlloca, SrcModRefCallback))
1674 SrcAlloca->
getParent()->getFirstInsertionPt());
1681 eraseInstruction(DestAlloca);
1689 if (!LifetimeMarkers.
empty()) {
1691 eraseInstruction(
I);
1699 I->setMetadata(LLVMContext::MD_noalias,
nullptr);
1701 LLVM_DEBUG(
dbgs() <<
"Stack Move: Performed staack-move optimization\n");
1707 if (
auto *
I = dyn_cast<Instruction>(
Size))
1711 if (
auto *
C = dyn_cast<Constant>(
Size))
1712 return isa<UndefValue>(
C) ||
C->isNullValue();
1723 if (
M->isVolatile())
1727 if (
M->getSource() ==
M->getDest()) {
1729 eraseInstruction(M);
1736 eraseInstruction(M);
1746 if (
auto *GV = dyn_cast<GlobalVariable>(
M->getSource()))
1747 if (GV->isConstant() && GV->hasDefinitiveInitializer())
1749 M->getDataLayout())) {
1752 M->getRawDest(), ByteVal,
M->getLength(),
M->getDestAlign(),
false);
1753 auto *LastDef = cast<MemoryDef>(MA);
1756 MSSAU->
insertDef(cast<MemoryDef>(NewAccess),
true);
1758 eraseInstruction(M);
1774 if (
auto *MD = dyn_cast<MemoryDef>(DestClobber))
1775 if (
auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
1776 if (DestClobber->
getBlock() ==
M->getParent())
1777 if (processMemSetMemCpyDependence(M, MDep, BAA))
1791 if (
auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
1793 if (
auto *CopySize = dyn_cast<ConstantInt>(
M->getLength())) {
1794 if (
auto *
C = dyn_cast<CallInst>(
MI)) {
1795 if (performCallSlotOptzn(M, M,
M->getDest(),
M->getSource(),
1797 M->getDestAlign().valueOrOne(), BAA,
1800 <<
" call: " << *
C <<
"\n"
1801 <<
" memcpy: " << *M <<
"\n");
1802 eraseInstruction(M);
1808 if (
auto *MDep = dyn_cast<MemCpyInst>(
MI))
1809 if (processMemCpyMemCpyDependence(M, MDep, BAA))
1811 if (
auto *MDep = dyn_cast<MemSetInst>(
MI)) {
1812 if (performMemCpyToMemSetOptzn(M, MDep, BAA)) {
1814 eraseInstruction(M);
1823 eraseInstruction(M);
1832 auto *DestAlloca = dyn_cast<AllocaInst>(
M->getDest());
1835 auto *SrcAlloca = dyn_cast<AllocaInst>(
M->getSource());
1841 if (performStackMoveOptzn(M, M, DestAlloca, SrcAlloca,
1844 BBI =
M->getNextNonDebugInstruction()->getIterator();
1845 eraseInstruction(M);
1855bool MemCpyOptPass::isMemMoveMemSetDependency(
MemMoveInst *M) {
1856 const auto &
DL =
M->getDataLayout();
1863 auto *MemMoveSourceOp =
M->getSource();
1864 auto *
Source = dyn_cast<GEPOperator>(MemMoveSourceOp);
1870 if (
Source->getPointerOperand() !=
M->getDest() ||
1885 auto *DestClobber = dyn_cast<MemoryDef>(
1890 auto *MS = dyn_cast_or_null<MemSetInst>(DestClobber->getMemoryInst());
1895 auto *MemSetLength = dyn_cast<ConstantInt>(MS->getLength());
1896 if (!MemSetLength || MemSetLength->getZExtValue() < MemMoveSize)
1913 if (!
M->isVolatile() && isMemMoveMemSetDependency(M)) {
1916 eraseInstruction(M);
1923 LLVM_DEBUG(
dbgs() <<
"MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1927 Type *ArgTys[3] = {
M->getRawDest()->getType(),
M->getRawSource()->getType(),
1928 M->getLength()->getType()};
1930 M->getModule(), Intrinsic::memcpy, ArgTys));
1940bool MemCpyOptPass::processByValArgument(
CallBase &CB,
unsigned ArgNo) {
1945 TypeSize ByValSize =
DL.getTypeAllocSize(ByValTy);
1954 if (
auto *MD = dyn_cast<MemoryDef>(Clobber))
1955 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1965 auto *C1 = dyn_cast<ConstantInt>(MDep->
getLength());
1979 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1998 LLVM_DEBUG(
dbgs() <<
"MemCpyOptPass: Forwarding memcpy to byval:\n"
1999 <<
" " << *MDep <<
"\n"
2000 <<
" " << CB <<
"\n");
2023bool MemCpyOptPass::processImmutArgument(
CallBase &CB,
unsigned ArgNo) {
2048 std::optional<TypeSize> AllocaSize = AI->getAllocationSize(
DL);
2051 if (!AllocaSize || AllocaSize->isScalable())
2061 if (
auto *MD = dyn_cast<MemoryDef>(Clobber))
2062 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
2074 auto *MDepLen = dyn_cast<ConstantInt>(MDep->
getLength());
2075 if (!MDepLen || AllocaSize != MDepLen->getValue())
2082 Align AllocaAlign = AI->getAlign();
2083 if (MemDepAlign < AllocaAlign &&
2102 LLVM_DEBUG(
dbgs() <<
"MemCpyOptPass: Forwarding memcpy to Immut src:\n"
2103 <<
" " << *MDep <<
"\n"
2104 <<
" " << CB <<
"\n");
2114bool MemCpyOptPass::iterateOnFunction(
Function &
F) {
2115 bool MadeChange =
false;
2130 bool RepeatInstruction =
false;
2132 if (
auto *SI = dyn_cast<StoreInst>(
I))
2133 MadeChange |= processStore(SI, BI);
2134 else if (
auto *M = dyn_cast<MemSetInst>(
I))
2135 RepeatInstruction = processMemSet(M, BI);
2136 else if (
auto *M = dyn_cast<MemCpyInst>(
I))
2137 RepeatInstruction = processMemCpy(M, BI);
2138 else if (
auto *M = dyn_cast<MemMoveInst>(
I))
2139 RepeatInstruction = processMemMove(M, BI);
2140 else if (
auto *CB = dyn_cast<CallBase>(
I)) {
2141 for (
unsigned i = 0, e = CB->
arg_size(); i != e; ++i) {
2143 MadeChange |= processByValArgument(*CB, i);
2145 MadeChange |= processImmutArgument(*CB, i);
2150 if (RepeatInstruction) {
2151 if (BI != BB.
begin())
2169 bool MadeChange =
runImpl(
F, &TLI, AA, AC, DT, PDT, &MSSA->getMSSA());
2183 bool MadeChange =
false;
2196 if (!iterateOnFunction(
F))
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This is the interface for a simple mod/ref and alias analysis over globals.
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, Instruction *End)
static bool isZeroSize(Value *Size)
static void combineAAMetadata(Instruction *ReplInst, Instruction *I)
static bool accessedBetween(BatchAAResults &AA, MemoryLocation Loc, const MemoryUseOrDef *Start, const MemoryUseOrDef *End, Instruction **SkippedLifetimeStart=nullptr)
static bool hasUndefContents(MemorySSA *MSSA, BatchAAResults &AA, Value *V, MemoryDef *Def, Value *Size)
Determine whether the instruction has undefined content for the given Size, either because it was fre...
static cl::opt< bool > EnableMemCpyOptWithoutLibcalls("enable-memcpyopt-without-libcalls", cl::Hidden, cl::desc("Enable memcpyopt even when libcalls are disabled"))
static bool writtenBetween(MemorySSA *MSSA, BatchAAResults &AA, MemoryLocation Loc, const MemoryUseOrDef *Start, const MemoryUseOrDef *End)
This file provides utility analysis objects describing memory locations.
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
A manager for alias analyses.
ModRefInfo getModRefInfo(const Instruction *I, const std::optional< MemoryLocation > &OptLoc)
Check whether or not an instruction may read or write the optionally specified memory location.
Class for arbitrary precision integers.
an instruction to allocate memory on the stack
bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
unsigned getAddressSpace() const
Return the address space for the allocation.
std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
void setAlignment(Align Align)
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
bool isEntryBlock() const
Return true if this is the entry block of the containing function.
const Function * getParent() const
Return the enclosing method, or null if none.
InstListType::iterator iterator
Instruction iterators...
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB)
ModRefInfo getModRefInfo(const Instruction *I, const std::optional< MemoryLocation > &OptLoc)
ModRefInfo callCapturesBefore(const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT)
Represents analyses that only rely on functions' control flow.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
bool isByValArgument(unsigned ArgNo) const
Determine whether this argument is passed by value.
MaybeAlign getParamAlign(unsigned ArgNo) const
Extract the alignment for a call or parameter (0=unknown).
bool onlyReadsMemory(unsigned OpNo) const
Type * getParamByValType(unsigned ArgNo) const
Extract the byval type for a call or parameter.
Value * getArgOperand(unsigned i) const
void setArgOperand(unsigned i, Value *v)
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Context-sensitive CaptureAnalysis provider, which computes and caches the earliest common dominator c...
void removeInstruction(Instruction *I)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
void mergeDIAssignID(ArrayRef< const Instruction * > SourceInstructions)
Merge the DIAssignID metadata from this instruction and those attached to instructions in SourceInstr...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
void dropUnknownNonDebugMetadata(ArrayRef< unsigned > KnownIDs={})
Drop all unknown metadata except for debug locations.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
An instruction for reading from memory.
Value * getPointerOperand()
Align getAlign() const
Return the alignment of the access that is being performed.
static LocationSize precise(uint64_t Value)
TypeSize getValue() const
This class wraps the llvm.memcpy intrinsic.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
bool runImpl(Function &F, TargetLibraryInfo *TLI, AAResults *AA, AssumptionCache *AC, DominatorTree *DT, PostDominatorTree *PDT, MemorySSA *MSSA)
Value * getLength() const
Value * getRawDest() const
Value * getDest() const
This is just like getRawDest, but it strips off any cast instructions (including addrspacecast) that ...
MaybeAlign getDestAlign() const
This class wraps the llvm.memmove intrinsic.
This class wraps the llvm.memset and llvm.memset.inline intrinsics.
Value * getRawSource() const
Return the arguments to the instruction.
MaybeAlign getSourceAlign() const
Value * getSource() const
This is just like getRawSource, but it strips off any cast instructions that feed it,...
BasicBlock * getBlock() const
Represents a read-write access to memory, whether it is a must-alias, or a may-alias.
Representation for a specific memory location.
MemoryLocation getWithNewSize(LocationSize NewSize) const
static MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
static MemoryLocation getForSource(const MemTransferInst *MTI)
Return a location representing the source of a memory transfer.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
static MemoryLocation getBeforeOrAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location before or after Ptr, while remaining within the underl...
static MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
An analysis that produces MemorySSA for a function.
MemoryUseOrDef * createMemoryAccessBefore(Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt)
Create a MemoryAccess in MemorySSA before an existing MemoryAccess.
void insertDef(MemoryDef *Def, bool RenameUses=false)
Insert a definition into the MemorySSA IR.
void moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where)
void removeMemoryAccess(MemoryAccess *, bool OptimizePhis=false)
Remove a MemoryAccess from MemorySSA, including updating all definitions and uses.
MemoryUseOrDef * createMemoryAccessAfter(Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt)
Create a MemoryAccess in MemorySSA after an existing MemoryAccess.
void moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where)
MemoryAccess * getClobberingMemoryAccess(const Instruction *I, BatchAAResults &AA)
Given a memory Mod/Ref/ModRef'ing instruction, calling this will give you the nearest dominating Memo...
Encapsulates MemorySSA, including all data associated with memory accesses.
bool dominates(const MemoryAccess *A, const MemoryAccess *B) const
Given two memory accesses in potentially different blocks, determine whether MemoryAccess A dominates...
void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
MemorySSAWalker * getWalker()
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
bool isLiveOnEntryDef(const MemoryAccess *MA) const
Return true if MA represents the live on entry value.
Class that has the common methods + fields of memory uses/defs.
MemoryAccess * getDefiningAccess() const
Get the access that produces the memory state used by this Use.
Instruction * getMemoryInst() const
Get the instruction that this MemoryUse represents.
Analysis pass which computes a PostDominatorTree.
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
bool dominates(const Instruction *I1, const Instruction *I2) const
Return true if I1 dominates I2.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void preserveSet()
Mark an analysis set as preserved.
void preserve()
Mark an analysis as preserved.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
void reserve(size_type N)
typename SuperClass::const_iterator const_iterator
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
typename SuperClass::iterator iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
reverse_self_iterator getReverseIterator()
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
@ C
The default llvm calling convention, compatible with C.
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
const_iterator end(StringRef path)
Get end iterator over path.
This is an optimization pass for GlobalISel generic memory operations.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
bool isPotentiallyReachableFromMany(SmallVectorImpl< BasicBlock * > &Worklist, const BasicBlock *StopBB, const SmallPtrSetImpl< BasicBlock * > *ExclusionSet, const DominatorTree *DT=nullptr, const LoopInfo *LI=nullptr)
Determine whether there is at least one path from a block in 'Worklist' to 'StopBB' without passing t...
bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
UseCaptureKind DetermineUseCaptureKind(const Use &U, llvm::function_ref< bool(Value *, const DataLayout &)> IsDereferenceableOrNull)
Determine what kind of capture behaviour U may exhibit.
auto partition_point(R &&Range, Predicate P)
Binary search for the first iterator in a range where a predicate is false.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
bool PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures, bool StoreCaptures, const Instruction *I, const DominatorTree *DT, bool IncludeI=false, unsigned MaxUsesToExplore=0, const LoopInfo *LI=nullptr)
PointerMayBeCapturedBefore - Return true if this pointer value may be captured by the enclosing funct...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
unsigned getDefaultMaxUsesToExploreForCaptureTracking()
getDefaultMaxUsesToExploreForCaptureTracking - Return default value of the maximal number of uses to ...
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
auto reverse(ContainerTy &&C)
Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to ensure that the alignment of V is at least PrefAlign bytes.
bool isModSet(const ModRefInfo MRI)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isModOrRefSet(const ModRefInfo MRI)
bool isNotVisibleOnUnwind(const Value *Object, bool &RequiresNoCaptureBeforeUnwind)
Return true if Object memory is not visible after an unwind, in the sense that program semantics cann...
void combineMetadata(Instruction *K, const Instruction *J, ArrayRef< unsigned > KnownIDs, bool DoesKMove)
DO NOT CALL EXTERNALLY.
bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
@ NoModRef
The access neither references nor modifies the value stored in memory.
bool VerifyMemorySSA
Enables verification of MemorySSA.
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
bool isIdentifiedFunctionLocal(const Value *V)
Return true if V is umabigously identified at the function-level.
bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
bool isRefSet(const ModRefInfo MRI)
bool isWritableObject(const Value *Object, bool &ExplicitlyDereferenceableOnly)
Return true if the Object is writable, in the sense that any location based on this pointer that can ...
This struct is a compact representation of a valid (non-zero power of two) alignment.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.