LLVM 20.0.0git
X86LoadValueInjectionLoadHardening.cpp
Go to the documentation of this file.
1//==-- X86LoadValueInjectionLoadHardening.cpp - LVI load hardening for x86 --=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// Description: This pass finds Load Value Injection (LVI) gadgets consisting
10/// of a load from memory (i.e., SOURCE), and any operation that may transmit
11/// the value loaded from memory over a covert channel, or use the value loaded
12/// from memory to determine a branch/call target (i.e., SINK). After finding
13/// all such gadgets in a given function, the pass minimally inserts LFENCE
14/// instructions in such a manner that the following property is satisfied: for
15/// all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at
16/// least one LFENCE instruction. The algorithm that implements this minimal
17/// insertion is influenced by an academic paper that minimally inserts memory
18/// fences for high-performance concurrent programs:
19/// http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf
20/// The algorithm implemented in this pass is as follows:
21/// 1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the
22/// following components:
23/// - SOURCE instructions (also includes function arguments)
24/// - SINK instructions
25/// - Basic block entry points
26/// - Basic block terminators
27/// - LFENCE instructions
28/// 2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e.,
29/// gadgets) are already mitigated by existing LFENCEs. If all gadgets have been
30/// mitigated, go to step 6.
31/// 3. Use a heuristic or plugin to approximate minimal LFENCE insertion.
32/// 4. Insert one LFENCE along each CFG edge that was cut in step 3.
33/// 5. Go to step 2.
34/// 6. If any LFENCEs were inserted, return `true` from runOnMachineFunction()
35/// to tell LLVM that the function was modified.
36///
37//===----------------------------------------------------------------------===//
38
39#include "ImmutableGraph.h"
40#include "X86.h"
41#include "X86Subtarget.h"
42#include "X86TargetMachine.h"
43#include "llvm/ADT/DenseMap.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/ADT/SmallSet.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/StringRef.h"
61#include "llvm/Support/Debug.h"
65
66using namespace llvm;
67
68#define PASS_KEY "x86-lvi-load"
69#define DEBUG_TYPE PASS_KEY
70
71STATISTIC(NumFences, "Number of LFENCEs inserted for LVI mitigation");
72STATISTIC(NumFunctionsConsidered, "Number of functions analyzed");
73STATISTIC(NumFunctionsMitigated, "Number of functions for which mitigations "
74 "were deployed");
75STATISTIC(NumGadgets, "Number of LVI gadgets detected during analysis");
76
78 PASS_KEY "-opt-plugin",
79 cl::desc("Specify a plugin to optimize LFENCE insertion"), cl::Hidden);
80
82 PASS_KEY "-no-cbranch",
83 cl::desc("Don't treat conditional branches as disclosure gadgets. This "
84 "may improve performance, at the cost of security."),
85 cl::init(false), cl::Hidden);
86
88 PASS_KEY "-dot",
90 "For each function, emit a dot graph depicting potential LVI gadgets"),
91 cl::init(false), cl::Hidden);
92
94 PASS_KEY "-dot-only",
95 cl::desc("For each function, emit a dot graph depicting potential LVI "
96 "gadgets, and do not insert any fences"),
97 cl::init(false), cl::Hidden);
98
100 PASS_KEY "-dot-verify",
101 cl::desc("For each function, emit a dot graph to stdout depicting "
102 "potential LVI gadgets, used for testing purposes only"),
103 cl::init(false), cl::Hidden);
104
106typedef int (*OptimizeCutT)(unsigned int *Nodes, unsigned int NodesSize,
107 unsigned int *Edges, int *EdgeValues,
108 int *CutEdges /* out */, unsigned int EdgesSize);
109static OptimizeCutT OptimizeCut = nullptr;
110
111namespace {
112
113struct MachineGadgetGraph : ImmutableGraph<MachineInstr *, int> {
114 static constexpr int GadgetEdgeSentinel = -1;
115 static constexpr MachineInstr *const ArgNodeSentinel = nullptr;
116
118 using Node = typename GraphT::Node;
119 using Edge = typename GraphT::Edge;
120 using size_type = typename GraphT::size_type;
121 MachineGadgetGraph(std::unique_ptr<Node[]> Nodes,
122 std::unique_ptr<Edge[]> Edges, size_type NodesSize,
123 size_type EdgesSize, int NumFences = 0, int NumGadgets = 0)
124 : GraphT(std::move(Nodes), std::move(Edges), NodesSize, EdgesSize),
125 NumFences(NumFences), NumGadgets(NumGadgets) {}
126 static inline bool isCFGEdge(const Edge &E) {
127 return E.getValue() != GadgetEdgeSentinel;
128 }
129 static inline bool isGadgetEdge(const Edge &E) {
130 return E.getValue() == GadgetEdgeSentinel;
131 }
132 int NumFences;
133 int NumGadgets;
134};
135
136class X86LoadValueInjectionLoadHardeningPass : public MachineFunctionPass {
137public:
138 X86LoadValueInjectionLoadHardeningPass() : MachineFunctionPass(ID) {}
139
140 StringRef getPassName() const override {
141 return "X86 Load Value Injection (LVI) Load Hardening";
142 }
143 void getAnalysisUsage(AnalysisUsage &AU) const override;
144 bool runOnMachineFunction(MachineFunction &MF) override;
145
146 static char ID;
147
148private:
150 using Edge = MachineGadgetGraph::Edge;
151 using Node = MachineGadgetGraph::Node;
152 using EdgeSet = MachineGadgetGraph::EdgeSet;
153 using NodeSet = MachineGadgetGraph::NodeSet;
154
155 const X86Subtarget *STI = nullptr;
156 const TargetInstrInfo *TII = nullptr;
157 const TargetRegisterInfo *TRI = nullptr;
158
159 std::unique_ptr<MachineGadgetGraph>
160 getGadgetGraph(MachineFunction &MF, const MachineLoopInfo &MLI,
161 const MachineDominatorTree &MDT,
162 const MachineDominanceFrontier &MDF) const;
163 int hardenLoadsWithPlugin(MachineFunction &MF,
164 std::unique_ptr<MachineGadgetGraph> Graph) const;
165 int hardenLoadsWithHeuristic(MachineFunction &MF,
166 std::unique_ptr<MachineGadgetGraph> Graph) const;
167 int elimMitigatedEdgesAndNodes(MachineGadgetGraph &G,
168 EdgeSet &ElimEdges /* in, out */,
169 NodeSet &ElimNodes /* in, out */) const;
170 std::unique_ptr<MachineGadgetGraph>
171 trimMitigatedEdges(std::unique_ptr<MachineGadgetGraph> Graph) const;
172 int insertFences(MachineFunction &MF, MachineGadgetGraph &G,
173 EdgeSet &CutEdges /* in, out */) const;
174 bool instrUsesRegToAccessMemory(const MachineInstr &I, unsigned Reg) const;
175 bool instrUsesRegToBranch(const MachineInstr &I, unsigned Reg) const;
176 inline bool isFence(const MachineInstr *MI) const {
177 return MI && (MI->getOpcode() == X86::LFENCE ||
178 (STI->useLVIControlFlowIntegrity() && MI->isCall()));
179 }
180};
181
182} // end anonymous namespace
183
184namespace llvm {
185
186template <>
187struct GraphTraits<MachineGadgetGraph *>
189
190template <>
191struct DOTGraphTraits<MachineGadgetGraph *> : DefaultDOTGraphTraits {
192 using GraphType = MachineGadgetGraph;
194 using NodeRef = typename Traits::NodeRef;
195 using EdgeRef = typename Traits::EdgeRef;
196 using ChildIteratorType = typename Traits::ChildIteratorType;
197 using ChildEdgeIteratorType = typename Traits::ChildEdgeIteratorType;
198
199 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
200
201 std::string getNodeLabel(NodeRef Node, GraphType *) {
202 if (Node->getValue() == MachineGadgetGraph::ArgNodeSentinel)
203 return "ARGS";
204
205 std::string Str;
207 OS << *Node->getValue();
208 return OS.str();
209 }
210
211 static std::string getNodeAttributes(NodeRef Node, GraphType *) {
212 MachineInstr *MI = Node->getValue();
213 if (MI == MachineGadgetGraph::ArgNodeSentinel)
214 return "color = blue";
215 if (MI->getOpcode() == X86::LFENCE)
216 return "color = green";
217 return "";
218 }
219
221 GraphType *) {
222 int EdgeVal = (*E.getCurrent()).getValue();
223 return EdgeVal >= 0 ? "label = " + std::to_string(EdgeVal)
224 : "color = red, style = \"dashed\"";
225 }
226};
227
228} // end namespace llvm
229
230constexpr MachineInstr *MachineGadgetGraph::ArgNodeSentinel;
231constexpr int MachineGadgetGraph::GadgetEdgeSentinel;
232
233char X86LoadValueInjectionLoadHardeningPass::ID = 0;
234
235void X86LoadValueInjectionLoadHardeningPass::getAnalysisUsage(
236 AnalysisUsage &AU) const {
241 AU.setPreservesCFG();
242}
243
245 MachineGadgetGraph *G) {
246 WriteGraph(OS, G, /*ShortNames*/ false,
247 "Speculative gadgets for \"" + MF.getName() + "\" function");
248}
249
250bool X86LoadValueInjectionLoadHardeningPass::runOnMachineFunction(
251 MachineFunction &MF) {
252 LLVM_DEBUG(dbgs() << "***** " << getPassName() << " : " << MF.getName()
253 << " *****\n");
254 STI = &MF.getSubtarget<X86Subtarget>();
255 if (!STI->useLVILoadHardening())
256 return false;
257
258 // FIXME: support 32-bit
259 if (!STI->is64Bit())
260 report_fatal_error("LVI load hardening is only supported on 64-bit", false);
261
262 // Don't skip functions with the "optnone" attr but participate in opt-bisect.
263 const Function &F = MF.getFunction();
264 if (!F.hasOptNone() && skipFunction(F))
265 return false;
266
267 ++NumFunctionsConsidered;
268 TII = STI->getInstrInfo();
269 TRI = STI->getRegisterInfo();
270 LLVM_DEBUG(dbgs() << "Building gadget graph...\n");
271 const auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
272 const auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
273 const auto &MDF = getAnalysis<MachineDominanceFrontier>();
274 std::unique_ptr<MachineGadgetGraph> Graph = getGadgetGraph(MF, MLI, MDT, MDF);
275 LLVM_DEBUG(dbgs() << "Building gadget graph... Done\n");
276 if (Graph == nullptr)
277 return false; // didn't find any gadgets
278
279 if (EmitDotVerify) {
280 writeGadgetGraph(outs(), MF, Graph.get());
281 return false;
282 }
283
284 if (EmitDot || EmitDotOnly) {
285 LLVM_DEBUG(dbgs() << "Emitting gadget graph...\n");
286 std::error_code FileError;
287 std::string FileName = "lvi.";
288 FileName += MF.getName();
289 FileName += ".dot";
290 raw_fd_ostream FileOut(FileName, FileError);
291 if (FileError)
292 errs() << FileError.message();
293 writeGadgetGraph(FileOut, MF, Graph.get());
294 FileOut.close();
295 LLVM_DEBUG(dbgs() << "Emitting gadget graph... Done\n");
296 if (EmitDotOnly)
297 return false;
298 }
299
300 int FencesInserted;
301 if (!OptimizePluginPath.empty()) {
302 if (!OptimizeDL.isValid()) {
303 std::string ErrorMsg;
305 OptimizePluginPath.c_str(), &ErrorMsg);
306 if (!ErrorMsg.empty())
307 report_fatal_error(Twine("Failed to load opt plugin: \"") + ErrorMsg +
308 "\"");
310 if (!OptimizeCut)
311 report_fatal_error("Invalid optimization plugin");
312 }
313 FencesInserted = hardenLoadsWithPlugin(MF, std::move(Graph));
314 } else { // Use the default greedy heuristic
315 FencesInserted = hardenLoadsWithHeuristic(MF, std::move(Graph));
316 }
317
318 if (FencesInserted > 0)
319 ++NumFunctionsMitigated;
320 NumFences += FencesInserted;
321 return (FencesInserted > 0);
322}
323
324std::unique_ptr<MachineGadgetGraph>
325X86LoadValueInjectionLoadHardeningPass::getGadgetGraph(
326 MachineFunction &MF, const MachineLoopInfo &MLI,
327 const MachineDominatorTree &MDT,
328 const MachineDominanceFrontier &MDF) const {
329 using namespace rdf;
330
331 // Build the Register Dataflow Graph using the RDF framework
332 DataFlowGraph DFG{MF, *TII, *TRI, MDT, MDF};
333 DFG.build();
334 Liveness L{MF.getRegInfo(), DFG};
335 L.computePhiInfo();
336
337 GraphBuilder Builder;
338 using GraphIter = typename GraphBuilder::BuilderNodeRef;
340 int FenceCount = 0, GadgetCount = 0;
341 auto MaybeAddNode = [&NodeMap, &Builder](MachineInstr *MI) {
342 auto Ref = NodeMap.find(MI);
343 if (Ref == NodeMap.end()) {
344 auto I = Builder.addVertex(MI);
345 NodeMap[MI] = I;
346 return std::pair<GraphIter, bool>{I, true};
347 }
348 return std::pair<GraphIter, bool>{Ref->getSecond(), false};
349 };
350
351 // The `Transmitters` map memoizes transmitters found for each def. If a def
352 // has not yet been analyzed, then it will not appear in the map. If a def
353 // has been analyzed and was determined not to have any transmitters, then
354 // its list of transmitters will be empty.
356
357 // Analyze all machine instructions to find gadgets and LFENCEs, adding
358 // each interesting value to `Nodes`
359 auto AnalyzeDef = [&](NodeAddr<DefNode *> SourceDef) {
360 SmallSet<NodeId, 8> UsesVisited, DefsVisited;
361 std::function<void(NodeAddr<DefNode *>)> AnalyzeDefUseChain =
362 [&](NodeAddr<DefNode *> Def) {
363 if (Transmitters.contains(Def.Id))
364 return; // Already analyzed `Def`
365
366 // Use RDF to find all the uses of `Def`
368 RegisterRef DefReg = Def.Addr->getRegRef(DFG);
369 for (auto UseID : L.getAllReachedUses(DefReg, Def)) {
370 auto Use = DFG.addr<UseNode *>(UseID);
371 if (Use.Addr->getFlags() & NodeAttrs::PhiRef) { // phi node
372 NodeAddr<PhiNode *> Phi = Use.Addr->getOwner(DFG);
373 for (const auto& I : L.getRealUses(Phi.Id)) {
374 if (DFG.getPRI().alias(RegisterRef(I.first), DefReg)) {
375 for (const auto &UA : I.second)
376 Uses.emplace(UA.first);
377 }
378 }
379 } else { // not a phi node
380 Uses.emplace(UseID);
381 }
382 }
383
384 // For each use of `Def`, we want to know whether:
385 // (1) The use can leak the Def'ed value,
386 // (2) The use can further propagate the Def'ed value to more defs
387 for (auto UseID : Uses) {
388 if (!UsesVisited.insert(UseID).second)
389 continue; // Already visited this use of `Def`
390
391 auto Use = DFG.addr<UseNode *>(UseID);
392 assert(!(Use.Addr->getFlags() & NodeAttrs::PhiRef));
393 MachineOperand &UseMO = Use.Addr->getOp();
394 MachineInstr &UseMI = *UseMO.getParent();
395 assert(UseMO.isReg());
396
397 // We naively assume that an instruction propagates any loaded
398 // uses to all defs unless the instruction is a call, in which
399 // case all arguments will be treated as gadget sources during
400 // analysis of the callee function.
401 if (UseMI.isCall())
402 continue;
403
404 // Check whether this use can transmit (leak) its value.
405 if (instrUsesRegToAccessMemory(UseMI, UseMO.getReg()) ||
407 instrUsesRegToBranch(UseMI, UseMO.getReg()))) {
408 Transmitters[Def.Id].push_back(Use.Addr->getOwner(DFG).Id);
409 if (UseMI.mayLoad())
410 continue; // Found a transmitting load -- no need to continue
411 // traversing its defs (i.e., this load will become
412 // a new gadget source anyways).
413 }
414
415 // Check whether the use propagates to more defs.
416 NodeAddr<InstrNode *> Owner{Use.Addr->getOwner(DFG)};
417 rdf::NodeList AnalyzedChildDefs;
418 for (const auto &ChildDef :
419 Owner.Addr->members_if(DataFlowGraph::IsDef, DFG)) {
420 if (!DefsVisited.insert(ChildDef.Id).second)
421 continue; // Already visited this def
422 if (Def.Addr->getAttrs() & NodeAttrs::Dead)
423 continue;
424 if (Def.Id == ChildDef.Id)
425 continue; // `Def` uses itself (e.g., increment loop counter)
426
427 AnalyzeDefUseChain(ChildDef);
428
429 // `Def` inherits all of its child defs' transmitters.
430 for (auto TransmitterId : Transmitters[ChildDef.Id])
431 Transmitters[Def.Id].push_back(TransmitterId);
432 }
433 }
434
435 // Note that this statement adds `Def.Id` to the map if no
436 // transmitters were found for `Def`.
437 auto &DefTransmitters = Transmitters[Def.Id];
438
439 // Remove duplicate transmitters
440 llvm::sort(DefTransmitters);
441 DefTransmitters.erase(llvm::unique(DefTransmitters),
442 DefTransmitters.end());
443 };
444
445 // Find all of the transmitters
446 AnalyzeDefUseChain(SourceDef);
447 auto &SourceDefTransmitters = Transmitters[SourceDef.Id];
448 if (SourceDefTransmitters.empty())
449 return; // No transmitters for `SourceDef`
450
451 MachineInstr *Source = SourceDef.Addr->getFlags() & NodeAttrs::PhiRef
452 ? MachineGadgetGraph::ArgNodeSentinel
453 : SourceDef.Addr->getOp().getParent();
454 auto GadgetSource = MaybeAddNode(Source);
455 // Each transmitter is a sink for `SourceDef`.
456 for (auto TransmitterId : SourceDefTransmitters) {
457 MachineInstr *Sink = DFG.addr<StmtNode *>(TransmitterId).Addr->getCode();
458 auto GadgetSink = MaybeAddNode(Sink);
459 // Add the gadget edge to the graph.
460 Builder.addEdge(MachineGadgetGraph::GadgetEdgeSentinel,
461 GadgetSource.first, GadgetSink.first);
462 ++GadgetCount;
463 }
464 };
465
466 LLVM_DEBUG(dbgs() << "Analyzing def-use chains to find gadgets\n");
467 // Analyze function arguments
468 NodeAddr<BlockNode *> EntryBlock = DFG.getFunc().Addr->getEntryBlock(DFG);
469 for (NodeAddr<PhiNode *> ArgPhi :
470 EntryBlock.Addr->members_if(DataFlowGraph::IsPhi, DFG)) {
471 NodeList Defs = ArgPhi.Addr->members_if(DataFlowGraph::IsDef, DFG);
472 llvm::for_each(Defs, AnalyzeDef);
473 }
474 // Analyze every instruction in MF
475 for (NodeAddr<BlockNode *> BA : DFG.getFunc().Addr->members(DFG)) {
476 for (NodeAddr<StmtNode *> SA :
477 BA.Addr->members_if(DataFlowGraph::IsCode<NodeAttrs::Stmt>, DFG)) {
478 MachineInstr *MI = SA.Addr->getCode();
479 if (isFence(MI)) {
480 MaybeAddNode(MI);
481 ++FenceCount;
482 } else if (MI->mayLoad()) {
483 NodeList Defs = SA.Addr->members_if(DataFlowGraph::IsDef, DFG);
484 llvm::for_each(Defs, AnalyzeDef);
485 }
486 }
487 }
488 LLVM_DEBUG(dbgs() << "Found " << FenceCount << " fences\n");
489 LLVM_DEBUG(dbgs() << "Found " << GadgetCount << " gadgets\n");
490 if (GadgetCount == 0)
491 return nullptr;
492 NumGadgets += GadgetCount;
493
494 // Traverse CFG to build the rest of the graph
496 std::function<void(MachineBasicBlock *, GraphIter, unsigned)> TraverseCFG =
497 [&](MachineBasicBlock *MBB, GraphIter GI, unsigned ParentDepth) {
498 unsigned LoopDepth = MLI.getLoopDepth(MBB);
499 if (!MBB->empty()) {
500 // Always add the first instruction in each block
501 auto NI = MBB->begin();
502 auto BeginBB = MaybeAddNode(&*NI);
503 Builder.addEdge(ParentDepth, GI, BeginBB.first);
504 if (!BlocksVisited.insert(MBB).second)
505 return;
506
507 // Add any instructions within the block that are gadget components
508 GI = BeginBB.first;
509 while (++NI != MBB->end()) {
510 auto Ref = NodeMap.find(&*NI);
511 if (Ref != NodeMap.end()) {
512 Builder.addEdge(LoopDepth, GI, Ref->getSecond());
513 GI = Ref->getSecond();
514 }
515 }
516
517 // Always add the terminator instruction, if one exists
518 auto T = MBB->getFirstTerminator();
519 if (T != MBB->end()) {
520 auto EndBB = MaybeAddNode(&*T);
521 if (EndBB.second)
522 Builder.addEdge(LoopDepth, GI, EndBB.first);
523 GI = EndBB.first;
524 }
525 }
526 for (MachineBasicBlock *Succ : MBB->successors())
527 TraverseCFG(Succ, GI, LoopDepth);
528 };
529 // ArgNodeSentinel is a pseudo-instruction that represents MF args in the
530 // GadgetGraph
531 GraphIter ArgNode = MaybeAddNode(MachineGadgetGraph::ArgNodeSentinel).first;
532 TraverseCFG(&MF.front(), ArgNode, 0);
533 std::unique_ptr<MachineGadgetGraph> G{Builder.get(FenceCount, GadgetCount)};
534 LLVM_DEBUG(dbgs() << "Found " << G->nodes_size() << " nodes\n");
535 return G;
536}
537
538// Returns the number of remaining gadget edges that could not be eliminated
539int X86LoadValueInjectionLoadHardeningPass::elimMitigatedEdgesAndNodes(
540 MachineGadgetGraph &G, EdgeSet &ElimEdges /* in, out */,
541 NodeSet &ElimNodes /* in, out */) const {
542 if (G.NumFences > 0) {
543 // Eliminate fences and CFG edges that ingress and egress the fence, as
544 // they are trivially mitigated.
545 for (const Edge &E : G.edges()) {
546 const Node *Dest = E.getDest();
547 if (isFence(Dest->getValue())) {
548 ElimNodes.insert(*Dest);
549 ElimEdges.insert(E);
550 for (const Edge &DE : Dest->edges())
551 ElimEdges.insert(DE);
552 }
553 }
554 }
555
556 // Find and eliminate gadget edges that have been mitigated.
557 int RemainingGadgets = 0;
558 NodeSet ReachableNodes{G};
559 for (const Node &RootN : G.nodes()) {
560 if (llvm::none_of(RootN.edges(), MachineGadgetGraph::isGadgetEdge))
561 continue; // skip this node if it isn't a gadget source
562
563 // Find all of the nodes that are CFG-reachable from RootN using DFS
564 ReachableNodes.clear();
565 std::function<void(const Node *, bool)> FindReachableNodes =
566 [&](const Node *N, bool FirstNode) {
567 if (!FirstNode)
568 ReachableNodes.insert(*N);
569 for (const Edge &E : N->edges()) {
570 const Node *Dest = E.getDest();
571 if (MachineGadgetGraph::isCFGEdge(E) && !ElimEdges.contains(E) &&
572 !ReachableNodes.contains(*Dest))
573 FindReachableNodes(Dest, false);
574 }
575 };
576 FindReachableNodes(&RootN, true);
577
578 // Any gadget whose sink is unreachable has been mitigated
579 for (const Edge &E : RootN.edges()) {
580 if (MachineGadgetGraph::isGadgetEdge(E)) {
581 if (ReachableNodes.contains(*E.getDest())) {
582 // This gadget's sink is reachable
583 ++RemainingGadgets;
584 } else { // This gadget's sink is unreachable, and therefore mitigated
585 ElimEdges.insert(E);
586 }
587 }
588 }
589 }
590 return RemainingGadgets;
591}
592
593std::unique_ptr<MachineGadgetGraph>
594X86LoadValueInjectionLoadHardeningPass::trimMitigatedEdges(
595 std::unique_ptr<MachineGadgetGraph> Graph) const {
596 NodeSet ElimNodes{*Graph};
597 EdgeSet ElimEdges{*Graph};
598 int RemainingGadgets =
599 elimMitigatedEdgesAndNodes(*Graph, ElimEdges, ElimNodes);
600 if (ElimEdges.empty() && ElimNodes.empty()) {
601 Graph->NumFences = 0;
602 Graph->NumGadgets = RemainingGadgets;
603 } else {
604 Graph = GraphBuilder::trim(*Graph, ElimNodes, ElimEdges, 0 /* NumFences */,
605 RemainingGadgets);
606 }
607 return Graph;
608}
609
610int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithPlugin(
611 MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
612 int FencesInserted = 0;
613
614 do {
615 LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
616 Graph = trimMitigatedEdges(std::move(Graph));
617 LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
618 if (Graph->NumGadgets == 0)
619 break;
620
621 LLVM_DEBUG(dbgs() << "Cutting edges...\n");
622 EdgeSet CutEdges{*Graph};
623 auto Nodes = std::make_unique<unsigned int[]>(Graph->nodes_size() +
624 1 /* terminator node */);
625 auto Edges = std::make_unique<unsigned int[]>(Graph->edges_size());
626 auto EdgeCuts = std::make_unique<int[]>(Graph->edges_size());
627 auto EdgeValues = std::make_unique<int[]>(Graph->edges_size());
628 for (const Node &N : Graph->nodes()) {
629 Nodes[Graph->getNodeIndex(N)] = Graph->getEdgeIndex(*N.edges_begin());
630 }
631 Nodes[Graph->nodes_size()] = Graph->edges_size(); // terminator node
632 for (const Edge &E : Graph->edges()) {
633 Edges[Graph->getEdgeIndex(E)] = Graph->getNodeIndex(*E.getDest());
634 EdgeValues[Graph->getEdgeIndex(E)] = E.getValue();
635 }
636 OptimizeCut(Nodes.get(), Graph->nodes_size(), Edges.get(), EdgeValues.get(),
637 EdgeCuts.get(), Graph->edges_size());
638 for (int I = 0; I < Graph->edges_size(); ++I)
639 if (EdgeCuts[I])
640 CutEdges.set(I);
641 LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
642 LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
643
644 LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
645 FencesInserted += insertFences(MF, *Graph, CutEdges);
646 LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
647 LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
648
649 Graph = GraphBuilder::trim(*Graph, NodeSet{*Graph}, CutEdges);
650 } while (true);
651
652 return FencesInserted;
653}
654
655int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithHeuristic(
656 MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
657 // If `MF` does not have any fences, then no gadgets would have been
658 // mitigated at this point.
659 if (Graph->NumFences > 0) {
660 LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
661 Graph = trimMitigatedEdges(std::move(Graph));
662 LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
663 }
664
665 if (Graph->NumGadgets == 0)
666 return 0;
667
668 LLVM_DEBUG(dbgs() << "Cutting edges...\n");
669 EdgeSet CutEdges{*Graph};
670
671 // Begin by collecting all ingress CFG edges for each node
673 for (const Edge &E : Graph->edges())
674 if (MachineGadgetGraph::isCFGEdge(E))
675 IngressEdgeMap[E.getDest()].push_back(&E);
676
677 // For each gadget edge, make cuts that guarantee the gadget will be
678 // mitigated. A computationally efficient way to achieve this is to either:
679 // (a) cut all egress CFG edges from the gadget source, or
680 // (b) cut all ingress CFG edges to the gadget sink.
681 //
682 // Moreover, the algorithm tries not to make a cut into a loop by preferring
683 // to make a (b)-type cut if the gadget source resides at a greater loop depth
684 // than the gadget sink, or an (a)-type cut otherwise.
685 for (const Node &N : Graph->nodes()) {
686 for (const Edge &E : N.edges()) {
687 if (!MachineGadgetGraph::isGadgetEdge(E))
688 continue;
689
691 SmallVector<const Edge *, 2> &IngressEdges = IngressEdgeMap[E.getDest()];
692 for (const Edge &EgressEdge : N.edges())
693 if (MachineGadgetGraph::isCFGEdge(EgressEdge))
694 EgressEdges.push_back(&EgressEdge);
695
696 int EgressCutCost = 0, IngressCutCost = 0;
697 for (const Edge *EgressEdge : EgressEdges)
698 if (!CutEdges.contains(*EgressEdge))
699 EgressCutCost += EgressEdge->getValue();
700 for (const Edge *IngressEdge : IngressEdges)
701 if (!CutEdges.contains(*IngressEdge))
702 IngressCutCost += IngressEdge->getValue();
703
704 auto &EdgesToCut =
705 IngressCutCost < EgressCutCost ? IngressEdges : EgressEdges;
706 for (const Edge *E : EdgesToCut)
707 CutEdges.insert(*E);
708 }
709 }
710 LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
711 LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
712
713 LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
714 int FencesInserted = insertFences(MF, *Graph, CutEdges);
715 LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
716 LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
717
718 return FencesInserted;
719}
720
721int X86LoadValueInjectionLoadHardeningPass::insertFences(
722 MachineFunction &MF, MachineGadgetGraph &G,
723 EdgeSet &CutEdges /* in, out */) const {
724 int FencesInserted = 0;
725 for (const Node &N : G.nodes()) {
726 for (const Edge &E : N.edges()) {
727 if (CutEdges.contains(E)) {
728 MachineInstr *MI = N.getValue(), *Prev;
729 MachineBasicBlock *MBB; // Insert an LFENCE in this MBB
730 MachineBasicBlock::iterator InsertionPt; // ...at this point
731 if (MI == MachineGadgetGraph::ArgNodeSentinel) {
732 // insert LFENCE at beginning of entry block
733 MBB = &MF.front();
734 InsertionPt = MBB->begin();
735 Prev = nullptr;
736 } else if (MI->isBranch()) { // insert the LFENCE before the branch
737 MBB = MI->getParent();
738 InsertionPt = MI;
739 Prev = MI->getPrevNode();
740 // Remove all egress CFG edges from this branch because the inserted
741 // LFENCE prevents gadgets from crossing the branch.
742 for (const Edge &E : N.edges()) {
743 if (MachineGadgetGraph::isCFGEdge(E))
744 CutEdges.insert(E);
745 }
746 } else { // insert the LFENCE after the instruction
747 MBB = MI->getParent();
748 InsertionPt = MI->getNextNode() ? MI->getNextNode() : MBB->end();
749 Prev = InsertionPt == MBB->end()
750 ? (MBB->empty() ? nullptr : &MBB->back())
751 : InsertionPt->getPrevNode();
752 }
753 // Ensure this insertion is not redundant (two LFENCEs in sequence).
754 if ((InsertionPt == MBB->end() || !isFence(&*InsertionPt)) &&
755 (!Prev || !isFence(Prev))) {
756 BuildMI(*MBB, InsertionPt, DebugLoc(), TII->get(X86::LFENCE));
757 ++FencesInserted;
758 }
759 }
760 }
761 }
762 return FencesInserted;
763}
764
765bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToAccessMemory(
766 const MachineInstr &MI, unsigned Reg) const {
767 if (!MI.mayLoadOrStore() || MI.getOpcode() == X86::MFENCE ||
768 MI.getOpcode() == X86::SFENCE || MI.getOpcode() == X86::LFENCE)
769 return false;
770
771 const int MemRefBeginIdx = X86::getFirstAddrOperandIdx(MI);
772 if (MemRefBeginIdx < 0) {
773 LLVM_DEBUG(dbgs() << "Warning: unable to obtain memory operand for loading "
774 "instruction:\n";
775 MI.print(dbgs()); dbgs() << '\n';);
776 return false;
777 }
778
779 const MachineOperand &BaseMO =
780 MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
781 const MachineOperand &IndexMO =
782 MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
783 return (BaseMO.isReg() && BaseMO.getReg() != X86::NoRegister &&
784 TRI->regsOverlap(BaseMO.getReg(), Reg)) ||
785 (IndexMO.isReg() && IndexMO.getReg() != X86::NoRegister &&
786 TRI->regsOverlap(IndexMO.getReg(), Reg));
787}
788
789bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToBranch(
790 const MachineInstr &MI, unsigned Reg) const {
791 if (!MI.isConditionalBranch())
792 return false;
793 for (const MachineOperand &Use : MI.uses())
794 if (Use.isReg() && Use.getReg() == Reg)
795 return true;
796 return false;
797}
798
799INITIALIZE_PASS_BEGIN(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
800 "X86 LVI load hardening", false, false)
804INITIALIZE_PASS_END(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
806
808 return new X86LoadValueInjectionLoadHardeningPass();
809}
MachineInstrBuilder & UseMI
AMDGPU Mark last scratch load
MachineBasicBlock & MBB
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
uint64_t Addr
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
Description: ImmutableGraph is a fast DAG implementation that cannot be modified, except by creating ...
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
unsigned const TargetRegisterInfo * TRI
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
Remove Loads Into Fake Uses
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallSet class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
int(* OptimizeCutT)(unsigned int *Nodes, unsigned int NodesSize, unsigned int *Edges, int *EdgeValues, int *CutEdges, unsigned int EdgesSize)
static cl::opt< bool > EmitDot(PASS_KEY "-dot", cl::desc("For each function, emit a dot graph depicting potential LVI gadgets"), cl::init(false), cl::Hidden)
static cl::opt< std::string > OptimizePluginPath(PASS_KEY "-opt-plugin", cl::desc("Specify a plugin to optimize LFENCE insertion"), cl::Hidden)
static void writeGadgetGraph(raw_ostream &OS, MachineFunction &MF, MachineGadgetGraph *G)
static cl::opt< bool > EmitDotVerify(PASS_KEY "-dot-verify", cl::desc("For each function, emit a dot graph to stdout depicting " "potential LVI gadgets, used for testing purposes only"), cl::init(false), cl::Hidden)
X86 LVI load hardening
static llvm::sys::DynamicLibrary OptimizeDL
static OptimizeCutT OptimizeCut
static cl::opt< bool > EmitDotOnly(PASS_KEY "-dot-only", cl::desc("For each function, emit a dot graph depicting potential LVI " "gadgets, and do not insert any fences"), cl::init(false), cl::Hidden)
static cl::opt< bool > NoConditionalBranches(PASS_KEY "-no-cbranch", cl::desc("Don't treat conditional branches as disclosure gadgets. This " "may improve performance, at the cost of security."), cl::init(false), cl::Hidden)
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:256
A debug info location.
Definition: DebugLoc.h:33
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:156
iterator end()
Definition: DenseMap.h:84
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:147
virtual std::string message() const
Return the error message as a string.
Definition: Error.h:53
This class wraps a filename and another Error.
Definition: Error.h:1328
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
unsigned getLoopDepth(const BlockT *BB) const
Return the loop nesting level of the specified block.
iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
iterator_range< succ_iterator > successors()
Analysis pass which computes a MachineDominatorTree.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineBasicBlock & front() const
Representation of each machine instruction.
Definition: MachineInstr.h:69
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:347
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
Register getReg() const
getReg - Returns the register number.
A NodeSet contains a set of SUnit DAG nodes with additional information that assigns a priority to th...
bool insert(SUnit *SU)
bool empty() const
virtual void print(raw_ostream &OS, const Module *M) const
print - Print out the internal state of the pass.
Definition: Pass.cpp:130
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:132
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition: SmallSet.h:181
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
TargetInstrInfo - Interface to description of machine instruction set.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
A raw_ostream that writes to a file descriptor.
Definition: raw_ostream.h:460
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
This class provides a portable interface to dynamic libraries which also might be known as shared lib...
static DynamicLibrary getPermanentLibrary(const char *filename, std::string *errMsg=nullptr)
This function permanently loads the dynamic library at the given path using the library load operatio...
void * getAddressOfSymbol(const char *symbolName)
Searches through the library for the symbol symbolName.
bool isValid() const
Returns true if the object refers to a valid library.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ AddrIndexReg
Definition: X86BaseInfo.h:31
int getFirstAddrOperandIdx(const MachineInstr &MI)
Return the index of the instruction's first address operand, if it has a memory reference,...
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
NodeAddr< PhiNode * > Phi
Definition: RDFGraph.h:390
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
std::set< NodeId > NodeSet
Definition: RDFGraph.h:551
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
UnaryFunction for_each(R &&Range, UnaryFunction F)
Provide wrappers to std::for_each which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1732
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
FunctionPass * createX86LoadValueInjectionLoadHardeningPass()
raw_fd_ostream & outs()
This returns a reference to a raw_fd_ostream for standard output.
raw_ostream & WriteGraph(raw_ostream &O, const GraphType &G, bool ShortNames=false, const Twine &Title="")
Definition: GraphWriter.h:359
auto unique(Range &&R, Predicate P)
Definition: STLExtras.h:2055
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1664
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1753
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Ref
The access may reference the value stored in memory.
#define N
static std::string getNodeAttributes(NodeRef Node, GraphType *)
static std::string getEdgeAttributes(NodeRef, ChildIteratorType E, GraphType *)
DOTGraphTraits - Template class that can be specialized to customize how graphs are converted to 'dot...
DefaultDOTGraphTraits - This class provides the default implementations of all of the DOTGraphTraits ...
typename GraphType::UnknownGraphTypeError NodeRef
Definition: GraphTraits.h:95