LLVM 17.0.0git
X86LoadValueInjectionLoadHardening.cpp
Go to the documentation of this file.
1//==-- X86LoadValueInjectionLoadHardening.cpp - LVI load hardening for x86 --=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// Description: This pass finds Load Value Injection (LVI) gadgets consisting
10/// of a load from memory (i.e., SOURCE), and any operation that may transmit
11/// the value loaded from memory over a covert channel, or use the value loaded
12/// from memory to determine a branch/call target (i.e., SINK). After finding
13/// all such gadgets in a given function, the pass minimally inserts LFENCE
14/// instructions in such a manner that the following property is satisfied: for
15/// all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at
16/// least one LFENCE instruction. The algorithm that implements this minimal
17/// insertion is influenced by an academic paper that minimally inserts memory
18/// fences for high-performance concurrent programs:
19/// http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf
20/// The algorithm implemented in this pass is as follows:
21/// 1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the
22/// following components:
23/// - SOURCE instructions (also includes function arguments)
24/// - SINK instructions
25/// - Basic block entry points
26/// - Basic block terminators
27/// - LFENCE instructions
28/// 2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e.,
29/// gadgets) are already mitigated by existing LFENCEs. If all gadgets have been
30/// mitigated, go to step 6.
31/// 3. Use a heuristic or plugin to approximate minimal LFENCE insertion.
32/// 4. Insert one LFENCE along each CFG edge that was cut in step 3.
33/// 5. Go to step 2.
34/// 6. If any LFENCEs were inserted, return `true` from runOnMachineFunction()
35/// to tell LLVM that the function was modified.
36///
37//===----------------------------------------------------------------------===//
38
39#include "ImmutableGraph.h"
40#include "X86.h"
41#include "X86Subtarget.h"
42#include "X86TargetMachine.h"
43#include "llvm/ADT/DenseMap.h"
44#include "llvm/ADT/DenseSet.h"
45#include "llvm/ADT/STLExtras.h"
46#include "llvm/ADT/SmallSet.h"
47#include "llvm/ADT/Statistic.h"
48#include "llvm/ADT/StringRef.h"
63#include "llvm/Support/Debug.h"
67
68using namespace llvm;
69
70#define PASS_KEY "x86-lvi-load"
71#define DEBUG_TYPE PASS_KEY
72
73STATISTIC(NumFences, "Number of LFENCEs inserted for LVI mitigation");
74STATISTIC(NumFunctionsConsidered, "Number of functions analyzed");
75STATISTIC(NumFunctionsMitigated, "Number of functions for which mitigations "
76 "were deployed");
77STATISTIC(NumGadgets, "Number of LVI gadgets detected during analysis");
78
80 PASS_KEY "-opt-plugin",
81 cl::desc("Specify a plugin to optimize LFENCE insertion"), cl::Hidden);
82
84 PASS_KEY "-no-cbranch",
85 cl::desc("Don't treat conditional branches as disclosure gadgets. This "
86 "may improve performance, at the cost of security."),
87 cl::init(false), cl::Hidden);
88
90 PASS_KEY "-dot",
92 "For each function, emit a dot graph depicting potential LVI gadgets"),
93 cl::init(false), cl::Hidden);
94
96 PASS_KEY "-dot-only",
97 cl::desc("For each function, emit a dot graph depicting potential LVI "
98 "gadgets, and do not insert any fences"),
99 cl::init(false), cl::Hidden);
100
102 PASS_KEY "-dot-verify",
103 cl::desc("For each function, emit a dot graph to stdout depicting "
104 "potential LVI gadgets, used for testing purposes only"),
105 cl::init(false), cl::Hidden);
106
108typedef int (*OptimizeCutT)(unsigned int *Nodes, unsigned int NodesSize,
109 unsigned int *Edges, int *EdgeValues,
110 int *CutEdges /* out */, unsigned int EdgesSize);
111static OptimizeCutT OptimizeCut = nullptr;
112
113namespace {
114
115struct MachineGadgetGraph : ImmutableGraph<MachineInstr *, int> {
116 static constexpr int GadgetEdgeSentinel = -1;
117 static constexpr MachineInstr *const ArgNodeSentinel = nullptr;
118
120 using Node = typename GraphT::Node;
121 using Edge = typename GraphT::Edge;
122 using size_type = typename GraphT::size_type;
123 MachineGadgetGraph(std::unique_ptr<Node[]> Nodes,
124 std::unique_ptr<Edge[]> Edges, size_type NodesSize,
125 size_type EdgesSize, int NumFences = 0, int NumGadgets = 0)
126 : GraphT(std::move(Nodes), std::move(Edges), NodesSize, EdgesSize),
127 NumFences(NumFences), NumGadgets(NumGadgets) {}
128 static inline bool isCFGEdge(const Edge &E) {
129 return E.getValue() != GadgetEdgeSentinel;
130 }
131 static inline bool isGadgetEdge(const Edge &E) {
132 return E.getValue() == GadgetEdgeSentinel;
133 }
134 int NumFences;
135 int NumGadgets;
136};
137
138class X86LoadValueInjectionLoadHardeningPass : public MachineFunctionPass {
139public:
140 X86LoadValueInjectionLoadHardeningPass() : MachineFunctionPass(ID) {}
141
142 StringRef getPassName() const override {
143 return "X86 Load Value Injection (LVI) Load Hardening";
144 }
145 void getAnalysisUsage(AnalysisUsage &AU) const override;
146 bool runOnMachineFunction(MachineFunction &MF) override;
147
148 static char ID;
149
150private:
152 using Edge = MachineGadgetGraph::Edge;
153 using Node = MachineGadgetGraph::Node;
154 using EdgeSet = MachineGadgetGraph::EdgeSet;
155 using NodeSet = MachineGadgetGraph::NodeSet;
156
157 const X86Subtarget *STI = nullptr;
158 const TargetInstrInfo *TII = nullptr;
159 const TargetRegisterInfo *TRI = nullptr;
160
161 std::unique_ptr<MachineGadgetGraph>
162 getGadgetGraph(MachineFunction &MF, const MachineLoopInfo &MLI,
163 const MachineDominatorTree &MDT,
164 const MachineDominanceFrontier &MDF) const;
165 int hardenLoadsWithPlugin(MachineFunction &MF,
166 std::unique_ptr<MachineGadgetGraph> Graph) const;
167 int hardenLoadsWithHeuristic(MachineFunction &MF,
168 std::unique_ptr<MachineGadgetGraph> Graph) const;
169 int elimMitigatedEdgesAndNodes(MachineGadgetGraph &G,
170 EdgeSet &ElimEdges /* in, out */,
171 NodeSet &ElimNodes /* in, out */) const;
172 std::unique_ptr<MachineGadgetGraph>
173 trimMitigatedEdges(std::unique_ptr<MachineGadgetGraph> Graph) const;
174 int insertFences(MachineFunction &MF, MachineGadgetGraph &G,
175 EdgeSet &CutEdges /* in, out */) const;
176 bool instrUsesRegToAccessMemory(const MachineInstr &I, unsigned Reg) const;
177 bool instrUsesRegToBranch(const MachineInstr &I, unsigned Reg) const;
178 inline bool isFence(const MachineInstr *MI) const {
179 return MI && (MI->getOpcode() == X86::LFENCE ||
180 (STI->useLVIControlFlowIntegrity() && MI->isCall()));
181 }
182};
183
184} // end anonymous namespace
185
186namespace llvm {
187
188template <>
189struct GraphTraits<MachineGadgetGraph *>
191
192template <>
193struct DOTGraphTraits<MachineGadgetGraph *> : DefaultDOTGraphTraits {
194 using GraphType = MachineGadgetGraph;
196 using NodeRef = typename Traits::NodeRef;
197 using EdgeRef = typename Traits::EdgeRef;
198 using ChildIteratorType = typename Traits::ChildIteratorType;
199 using ChildEdgeIteratorType = typename Traits::ChildEdgeIteratorType;
200
201 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
202
203 std::string getNodeLabel(NodeRef Node, GraphType *) {
204 if (Node->getValue() == MachineGadgetGraph::ArgNodeSentinel)
205 return "ARGS";
206
207 std::string Str;
209 OS << *Node->getValue();
210 return OS.str();
211 }
212
213 static std::string getNodeAttributes(NodeRef Node, GraphType *) {
214 MachineInstr *MI = Node->getValue();
215 if (MI == MachineGadgetGraph::ArgNodeSentinel)
216 return "color = blue";
217 if (MI->getOpcode() == X86::LFENCE)
218 return "color = green";
219 return "";
220 }
221
223 GraphType *) {
224 int EdgeVal = (*E.getCurrent()).getValue();
225 return EdgeVal >= 0 ? "label = " + std::to_string(EdgeVal)
226 : "color = red, style = \"dashed\"";
227 }
228};
229
230} // end namespace llvm
231
232constexpr MachineInstr *MachineGadgetGraph::ArgNodeSentinel;
233constexpr int MachineGadgetGraph::GadgetEdgeSentinel;
234
235char X86LoadValueInjectionLoadHardeningPass::ID = 0;
236
237void X86LoadValueInjectionLoadHardeningPass::getAnalysisUsage(
238 AnalysisUsage &AU) const {
243 AU.setPreservesCFG();
244}
245
247 MachineGadgetGraph *G) {
248 WriteGraph(OS, G, /*ShortNames*/ false,
249 "Speculative gadgets for \"" + MF.getName() + "\" function");
250}
251
252bool X86LoadValueInjectionLoadHardeningPass::runOnMachineFunction(
253 MachineFunction &MF) {
254 LLVM_DEBUG(dbgs() << "***** " << getPassName() << " : " << MF.getName()
255 << " *****\n");
256 STI = &MF.getSubtarget<X86Subtarget>();
257 if (!STI->useLVILoadHardening())
258 return false;
259
260 // FIXME: support 32-bit
261 if (!STI->is64Bit())
262 report_fatal_error("LVI load hardening is only supported on 64-bit", false);
263
264 // Don't skip functions with the "optnone" attr but participate in opt-bisect.
265 const Function &F = MF.getFunction();
266 if (!F.hasOptNone() && skipFunction(F))
267 return false;
268
269 ++NumFunctionsConsidered;
270 TII = STI->getInstrInfo();
271 TRI = STI->getRegisterInfo();
272 LLVM_DEBUG(dbgs() << "Building gadget graph...\n");
273 const auto &MLI = getAnalysis<MachineLoopInfo>();
274 const auto &MDT = getAnalysis<MachineDominatorTree>();
275 const auto &MDF = getAnalysis<MachineDominanceFrontier>();
276 std::unique_ptr<MachineGadgetGraph> Graph = getGadgetGraph(MF, MLI, MDT, MDF);
277 LLVM_DEBUG(dbgs() << "Building gadget graph... Done\n");
278 if (Graph == nullptr)
279 return false; // didn't find any gadgets
280
281 if (EmitDotVerify) {
282 writeGadgetGraph(outs(), MF, Graph.get());
283 return false;
284 }
285
286 if (EmitDot || EmitDotOnly) {
287 LLVM_DEBUG(dbgs() << "Emitting gadget graph...\n");
288 std::error_code FileError;
289 std::string FileName = "lvi.";
290 FileName += MF.getName();
291 FileName += ".dot";
292 raw_fd_ostream FileOut(FileName, FileError);
293 if (FileError)
294 errs() << FileError.message();
295 writeGadgetGraph(FileOut, MF, Graph.get());
296 FileOut.close();
297 LLVM_DEBUG(dbgs() << "Emitting gadget graph... Done\n");
298 if (EmitDotOnly)
299 return false;
300 }
301
302 int FencesInserted;
303 if (!OptimizePluginPath.empty()) {
304 if (!OptimizeDL.isValid()) {
305 std::string ErrorMsg;
307 OptimizePluginPath.c_str(), &ErrorMsg);
308 if (!ErrorMsg.empty())
309 report_fatal_error(Twine("Failed to load opt plugin: \"") + ErrorMsg +
310 "\"");
312 if (!OptimizeCut)
313 report_fatal_error("Invalid optimization plugin");
314 }
315 FencesInserted = hardenLoadsWithPlugin(MF, std::move(Graph));
316 } else { // Use the default greedy heuristic
317 FencesInserted = hardenLoadsWithHeuristic(MF, std::move(Graph));
318 }
319
320 if (FencesInserted > 0)
321 ++NumFunctionsMitigated;
322 NumFences += FencesInserted;
323 return (FencesInserted > 0);
324}
325
326std::unique_ptr<MachineGadgetGraph>
327X86LoadValueInjectionLoadHardeningPass::getGadgetGraph(
328 MachineFunction &MF, const MachineLoopInfo &MLI,
329 const MachineDominatorTree &MDT,
330 const MachineDominanceFrontier &MDF) const {
331 using namespace rdf;
332
333 // Build the Register Dataflow Graph using the RDF framework
334 DataFlowGraph DFG{MF, *TII, *TRI, MDT, MDF};
335 DFG.build();
336 Liveness L{MF.getRegInfo(), DFG};
337 L.computePhiInfo();
338
339 GraphBuilder Builder;
340 using GraphIter = typename GraphBuilder::BuilderNodeRef;
342 int FenceCount = 0, GadgetCount = 0;
343 auto MaybeAddNode = [&NodeMap, &Builder](MachineInstr *MI) {
344 auto Ref = NodeMap.find(MI);
345 if (Ref == NodeMap.end()) {
346 auto I = Builder.addVertex(MI);
347 NodeMap[MI] = I;
348 return std::pair<GraphIter, bool>{I, true};
349 }
350 return std::pair<GraphIter, bool>{Ref->getSecond(), false};
351 };
352
353 // The `Transmitters` map memoizes transmitters found for each def. If a def
354 // has not yet been analyzed, then it will not appear in the map. If a def
355 // has been analyzed and was determined not to have any transmitters, then
356 // its list of transmitters will be empty.
358
359 // Analyze all machine instructions to find gadgets and LFENCEs, adding
360 // each interesting value to `Nodes`
361 auto AnalyzeDef = [&](NodeAddr<DefNode *> SourceDef) {
362 SmallSet<NodeId, 8> UsesVisited, DefsVisited;
363 std::function<void(NodeAddr<DefNode *>)> AnalyzeDefUseChain =
364 [&](NodeAddr<DefNode *> Def) {
365 if (Transmitters.contains(Def.Id))
366 return; // Already analyzed `Def`
367
368 // Use RDF to find all the uses of `Def`
370 RegisterRef DefReg = Def.Addr->getRegRef(DFG);
371 for (auto UseID : L.getAllReachedUses(DefReg, Def)) {
372 auto Use = DFG.addr<UseNode *>(UseID);
373 if (Use.Addr->getFlags() & NodeAttrs::PhiRef) { // phi node
374 NodeAddr<PhiNode *> Phi = Use.Addr->getOwner(DFG);
375 for (const auto& I : L.getRealUses(Phi.Id)) {
376 if (DFG.getPRI().alias(RegisterRef(I.first), DefReg)) {
377 for (const auto &UA : I.second)
378 Uses.emplace(UA.first);
379 }
380 }
381 } else { // not a phi node
382 Uses.emplace(UseID);
383 }
384 }
385
386 // For each use of `Def`, we want to know whether:
387 // (1) The use can leak the Def'ed value,
388 // (2) The use can further propagate the Def'ed value to more defs
389 for (auto UseID : Uses) {
390 if (!UsesVisited.insert(UseID).second)
391 continue; // Already visited this use of `Def`
392
393 auto Use = DFG.addr<UseNode *>(UseID);
394 assert(!(Use.Addr->getFlags() & NodeAttrs::PhiRef));
395 MachineOperand &UseMO = Use.Addr->getOp();
396 MachineInstr &UseMI = *UseMO.getParent();
397 assert(UseMO.isReg());
398
399 // We naively assume that an instruction propagates any loaded
400 // uses to all defs unless the instruction is a call, in which
401 // case all arguments will be treated as gadget sources during
402 // analysis of the callee function.
403 if (UseMI.isCall())
404 continue;
405
406 // Check whether this use can transmit (leak) its value.
407 if (instrUsesRegToAccessMemory(UseMI, UseMO.getReg()) ||
409 instrUsesRegToBranch(UseMI, UseMO.getReg()))) {
410 Transmitters[Def.Id].push_back(Use.Addr->getOwner(DFG).Id);
411 if (UseMI.mayLoad())
412 continue; // Found a transmitting load -- no need to continue
413 // traversing its defs (i.e., this load will become
414 // a new gadget source anyways).
415 }
416
417 // Check whether the use propagates to more defs.
418 NodeAddr<InstrNode *> Owner{Use.Addr->getOwner(DFG)};
419 rdf::NodeList AnalyzedChildDefs;
420 for (const auto &ChildDef :
421 Owner.Addr->members_if(DataFlowGraph::IsDef, DFG)) {
422 if (!DefsVisited.insert(ChildDef.Id).second)
423 continue; // Already visited this def
424 if (Def.Addr->getAttrs() & NodeAttrs::Dead)
425 continue;
426 if (Def.Id == ChildDef.Id)
427 continue; // `Def` uses itself (e.g., increment loop counter)
428
429 AnalyzeDefUseChain(ChildDef);
430
431 // `Def` inherits all of its child defs' transmitters.
432 for (auto TransmitterId : Transmitters[ChildDef.Id])
433 Transmitters[Def.Id].push_back(TransmitterId);
434 }
435 }
436
437 // Note that this statement adds `Def.Id` to the map if no
438 // transmitters were found for `Def`.
439 auto &DefTransmitters = Transmitters[Def.Id];
440
441 // Remove duplicate transmitters
442 llvm::sort(DefTransmitters);
443 DefTransmitters.erase(
444 std::unique(DefTransmitters.begin(), DefTransmitters.end()),
445 DefTransmitters.end());
446 };
447
448 // Find all of the transmitters
449 AnalyzeDefUseChain(SourceDef);
450 auto &SourceDefTransmitters = Transmitters[SourceDef.Id];
451 if (SourceDefTransmitters.empty())
452 return; // No transmitters for `SourceDef`
453
454 MachineInstr *Source = SourceDef.Addr->getFlags() & NodeAttrs::PhiRef
455 ? MachineGadgetGraph::ArgNodeSentinel
456 : SourceDef.Addr->getOp().getParent();
457 auto GadgetSource = MaybeAddNode(Source);
458 // Each transmitter is a sink for `SourceDef`.
459 for (auto TransmitterId : SourceDefTransmitters) {
460 MachineInstr *Sink = DFG.addr<StmtNode *>(TransmitterId).Addr->getCode();
461 auto GadgetSink = MaybeAddNode(Sink);
462 // Add the gadget edge to the graph.
463 Builder.addEdge(MachineGadgetGraph::GadgetEdgeSentinel,
464 GadgetSource.first, GadgetSink.first);
465 ++GadgetCount;
466 }
467 };
468
469 LLVM_DEBUG(dbgs() << "Analyzing def-use chains to find gadgets\n");
470 // Analyze function arguments
471 NodeAddr<BlockNode *> EntryBlock = DFG.getFunc().Addr->getEntryBlock(DFG);
472 for (NodeAddr<PhiNode *> ArgPhi :
473 EntryBlock.Addr->members_if(DataFlowGraph::IsPhi, DFG)) {
474 NodeList Defs = ArgPhi.Addr->members_if(DataFlowGraph::IsDef, DFG);
475 llvm::for_each(Defs, AnalyzeDef);
476 }
477 // Analyze every instruction in MF
478 for (NodeAddr<BlockNode *> BA : DFG.getFunc().Addr->members(DFG)) {
479 for (NodeAddr<StmtNode *> SA :
480 BA.Addr->members_if(DataFlowGraph::IsCode<NodeAttrs::Stmt>, DFG)) {
481 MachineInstr *MI = SA.Addr->getCode();
482 if (isFence(MI)) {
483 MaybeAddNode(MI);
484 ++FenceCount;
485 } else if (MI->mayLoad()) {
486 NodeList Defs = SA.Addr->members_if(DataFlowGraph::IsDef, DFG);
487 llvm::for_each(Defs, AnalyzeDef);
488 }
489 }
490 }
491 LLVM_DEBUG(dbgs() << "Found " << FenceCount << " fences\n");
492 LLVM_DEBUG(dbgs() << "Found " << GadgetCount << " gadgets\n");
493 if (GadgetCount == 0)
494 return nullptr;
495 NumGadgets += GadgetCount;
496
497 // Traverse CFG to build the rest of the graph
499 std::function<void(MachineBasicBlock *, GraphIter, unsigned)> TraverseCFG =
500 [&](MachineBasicBlock *MBB, GraphIter GI, unsigned ParentDepth) {
501 unsigned LoopDepth = MLI.getLoopDepth(MBB);
502 if (!MBB->empty()) {
503 // Always add the first instruction in each block
504 auto NI = MBB->begin();
505 auto BeginBB = MaybeAddNode(&*NI);
506 Builder.addEdge(ParentDepth, GI, BeginBB.first);
507 if (!BlocksVisited.insert(MBB).second)
508 return;
509
510 // Add any instructions within the block that are gadget components
511 GI = BeginBB.first;
512 while (++NI != MBB->end()) {
513 auto Ref = NodeMap.find(&*NI);
514 if (Ref != NodeMap.end()) {
515 Builder.addEdge(LoopDepth, GI, Ref->getSecond());
516 GI = Ref->getSecond();
517 }
518 }
519
520 // Always add the terminator instruction, if one exists
521 auto T = MBB->getFirstTerminator();
522 if (T != MBB->end()) {
523 auto EndBB = MaybeAddNode(&*T);
524 if (EndBB.second)
525 Builder.addEdge(LoopDepth, GI, EndBB.first);
526 GI = EndBB.first;
527 }
528 }
529 for (MachineBasicBlock *Succ : MBB->successors())
530 TraverseCFG(Succ, GI, LoopDepth);
531 };
532 // ArgNodeSentinel is a pseudo-instruction that represents MF args in the
533 // GadgetGraph
534 GraphIter ArgNode = MaybeAddNode(MachineGadgetGraph::ArgNodeSentinel).first;
535 TraverseCFG(&MF.front(), ArgNode, 0);
536 std::unique_ptr<MachineGadgetGraph> G{Builder.get(FenceCount, GadgetCount)};
537 LLVM_DEBUG(dbgs() << "Found " << G->nodes_size() << " nodes\n");
538 return G;
539}
540
541// Returns the number of remaining gadget edges that could not be eliminated
542int X86LoadValueInjectionLoadHardeningPass::elimMitigatedEdgesAndNodes(
543 MachineGadgetGraph &G, EdgeSet &ElimEdges /* in, out */,
544 NodeSet &ElimNodes /* in, out */) const {
545 if (G.NumFences > 0) {
546 // Eliminate fences and CFG edges that ingress and egress the fence, as
547 // they are trivially mitigated.
548 for (const Edge &E : G.edges()) {
549 const Node *Dest = E.getDest();
550 if (isFence(Dest->getValue())) {
551 ElimNodes.insert(*Dest);
552 ElimEdges.insert(E);
553 for (const Edge &DE : Dest->edges())
554 ElimEdges.insert(DE);
555 }
556 }
557 }
558
559 // Find and eliminate gadget edges that have been mitigated.
560 int RemainingGadgets = 0;
561 NodeSet ReachableNodes{G};
562 for (const Node &RootN : G.nodes()) {
563 if (llvm::none_of(RootN.edges(), MachineGadgetGraph::isGadgetEdge))
564 continue; // skip this node if it isn't a gadget source
565
566 // Find all of the nodes that are CFG-reachable from RootN using DFS
567 ReachableNodes.clear();
568 std::function<void(const Node *, bool)> FindReachableNodes =
569 [&](const Node *N, bool FirstNode) {
570 if (!FirstNode)
571 ReachableNodes.insert(*N);
572 for (const Edge &E : N->edges()) {
573 const Node *Dest = E.getDest();
574 if (MachineGadgetGraph::isCFGEdge(E) && !ElimEdges.contains(E) &&
575 !ReachableNodes.contains(*Dest))
576 FindReachableNodes(Dest, false);
577 }
578 };
579 FindReachableNodes(&RootN, true);
580
581 // Any gadget whose sink is unreachable has been mitigated
582 for (const Edge &E : RootN.edges()) {
583 if (MachineGadgetGraph::isGadgetEdge(E)) {
584 if (ReachableNodes.contains(*E.getDest())) {
585 // This gadget's sink is reachable
586 ++RemainingGadgets;
587 } else { // This gadget's sink is unreachable, and therefore mitigated
588 ElimEdges.insert(E);
589 }
590 }
591 }
592 }
593 return RemainingGadgets;
594}
595
596std::unique_ptr<MachineGadgetGraph>
597X86LoadValueInjectionLoadHardeningPass::trimMitigatedEdges(
598 std::unique_ptr<MachineGadgetGraph> Graph) const {
599 NodeSet ElimNodes{*Graph};
600 EdgeSet ElimEdges{*Graph};
601 int RemainingGadgets =
602 elimMitigatedEdgesAndNodes(*Graph, ElimEdges, ElimNodes);
603 if (ElimEdges.empty() && ElimNodes.empty()) {
604 Graph->NumFences = 0;
605 Graph->NumGadgets = RemainingGadgets;
606 } else {
607 Graph = GraphBuilder::trim(*Graph, ElimNodes, ElimEdges, 0 /* NumFences */,
608 RemainingGadgets);
609 }
610 return Graph;
611}
612
613int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithPlugin(
614 MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
615 int FencesInserted = 0;
616
617 do {
618 LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
619 Graph = trimMitigatedEdges(std::move(Graph));
620 LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
621 if (Graph->NumGadgets == 0)
622 break;
623
624 LLVM_DEBUG(dbgs() << "Cutting edges...\n");
625 EdgeSet CutEdges{*Graph};
626 auto Nodes = std::make_unique<unsigned int[]>(Graph->nodes_size() +
627 1 /* terminator node */);
628 auto Edges = std::make_unique<unsigned int[]>(Graph->edges_size());
629 auto EdgeCuts = std::make_unique<int[]>(Graph->edges_size());
630 auto EdgeValues = std::make_unique<int[]>(Graph->edges_size());
631 for (const Node &N : Graph->nodes()) {
632 Nodes[Graph->getNodeIndex(N)] = Graph->getEdgeIndex(*N.edges_begin());
633 }
634 Nodes[Graph->nodes_size()] = Graph->edges_size(); // terminator node
635 for (const Edge &E : Graph->edges()) {
636 Edges[Graph->getEdgeIndex(E)] = Graph->getNodeIndex(*E.getDest());
637 EdgeValues[Graph->getEdgeIndex(E)] = E.getValue();
638 }
639 OptimizeCut(Nodes.get(), Graph->nodes_size(), Edges.get(), EdgeValues.get(),
640 EdgeCuts.get(), Graph->edges_size());
641 for (int I = 0; I < Graph->edges_size(); ++I)
642 if (EdgeCuts[I])
643 CutEdges.set(I);
644 LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
645 LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
646
647 LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
648 FencesInserted += insertFences(MF, *Graph, CutEdges);
649 LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
650 LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
651
652 Graph = GraphBuilder::trim(*Graph, NodeSet{*Graph}, CutEdges);
653 } while (true);
654
655 return FencesInserted;
656}
657
658int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithHeuristic(
659 MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
660 // If `MF` does not have any fences, then no gadgets would have been
661 // mitigated at this point.
662 if (Graph->NumFences > 0) {
663 LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
664 Graph = trimMitigatedEdges(std::move(Graph));
665 LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
666 }
667
668 if (Graph->NumGadgets == 0)
669 return 0;
670
671 LLVM_DEBUG(dbgs() << "Cutting edges...\n");
672 EdgeSet CutEdges{*Graph};
673
674 // Begin by collecting all ingress CFG edges for each node
676 for (const Edge &E : Graph->edges())
677 if (MachineGadgetGraph::isCFGEdge(E))
678 IngressEdgeMap[E.getDest()].push_back(&E);
679
680 // For each gadget edge, make cuts that guarantee the gadget will be
681 // mitigated. A computationally efficient way to achieve this is to either:
682 // (a) cut all egress CFG edges from the gadget source, or
683 // (b) cut all ingress CFG edges to the gadget sink.
684 //
685 // Moreover, the algorithm tries not to make a cut into a loop by preferring
686 // to make a (b)-type cut if the gadget source resides at a greater loop depth
687 // than the gadget sink, or an (a)-type cut otherwise.
688 for (const Node &N : Graph->nodes()) {
689 for (const Edge &E : N.edges()) {
690 if (!MachineGadgetGraph::isGadgetEdge(E))
691 continue;
692
694 SmallVector<const Edge *, 2> &IngressEdges = IngressEdgeMap[E.getDest()];
695 for (const Edge &EgressEdge : N.edges())
696 if (MachineGadgetGraph::isCFGEdge(EgressEdge))
697 EgressEdges.push_back(&EgressEdge);
698
699 int EgressCutCost = 0, IngressCutCost = 0;
700 for (const Edge *EgressEdge : EgressEdges)
701 if (!CutEdges.contains(*EgressEdge))
702 EgressCutCost += EgressEdge->getValue();
703 for (const Edge *IngressEdge : IngressEdges)
704 if (!CutEdges.contains(*IngressEdge))
705 IngressCutCost += IngressEdge->getValue();
706
707 auto &EdgesToCut =
708 IngressCutCost < EgressCutCost ? IngressEdges : EgressEdges;
709 for (const Edge *E : EdgesToCut)
710 CutEdges.insert(*E);
711 }
712 }
713 LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
714 LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
715
716 LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
717 int FencesInserted = insertFences(MF, *Graph, CutEdges);
718 LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
719 LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
720
721 return FencesInserted;
722}
723
724int X86LoadValueInjectionLoadHardeningPass::insertFences(
725 MachineFunction &MF, MachineGadgetGraph &G,
726 EdgeSet &CutEdges /* in, out */) const {
727 int FencesInserted = 0;
728 for (const Node &N : G.nodes()) {
729 for (const Edge &E : N.edges()) {
730 if (CutEdges.contains(E)) {
731 MachineInstr *MI = N.getValue(), *Prev;
732 MachineBasicBlock *MBB; // Insert an LFENCE in this MBB
733 MachineBasicBlock::iterator InsertionPt; // ...at this point
734 if (MI == MachineGadgetGraph::ArgNodeSentinel) {
735 // insert LFENCE at beginning of entry block
736 MBB = &MF.front();
737 InsertionPt = MBB->begin();
738 Prev = nullptr;
739 } else if (MI->isBranch()) { // insert the LFENCE before the branch
740 MBB = MI->getParent();
741 InsertionPt = MI;
742 Prev = MI->getPrevNode();
743 // Remove all egress CFG edges from this branch because the inserted
744 // LFENCE prevents gadgets from crossing the branch.
745 for (const Edge &E : N.edges()) {
746 if (MachineGadgetGraph::isCFGEdge(E))
747 CutEdges.insert(E);
748 }
749 } else { // insert the LFENCE after the instruction
750 MBB = MI->getParent();
751 InsertionPt = MI->getNextNode() ? MI->getNextNode() : MBB->end();
752 Prev = InsertionPt == MBB->end()
753 ? (MBB->empty() ? nullptr : &MBB->back())
754 : InsertionPt->getPrevNode();
755 }
756 // Ensure this insertion is not redundant (two LFENCEs in sequence).
757 if ((InsertionPt == MBB->end() || !isFence(&*InsertionPt)) &&
758 (!Prev || !isFence(Prev))) {
759 BuildMI(*MBB, InsertionPt, DebugLoc(), TII->get(X86::LFENCE));
760 ++FencesInserted;
761 }
762 }
763 }
764 }
765 return FencesInserted;
766}
767
768bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToAccessMemory(
769 const MachineInstr &MI, unsigned Reg) const {
770 if (!MI.mayLoadOrStore() || MI.getOpcode() == X86::MFENCE ||
771 MI.getOpcode() == X86::SFENCE || MI.getOpcode() == X86::LFENCE)
772 return false;
773
774 // FIXME: This does not handle pseudo loading instruction like TCRETURN*
775 const MCInstrDesc &Desc = MI.getDesc();
776 int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
777 if (MemRefBeginIdx < 0) {
778 LLVM_DEBUG(dbgs() << "Warning: unable to obtain memory operand for loading "
779 "instruction:\n";
780 MI.print(dbgs()); dbgs() << '\n';);
781 return false;
782 }
783 MemRefBeginIdx += X86II::getOperandBias(Desc);
784
785 const MachineOperand &BaseMO =
786 MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
787 const MachineOperand &IndexMO =
788 MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
789 return (BaseMO.isReg() && BaseMO.getReg() != X86::NoRegister &&
790 TRI->regsOverlap(BaseMO.getReg(), Reg)) ||
791 (IndexMO.isReg() && IndexMO.getReg() != X86::NoRegister &&
792 TRI->regsOverlap(IndexMO.getReg(), Reg));
793}
794
795bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToBranch(
796 const MachineInstr &MI, unsigned Reg) const {
797 if (!MI.isConditionalBranch())
798 return false;
799 for (const MachineOperand &Use : MI.uses())
800 if (Use.isReg() && Use.getReg() == Reg)
801 return true;
802 return false;
803}
804
805INITIALIZE_PASS_BEGIN(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
806 "X86 LVI load hardening", false, false)
810INITIALIZE_PASS_END(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
811 "X86 LVI load hardening", false, false)
812
814 return new X86LoadValueInjectionLoadHardeningPass();
815}
MachineInstrBuilder & UseMI
MachineBasicBlock & MBB
assume Assume Builder
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
uint64_t Addr
Rewrite Partial Register Uses
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
Description: ImmutableGraph is a fast DAG implementation that cannot be modified, except by creating ...
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
unsigned const TargetRegisterInfo * TRI
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:59
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallSet class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
int(* OptimizeCutT)(unsigned int *Nodes, unsigned int NodesSize, unsigned int *Edges, int *EdgeValues, int *CutEdges, unsigned int EdgesSize)
static cl::opt< bool > EmitDot(PASS_KEY "-dot", cl::desc("For each function, emit a dot graph depicting potential LVI gadgets"), cl::init(false), cl::Hidden)
static cl::opt< std::string > OptimizePluginPath(PASS_KEY "-opt-plugin", cl::desc("Specify a plugin to optimize LFENCE insertion"), cl::Hidden)
static void writeGadgetGraph(raw_ostream &OS, MachineFunction &MF, MachineGadgetGraph *G)
static cl::opt< bool > EmitDotVerify(PASS_KEY "-dot-verify", cl::desc("For each function, emit a dot graph to stdout depicting " "potential LVI gadgets, used for testing purposes only"), cl::init(false), cl::Hidden)
X86 LVI load hardening
static llvm::sys::DynamicLibrary OptimizeDL
static OptimizeCutT OptimizeCut
static cl::opt< bool > EmitDotOnly(PASS_KEY "-dot-only", cl::desc("For each function, emit a dot graph depicting potential LVI " "gadgets, and do not insert any fences"), cl::init(false), cl::Hidden)
static cl::opt< bool > NoConditionalBranches(PASS_KEY "-no-cbranch", cl::desc("Don't treat conditional branches as disclosure gadgets. This " "may improve performance, at the cost of security."), cl::init(false), cl::Hidden)
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:265
A debug info location.
Definition: DebugLoc.h:33
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
iterator end()
Definition: DenseMap.h:84
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:145
virtual std::string message() const
Return the error message as a string.
Definition: Error.h:55
This class wraps a filename and another Error.
Definition: Error.h:1270
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
iterator_range< succ_iterator > successors()
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineBasicBlock & front() const
Representation of each machine instruction.
Definition: MachineInstr.h:68
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:320
unsigned getLoopDepth(const MachineBasicBlock *BB) const
Return the loop nesting level of the specified block.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
Register getReg() const
getReg - Returns the register number.
A NodeSet contains a set of SUnit DAG nodes with additional information that assigns a priority to th...
bool insert(SUnit *SU)
bool empty() const
virtual void print(raw_ostream &OS, const Module *M) const
print - Print out the internal state of the pass.
Definition: Pass.cpp:130
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition: SmallSet.h:179
void push_back(const T &Elt)
Definition: SmallVector.h:416
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TargetInstrInfo - Interface to description of machine instruction set.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
A raw_ostream that writes to a file descriptor.
Definition: raw_ostream.h:454
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:642
This class provides a portable interface to dynamic libraries which also might be known as shared lib...
static DynamicLibrary getPermanentLibrary(const char *filename, std::string *errMsg=nullptr)
This function permanently loads the dynamic library at the given path using the library load operatio...
void * getAddressOfSymbol(const char *symbolName)
Searches through the library for the symbol symbolName.
bool isValid() const
Returns true if the object refers to a valid library.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
int getMemoryOperandNo(uint64_t TSFlags)
The function returns the MCInst operand # for the first field of the memory operand.
Definition: X86BaseInfo.h:1095
unsigned getOperandBias(const MCInstrDesc &Desc)
Compute whether all of the def operands are repeated in the uses and therefore should be skipped.
Definition: X86BaseInfo.h:1055
@ AddrIndexReg
Definition: X86BaseInfo.h:34
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:445
std::set< NodeId > NodeSet
Definition: RDFGraph.h:514
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
UnaryFunction for_each(R &&Range, UnaryFunction F)
Provide wrappers to std::for_each which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1812
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
FunctionPass * createX86LoadValueInjectionLoadHardeningPass()
raw_fd_ostream & outs()
This returns a reference to a raw_fd_ostream for standard output.
raw_ostream & WriteGraph(raw_ostream &O, const GraphType &G, bool ShortNames=false, const Twine &Title="")
Definition: GraphWriter.h:359
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1744
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1833
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:145
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Ref
The access may reference the value stored in memory.
#define N
static std::string getNodeAttributes(NodeRef Node, GraphType *)
static std::string getEdgeAttributes(NodeRef, ChildIteratorType E, GraphType *)
DOTGraphTraits - Template class that can be specialized to customize how graphs are converted to 'dot...
DefaultDOTGraphTraits - This class provides the default implementations of all of the DOTGraphTraits ...
typename GraphType::UnknownGraphTypeError NodeRef
Definition: GraphTraits.h:80