LLVM 19.0.0git
CallPromotionUtils.cpp
Go to the documentation of this file.
1//===- CallPromotionUtils.cpp - Utilities for call promotion ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements utilities useful for promoting indirect call sites to
10// direct call sites.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/Analysis/Loads.h"
18#include "llvm/IR/IRBuilder.h"
21
22using namespace llvm;
23
24#define DEBUG_TYPE "call-promotion-utils"
25
26/// Fix-up phi nodes in an invoke instruction's normal destination.
27///
28/// After versioning an invoke instruction, values coming from the original
29/// block will now be coming from the "merge" block. For example, in the code
30/// below:
31///
32/// then_bb:
33/// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
34///
35/// else_bb:
36/// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
37///
38/// merge_bb:
39/// %t2 = phi i32 [ %t0, %then_bb ], [ %t1, %else_bb ]
40/// br %normal_dst
41///
42/// normal_dst:
43/// %t3 = phi i32 [ %x, %orig_bb ], ...
44///
45/// "orig_bb" is no longer a predecessor of "normal_dst", so the phi nodes in
46/// "normal_dst" must be fixed to refer to "merge_bb":
47///
48/// normal_dst:
49/// %t3 = phi i32 [ %x, %merge_bb ], ...
50///
51static void fixupPHINodeForNormalDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
52 BasicBlock *MergeBlock) {
53 for (PHINode &Phi : Invoke->getNormalDest()->phis()) {
54 int Idx = Phi.getBasicBlockIndex(OrigBlock);
55 if (Idx == -1)
56 continue;
57 Phi.setIncomingBlock(Idx, MergeBlock);
58 }
59}
60
61/// Fix-up phi nodes in an invoke instruction's unwind destination.
62///
63/// After versioning an invoke instruction, values coming from the original
64/// block will now be coming from either the "then" block or the "else" block.
65/// For example, in the code below:
66///
67/// then_bb:
68/// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
69///
70/// else_bb:
71/// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
72///
73/// unwind_dst:
74/// %t3 = phi i32 [ %x, %orig_bb ], ...
75///
76/// "orig_bb" is no longer a predecessor of "unwind_dst", so the phi nodes in
77/// "unwind_dst" must be fixed to refer to "then_bb" and "else_bb":
78///
79/// unwind_dst:
80/// %t3 = phi i32 [ %x, %then_bb ], [ %x, %else_bb ], ...
81///
82static void fixupPHINodeForUnwindDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
83 BasicBlock *ThenBlock,
84 BasicBlock *ElseBlock) {
85 for (PHINode &Phi : Invoke->getUnwindDest()->phis()) {
86 int Idx = Phi.getBasicBlockIndex(OrigBlock);
87 if (Idx == -1)
88 continue;
89 auto *V = Phi.getIncomingValue(Idx);
90 Phi.setIncomingBlock(Idx, ThenBlock);
91 Phi.addIncoming(V, ElseBlock);
92 }
93}
94
95/// Create a phi node for the returned value of a call or invoke instruction.
96///
97/// After versioning a call or invoke instruction that returns a value, we have
98/// to merge the value of the original and new instructions. We do this by
99/// creating a phi node and replacing uses of the original instruction with this
100/// phi node.
101///
102/// For example, if \p OrigInst is defined in "else_bb" and \p NewInst is
103/// defined in "then_bb", we create the following phi node:
104///
105/// ; Uses of the original instruction are replaced by uses of the phi node.
106/// %t0 = phi i32 [ %orig_inst, %else_bb ], [ %new_inst, %then_bb ],
107///
108static void createRetPHINode(Instruction *OrigInst, Instruction *NewInst,
109 BasicBlock *MergeBlock, IRBuilder<> &Builder) {
110
111 if (OrigInst->getType()->isVoidTy() || OrigInst->use_empty())
112 return;
113
114 Builder.SetInsertPoint(MergeBlock, MergeBlock->begin());
115 PHINode *Phi = Builder.CreatePHI(OrigInst->getType(), 0);
116 SmallVector<User *, 16> UsersToUpdate(OrigInst->users());
117 for (User *U : UsersToUpdate)
118 U->replaceUsesOfWith(OrigInst, Phi);
119 Phi->addIncoming(OrigInst, OrigInst->getParent());
120 Phi->addIncoming(NewInst, NewInst->getParent());
121}
122
123/// Cast a call or invoke instruction to the given type.
124///
125/// When promoting a call site, the return type of the call site might not match
126/// that of the callee. If this is the case, we have to cast the returned value
127/// to the correct type. The location of the cast depends on if we have a call
128/// or invoke instruction.
129///
130/// For example, if the call instruction below requires a bitcast after
131/// promotion:
132///
133/// orig_bb:
134/// %t0 = call i32 @func()
135/// ...
136///
137/// The bitcast is placed after the call instruction:
138///
139/// orig_bb:
140/// ; Uses of the original return value are replaced by uses of the bitcast.
141/// %t0 = call i32 @func()
142/// %t1 = bitcast i32 %t0 to ...
143/// ...
144///
145/// A similar transformation is performed for invoke instructions. However,
146/// since invokes are terminating, a new block is created for the bitcast. For
147/// example, if the invoke instruction below requires a bitcast after promotion:
148///
149/// orig_bb:
150/// %t0 = invoke i32 @func() to label %normal_dst unwind label %unwind_dst
151///
152/// The edge between the original block and the invoke's normal destination is
153/// split, and the bitcast is placed there:
154///
155/// orig_bb:
156/// %t0 = invoke i32 @func() to label %split_bb unwind label %unwind_dst
157///
158/// split_bb:
159/// ; Uses of the original return value are replaced by uses of the bitcast.
160/// %t1 = bitcast i32 %t0 to ...
161/// br label %normal_dst
162///
163static void createRetBitCast(CallBase &CB, Type *RetTy, CastInst **RetBitCast) {
164
165 // Save the users of the calling instruction. These uses will be changed to
166 // use the bitcast after we create it.
167 SmallVector<User *, 16> UsersToUpdate(CB.users());
168
169 // Determine an appropriate location to create the bitcast for the return
170 // value. The location depends on if we have a call or invoke instruction.
171 BasicBlock::iterator InsertBefore;
172 if (auto *Invoke = dyn_cast<InvokeInst>(&CB))
173 InsertBefore =
174 SplitEdge(Invoke->getParent(), Invoke->getNormalDest())->begin();
175 else
176 InsertBefore = std::next(CB.getIterator());
177
178 // Bitcast the return value to the correct type.
179 auto *Cast = CastInst::CreateBitOrPointerCast(&CB, RetTy, "", InsertBefore);
180 if (RetBitCast)
181 *RetBitCast = Cast;
182
183 // Replace all the original uses of the calling instruction with the bitcast.
184 for (User *U : UsersToUpdate)
185 U->replaceUsesOfWith(&CB, Cast);
186}
187
188/// Predicate and clone the given call site.
189///
190/// This function creates an if-then-else structure at the location of the call
191/// site. The "if" condition compares the call site's called value to the given
192/// callee. The original call site is moved into the "else" block, and a clone
193/// of the call site is placed in the "then" block. The cloned instruction is
194/// returned.
195///
196/// For example, the call instruction below:
197///
198/// orig_bb:
199/// %t0 = call i32 %ptr()
200/// ...
201///
202/// Is replace by the following:
203///
204/// orig_bb:
205/// %cond = icmp eq i32 ()* %ptr, @func
206/// br i1 %cond, %then_bb, %else_bb
207///
208/// then_bb:
209/// ; The clone of the original call instruction is placed in the "then"
210/// ; block. It is not yet promoted.
211/// %t1 = call i32 %ptr()
212/// br merge_bb
213///
214/// else_bb:
215/// ; The original call instruction is moved to the "else" block.
216/// %t0 = call i32 %ptr()
217/// br merge_bb
218///
219/// merge_bb:
220/// ; Uses of the original call instruction are replaced by uses of the phi
221/// ; node.
222/// %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
223/// ...
224///
225/// A similar transformation is performed for invoke instructions. However,
226/// since invokes are terminating, more work is required. For example, the
227/// invoke instruction below:
228///
229/// orig_bb:
230/// %t0 = invoke %ptr() to label %normal_dst unwind label %unwind_dst
231///
232/// Is replace by the following:
233///
234/// orig_bb:
235/// %cond = icmp eq i32 ()* %ptr, @func
236/// br i1 %cond, %then_bb, %else_bb
237///
238/// then_bb:
239/// ; The clone of the original invoke instruction is placed in the "then"
240/// ; block, and its normal destination is set to the "merge" block. It is
241/// ; not yet promoted.
242/// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
243///
244/// else_bb:
245/// ; The original invoke instruction is moved into the "else" block, and
246/// ; its normal destination is set to the "merge" block.
247/// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
248///
249/// merge_bb:
250/// ; Uses of the original invoke instruction are replaced by uses of the
251/// ; phi node, and the merge block branches to the normal destination.
252/// %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
253/// br %normal_dst
254///
255/// An indirect musttail call is processed slightly differently in that:
256/// 1. No merge block needed for the orginal and the cloned callsite, since
257/// either one ends the flow. No phi node is needed either.
258/// 2. The return statement following the original call site is duplicated too
259/// and placed immediately after the cloned call site per the IR convention.
260///
261/// For example, the musttail call instruction below:
262///
263/// orig_bb:
264/// %t0 = musttail call i32 %ptr()
265/// ...
266///
267/// Is replaced by the following:
268///
269/// cond_bb:
270/// %cond = icmp eq i32 ()* %ptr, @func
271/// br i1 %cond, %then_bb, %orig_bb
272///
273/// then_bb:
274/// ; The clone of the original call instruction is placed in the "then"
275/// ; block. It is not yet promoted.
276/// %t1 = musttail call i32 %ptr()
277/// ret %t1
278///
279/// orig_bb:
280/// ; The original call instruction stays in its original block.
281/// %t0 = musttail call i32 %ptr()
282/// ret %t0
284 MDNode *BranchWeights) {
285
286 IRBuilder<> Builder(&CB);
287 CallBase *OrigInst = &CB;
288 BasicBlock *OrigBlock = OrigInst->getParent();
289
290 // Create the compare. The called value and callee must have the same type to
291 // be compared.
292 if (CB.getCalledOperand()->getType() != Callee->getType())
293 Callee = Builder.CreateBitCast(Callee, CB.getCalledOperand()->getType());
294 auto *Cond = Builder.CreateICmpEQ(CB.getCalledOperand(), Callee);
295
296 if (OrigInst->isMustTailCall()) {
297 // Create an if-then structure. The original instruction stays in its block,
298 // and a clone of the original instruction is placed in the "then" block.
299 Instruction *ThenTerm =
300 SplitBlockAndInsertIfThen(Cond, &CB, false, BranchWeights);
301 BasicBlock *ThenBlock = ThenTerm->getParent();
302 ThenBlock->setName("if.true.direct_targ");
303 CallBase *NewInst = cast<CallBase>(OrigInst->clone());
304 NewInst->insertBefore(ThenTerm);
305
306 // Place a clone of the optional bitcast after the new call site.
307 Value *NewRetVal = NewInst;
308 auto Next = OrigInst->getNextNode();
309 if (auto *BitCast = dyn_cast_or_null<BitCastInst>(Next)) {
310 assert(BitCast->getOperand(0) == OrigInst &&
311 "bitcast following musttail call must use the call");
312 auto NewBitCast = BitCast->clone();
313 NewBitCast->replaceUsesOfWith(OrigInst, NewInst);
314 NewBitCast->insertBefore(ThenTerm);
315 NewRetVal = NewBitCast;
316 Next = BitCast->getNextNode();
317 }
318
319 // Place a clone of the return instruction after the new call site.
320 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
321 assert(Ret && "musttail call must precede a ret with an optional bitcast");
322 auto NewRet = Ret->clone();
323 if (Ret->getReturnValue())
324 NewRet->replaceUsesOfWith(Ret->getReturnValue(), NewRetVal);
325 NewRet->insertBefore(ThenTerm);
326
327 // A return instructions is terminating, so we don't need the terminator
328 // instruction just created.
329 ThenTerm->eraseFromParent();
330
331 return *NewInst;
332 }
333
334 // Create an if-then-else structure. The original instruction is moved into
335 // the "else" block, and a clone of the original instruction is placed in the
336 // "then" block.
337 Instruction *ThenTerm = nullptr;
338 Instruction *ElseTerm = nullptr;
339 SplitBlockAndInsertIfThenElse(Cond, &CB, &ThenTerm, &ElseTerm, BranchWeights);
340 BasicBlock *ThenBlock = ThenTerm->getParent();
341 BasicBlock *ElseBlock = ElseTerm->getParent();
342 BasicBlock *MergeBlock = OrigInst->getParent();
343
344 ThenBlock->setName("if.true.direct_targ");
345 ElseBlock->setName("if.false.orig_indirect");
346 MergeBlock->setName("if.end.icp");
347
348 CallBase *NewInst = cast<CallBase>(OrigInst->clone());
349 OrigInst->moveBefore(ElseTerm);
350 NewInst->insertBefore(ThenTerm);
351
352 // If the original call site is an invoke instruction, we have extra work to
353 // do since invoke instructions are terminating. We have to fix-up phi nodes
354 // in the invoke's normal and unwind destinations.
355 if (auto *OrigInvoke = dyn_cast<InvokeInst>(OrigInst)) {
356 auto *NewInvoke = cast<InvokeInst>(NewInst);
357
358 // Invoke instructions are terminating, so we don't need the terminator
359 // instructions that were just created.
360 ThenTerm->eraseFromParent();
361 ElseTerm->eraseFromParent();
362
363 // Branch from the "merge" block to the original normal destination.
364 Builder.SetInsertPoint(MergeBlock);
365 Builder.CreateBr(OrigInvoke->getNormalDest());
366
367 // Fix-up phi nodes in the original invoke's normal and unwind destinations.
368 fixupPHINodeForNormalDest(OrigInvoke, OrigBlock, MergeBlock);
369 fixupPHINodeForUnwindDest(OrigInvoke, MergeBlock, ThenBlock, ElseBlock);
370
371 // Now set the normal destinations of the invoke instructions to be the
372 // "merge" block.
373 OrigInvoke->setNormalDest(MergeBlock);
374 NewInvoke->setNormalDest(MergeBlock);
375 }
376
377 // Create a phi node for the returned value of the call site.
378 createRetPHINode(OrigInst, NewInst, MergeBlock, Builder);
379
380 return *NewInst;
381}
382
384 const char **FailureReason) {
385 assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted");
386
387 auto &DL = Callee->getParent()->getDataLayout();
388
389 // Check the return type. The callee's return value type must be bitcast
390 // compatible with the call site's type.
391 Type *CallRetTy = CB.getType();
392 Type *FuncRetTy = Callee->getReturnType();
393 if (CallRetTy != FuncRetTy)
394 if (!CastInst::isBitOrNoopPointerCastable(FuncRetTy, CallRetTy, DL)) {
395 if (FailureReason)
396 *FailureReason = "Return type mismatch";
397 return false;
398 }
399
400 // The number of formal arguments of the callee.
401 unsigned NumParams = Callee->getFunctionType()->getNumParams();
402
403 // The number of actual arguments in the call.
404 unsigned NumArgs = CB.arg_size();
405
406 // Check the number of arguments. The callee and call site must agree on the
407 // number of arguments.
408 if (NumArgs != NumParams && !Callee->isVarArg()) {
409 if (FailureReason)
410 *FailureReason = "The number of arguments mismatch";
411 return false;
412 }
413
414 // Check the argument types. The callee's formal argument types must be
415 // bitcast compatible with the corresponding actual argument types of the call
416 // site.
417 unsigned I = 0;
418 for (; I < NumParams; ++I) {
419 // Make sure that the callee and call agree on byval/inalloca. The types do
420 // not have to match.
421 if (Callee->hasParamAttribute(I, Attribute::ByVal) !=
422 CB.getAttributes().hasParamAttr(I, Attribute::ByVal)) {
423 if (FailureReason)
424 *FailureReason = "byval mismatch";
425 return false;
426 }
427 if (Callee->hasParamAttribute(I, Attribute::InAlloca) !=
428 CB.getAttributes().hasParamAttr(I, Attribute::InAlloca)) {
429 if (FailureReason)
430 *FailureReason = "inalloca mismatch";
431 return false;
432 }
433
434 Type *FormalTy = Callee->getFunctionType()->getFunctionParamType(I);
435 Type *ActualTy = CB.getArgOperand(I)->getType();
436 if (FormalTy == ActualTy)
437 continue;
438 if (!CastInst::isBitOrNoopPointerCastable(ActualTy, FormalTy, DL)) {
439 if (FailureReason)
440 *FailureReason = "Argument type mismatch";
441 return false;
442 }
443
444 // MustTail call needs stricter type match. See
445 // Verifier::verifyMustTailCall().
446 if (CB.isMustTailCall()) {
447 PointerType *PF = dyn_cast<PointerType>(FormalTy);
448 PointerType *PA = dyn_cast<PointerType>(ActualTy);
449 if (!PF || !PA || PF->getAddressSpace() != PA->getAddressSpace()) {
450 if (FailureReason)
451 *FailureReason = "Musttail call Argument type mismatch";
452 return false;
453 }
454 }
455 }
456 for (; I < NumArgs; I++) {
457 // Vararg functions can have more arguments than parameters.
458 assert(Callee->isVarArg());
459 if (CB.paramHasAttr(I, Attribute::StructRet)) {
460 if (FailureReason)
461 *FailureReason = "SRet arg to vararg function";
462 return false;
463 }
464 }
465
466 return true;
467}
468
470 CastInst **RetBitCast) {
471 assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted");
472
473 // Set the called function of the call site to be the given callee (but don't
474 // change the type).
475 CB.setCalledOperand(Callee);
476
477 // Since the call site will no longer be direct, we must clear metadata that
478 // is only appropriate for indirect calls. This includes !prof and !callees
479 // metadata.
480 CB.setMetadata(LLVMContext::MD_prof, nullptr);
481 CB.setMetadata(LLVMContext::MD_callees, nullptr);
482
483 // If the function type of the call site matches that of the callee, no
484 // additional work is required.
485 if (CB.getFunctionType() == Callee->getFunctionType())
486 return CB;
487
488 // Save the return types of the call site and callee.
489 Type *CallSiteRetTy = CB.getType();
490 Type *CalleeRetTy = Callee->getReturnType();
491
492 // Change the function type of the call site the match that of the callee.
493 CB.mutateFunctionType(Callee->getFunctionType());
494
495 // Inspect the arguments of the call site. If an argument's type doesn't
496 // match the corresponding formal argument's type in the callee, bitcast it
497 // to the correct type.
498 auto CalleeType = Callee->getFunctionType();
499 auto CalleeParamNum = CalleeType->getNumParams();
500
501 LLVMContext &Ctx = Callee->getContext();
502 const AttributeList &CallerPAL = CB.getAttributes();
503 // The new list of argument attributes.
505 bool AttributeChanged = false;
506
507 for (unsigned ArgNo = 0; ArgNo < CalleeParamNum; ++ArgNo) {
508 auto *Arg = CB.getArgOperand(ArgNo);
509 Type *FormalTy = CalleeType->getParamType(ArgNo);
510 Type *ActualTy = Arg->getType();
511 if (FormalTy != ActualTy) {
512 auto *Cast = CastInst::CreateBitOrPointerCast(Arg, FormalTy, "", CB.getIterator());
513 CB.setArgOperand(ArgNo, Cast);
514
515 // Remove any incompatible attributes for the argument.
516 AttrBuilder ArgAttrs(Ctx, CallerPAL.getParamAttrs(ArgNo));
517 ArgAttrs.remove(AttributeFuncs::typeIncompatible(FormalTy));
518
519 // We may have a different byval/inalloca type.
520 if (ArgAttrs.getByValType())
521 ArgAttrs.addByValAttr(Callee->getParamByValType(ArgNo));
522 if (ArgAttrs.getInAllocaType())
523 ArgAttrs.addInAllocaAttr(Callee->getParamInAllocaType(ArgNo));
524
525 NewArgAttrs.push_back(AttributeSet::get(Ctx, ArgAttrs));
526 AttributeChanged = true;
527 } else
528 NewArgAttrs.push_back(CallerPAL.getParamAttrs(ArgNo));
529 }
530
531 // If the return type of the call site doesn't match that of the callee, cast
532 // the returned value to the appropriate type.
533 // Remove any incompatible return value attribute.
534 AttrBuilder RAttrs(Ctx, CallerPAL.getRetAttrs());
535 if (!CallSiteRetTy->isVoidTy() && CallSiteRetTy != CalleeRetTy) {
536 createRetBitCast(CB, CallSiteRetTy, RetBitCast);
537 RAttrs.remove(AttributeFuncs::typeIncompatible(CalleeRetTy));
538 AttributeChanged = true;
539 }
540
541 // Set the new callsite attribute.
542 if (AttributeChanged)
543 CB.setAttributes(AttributeList::get(Ctx, CallerPAL.getFnAttrs(),
544 AttributeSet::get(Ctx, RAttrs),
545 NewArgAttrs));
546
547 return CB;
548}
549
551 MDNode *BranchWeights) {
552
553 // Version the indirect call site. If the called value is equal to the given
554 // callee, 'NewInst' will be executed, otherwise the original call site will
555 // be executed.
556 CallBase &NewInst = versionCallSite(CB, Callee, BranchWeights);
557
558 // Promote 'NewInst' so that it directly calls the desired function.
559 return promoteCall(NewInst, Callee);
560}
561
564 Module *M = CB.getCaller()->getParent();
565 const DataLayout &DL = M->getDataLayout();
566 Value *Callee = CB.getCalledOperand();
567
568 LoadInst *VTableEntryLoad = dyn_cast<LoadInst>(Callee);
569 if (!VTableEntryLoad)
570 return false; // Not a vtable entry load.
571 Value *VTableEntryPtr = VTableEntryLoad->getPointerOperand();
572 APInt VTableOffset(DL.getTypeSizeInBits(VTableEntryPtr->getType()), 0);
573 Value *VTableBasePtr = VTableEntryPtr->stripAndAccumulateConstantOffsets(
574 DL, VTableOffset, /* AllowNonInbounds */ true);
575 LoadInst *VTablePtrLoad = dyn_cast<LoadInst>(VTableBasePtr);
576 if (!VTablePtrLoad)
577 return false; // Not a vtable load.
578 Value *Object = VTablePtrLoad->getPointerOperand();
579 APInt ObjectOffset(DL.getTypeSizeInBits(Object->getType()), 0);
580 Value *ObjectBase = Object->stripAndAccumulateConstantOffsets(
581 DL, ObjectOffset, /* AllowNonInbounds */ true);
582 if (!(isa<AllocaInst>(ObjectBase) && ObjectOffset == 0))
583 // Not an Alloca or the offset isn't zero.
584 return false;
585
586 // Look for the vtable pointer store into the object by the ctor.
587 BasicBlock::iterator BBI(VTablePtrLoad);
588 Value *VTablePtr = FindAvailableLoadedValue(
589 VTablePtrLoad, VTablePtrLoad->getParent(), BBI, 0, nullptr, nullptr);
590 if (!VTablePtr)
591 return false; // No vtable found.
592 APInt VTableOffsetGVBase(DL.getTypeSizeInBits(VTablePtr->getType()), 0);
593 Value *VTableGVBase = VTablePtr->stripAndAccumulateConstantOffsets(
594 DL, VTableOffsetGVBase, /* AllowNonInbounds */ true);
595 GlobalVariable *GV = dyn_cast<GlobalVariable>(VTableGVBase);
596 if (!(GV && GV->isConstant() && GV->hasDefinitiveInitializer()))
597 // Not in the form of a global constant variable with an initializer.
598 return false;
599
600 APInt VTableGVOffset = VTableOffsetGVBase + VTableOffset;
601 if (!(VTableGVOffset.getActiveBits() <= 64))
602 return false; // Out of range.
603
604 Function *DirectCallee = nullptr;
605 std::tie(DirectCallee, std::ignore) =
606 getFunctionAtVTableOffset(GV, VTableGVOffset.getZExtValue(), *M);
607 if (!DirectCallee)
608 return false; // No function pointer found.
609
610 if (!isLegalToPromote(CB, DirectCallee))
611 return false;
612
613 // Success.
614 promoteCall(CB, DirectCallee);
615 return true;
616}
617
618#undef DEBUG_TYPE
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static void fixupPHINodeForNormalDest(InvokeInst *Invoke, BasicBlock *OrigBlock, BasicBlock *MergeBlock)
Fix-up phi nodes in an invoke instruction's normal destination.
static void fixupPHINodeForUnwindDest(InvokeInst *Invoke, BasicBlock *OrigBlock, BasicBlock *ThenBlock, BasicBlock *ElseBlock)
Fix-up phi nodes in an invoke instruction's unwind destination.
static void createRetBitCast(CallBase &CB, Type *RetTy, CastInst **RetBitCast)
Cast a call or invoke instruction to the given type.
static void createRetPHINode(Instruction *OrigInst, Instruction *NewInst, BasicBlock *MergeBlock, IRBuilder<> &Builder)
Create a phi node for the returned value of a call or invoke instruction.
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define I(x, y, z)
Definition: MD5.cpp:58
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Class for arbitrary precision integers.
Definition: APInt.h:76
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1491
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition: APInt.h:1463
Type * getByValType() const
Retrieve the byval type.
Definition: Attributes.h:1110
AttrBuilder & addByValAttr(Type *Ty)
This turns a byval type into the form used internally in Attribute.
Type * getInAllocaType() const
Retrieve the inalloca type.
Definition: Attributes.h:1124
AttrBuilder & addInAllocaAttr(Type *Ty)
This turns an inalloca type into the form used internally in Attribute.
AttrBuilder & remove(const AttributeMask &AM)
Remove the attributes from the builder.
AttributeSet getFnAttrs() const
The function attributes are returned.
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute > > Attrs)
Create an AttributeList with the specified parameters in it.
AttributeSet getRetAttrs() const
The attributes for the ret value are returned.
bool hasParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Return true if the attribute exists for the given argument.
Definition: Attributes.h:783
AttributeSet getParamAttrs(unsigned ArgNo) const
The attributes for the argument or parameter at the given index are returned.
static AttributeSet get(LLVMContext &C, const AttrBuilder &B)
Definition: Attributes.cpp:774
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:430
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:499
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:165
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1494
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1742
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
bool isMustTailCall() const
Tests if this call site must be tail call optimized.
Value * getCalledOperand() const
Definition: InstrTypes.h:1735
void setAttributes(AttributeList A)
Set the parameter attributes for this call.
Definition: InstrTypes.h:1823
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1687
void mutateFunctionType(FunctionType *FTy)
Definition: InstrTypes.h:1602
void setArgOperand(unsigned i, Value *v)
Definition: InstrTypes.h:1692
FunctionType * getFunctionType() const
Definition: InstrTypes.h:1600
void setCalledOperand(Value *V)
Definition: InstrTypes.h:1778
unsigned arg_size() const
Definition: InstrTypes.h:1685
AttributeList getAttributes() const
Return the parameter attributes for this call.
Definition: InstrTypes.h:1819
Function * getCaller()
Helper to get the caller (the parent function).
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:601
static bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name, BasicBlock::iterator InsertBefore)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:656
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Definition: IRBuilder.h:2397
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2241
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2127
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional 'br label X' instruction.
Definition: IRBuilder.h:1114
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:180
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2666
Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction.
const BasicBlock * getParent() const
Definition: Instruction.h:152
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1636
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
Invoke instruction.
BasicBlock * getUnwindDest() const
BasicBlock * getNormalDest() const
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:184
Value * getPointerOperand()
Definition: Instructions.h:280
Metadata node.
Definition: Metadata.h:1067
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Class to represent pointers.
Definition: DerivedTypes.h:646
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:679
Return a value (possibly void), from a function.
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVoidTy() const
Return true if this is 'void'.
Definition: Type.h:140
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr) const
Accumulate the constant offset this value has compared to a base pointer.
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:377
iterator_range< user_iterator > users()
Definition: Value.h:421
bool use_empty() const
Definition: Value.h:344
self_iterator getIterator()
Definition: ilist_node.h:109
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:316
AttributeMask typeIncompatible(Type *Ty, AttributeSafetyKind ASK=ASK_ALL)
Which attributes cannot be applied to a type.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool isLegalToPromote(const CallBase &CB, Function *Callee, const char **FailureReason=nullptr)
Return true if the given indirect call site can be made to call Callee.
CallBase & promoteCallWithIfThenElse(CallBase &CB, Function *Callee, MDNode *BranchWeights=nullptr)
Promote the given indirect call site to conditionally call Callee.
Value * FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan=DefMaxInstsToScan, BatchAAResults *AA=nullptr, bool *IsLoadCSE=nullptr, unsigned *NumScanedInst=nullptr)
Scan backwards to see if we have the value of the given load available locally within a small number ...
Definition: Loads.cpp:455
void SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, Instruction **ThenTerm, Instruction **ElseTerm, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr)
SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen, but also creates the ElseBlock...
CallBase & versionCallSite(CallBase &CB, Value *Callee, MDNode *BranchWeights)
Predicate and clone the given call site.
CallBase & promoteCall(CallBase &CB, Function *Callee, CastInst **RetBitCast=nullptr)
Promote the given indirect call site to unconditionally call Callee.
bool tryPromoteCall(CallBase &CB)
Try to promote (devirtualize) a virtual call on an Alloca.
Instruction * SplitBlockAndInsertIfThen(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ThenBlock=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
std::pair< Function *, Constant * > getFunctionAtVTableOffset(GlobalVariable *GV, uint64_t Offset, Module &M)
Given a vtable and a specified offset, returns the function and the trivial pointer at the specified ...