LLVM 17.0.0git
ELFEmitter.cpp
Go to the documentation of this file.
1//===- yaml2elf - Convert YAML to a ELF object file -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// The ELF component of yaml2obj.
11///
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ADT/ArrayRef.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/SetVector.h"
17#include "llvm/ADT/StringSet.h"
27#include "llvm/Support/Errc.h"
28#include "llvm/Support/Error.h"
29#include "llvm/Support/LEB128.h"
34#include <optional>
35
36using namespace llvm;
37
38// This class is used to build up a contiguous binary blob while keeping
39// track of an offset in the output (which notionally begins at
40// `InitialOffset`).
41// The blob might be limited to an arbitrary size. All attempts to write data
42// are ignored and the error condition is remembered once the limit is reached.
43// Such an approach allows us to simplify the code by delaying error reporting
44// and doing it at a convenient time.
45namespace {
46class ContiguousBlobAccumulator {
47 const uint64_t InitialOffset;
48 const uint64_t MaxSize;
49
52 Error ReachedLimitErr = Error::success();
53
54 bool checkLimit(uint64_t Size) {
55 if (!ReachedLimitErr && getOffset() + Size <= MaxSize)
56 return true;
57 if (!ReachedLimitErr)
58 ReachedLimitErr = createStringError(errc::invalid_argument,
59 "reached the output size limit");
60 return false;
61 }
62
63public:
64 ContiguousBlobAccumulator(uint64_t BaseOffset, uint64_t SizeLimit)
65 : InitialOffset(BaseOffset), MaxSize(SizeLimit), OS(Buf) {}
66
67 uint64_t tell() const { return OS.tell(); }
68 uint64_t getOffset() const { return InitialOffset + OS.tell(); }
69 void writeBlobToStream(raw_ostream &Out) const { Out << OS.str(); }
70
71 Error takeLimitError() {
72 // Request to write 0 bytes to check we did not reach the limit.
73 checkLimit(0);
74 return std::move(ReachedLimitErr);
75 }
76
77 /// \returns The new offset.
78 uint64_t padToAlignment(unsigned Align) {
79 uint64_t CurrentOffset = getOffset();
80 if (ReachedLimitErr)
81 return CurrentOffset;
82
83 uint64_t AlignedOffset = alignTo(CurrentOffset, Align == 0 ? 1 : Align);
84 uint64_t PaddingSize = AlignedOffset - CurrentOffset;
85 if (!checkLimit(PaddingSize))
86 return CurrentOffset;
87
88 writeZeros(PaddingSize);
89 return AlignedOffset;
90 }
91
92 raw_ostream *getRawOS(uint64_t Size) {
93 if (checkLimit(Size))
94 return &OS;
95 return nullptr;
96 }
97
98 void writeAsBinary(const yaml::BinaryRef &Bin, uint64_t N = UINT64_MAX) {
99 if (!checkLimit(Bin.binary_size()))
100 return;
101 Bin.writeAsBinary(OS, N);
102 }
103
104 void writeZeros(uint64_t Num) {
105 if (checkLimit(Num))
106 OS.write_zeros(Num);
107 }
108
109 void write(const char *Ptr, size_t Size) {
110 if (checkLimit(Size))
111 OS.write(Ptr, Size);
112 }
113
114 void write(unsigned char C) {
115 if (checkLimit(1))
116 OS.write(C);
117 }
118
119 unsigned writeULEB128(uint64_t Val) {
120 if (!checkLimit(sizeof(uint64_t)))
121 return 0;
122 return encodeULEB128(Val, OS);
123 }
124
125 template <typename T> void write(T Val, support::endianness E) {
126 if (checkLimit(sizeof(T)))
127 support::endian::write<T>(OS, Val, E);
128 }
129
130 void updateDataAt(uint64_t Pos, void *Data, size_t Size) {
131 assert(Pos >= InitialOffset && Pos + Size <= getOffset());
132 memcpy(&Buf[Pos - InitialOffset], Data, Size);
133 }
134};
135
136// Used to keep track of section and symbol names, so that in the YAML file
137// sections and symbols can be referenced by name instead of by index.
138class NameToIdxMap {
140
141public:
142 /// \Returns false if name is already present in the map.
143 bool addName(StringRef Name, unsigned Ndx) {
144 return Map.insert({Name, Ndx}).second;
145 }
146 /// \Returns false if name is not present in the map.
147 bool lookup(StringRef Name, unsigned &Idx) const {
148 auto I = Map.find(Name);
149 if (I == Map.end())
150 return false;
151 Idx = I->getValue();
152 return true;
153 }
154 /// Asserts if name is not present in the map.
155 unsigned get(StringRef Name) const {
156 unsigned Idx;
157 if (lookup(Name, Idx))
158 return Idx;
159 assert(false && "Expected section not found in index");
160 return 0;
161 }
162 unsigned size() const { return Map.size(); }
163};
164
165namespace {
166struct Fragment {
170 uint64_t AddrAlign;
171};
172} // namespace
173
174/// "Single point of truth" for the ELF file construction.
175/// TODO: This class still has a ways to go before it is truly a "single
176/// point of truth".
177template <class ELFT> class ELFState {
179
180 enum class SymtabType { Static, Dynamic };
181
182 /// The future symbol table string section.
184
185 /// The future section header string table section, if a unique string table
186 /// is needed. Don't reference this variable direectly: use the
187 /// ShStrtabStrings member instead.
189
190 /// The future dynamic symbol string section.
192
193 /// The name of the section header string table section. If it is .strtab or
194 /// .dynstr, the section header strings will be written to the same string
195 /// table as the static/dynamic symbols respectively. Otherwise a dedicated
196 /// section will be created with that name.
197 StringRef SectionHeaderStringTableName = ".shstrtab";
198 StringTableBuilder *ShStrtabStrings = &DotShStrtab;
199
200 NameToIdxMap SN2I;
201 NameToIdxMap SymN2I;
202 NameToIdxMap DynSymN2I;
203 ELFYAML::Object &Doc;
204
205 StringSet<> ExcludedSectionHeaders;
206
207 uint64_t LocationCounter = 0;
208 bool HasError = false;
209 yaml::ErrorHandler ErrHandler;
210 void reportError(const Twine &Msg);
211 void reportError(Error Err);
212
213 std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols,
214 const StringTableBuilder &Strtab);
215 unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = "");
216 unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic);
217
218 void buildSectionIndex();
219 void buildSymbolIndexes();
220 void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders);
221 bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header,
222 StringRef SecName, ELFYAML::Section *YAMLSec);
223 void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders,
224 ContiguousBlobAccumulator &CBA);
225 void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType,
226 ContiguousBlobAccumulator &CBA,
227 ELFYAML::Section *YAMLSec);
228 void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
230 ContiguousBlobAccumulator &CBA,
231 ELFYAML::Section *YAMLSec);
232 void initDWARFSectionHeader(Elf_Shdr &SHeader, StringRef Name,
233 ContiguousBlobAccumulator &CBA,
234 ELFYAML::Section *YAMLSec);
235 void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
236 std::vector<Elf_Shdr> &SHeaders);
237
238 std::vector<Fragment>
239 getPhdrFragments(const ELFYAML::ProgramHeader &Phdr,
241
242 void finalizeStrings();
243 void writeELFHeader(raw_ostream &OS);
244 void writeSectionContent(Elf_Shdr &SHeader,
245 const ELFYAML::NoBitsSection &Section,
246 ContiguousBlobAccumulator &CBA);
247 void writeSectionContent(Elf_Shdr &SHeader,
248 const ELFYAML::RawContentSection &Section,
249 ContiguousBlobAccumulator &CBA);
250 void writeSectionContent(Elf_Shdr &SHeader,
251 const ELFYAML::RelocationSection &Section,
252 ContiguousBlobAccumulator &CBA);
253 void writeSectionContent(Elf_Shdr &SHeader,
254 const ELFYAML::RelrSection &Section,
255 ContiguousBlobAccumulator &CBA);
256 void writeSectionContent(Elf_Shdr &SHeader,
257 const ELFYAML::GroupSection &Group,
258 ContiguousBlobAccumulator &CBA);
259 void writeSectionContent(Elf_Shdr &SHeader,
260 const ELFYAML::SymtabShndxSection &Shndx,
261 ContiguousBlobAccumulator &CBA);
262 void writeSectionContent(Elf_Shdr &SHeader,
263 const ELFYAML::SymverSection &Section,
264 ContiguousBlobAccumulator &CBA);
265 void writeSectionContent(Elf_Shdr &SHeader,
266 const ELFYAML::VerneedSection &Section,
267 ContiguousBlobAccumulator &CBA);
268 void writeSectionContent(Elf_Shdr &SHeader,
269 const ELFYAML::VerdefSection &Section,
270 ContiguousBlobAccumulator &CBA);
271 void writeSectionContent(Elf_Shdr &SHeader,
272 const ELFYAML::ARMIndexTableSection &Section,
273 ContiguousBlobAccumulator &CBA);
274 void writeSectionContent(Elf_Shdr &SHeader,
275 const ELFYAML::MipsABIFlags &Section,
276 ContiguousBlobAccumulator &CBA);
277 void writeSectionContent(Elf_Shdr &SHeader,
278 const ELFYAML::DynamicSection &Section,
279 ContiguousBlobAccumulator &CBA);
280 void writeSectionContent(Elf_Shdr &SHeader,
281 const ELFYAML::StackSizesSection &Section,
282 ContiguousBlobAccumulator &CBA);
283 void writeSectionContent(Elf_Shdr &SHeader,
284 const ELFYAML::BBAddrMapSection &Section,
285 ContiguousBlobAccumulator &CBA);
286 void writeSectionContent(Elf_Shdr &SHeader,
287 const ELFYAML::HashSection &Section,
288 ContiguousBlobAccumulator &CBA);
289 void writeSectionContent(Elf_Shdr &SHeader,
290 const ELFYAML::AddrsigSection &Section,
291 ContiguousBlobAccumulator &CBA);
292 void writeSectionContent(Elf_Shdr &SHeader,
293 const ELFYAML::NoteSection &Section,
294 ContiguousBlobAccumulator &CBA);
295 void writeSectionContent(Elf_Shdr &SHeader,
296 const ELFYAML::GnuHashSection &Section,
297 ContiguousBlobAccumulator &CBA);
298 void writeSectionContent(Elf_Shdr &SHeader,
299 const ELFYAML::LinkerOptionsSection &Section,
300 ContiguousBlobAccumulator &CBA);
301 void writeSectionContent(Elf_Shdr &SHeader,
303 ContiguousBlobAccumulator &CBA);
304 void writeSectionContent(Elf_Shdr &SHeader,
306 ContiguousBlobAccumulator &CBA);
307
308 void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA);
309
310 ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH);
311
312 void assignSectionAddress(Elf_Shdr &SHeader, ELFYAML::Section *YAMLSec);
313
314 DenseMap<StringRef, size_t> buildSectionHeaderReorderMap();
315
316 BumpPtrAllocator StringAlloc;
317 uint64_t alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align,
318 std::optional<llvm::yaml::Hex64> Offset);
319
320 uint64_t getSectionNameOffset(StringRef Name);
321
322public:
323 static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc,
324 yaml::ErrorHandler EH, uint64_t MaxSize);
325};
326} // end anonymous namespace
327
328template <class T> static size_t arrayDataSize(ArrayRef<T> A) {
329 return A.size() * sizeof(T);
330}
331
332template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) {
333 OS.write((const char *)A.data(), arrayDataSize(A));
334}
335
336template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); }
337
338template <class ELFT>
339ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH)
340 : Doc(D), ErrHandler(EH) {
341 // The input may explicitly request to store the section header table strings
342 // in the same string table as dynamic or static symbol names. Set the
343 // ShStrtabStrings member accordingly.
344 if (Doc.Header.SectionHeaderStringTable) {
345 SectionHeaderStringTableName = *Doc.Header.SectionHeaderStringTable;
346 if (*Doc.Header.SectionHeaderStringTable == ".strtab")
347 ShStrtabStrings = &DotStrtab;
348 else if (*Doc.Header.SectionHeaderStringTable == ".dynstr")
349 ShStrtabStrings = &DotDynstr;
350 // Otherwise, the unique table will be used.
351 }
352
353 std::vector<ELFYAML::Section *> Sections = Doc.getSections();
354 // Insert SHT_NULL section implicitly when it is not defined in YAML.
355 if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL)
356 Doc.Chunks.insert(
357 Doc.Chunks.begin(),
358 std::make_unique<ELFYAML::Section>(
359 ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true));
360
361 StringSet<> DocSections;
362 ELFYAML::SectionHeaderTable *SecHdrTable = nullptr;
363 for (size_t I = 0; I < Doc.Chunks.size(); ++I) {
364 const std::unique_ptr<ELFYAML::Chunk> &C = Doc.Chunks[I];
365
366 // We might have an explicit section header table declaration.
367 if (auto S = dyn_cast<ELFYAML::SectionHeaderTable>(C.get())) {
368 if (SecHdrTable)
369 reportError("multiple section header tables are not allowed");
370 SecHdrTable = S;
371 continue;
372 }
373
374 // We add a technical suffix for each unnamed section/fill. It does not
375 // affect the output, but allows us to map them by name in the code and
376 // report better error messages.
377 if (C->Name.empty()) {
378 std::string NewName = ELFYAML::appendUniqueSuffix(
379 /*Name=*/"", "index " + Twine(I));
380 C->Name = StringRef(NewName).copy(StringAlloc);
382 }
383
384 if (!DocSections.insert(C->Name).second)
385 reportError("repeated section/fill name: '" + C->Name +
386 "' at YAML section/fill number " + Twine(I));
387 }
388
389 SmallSetVector<StringRef, 8> ImplicitSections;
390 if (Doc.DynamicSymbols) {
391 if (SectionHeaderStringTableName == ".dynsym")
392 reportError("cannot use '.dynsym' as the section header name table when "
393 "there are dynamic symbols");
394 ImplicitSections.insert(".dynsym");
395 ImplicitSections.insert(".dynstr");
396 }
397 if (Doc.Symbols) {
398 if (SectionHeaderStringTableName == ".symtab")
399 reportError("cannot use '.symtab' as the section header name table when "
400 "there are symbols");
401 ImplicitSections.insert(".symtab");
402 }
403 if (Doc.DWARF)
404 for (StringRef DebugSecName : Doc.DWARF->getNonEmptySectionNames()) {
405 std::string SecName = ("." + DebugSecName).str();
406 // TODO: For .debug_str it should be possible to share the string table,
407 // in the same manner as the symbol string tables.
408 if (SectionHeaderStringTableName == SecName)
409 reportError("cannot use '" + SecName +
410 "' as the section header name table when it is needed for "
411 "DWARF output");
412 ImplicitSections.insert(StringRef(SecName).copy(StringAlloc));
413 }
414 // TODO: Only create the .strtab here if any symbols have been requested.
415 ImplicitSections.insert(".strtab");
416 if (!SecHdrTable || !SecHdrTable->NoHeaders.value_or(false))
417 ImplicitSections.insert(SectionHeaderStringTableName);
418
419 // Insert placeholders for implicit sections that are not
420 // defined explicitly in YAML.
421 for (StringRef SecName : ImplicitSections) {
422 if (DocSections.count(SecName))
423 continue;
424
425 std::unique_ptr<ELFYAML::Section> Sec = std::make_unique<ELFYAML::Section>(
426 ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/);
427 Sec->Name = SecName;
428
429 if (SecName == SectionHeaderStringTableName)
430 Sec->Type = ELF::SHT_STRTAB;
431 else if (SecName == ".dynsym")
432 Sec->Type = ELF::SHT_DYNSYM;
433 else if (SecName == ".symtab")
434 Sec->Type = ELF::SHT_SYMTAB;
435 else
436 Sec->Type = ELF::SHT_STRTAB;
437
438 // When the section header table is explicitly defined at the end of the
439 // sections list, it is reasonable to assume that the user wants to reorder
440 // section headers, but still wants to place the section header table after
441 // all sections, like it normally happens. In this case we want to insert
442 // other implicit sections right before the section header table.
443 if (Doc.Chunks.back().get() == SecHdrTable)
444 Doc.Chunks.insert(Doc.Chunks.end() - 1, std::move(Sec));
445 else
446 Doc.Chunks.push_back(std::move(Sec));
447 }
448
449 // Insert the section header table implicitly at the end, when it is not
450 // explicitly defined.
451 if (!SecHdrTable)
452 Doc.Chunks.push_back(
453 std::make_unique<ELFYAML::SectionHeaderTable>(/*IsImplicit=*/true));
454}
455
456template <class ELFT>
457void ELFState<ELFT>::writeELFHeader(raw_ostream &OS) {
458 using namespace llvm::ELF;
459
460 Elf_Ehdr Header;
461 zero(Header);
462 Header.e_ident[EI_MAG0] = 0x7f;
463 Header.e_ident[EI_MAG1] = 'E';
464 Header.e_ident[EI_MAG2] = 'L';
465 Header.e_ident[EI_MAG3] = 'F';
466 Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
467 Header.e_ident[EI_DATA] = Doc.Header.Data;
468 Header.e_ident[EI_VERSION] = EV_CURRENT;
469 Header.e_ident[EI_OSABI] = Doc.Header.OSABI;
470 Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion;
471 Header.e_type = Doc.Header.Type;
472
473 if (Doc.Header.Machine)
474 Header.e_machine = *Doc.Header.Machine;
475 else
476 Header.e_machine = EM_NONE;
477
478 Header.e_version = EV_CURRENT;
479 Header.e_entry = Doc.Header.Entry;
480 Header.e_flags = Doc.Header.Flags;
481 Header.e_ehsize = sizeof(Elf_Ehdr);
482
483 if (Doc.Header.EPhOff)
484 Header.e_phoff = *Doc.Header.EPhOff;
485 else if (!Doc.ProgramHeaders.empty())
486 Header.e_phoff = sizeof(Header);
487 else
488 Header.e_phoff = 0;
489
490 if (Doc.Header.EPhEntSize)
491 Header.e_phentsize = *Doc.Header.EPhEntSize;
492 else if (!Doc.ProgramHeaders.empty())
493 Header.e_phentsize = sizeof(Elf_Phdr);
494 else
495 Header.e_phentsize = 0;
496
497 if (Doc.Header.EPhNum)
498 Header.e_phnum = *Doc.Header.EPhNum;
499 else if (!Doc.ProgramHeaders.empty())
500 Header.e_phnum = Doc.ProgramHeaders.size();
501 else
502 Header.e_phnum = 0;
503
504 Header.e_shentsize = Doc.Header.EShEntSize ? (uint16_t)*Doc.Header.EShEntSize
505 : sizeof(Elf_Shdr);
506
507 const ELFYAML::SectionHeaderTable &SectionHeaders =
508 Doc.getSectionHeaderTable();
509
510 if (Doc.Header.EShOff)
511 Header.e_shoff = *Doc.Header.EShOff;
512 else if (SectionHeaders.Offset)
513 Header.e_shoff = *SectionHeaders.Offset;
514 else
515 Header.e_shoff = 0;
516
517 if (Doc.Header.EShNum)
518 Header.e_shnum = *Doc.Header.EShNum;
519 else
520 Header.e_shnum = SectionHeaders.getNumHeaders(Doc.getSections().size());
521
522 if (Doc.Header.EShStrNdx)
523 Header.e_shstrndx = *Doc.Header.EShStrNdx;
524 else if (SectionHeaders.Offset &&
525 !ExcludedSectionHeaders.count(SectionHeaderStringTableName))
526 Header.e_shstrndx = SN2I.get(SectionHeaderStringTableName);
527 else
528 Header.e_shstrndx = 0;
529
530 OS.write((const char *)&Header, sizeof(Header));
531}
532
533template <class ELFT>
534void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) {
536 DenseMap<StringRef, size_t> NameToIndex;
537 for (size_t I = 0, E = Doc.Chunks.size(); I != E; ++I) {
538 if (auto S = dyn_cast<ELFYAML::Fill>(Doc.Chunks[I].get()))
539 NameToFill[S->Name] = S;
540 NameToIndex[Doc.Chunks[I]->Name] = I + 1;
541 }
542
543 std::vector<ELFYAML::Section *> Sections = Doc.getSections();
544 for (size_t I = 0, E = Doc.ProgramHeaders.size(); I != E; ++I) {
545 ELFYAML::ProgramHeader &YamlPhdr = Doc.ProgramHeaders[I];
546 Elf_Phdr Phdr;
547 zero(Phdr);
548 Phdr.p_type = YamlPhdr.Type;
549 Phdr.p_flags = YamlPhdr.Flags;
550 Phdr.p_vaddr = YamlPhdr.VAddr;
551 Phdr.p_paddr = YamlPhdr.PAddr;
552 PHeaders.push_back(Phdr);
553
554 if (!YamlPhdr.FirstSec && !YamlPhdr.LastSec)
555 continue;
556
557 // Get the index of the section, or 0 in the case when the section doesn't exist.
558 size_t First = NameToIndex[*YamlPhdr.FirstSec];
559 if (!First)
560 reportError("unknown section or fill referenced: '" + *YamlPhdr.FirstSec +
561 "' by the 'FirstSec' key of the program header with index " +
562 Twine(I));
563 size_t Last = NameToIndex[*YamlPhdr.LastSec];
564 if (!Last)
565 reportError("unknown section or fill referenced: '" + *YamlPhdr.LastSec +
566 "' by the 'LastSec' key of the program header with index " +
567 Twine(I));
568 if (!First || !Last)
569 continue;
570
571 if (First > Last)
572 reportError("program header with index " + Twine(I) +
573 ": the section index of " + *YamlPhdr.FirstSec +
574 " is greater than the index of " + *YamlPhdr.LastSec);
575
576 for (size_t I = First; I <= Last; ++I)
577 YamlPhdr.Chunks.push_back(Doc.Chunks[I - 1].get());
578 }
579}
580
581template <class ELFT>
582unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec,
583 StringRef LocSym) {
584 assert(LocSec.empty() || LocSym.empty());
585
586 unsigned Index;
587 if (!SN2I.lookup(S, Index) && !to_integer(S, Index)) {
588 if (!LocSym.empty())
589 reportError("unknown section referenced: '" + S + "' by YAML symbol '" +
590 LocSym + "'");
591 else
592 reportError("unknown section referenced: '" + S + "' by YAML section '" +
593 LocSec + "'");
594 return 0;
595 }
596
597 const ELFYAML::SectionHeaderTable &SectionHeaders =
598 Doc.getSectionHeaderTable();
599 if (SectionHeaders.IsImplicit ||
600 (SectionHeaders.NoHeaders && !*SectionHeaders.NoHeaders) ||
601 SectionHeaders.isDefault())
602 return Index;
603
604 assert(!SectionHeaders.NoHeaders.value_or(false) || !SectionHeaders.Sections);
605 size_t FirstExcluded =
606 SectionHeaders.Sections ? SectionHeaders.Sections->size() : 0;
607 if (Index > FirstExcluded) {
608 if (LocSym.empty())
609 reportError("unable to link '" + LocSec + "' to excluded section '" + S +
610 "'");
611 else
612 reportError("excluded section referenced: '" + S + "' by symbol '" +
613 LocSym + "'");
614 }
615 return Index;
616}
617
618template <class ELFT>
619unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec,
620 bool IsDynamic) {
621 const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I;
622 unsigned Index;
623 // Here we try to look up S in the symbol table. If it is not there,
624 // treat its value as a symbol index.
625 if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) {
626 reportError("unknown symbol referenced: '" + S + "' by YAML section '" +
627 LocSec + "'");
628 return 0;
629 }
630 return Index;
631}
632
633template <class ELFT>
634static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) {
635 if (!From)
636 return;
637 if (From->ShAddrAlign)
638 To.sh_addralign = *From->ShAddrAlign;
639 if (From->ShFlags)
640 To.sh_flags = *From->ShFlags;
641 if (From->ShName)
642 To.sh_name = *From->ShName;
643 if (From->ShOffset)
644 To.sh_offset = *From->ShOffset;
645 if (From->ShSize)
646 To.sh_size = *From->ShSize;
647 if (From->ShType)
648 To.sh_type = *From->ShType;
649}
650
651template <class ELFT>
652bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA,
653 Elf_Shdr &Header, StringRef SecName,
654 ELFYAML::Section *YAMLSec) {
655 // Check if the header was already initialized.
656 if (Header.sh_offset)
657 return false;
658
659 if (SecName == ".strtab")
660 initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec);
661 else if (SecName == ".dynstr")
662 initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec);
663 else if (SecName == SectionHeaderStringTableName)
664 initStrtabSectionHeader(Header, SecName, *ShStrtabStrings, CBA, YAMLSec);
665 else if (SecName == ".symtab")
666 initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec);
667 else if (SecName == ".dynsym")
668 initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec);
669 else if (SecName.startswith(".debug_")) {
670 // If a ".debug_*" section's type is a preserved one, e.g., SHT_DYNAMIC, we
671 // will not treat it as a debug section.
672 if (YAMLSec && !isa<ELFYAML::RawContentSection>(YAMLSec))
673 return false;
674 initDWARFSectionHeader(Header, SecName, CBA, YAMLSec);
675 } else
676 return false;
677
678 LocationCounter += Header.sh_size;
679
680 // Override section fields if requested.
681 overrideFields<ELFT>(YAMLSec, Header);
682 return true;
683}
684
685constexpr char SuffixStart = '(';
686constexpr char SuffixEnd = ')';
687
689 const Twine &Msg) {
690 // Do not add a space when a Name is empty.
691 std::string Ret = Name.empty() ? "" : Name.str() + ' ';
692 return Ret + (Twine(SuffixStart) + Msg + Twine(SuffixEnd)).str();
693}
694
696 if (S.empty() || S.back() != SuffixEnd)
697 return S;
698
699 // A special case for empty names. See appendUniqueSuffix() above.
700 size_t SuffixPos = S.rfind(SuffixStart);
701 if (SuffixPos == 0)
702 return "";
703
704 if (SuffixPos == StringRef::npos || S[SuffixPos - 1] != ' ')
705 return S;
706 return S.substr(0, SuffixPos - 1);
707}
708
709template <class ELFT>
710uint64_t ELFState<ELFT>::getSectionNameOffset(StringRef Name) {
711 // If a section is excluded from section headers, we do not save its name in
712 // the string table.
713 if (ExcludedSectionHeaders.count(Name))
714 return 0;
715 return ShStrtabStrings->getOffset(Name);
716}
717
718static uint64_t writeContent(ContiguousBlobAccumulator &CBA,
719 const std::optional<yaml::BinaryRef> &Content,
720 const std::optional<llvm::yaml::Hex64> &Size) {
721 size_t ContentSize = 0;
722 if (Content) {
723 CBA.writeAsBinary(*Content);
724 ContentSize = Content->binary_size();
725 }
726
727 if (!Size)
728 return ContentSize;
729
730 CBA.writeZeros(*Size - ContentSize);
731 return *Size;
732}
733
735 switch (SecType) {
736 case ELF::SHT_REL:
737 case ELF::SHT_RELA:
738 case ELF::SHT_GROUP:
741 return ".symtab";
743 case ELF::SHT_HASH:
745 return ".dynsym";
746 case ELF::SHT_DYNSYM:
749 return ".dynstr";
750 case ELF::SHT_SYMTAB:
751 return ".strtab";
752 default:
753 return "";
754 }
755}
756
757template <class ELFT>
758void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders,
759 ContiguousBlobAccumulator &CBA) {
760 // Ensure SHN_UNDEF entry is present. An all-zero section header is a
761 // valid SHN_UNDEF entry since SHT_NULL == 0.
762 SHeaders.resize(Doc.getSections().size());
763
764 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) {
765 if (ELFYAML::Fill *S = dyn_cast<ELFYAML::Fill>(D.get())) {
766 S->Offset = alignToOffset(CBA, /*Align=*/1, S->Offset);
767 writeFill(*S, CBA);
768 LocationCounter += S->Size;
769 continue;
770 }
771
773 dyn_cast<ELFYAML::SectionHeaderTable>(D.get())) {
774 if (S->NoHeaders.value_or(false))
775 continue;
776
777 if (!S->Offset)
778 S->Offset = alignToOffset(CBA, sizeof(typename ELFT::uint),
779 /*Offset=*/std::nullopt);
780 else
781 S->Offset = alignToOffset(CBA, /*Align=*/1, S->Offset);
782
783 uint64_t Size = S->getNumHeaders(SHeaders.size()) * sizeof(Elf_Shdr);
784 // The full section header information might be not available here, so
785 // fill the space with zeroes as a placeholder.
786 CBA.writeZeros(Size);
787 LocationCounter += Size;
788 continue;
789 }
790
791 ELFYAML::Section *Sec = cast<ELFYAML::Section>(D.get());
792 bool IsFirstUndefSection = Sec == Doc.getSections().front();
793 if (IsFirstUndefSection && Sec->IsImplicit)
794 continue;
795
796 Elf_Shdr &SHeader = SHeaders[SN2I.get(Sec->Name)];
797 if (Sec->Link) {
798 SHeader.sh_link = toSectionIndex(*Sec->Link, Sec->Name);
799 } else {
800 StringRef LinkSec = getDefaultLinkSec(Sec->Type);
801 unsigned Link = 0;
802 if (!LinkSec.empty() && !ExcludedSectionHeaders.count(LinkSec) &&
803 SN2I.lookup(LinkSec, Link))
804 SHeader.sh_link = Link;
805 }
806
807 if (Sec->EntSize)
808 SHeader.sh_entsize = *Sec->EntSize;
809 else
810 SHeader.sh_entsize = ELFYAML::getDefaultShEntSize<ELFT>(
811 Doc.Header.Machine.value_or(ELF::EM_NONE), Sec->Type, Sec->Name);
812
813 // We have a few sections like string or symbol tables that are usually
814 // added implicitly to the end. However, if they are explicitly specified
815 // in the YAML, we need to write them here. This ensures the file offset
816 // remains correct.
817 if (initImplicitHeader(CBA, SHeader, Sec->Name,
818 Sec->IsImplicit ? nullptr : Sec))
819 continue;
820
821 assert(Sec && "It can't be null unless it is an implicit section. But all "
822 "implicit sections should already have been handled above.");
823
824 SHeader.sh_name =
825 getSectionNameOffset(ELFYAML::dropUniqueSuffix(Sec->Name));
826 SHeader.sh_type = Sec->Type;
827 if (Sec->Flags)
828 SHeader.sh_flags = *Sec->Flags;
829 SHeader.sh_addralign = Sec->AddressAlign;
830
831 // Set the offset for all sections, except the SHN_UNDEF section with index
832 // 0 when not explicitly requested.
833 if (!IsFirstUndefSection || Sec->Offset)
834 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, Sec->Offset);
835
836 assignSectionAddress(SHeader, Sec);
837
838 if (IsFirstUndefSection) {
839 if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) {
840 // We do not write any content for special SHN_UNDEF section.
841 if (RawSec->Size)
842 SHeader.sh_size = *RawSec->Size;
843 if (RawSec->Info)
844 SHeader.sh_info = *RawSec->Info;
845 }
846
847 LocationCounter += SHeader.sh_size;
848 overrideFields<ELFT>(Sec, SHeader);
849 continue;
850 }
851
852 if (!isa<ELFYAML::NoBitsSection>(Sec) && (Sec->Content || Sec->Size))
853 SHeader.sh_size = writeContent(CBA, Sec->Content, Sec->Size);
854
855 if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) {
856 writeSectionContent(SHeader, *S, CBA);
857 } else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) {
858 writeSectionContent(SHeader, *S, CBA);
859 } else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) {
860 writeSectionContent(SHeader, *S, CBA);
861 } else if (auto S = dyn_cast<ELFYAML::RelrSection>(Sec)) {
862 writeSectionContent(SHeader, *S, CBA);
863 } else if (auto S = dyn_cast<ELFYAML::GroupSection>(Sec)) {
864 writeSectionContent(SHeader, *S, CBA);
865 } else if (auto S = dyn_cast<ELFYAML::ARMIndexTableSection>(Sec)) {
866 writeSectionContent(SHeader, *S, CBA);
867 } else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) {
868 writeSectionContent(SHeader, *S, CBA);
869 } else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) {
870 writeSectionContent(SHeader, *S, CBA);
871 } else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) {
872 writeSectionContent(SHeader, *S, CBA);
873 } else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) {
874 writeSectionContent(SHeader, *S, CBA);
875 } else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) {
876 writeSectionContent(SHeader, *S, CBA);
877 } else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) {
878 writeSectionContent(SHeader, *S, CBA);
879 } else if (auto S = dyn_cast<ELFYAML::StackSizesSection>(Sec)) {
880 writeSectionContent(SHeader, *S, CBA);
881 } else if (auto S = dyn_cast<ELFYAML::HashSection>(Sec)) {
882 writeSectionContent(SHeader, *S, CBA);
883 } else if (auto S = dyn_cast<ELFYAML::AddrsigSection>(Sec)) {
884 writeSectionContent(SHeader, *S, CBA);
885 } else if (auto S = dyn_cast<ELFYAML::LinkerOptionsSection>(Sec)) {
886 writeSectionContent(SHeader, *S, CBA);
887 } else if (auto S = dyn_cast<ELFYAML::NoteSection>(Sec)) {
888 writeSectionContent(SHeader, *S, CBA);
889 } else if (auto S = dyn_cast<ELFYAML::GnuHashSection>(Sec)) {
890 writeSectionContent(SHeader, *S, CBA);
891 } else if (auto S = dyn_cast<ELFYAML::DependentLibrariesSection>(Sec)) {
892 writeSectionContent(SHeader, *S, CBA);
893 } else if (auto S = dyn_cast<ELFYAML::CallGraphProfileSection>(Sec)) {
894 writeSectionContent(SHeader, *S, CBA);
895 } else if (auto S = dyn_cast<ELFYAML::BBAddrMapSection>(Sec)) {
896 writeSectionContent(SHeader, *S, CBA);
897 } else {
898 llvm_unreachable("Unknown section type");
899 }
900
901 LocationCounter += SHeader.sh_size;
902
903 // Override section fields if requested.
904 overrideFields<ELFT>(Sec, SHeader);
905 }
906}
907
908template <class ELFT>
909void ELFState<ELFT>::assignSectionAddress(Elf_Shdr &SHeader,
910 ELFYAML::Section *YAMLSec) {
911 if (YAMLSec && YAMLSec->Address) {
912 SHeader.sh_addr = *YAMLSec->Address;
913 LocationCounter = *YAMLSec->Address;
914 return;
915 }
916
917 // sh_addr represents the address in the memory image of a process. Sections
918 // in a relocatable object file or non-allocatable sections do not need
919 // sh_addr assignment.
920 if (Doc.Header.Type.value == ELF::ET_REL ||
921 !(SHeader.sh_flags & ELF::SHF_ALLOC))
922 return;
923
924 LocationCounter =
925 alignTo(LocationCounter, SHeader.sh_addralign ? SHeader.sh_addralign : 1);
926 SHeader.sh_addr = LocationCounter;
927}
928
930 for (size_t I = 0; I < Symbols.size(); ++I)
931 if (Symbols[I].Binding.value != ELF::STB_LOCAL)
932 return I;
933 return Symbols.size();
934}
935
936template <class ELFT>
937std::vector<typename ELFT::Sym>
938ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols,
939 const StringTableBuilder &Strtab) {
940 std::vector<Elf_Sym> Ret;
941 Ret.resize(Symbols.size() + 1);
942
943 size_t I = 0;
944 for (const ELFYAML::Symbol &Sym : Symbols) {
945 Elf_Sym &Symbol = Ret[++I];
946
947 // If NameIndex, which contains the name offset, is explicitly specified, we
948 // use it. This is useful for preparing broken objects. Otherwise, we add
949 // the specified Name to the string table builder to get its offset.
950 if (Sym.StName)
951 Symbol.st_name = *Sym.StName;
952 else if (!Sym.Name.empty())
953 Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name));
954
955 Symbol.setBindingAndType(Sym.Binding, Sym.Type);
956 if (Sym.Section)
957 Symbol.st_shndx = toSectionIndex(*Sym.Section, "", Sym.Name);
958 else if (Sym.Index)
959 Symbol.st_shndx = *Sym.Index;
960
961 Symbol.st_value = Sym.Value.value_or(yaml::Hex64(0));
962 Symbol.st_other = Sym.Other ? *Sym.Other : 0;
963 Symbol.st_size = Sym.Size.value_or(yaml::Hex64(0));
964 }
965
966 return Ret;
967}
968
969template <class ELFT>
970void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader,
971 SymtabType STType,
972 ContiguousBlobAccumulator &CBA,
973 ELFYAML::Section *YAMLSec) {
974
975 bool IsStatic = STType == SymtabType::Static;
977 if (IsStatic && Doc.Symbols)
978 Symbols = *Doc.Symbols;
979 else if (!IsStatic && Doc.DynamicSymbols)
980 Symbols = *Doc.DynamicSymbols;
981
983 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
984 if (RawSec && (RawSec->Content || RawSec->Size)) {
985 bool HasSymbolsDescription =
986 (IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols);
987 if (HasSymbolsDescription) {
988 StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`");
989 if (RawSec->Content)
990 reportError("cannot specify both `Content` and " + Property +
991 " for symbol table section '" + RawSec->Name + "'");
992 if (RawSec->Size)
993 reportError("cannot specify both `Size` and " + Property +
994 " for symbol table section '" + RawSec->Name + "'");
995 return;
996 }
997 }
998
999 SHeader.sh_name = getSectionNameOffset(IsStatic ? ".symtab" : ".dynsym");
1000
1001 if (YAMLSec)
1002 SHeader.sh_type = YAMLSec->Type;
1003 else
1004 SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM;
1005
1006 if (YAMLSec && YAMLSec->Flags)
1007 SHeader.sh_flags = *YAMLSec->Flags;
1008 else if (!IsStatic)
1009 SHeader.sh_flags = ELF::SHF_ALLOC;
1010
1011 // If the symbol table section is explicitly described in the YAML
1012 // then we should set the fields requested.
1013 SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info)
1014 : findFirstNonGlobal(Symbols) + 1;
1015 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8;
1016
1017 assignSectionAddress(SHeader, YAMLSec);
1018
1019 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign,
1020 RawSec ? RawSec->Offset : std::nullopt);
1021
1022 if (RawSec && (RawSec->Content || RawSec->Size)) {
1023 assert(Symbols.empty());
1024 SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size);
1025 return;
1026 }
1027
1028 std::vector<Elf_Sym> Syms =
1029 toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr);
1030 SHeader.sh_size = Syms.size() * sizeof(Elf_Sym);
1031 CBA.write((const char *)Syms.data(), SHeader.sh_size);
1032}
1033
1034template <class ELFT>
1035void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
1036 StringTableBuilder &STB,
1037 ContiguousBlobAccumulator &CBA,
1038 ELFYAML::Section *YAMLSec) {
1039 SHeader.sh_name = getSectionNameOffset(ELFYAML::dropUniqueSuffix(Name));
1040 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB;
1041 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1;
1042
1044 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
1045
1046 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign,
1047 YAMLSec ? YAMLSec->Offset : std::nullopt);
1048
1049 if (RawSec && (RawSec->Content || RawSec->Size)) {
1050 SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size);
1051 } else {
1052 if (raw_ostream *OS = CBA.getRawOS(STB.getSize()))
1053 STB.write(*OS);
1054 SHeader.sh_size = STB.getSize();
1055 }
1056
1057 if (RawSec && RawSec->Info)
1058 SHeader.sh_info = *RawSec->Info;
1059
1060 if (YAMLSec && YAMLSec->Flags)
1061 SHeader.sh_flags = *YAMLSec->Flags;
1062 else if (Name == ".dynstr")
1063 SHeader.sh_flags = ELF::SHF_ALLOC;
1064
1065 assignSectionAddress(SHeader, YAMLSec);
1066}
1067
1069 SetVector<StringRef> DebugSecNames = DWARF.getNonEmptySectionNames();
1070 return Name.consume_front(".") && DebugSecNames.count(Name);
1071}
1072
1073template <class ELFT>
1074Expected<uint64_t> emitDWARF(typename ELFT::Shdr &SHeader, StringRef Name,
1075 const DWARFYAML::Data &DWARF,
1076 ContiguousBlobAccumulator &CBA) {
1077 // We are unable to predict the size of debug data, so we request to write 0
1078 // bytes. This should always return us an output stream unless CBA is already
1079 // in an error state.
1080 raw_ostream *OS = CBA.getRawOS(0);
1081 if (!OS)
1082 return 0;
1083
1084 uint64_t BeginOffset = CBA.tell();
1085
1086 auto EmitFunc = DWARFYAML::getDWARFEmitterByName(Name.substr(1));
1087 if (Error Err = EmitFunc(*OS, DWARF))
1088 return std::move(Err);
1089
1090 return CBA.tell() - BeginOffset;
1091}
1092
1093template <class ELFT>
1094void ELFState<ELFT>::initDWARFSectionHeader(Elf_Shdr &SHeader, StringRef Name,
1095 ContiguousBlobAccumulator &CBA,
1096 ELFYAML::Section *YAMLSec) {
1097 SHeader.sh_name = getSectionNameOffset(ELFYAML::dropUniqueSuffix(Name));
1098 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_PROGBITS;
1099 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1;
1100 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign,
1101 YAMLSec ? YAMLSec->Offset : std::nullopt);
1102
1104 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
1105 if (Doc.DWARF && shouldEmitDWARF(*Doc.DWARF, Name)) {
1106 if (RawSec && (RawSec->Content || RawSec->Size))
1107 reportError("cannot specify section '" + Name +
1108 "' contents in the 'DWARF' entry and the 'Content' "
1109 "or 'Size' in the 'Sections' entry at the same time");
1110 else {
1111 if (Expected<uint64_t> ShSizeOrErr =
1112 emitDWARF<ELFT>(SHeader, Name, *Doc.DWARF, CBA))
1113 SHeader.sh_size = *ShSizeOrErr;
1114 else
1115 reportError(ShSizeOrErr.takeError());
1116 }
1117 } else if (RawSec)
1118 SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size);
1119 else
1120 llvm_unreachable("debug sections can only be initialized via the 'DWARF' "
1121 "entry or a RawContentSection");
1122
1123 if (RawSec && RawSec->Info)
1124 SHeader.sh_info = *RawSec->Info;
1125
1126 if (YAMLSec && YAMLSec->Flags)
1127 SHeader.sh_flags = *YAMLSec->Flags;
1128 else if (Name == ".debug_str")
1129 SHeader.sh_flags = ELF::SHF_MERGE | ELF::SHF_STRINGS;
1130
1131 assignSectionAddress(SHeader, YAMLSec);
1132}
1133
1134template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) {
1135 ErrHandler(Msg);
1136 HasError = true;
1137}
1138
1139template <class ELFT> void ELFState<ELFT>::reportError(Error Err) {
1140 handleAllErrors(std::move(Err), [&](const ErrorInfoBase &Err) {
1141 reportError(Err.message());
1142 });
1143}
1144
1145template <class ELFT>
1146std::vector<Fragment>
1147ELFState<ELFT>::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr,
1148 ArrayRef<Elf_Shdr> SHeaders) {
1149 std::vector<Fragment> Ret;
1150 for (const ELFYAML::Chunk *C : Phdr.Chunks) {
1151 if (const ELFYAML::Fill *F = dyn_cast<ELFYAML::Fill>(C)) {
1152 Ret.push_back({*F->Offset, F->Size, llvm::ELF::SHT_PROGBITS,
1153 /*ShAddrAlign=*/1});
1154 continue;
1155 }
1156
1157 const ELFYAML::Section *S = cast<ELFYAML::Section>(C);
1158 const Elf_Shdr &H = SHeaders[SN2I.get(S->Name)];
1159 Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign});
1160 }
1161 return Ret;
1162}
1163
1164template <class ELFT>
1165void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
1166 std::vector<Elf_Shdr> &SHeaders) {
1167 uint32_t PhdrIdx = 0;
1168 for (auto &YamlPhdr : Doc.ProgramHeaders) {
1169 Elf_Phdr &PHeader = PHeaders[PhdrIdx++];
1170 std::vector<Fragment> Fragments = getPhdrFragments(YamlPhdr, SHeaders);
1171 if (!llvm::is_sorted(Fragments, [](const Fragment &A, const Fragment &B) {
1172 return A.Offset < B.Offset;
1173 }))
1174 reportError("sections in the program header with index " +
1175 Twine(PhdrIdx) + " are not sorted by their file offset");
1176
1177 if (YamlPhdr.Offset) {
1178 if (!Fragments.empty() && *YamlPhdr.Offset > Fragments.front().Offset)
1179 reportError("'Offset' for segment with index " + Twine(PhdrIdx) +
1180 " must be less than or equal to the minimum file offset of "
1181 "all included sections (0x" +
1182 Twine::utohexstr(Fragments.front().Offset) + ")");
1183 PHeader.p_offset = *YamlPhdr.Offset;
1184 } else if (!Fragments.empty()) {
1185 PHeader.p_offset = Fragments.front().Offset;
1186 }
1187
1188 // Set the file size if not set explicitly.
1189 if (YamlPhdr.FileSize) {
1190 PHeader.p_filesz = *YamlPhdr.FileSize;
1191 } else if (!Fragments.empty()) {
1192 uint64_t FileSize = Fragments.back().Offset - PHeader.p_offset;
1193 // SHT_NOBITS sections occupy no physical space in a file, we should not
1194 // take their sizes into account when calculating the file size of a
1195 // segment.
1196 if (Fragments.back().Type != llvm::ELF::SHT_NOBITS)
1197 FileSize += Fragments.back().Size;
1198 PHeader.p_filesz = FileSize;
1199 }
1200
1201 // Find the maximum offset of the end of a section in order to set p_memsz.
1202 uint64_t MemOffset = PHeader.p_offset;
1203 for (const Fragment &F : Fragments)
1204 MemOffset = std::max(MemOffset, F.Offset + F.Size);
1205 // Set the memory size if not set explicitly.
1206 PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize)
1207 : MemOffset - PHeader.p_offset;
1208
1209 if (YamlPhdr.Align) {
1210 PHeader.p_align = *YamlPhdr.Align;
1211 } else {
1212 // Set the alignment of the segment to be the maximum alignment of the
1213 // sections so that by default the segment has a valid and sensible
1214 // alignment.
1215 PHeader.p_align = 1;
1216 for (const Fragment &F : Fragments)
1217 PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign);
1218 }
1219 }
1220}
1221
1224 for (const ELFYAML::ProgramHeader &PH : Phdrs) {
1225 auto It = llvm::find_if(
1226 PH.Chunks, [&](ELFYAML::Chunk *C) { return C->Name == S.Name; });
1227 if (std::any_of(It, PH.Chunks.end(), [](ELFYAML::Chunk *C) {
1228 return (isa<ELFYAML::Fill>(C) ||
1229 cast<ELFYAML::Section>(C)->Type != ELF::SHT_NOBITS);
1230 }))
1231 return true;
1232 }
1233 return false;
1234}
1235
1236template <class ELFT>
1237void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1238 const ELFYAML::NoBitsSection &S,
1239 ContiguousBlobAccumulator &CBA) {
1240 if (!S.Size)
1241 return;
1242
1243 SHeader.sh_size = *S.Size;
1244
1245 // When a nobits section is followed by a non-nobits section or fill
1246 // in the same segment, we allocate the file space for it. This behavior
1247 // matches linkers.
1248 if (shouldAllocateFileSpace(Doc.ProgramHeaders, S))
1249 CBA.writeZeros(*S.Size);
1250}
1251
1252template <class ELFT>
1253void ELFState<ELFT>::writeSectionContent(
1254 Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section,
1255 ContiguousBlobAccumulator &CBA) {
1256 if (Section.Info)
1257 SHeader.sh_info = *Section.Info;
1258}
1259
1260static bool isMips64EL(const ELFYAML::Object &Obj) {
1261 return Obj.getMachine() == llvm::ELF::EM_MIPS &&
1262 Obj.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) &&
1263 Obj.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
1264}
1265
1266template <class ELFT>
1267void ELFState<ELFT>::writeSectionContent(
1268 Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section,
1269 ContiguousBlobAccumulator &CBA) {
1271 Section.Type == llvm::ELF::SHT_RELA) &&
1272 "Section type is not SHT_REL nor SHT_RELA");
1273
1274 if (!Section.RelocatableSec.empty())
1275 SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name);
1276
1277 if (!Section.Relocations)
1278 return;
1279
1280 const bool IsRela = Section.Type == llvm::ELF::SHT_RELA;
1281 for (const ELFYAML::Relocation &Rel : *Section.Relocations) {
1282 const bool IsDynamic = Section.Link && (*Section.Link == ".dynsym");
1283 unsigned SymIdx =
1284 Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, IsDynamic) : 0;
1285 if (IsRela) {
1286 Elf_Rela REntry;
1287 zero(REntry);
1288 REntry.r_offset = Rel.Offset;
1289 REntry.r_addend = Rel.Addend;
1290 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc));
1291 CBA.write((const char *)&REntry, sizeof(REntry));
1292 } else {
1293 Elf_Rel REntry;
1294 zero(REntry);
1295 REntry.r_offset = Rel.Offset;
1296 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc));
1297 CBA.write((const char *)&REntry, sizeof(REntry));
1298 }
1299 }
1300
1301 SHeader.sh_size = (IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)) *
1302 Section.Relocations->size();
1303}
1304
1305template <class ELFT>
1306void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1307 const ELFYAML::RelrSection &Section,
1308 ContiguousBlobAccumulator &CBA) {
1309 if (!Section.Entries)
1310 return;
1311
1312 for (llvm::yaml::Hex64 E : *Section.Entries) {
1313 if (!ELFT::Is64Bits && E > UINT32_MAX)
1314 reportError(Section.Name + ": the value is too large for 32-bits: 0x" +
1316 CBA.write<uintX_t>(E, ELFT::TargetEndianness);
1317 }
1318
1319 SHeader.sh_size = sizeof(uintX_t) * Section.Entries->size();
1320}
1321
1322template <class ELFT>
1323void ELFState<ELFT>::writeSectionContent(
1324 Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx,
1325 ContiguousBlobAccumulator &CBA) {
1326 if (Shndx.Content || Shndx.Size) {
1327 SHeader.sh_size = writeContent(CBA, Shndx.Content, Shndx.Size);
1328 return;
1329 }
1330
1331 if (!Shndx.Entries)
1332 return;
1333
1334 for (uint32_t E : *Shndx.Entries)
1335 CBA.write<uint32_t>(E, ELFT::TargetEndianness);
1336 SHeader.sh_size = Shndx.Entries->size() * SHeader.sh_entsize;
1337}
1338
1339template <class ELFT>
1340void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1341 const ELFYAML::GroupSection &Section,
1342 ContiguousBlobAccumulator &CBA) {
1344 "Section type is not SHT_GROUP");
1345
1346 if (Section.Signature)
1347 SHeader.sh_info =
1348 toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false);
1349
1350 if (!Section.Members)
1351 return;
1352
1353 for (const ELFYAML::SectionOrType &Member : *Section.Members) {
1354 unsigned int SectionIndex = 0;
1355 if (Member.sectionNameOrType == "GRP_COMDAT")
1356 SectionIndex = llvm::ELF::GRP_COMDAT;
1357 else
1358 SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name);
1359 CBA.write<uint32_t>(SectionIndex, ELFT::TargetEndianness);
1360 }
1361 SHeader.sh_size = SHeader.sh_entsize * Section.Members->size();
1362}
1363
1364template <class ELFT>
1365void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1366 const ELFYAML::SymverSection &Section,
1367 ContiguousBlobAccumulator &CBA) {
1368 if (!Section.Entries)
1369 return;
1370
1371 for (uint16_t Version : *Section.Entries)
1372 CBA.write<uint16_t>(Version, ELFT::TargetEndianness);
1373 SHeader.sh_size = Section.Entries->size() * SHeader.sh_entsize;
1374}
1375
1376template <class ELFT>
1377void ELFState<ELFT>::writeSectionContent(
1378 Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section,
1379 ContiguousBlobAccumulator &CBA) {
1380 if (!Section.Entries)
1381 return;
1382
1383 for (const ELFYAML::StackSizeEntry &E : *Section.Entries) {
1384 CBA.write<uintX_t>(E.Address, ELFT::TargetEndianness);
1385 SHeader.sh_size += sizeof(uintX_t) + CBA.writeULEB128(E.Size);
1386 }
1387}
1388
1389template <class ELFT>
1390void ELFState<ELFT>::writeSectionContent(
1391 Elf_Shdr &SHeader, const ELFYAML::BBAddrMapSection &Section,
1392 ContiguousBlobAccumulator &CBA) {
1393 if (!Section.Entries)
1394 return;
1395
1396 for (const ELFYAML::BBAddrMapEntry &E : *Section.Entries) {
1397 // Write version and feature values.
1399 if (E.Version > 2)
1400 WithColor::warning() << "unsupported SHT_LLVM_BB_ADDR_MAP version: "
1401 << static_cast<int>(E.Version)
1402 << "; encoding using the most recent version";
1403 CBA.write(E.Version);
1404 CBA.write(E.Feature);
1405 SHeader.sh_size += 2;
1406 }
1407 // Write the address of the function.
1408 CBA.write<uintX_t>(E.Address, ELFT::TargetEndianness);
1409 // Write number of BBEntries (number of basic blocks in the function). This
1410 // is overridden by the 'NumBlocks' YAML field when specified.
1411 uint64_t NumBlocks =
1412 E.NumBlocks.value_or(E.BBEntries ? E.BBEntries->size() : 0);
1413 SHeader.sh_size += sizeof(uintX_t) + CBA.writeULEB128(NumBlocks);
1414 // Write all BBEntries.
1415 if (!E.BBEntries)
1416 continue;
1417 for (const ELFYAML::BBAddrMapEntry::BBEntry &BBE : *E.BBEntries) {
1418 if (Section.Type == llvm::ELF::SHT_LLVM_BB_ADDR_MAP && E.Version > 1)
1419 SHeader.sh_size += CBA.writeULEB128(BBE.ID);
1420 SHeader.sh_size += CBA.writeULEB128(BBE.AddressOffset) +
1421 CBA.writeULEB128(BBE.Size) +
1422 CBA.writeULEB128(BBE.Metadata);
1423 }
1424 }
1425}
1426
1427template <class ELFT>
1428void ELFState<ELFT>::writeSectionContent(
1429 Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section,
1430 ContiguousBlobAccumulator &CBA) {
1431 if (!Section.Options)
1432 return;
1433
1434 for (const ELFYAML::LinkerOption &LO : *Section.Options) {
1435 CBA.write(LO.Key.data(), LO.Key.size());
1436 CBA.write('\0');
1437 CBA.write(LO.Value.data(), LO.Value.size());
1438 CBA.write('\0');
1439 SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2);
1440 }
1441}
1442
1443template <class ELFT>
1444void ELFState<ELFT>::writeSectionContent(
1445 Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section,
1446 ContiguousBlobAccumulator &CBA) {
1447 if (!Section.Libs)
1448 return;
1449
1450 for (StringRef Lib : *Section.Libs) {
1451 CBA.write(Lib.data(), Lib.size());
1452 CBA.write('\0');
1453 SHeader.sh_size += Lib.size() + 1;
1454 }
1455}
1456
1457template <class ELFT>
1459ELFState<ELFT>::alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align,
1460 std::optional<llvm::yaml::Hex64> Offset) {
1461 uint64_t CurrentOffset = CBA.getOffset();
1462 uint64_t AlignedOffset;
1463
1464 if (Offset) {
1465 if ((uint64_t)*Offset < CurrentOffset) {
1466 reportError("the 'Offset' value (0x" +
1467 Twine::utohexstr((uint64_t)*Offset) + ") goes backward");
1468 return CurrentOffset;
1469 }
1470
1471 // We ignore an alignment when an explicit offset has been requested.
1472 AlignedOffset = *Offset;
1473 } else {
1474 AlignedOffset = alignTo(CurrentOffset, std::max(Align, (uint64_t)1));
1475 }
1476
1477 CBA.writeZeros(AlignedOffset - CurrentOffset);
1478 return AlignedOffset;
1479}
1480
1481template <class ELFT>
1482void ELFState<ELFT>::writeSectionContent(
1483 Elf_Shdr &SHeader, const ELFYAML::CallGraphProfileSection &Section,
1484 ContiguousBlobAccumulator &CBA) {
1485 if (!Section.Entries)
1486 return;
1487
1488 for (const ELFYAML::CallGraphEntryWeight &E : *Section.Entries) {
1489 CBA.write<uint64_t>(E.Weight, ELFT::TargetEndianness);
1490 SHeader.sh_size += sizeof(object::Elf_CGProfile_Impl<ELFT>);
1491 }
1492}
1493
1494template <class ELFT>
1495void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1496 const ELFYAML::HashSection &Section,
1497 ContiguousBlobAccumulator &CBA) {
1498 if (!Section.Bucket)
1499 return;
1500
1501 CBA.write<uint32_t>(
1502 Section.NBucket.value_or(llvm::yaml::Hex64(Section.Bucket->size())),
1503 ELFT::TargetEndianness);
1504 CBA.write<uint32_t>(
1505 Section.NChain.value_or(llvm::yaml::Hex64(Section.Chain->size())),
1506 ELFT::TargetEndianness);
1507
1508 for (uint32_t Val : *Section.Bucket)
1509 CBA.write<uint32_t>(Val, ELFT::TargetEndianness);
1510 for (uint32_t Val : *Section.Chain)
1511 CBA.write<uint32_t>(Val, ELFT::TargetEndianness);
1512
1513 SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4;
1514}
1515
1516template <class ELFT>
1517void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1518 const ELFYAML::VerdefSection &Section,
1519 ContiguousBlobAccumulator &CBA) {
1520
1521 if (Section.Info)
1522 SHeader.sh_info = *Section.Info;
1523 else if (Section.Entries)
1524 SHeader.sh_info = Section.Entries->size();
1525
1526 if (!Section.Entries)
1527 return;
1528
1529 uint64_t AuxCnt = 0;
1530 for (size_t I = 0; I < Section.Entries->size(); ++I) {
1531 const ELFYAML::VerdefEntry &E = (*Section.Entries)[I];
1532
1533 Elf_Verdef VerDef;
1534 VerDef.vd_version = E.Version.value_or(1);
1535 VerDef.vd_flags = E.Flags.value_or(0);
1536 VerDef.vd_ndx = E.VersionNdx.value_or(0);
1537 VerDef.vd_hash = E.Hash.value_or(0);
1538 VerDef.vd_aux = sizeof(Elf_Verdef);
1539 VerDef.vd_cnt = E.VerNames.size();
1540 if (I == Section.Entries->size() - 1)
1541 VerDef.vd_next = 0;
1542 else
1543 VerDef.vd_next =
1544 sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux);
1545 CBA.write((const char *)&VerDef, sizeof(Elf_Verdef));
1546
1547 for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) {
1548 Elf_Verdaux VernAux;
1549 VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]);
1550 if (J == E.VerNames.size() - 1)
1551 VernAux.vda_next = 0;
1552 else
1553 VernAux.vda_next = sizeof(Elf_Verdaux);
1554 CBA.write((const char *)&VernAux, sizeof(Elf_Verdaux));
1555 }
1556 }
1557
1558 SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) +
1559 AuxCnt * sizeof(Elf_Verdaux);
1560}
1561
1562template <class ELFT>
1563void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1564 const ELFYAML::VerneedSection &Section,
1565 ContiguousBlobAccumulator &CBA) {
1566 if (Section.Info)
1567 SHeader.sh_info = *Section.Info;
1568 else if (Section.VerneedV)
1569 SHeader.sh_info = Section.VerneedV->size();
1570
1571 if (!Section.VerneedV)
1572 return;
1573
1574 uint64_t AuxCnt = 0;
1575 for (size_t I = 0; I < Section.VerneedV->size(); ++I) {
1576 const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I];
1577
1578 Elf_Verneed VerNeed;
1579 VerNeed.vn_version = VE.Version;
1580 VerNeed.vn_file = DotDynstr.getOffset(VE.File);
1581 if (I == Section.VerneedV->size() - 1)
1582 VerNeed.vn_next = 0;
1583 else
1584 VerNeed.vn_next =
1585 sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux);
1586 VerNeed.vn_cnt = VE.AuxV.size();
1587 VerNeed.vn_aux = sizeof(Elf_Verneed);
1588 CBA.write((const char *)&VerNeed, sizeof(Elf_Verneed));
1589
1590 for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) {
1591 const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J];
1592
1593 Elf_Vernaux VernAux;
1594 VernAux.vna_hash = VAuxE.Hash;
1595 VernAux.vna_flags = VAuxE.Flags;
1596 VernAux.vna_other = VAuxE.Other;
1597 VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name);
1598 if (J == VE.AuxV.size() - 1)
1599 VernAux.vna_next = 0;
1600 else
1601 VernAux.vna_next = sizeof(Elf_Vernaux);
1602 CBA.write((const char *)&VernAux, sizeof(Elf_Vernaux));
1603 }
1604 }
1605
1606 SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) +
1607 AuxCnt * sizeof(Elf_Vernaux);
1608}
1609
1610template <class ELFT>
1611void ELFState<ELFT>::writeSectionContent(
1612 Elf_Shdr &SHeader, const ELFYAML::ARMIndexTableSection &Section,
1613 ContiguousBlobAccumulator &CBA) {
1614 if (!Section.Entries)
1615 return;
1616
1617 for (const ELFYAML::ARMIndexTableEntry &E : *Section.Entries) {
1618 CBA.write<uint32_t>(E.Offset, ELFT::TargetEndianness);
1619 CBA.write<uint32_t>(E.Value, ELFT::TargetEndianness);
1620 }
1621 SHeader.sh_size = Section.Entries->size() * 8;
1622}
1623
1624template <class ELFT>
1625void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1626 const ELFYAML::MipsABIFlags &Section,
1627 ContiguousBlobAccumulator &CBA) {
1629 "Section type is not SHT_MIPS_ABIFLAGS");
1630
1632 zero(Flags);
1633 SHeader.sh_size = SHeader.sh_entsize;
1634
1635 Flags.version = Section.Version;
1636 Flags.isa_level = Section.ISALevel;
1637 Flags.isa_rev = Section.ISARevision;
1638 Flags.gpr_size = Section.GPRSize;
1639 Flags.cpr1_size = Section.CPR1Size;
1640 Flags.cpr2_size = Section.CPR2Size;
1641 Flags.fp_abi = Section.FpABI;
1642 Flags.isa_ext = Section.ISAExtension;
1643 Flags.ases = Section.ASEs;
1644 Flags.flags1 = Section.Flags1;
1645 Flags.flags2 = Section.Flags2;
1646 CBA.write((const char *)&Flags, sizeof(Flags));
1647}
1648
1649template <class ELFT>
1650void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1651 const ELFYAML::DynamicSection &Section,
1652 ContiguousBlobAccumulator &CBA) {
1654 "Section type is not SHT_DYNAMIC");
1655
1656 if (!Section.Entries)
1657 return;
1658
1659 for (const ELFYAML::DynamicEntry &DE : *Section.Entries) {
1660 CBA.write<uintX_t>(DE.Tag, ELFT::TargetEndianness);
1661 CBA.write<uintX_t>(DE.Val, ELFT::TargetEndianness);
1662 }
1663 SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries->size();
1664}
1665
1666template <class ELFT>
1667void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1668 const ELFYAML::AddrsigSection &Section,
1669 ContiguousBlobAccumulator &CBA) {
1670 if (!Section.Symbols)
1671 return;
1672
1673 for (StringRef Sym : *Section.Symbols)
1674 SHeader.sh_size +=
1675 CBA.writeULEB128(toSymbolIndex(Sym, Section.Name, /*IsDynamic=*/false));
1676}
1677
1678template <class ELFT>
1679void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1680 const ELFYAML::NoteSection &Section,
1681 ContiguousBlobAccumulator &CBA) {
1682 if (!Section.Notes)
1683 return;
1684
1685 uint64_t Offset = CBA.tell();
1686 for (const ELFYAML::NoteEntry &NE : *Section.Notes) {
1687 // Write name size.
1688 if (NE.Name.empty())
1689 CBA.write<uint32_t>(0, ELFT::TargetEndianness);
1690 else
1691 CBA.write<uint32_t>(NE.Name.size() + 1, ELFT::TargetEndianness);
1692
1693 // Write description size.
1694 if (NE.Desc.binary_size() == 0)
1695 CBA.write<uint32_t>(0, ELFT::TargetEndianness);
1696 else
1697 CBA.write<uint32_t>(NE.Desc.binary_size(), ELFT::TargetEndianness);
1698
1699 // Write type.
1700 CBA.write<uint32_t>(NE.Type, ELFT::TargetEndianness);
1701
1702 // Write name, null terminator and padding.
1703 if (!NE.Name.empty()) {
1704 CBA.write(NE.Name.data(), NE.Name.size());
1705 CBA.write('\0');
1706 CBA.padToAlignment(4);
1707 }
1708
1709 // Write description and padding.
1710 if (NE.Desc.binary_size() != 0) {
1711 CBA.writeAsBinary(NE.Desc);
1712 CBA.padToAlignment(4);
1713 }
1714 }
1715
1716 SHeader.sh_size = CBA.tell() - Offset;
1717}
1718
1719template <class ELFT>
1720void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1721 const ELFYAML::GnuHashSection &Section,
1722 ContiguousBlobAccumulator &CBA) {
1723 if (!Section.HashBuckets)
1724 return;
1725
1726 if (!Section.Header)
1727 return;
1728
1729 // We write the header first, starting with the hash buckets count. Normally
1730 // it is the number of entries in HashBuckets, but the "NBuckets" property can
1731 // be used to override this field, which is useful for producing broken
1732 // objects.
1733 if (Section.Header->NBuckets)
1734 CBA.write<uint32_t>(*Section.Header->NBuckets, ELFT::TargetEndianness);
1735 else
1736 CBA.write<uint32_t>(Section.HashBuckets->size(), ELFT::TargetEndianness);
1737
1738 // Write the index of the first symbol in the dynamic symbol table accessible
1739 // via the hash table.
1740 CBA.write<uint32_t>(Section.Header->SymNdx, ELFT::TargetEndianness);
1741
1742 // Write the number of words in the Bloom filter. As above, the "MaskWords"
1743 // property can be used to set this field to any value.
1744 if (Section.Header->MaskWords)
1745 CBA.write<uint32_t>(*Section.Header->MaskWords, ELFT::TargetEndianness);
1746 else
1747 CBA.write<uint32_t>(Section.BloomFilter->size(), ELFT::TargetEndianness);
1748
1749 // Write the shift constant used by the Bloom filter.
1750 CBA.write<uint32_t>(Section.Header->Shift2, ELFT::TargetEndianness);
1751
1752 // We've finished writing the header. Now write the Bloom filter.
1753 for (llvm::yaml::Hex64 Val : *Section.BloomFilter)
1754 CBA.write<uintX_t>(Val, ELFT::TargetEndianness);
1755
1756 // Write an array of hash buckets.
1757 for (llvm::yaml::Hex32 Val : *Section.HashBuckets)
1758 CBA.write<uint32_t>(Val, ELFT::TargetEndianness);
1759
1760 // Write an array of hash values.
1761 for (llvm::yaml::Hex32 Val : *Section.HashValues)
1762 CBA.write<uint32_t>(Val, ELFT::TargetEndianness);
1763
1764 SHeader.sh_size = 16 /*Header size*/ +
1765 Section.BloomFilter->size() * sizeof(typename ELFT::uint) +
1766 Section.HashBuckets->size() * 4 +
1767 Section.HashValues->size() * 4;
1768}
1769
1770template <class ELFT>
1771void ELFState<ELFT>::writeFill(ELFYAML::Fill &Fill,
1772 ContiguousBlobAccumulator &CBA) {
1773 size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0;
1774 if (!PatternSize) {
1775 CBA.writeZeros(Fill.Size);
1776 return;
1777 }
1778
1779 // Fill the content with the specified pattern.
1780 uint64_t Written = 0;
1781 for (; Written + PatternSize <= Fill.Size; Written += PatternSize)
1782 CBA.writeAsBinary(*Fill.Pattern);
1783 CBA.writeAsBinary(*Fill.Pattern, Fill.Size - Written);
1784}
1785
1786template <class ELFT>
1787DenseMap<StringRef, size_t> ELFState<ELFT>::buildSectionHeaderReorderMap() {
1788 const ELFYAML::SectionHeaderTable &SectionHeaders =
1789 Doc.getSectionHeaderTable();
1790 if (SectionHeaders.IsImplicit || SectionHeaders.NoHeaders ||
1791 SectionHeaders.isDefault())
1793
1795 size_t SecNdx = 0;
1796 StringSet<> Seen;
1797
1798 auto AddSection = [&](const ELFYAML::SectionHeader &Hdr) {
1799 if (!Ret.try_emplace(Hdr.Name, ++SecNdx).second)
1800 reportError("repeated section name: '" + Hdr.Name +
1801 "' in the section header description");
1802 Seen.insert(Hdr.Name);
1803 };
1804
1805 if (SectionHeaders.Sections)
1806 for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Sections)
1807 AddSection(Hdr);
1808
1809 if (SectionHeaders.Excluded)
1810 for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Excluded)
1811 AddSection(Hdr);
1812
1813 for (const ELFYAML::Section *S : Doc.getSections()) {
1814 // Ignore special first SHT_NULL section.
1815 if (S == Doc.getSections().front())
1816 continue;
1817 if (!Seen.count(S->Name))
1818 reportError("section '" + S->Name +
1819 "' should be present in the 'Sections' or 'Excluded' lists");
1820 Seen.erase(S->Name);
1821 }
1822
1823 for (const auto &It : Seen)
1824 reportError("section header contains undefined section '" + It.getKey() +
1825 "'");
1826 return Ret;
1827}
1828
1829template <class ELFT> void ELFState<ELFT>::buildSectionIndex() {
1830 // A YAML description can have an explicit section header declaration that
1831 // allows to change the order of section headers.
1832 DenseMap<StringRef, size_t> ReorderMap = buildSectionHeaderReorderMap();
1833
1834 if (HasError)
1835 return;
1836
1837 // Build excluded section headers map.
1838 std::vector<ELFYAML::Section *> Sections = Doc.getSections();
1839 const ELFYAML::SectionHeaderTable &SectionHeaders =
1840 Doc.getSectionHeaderTable();
1841 if (SectionHeaders.Excluded)
1842 for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Excluded)
1843 if (!ExcludedSectionHeaders.insert(Hdr.Name).second)
1844 llvm_unreachable("buildSectionIndex() failed");
1845
1846 if (SectionHeaders.NoHeaders.value_or(false))
1847 for (const ELFYAML::Section *S : Sections)
1848 if (!ExcludedSectionHeaders.insert(S->Name).second)
1849 llvm_unreachable("buildSectionIndex() failed");
1850
1851 size_t SecNdx = -1;
1852 for (const ELFYAML::Section *S : Sections) {
1853 ++SecNdx;
1854
1855 size_t Index = ReorderMap.empty() ? SecNdx : ReorderMap.lookup(S->Name);
1856 if (!SN2I.addName(S->Name, Index))
1857 llvm_unreachable("buildSectionIndex() failed");
1858
1859 if (!ExcludedSectionHeaders.count(S->Name))
1860 ShStrtabStrings->add(ELFYAML::dropUniqueSuffix(S->Name));
1861 }
1862}
1863
1864template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() {
1865 auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) {
1866 for (size_t I = 0, S = V.size(); I < S; ++I) {
1867 const ELFYAML::Symbol &Sym = V[I];
1868 if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1))
1869 reportError("repeated symbol name: '" + Sym.Name + "'");
1870 }
1871 };
1872
1873 if (Doc.Symbols)
1874 Build(*Doc.Symbols, SymN2I);
1875 if (Doc.DynamicSymbols)
1876 Build(*Doc.DynamicSymbols, DynSymN2I);
1877}
1878
1879template <class ELFT> void ELFState<ELFT>::finalizeStrings() {
1880 // Add the regular symbol names to .strtab section.
1881 if (Doc.Symbols)
1882 for (const ELFYAML::Symbol &Sym : *Doc.Symbols)
1883 DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name));
1884 DotStrtab.finalize();
1885
1886 // Add the dynamic symbol names to .dynstr section.
1887 if (Doc.DynamicSymbols)
1888 for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols)
1889 DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name));
1890
1891 // SHT_GNU_verdef and SHT_GNU_verneed sections might also
1892 // add strings to .dynstr section.
1893 for (const ELFYAML::Chunk *Sec : Doc.getSections()) {
1894 if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec)) {
1895 if (VerNeed->VerneedV) {
1896 for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) {
1897 DotDynstr.add(VE.File);
1898 for (const ELFYAML::VernauxEntry &Aux : VE.AuxV)
1899 DotDynstr.add(Aux.Name);
1900 }
1901 }
1902 } else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec)) {
1903 if (VerDef->Entries)
1904 for (const ELFYAML::VerdefEntry &E : *VerDef->Entries)
1905 for (StringRef Name : E.VerNames)
1906 DotDynstr.add(Name);
1907 }
1908 }
1909
1910 DotDynstr.finalize();
1911
1912 // Don't finalize the section header string table a second time if it has
1913 // already been finalized due to being one of the symbol string tables.
1914 if (ShStrtabStrings != &DotStrtab && ShStrtabStrings != &DotDynstr)
1915 ShStrtabStrings->finalize();
1916}
1917
1918template <class ELFT>
1919bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc,
1920 yaml::ErrorHandler EH, uint64_t MaxSize) {
1921 ELFState<ELFT> State(Doc, EH);
1922 if (State.HasError)
1923 return false;
1924
1925 // Build the section index, which adds sections to the section header string
1926 // table first, so that we can finalize the section header string table.
1927 State.buildSectionIndex();
1928 State.buildSymbolIndexes();
1929
1930 // Finalize section header string table and the .strtab and .dynstr sections.
1931 // We do this early because we want to finalize the string table builders
1932 // before writing the content of the sections that might want to use them.
1933 State.finalizeStrings();
1934
1935 if (State.HasError)
1936 return false;
1937
1938 std::vector<Elf_Phdr> PHeaders;
1939 State.initProgramHeaders(PHeaders);
1940
1941 // XXX: This offset is tightly coupled with the order that we write
1942 // things to `OS`.
1943 const size_t SectionContentBeginOffset =
1944 sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size();
1945 // It is quite easy to accidentally create output with yaml2obj that is larger
1946 // than intended, for example, due to an issue in the YAML description.
1947 // We limit the maximum allowed output size, but also provide a command line
1948 // option to change this limitation.
1949 ContiguousBlobAccumulator CBA(SectionContentBeginOffset, MaxSize);
1950
1951 std::vector<Elf_Shdr> SHeaders;
1952 State.initSectionHeaders(SHeaders, CBA);
1953
1954 // Now we can decide segment offsets.
1955 State.setProgramHeaderLayout(PHeaders, SHeaders);
1956
1957 bool ReachedLimit = CBA.getOffset() > MaxSize;
1958 if (Error E = CBA.takeLimitError()) {
1959 // We report a custom error message instead below.
1960 consumeError(std::move(E));
1961 ReachedLimit = true;
1962 }
1963
1964 if (ReachedLimit)
1965 State.reportError(
1966 "the desired output size is greater than permitted. Use the "
1967 "--max-size option to change the limit");
1968
1969 if (State.HasError)
1970 return false;
1971
1972 State.writeELFHeader(OS);
1973 writeArrayData(OS, ArrayRef(PHeaders));
1974
1976 if (!SHT.NoHeaders.value_or(false))
1977 CBA.updateDataAt(*SHT.Offset, SHeaders.data(),
1978 SHT.getNumHeaders(SHeaders.size()) * sizeof(Elf_Shdr));
1979
1980 CBA.writeBlobToStream(OS);
1981 return true;
1982}
1983
1984namespace llvm {
1985namespace yaml {
1986
1988 uint64_t MaxSize) {
1989 bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
1990 bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64);
1991 if (Is64Bit) {
1992 if (IsLE)
1993 return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH, MaxSize);
1994 return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH, MaxSize);
1995 }
1996 if (IsLE)
1997 return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH, MaxSize);
1998 return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH, MaxSize);
1999}
2000
2001} // namespace yaml
2002} // namespace llvm
static Error reportError(StringRef Message)
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Common declarations for yaml2obj.
This file declares classes for handling the YAML representation of DWARF Debug Info.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
static StringRef getDefaultLinkSec(unsigned SecType)
Definition: ELFEmitter.cpp:734
constexpr char SuffixEnd
Definition: ELFEmitter.cpp:686
static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To)
Definition: ELFEmitter.cpp:634
static void writeArrayData(raw_ostream &OS, ArrayRef< T > A)
Definition: ELFEmitter.cpp:332
static bool isMips64EL(const ELFYAML::Object &Obj)
static size_t arrayDataSize(ArrayRef< T > A)
Definition: ELFEmitter.cpp:328
constexpr char SuffixStart
Definition: ELFEmitter.cpp:685
static void zero(T &Obj)
Definition: ELFEmitter.cpp:336
static bool shouldEmitDWARF(DWARFYAML::Data &DWARF, StringRef Name)
static uint64_t writeContent(ContiguousBlobAccumulator &CBA, const std::optional< yaml::BinaryRef > &Content, const std::optional< llvm::yaml::Hex64 > &Size)
Definition: ELFEmitter.cpp:718
Expected< uint64_t > emitDWARF(typename ELFT::Shdr &SHeader, StringRef Name, const DWARFYAML::Data &DWARF, ContiguousBlobAccumulator &CBA)
static size_t findFirstNonGlobal(ArrayRef< ELFYAML::Symbol > Symbols)
Definition: ELFEmitter.cpp:929
T Content
std::string Name
uint64_t Size
#define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Definition: ELFTypes.h:104
This file declares classes for handling the YAML representation of ELF.
Symbol * Sym
Definition: ELF_riscv.cpp:463
static cl::opt< unsigned > SizeLimit("eif-limit", cl::init(6), cl::Hidden, cl::desc("Size limit in Hexagon early if-conversion"))
static bool lookup(const GsymReader &GR, DataExtractor &Data, uint64_t &Offset, uint64_t BaseAddr, uint64_t Addr, SourceLocations &SrcLocs, llvm::Error &Err)
A Lookup helper functions.
Definition: InlineInfo.cpp:109
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define H(x, y, z)
Definition: MD5.cpp:57
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file implements a set that has insertion order iteration characteristics.
StringSet - A set-like wrapper for the StringMap.
@ Flags
Definition: TextStubV5.cpp:93
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:66
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:202
bool empty() const
Definition: DenseMap.h:98
Base class for error info classes.
Definition: Error.h:47
Lightweight error class with error context and mandatory checking.
Definition: Error.h:156
static ErrorSuccess success()
Create a success value.
Definition: Error.h:330
Tagged union holding either a T or a Error.
Definition: Error.h:470
A vector that has set insertion semantics.
Definition: SetVector.h:51
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition: SetVector.h:219
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:152
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:312
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
Definition: StringMap.h:111
size_type count(StringRef Key) const
count - Return 1 if the element is in the map, 0 otherwise.
Definition: StringMap.h:256
void erase(iterator I)
Definition: StringMap.h:381
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:575
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:134
char back() const
back - Get the last character in the string.
Definition: StringRef.h:146
bool startswith(StringRef Prefix) const
Definition: StringRef.h:261
size_t rfind(char C, size_t From=npos) const
Search for the last character C in the string.
Definition: StringRef.h:351
StringRef copy(Allocator &A) const
Definition: StringRef.h:153
static constexpr size_t npos
Definition: StringRef.h:52
StringSet - A wrapper for StringMap that provides set-like functionality.
Definition: StringSet.h:23
std::pair< typename Base::iterator, bool > insert(StringRef key)
Definition: StringSet.h:34
Utility for building string tables with deduplicated suffixes.
size_t getOffset(CachedHashStringRef S) const
Get the offest of a string in the string table.
void write(raw_ostream &OS) const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
static Twine utohexstr(const uint64_t &Val)
Definition: Twine.h:404
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static raw_ostream & warning()
Convenience method for printing "warning: " to stderr.
Definition: WithColor.cpp:85
An efficient, type-erasing, non-owning reference to a callable.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
raw_ostream & write_zeros(unsigned NumZeros)
write_zeros - Insert 'NumZeros' nulls.
uint64_t tell() const
tell - Return the current offset with the file.
Definition: raw_ostream.h:134
raw_ostream & write(unsigned char C)
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:672
Specialized YAMLIO scalar type for representing a binary blob.
Definition: YAML.h:63
#define UINT64_MAX
Definition: DataTypes.h:77
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
std::function< Error(raw_ostream &, const Data &)> getDWARFEmitterByName(StringRef SecName)
std::string appendUniqueSuffix(StringRef Name, const Twine &Msg)
Definition: ELFEmitter.cpp:688
StringRef dropUniqueSuffix(StringRef S)
Definition: ELFEmitter.cpp:695
bool shouldAllocateFileSpace(ArrayRef< ProgramHeader > Phdrs, const NoBitsSection &S)
Definition: ELF.h:27
@ SHF_MERGE
Definition: ELF.h:1094
@ SHF_STRINGS
Definition: ELF.h:1097
@ SHF_ALLOC
Definition: ELF.h:1088
@ EV_CURRENT
Definition: ELF.h:127
@ ELFCLASS64
Definition: ELF.h:329
@ ELFCLASS32
Definition: ELF.h:328
@ EM_NONE
Definition: ELF.h:133
@ EM_MIPS
Definition: ELF.h:141
@ ELFDATA2LSB
Definition: ELF.h:335
@ SHT_STRTAB
Definition: ELF.h:1002
@ SHT_GROUP
Definition: ELF.h:1014
@ SHT_PROGBITS
Definition: ELF.h:1000
@ SHT_REL
Definition: ELF.h:1008
@ SHT_NULL
Definition: ELF.h:999
@ SHT_LLVM_CALL_GRAPH_PROFILE
Definition: ELF.h:1036
@ SHT_NOBITS
Definition: ELF.h:1007
@ SHT_SYMTAB
Definition: ELF.h:1001
@ SHT_GNU_verneed
Definition: ELF.h:1045
@ SHT_GNU_verdef
Definition: ELF.h:1044
@ SHT_DYNAMIC
Definition: ELF.h:1005
@ SHT_LLVM_ADDRSIG
Definition: ELF.h:1026
@ SHT_LLVM_BB_ADDR_MAP
Definition: ELF.h:1037
@ SHT_GNU_HASH
Definition: ELF.h:1043
@ SHT_RELA
Definition: ELF.h:1003
@ SHT_DYNSYM
Definition: ELF.h:1010
@ SHT_MIPS_ABIFLAGS
Definition: ELF.h:1069
@ SHT_GNU_versym
Definition: ELF.h:1046
@ SHT_HASH
Definition: ELF.h:1004
@ GRP_COMDAT
Definition: ELF.h:1188
@ STB_LOCAL
Definition: ELF.h:1241
@ ET_REL
Definition: ELF.h:116
@ EI_DATA
Definition: ELF.h:53
@ EI_MAG3
Definition: ELF.h:51
@ EI_MAG1
Definition: ELF.h:49
@ EI_VERSION
Definition: ELF.h:54
@ EI_MAG2
Definition: ELF.h:50
@ EI_ABIVERSION
Definition: ELF.h:56
@ EI_MAG0
Definition: ELF.h:48
@ EI_CLASS
Definition: ELF.h:52
@ EI_OSABI
Definition: ELF.h:55
const uint64_t Version
Definition: InstrProf.h:1083
bool yaml2elf(ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH, uint64_t MaxSize)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:440
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1777
void handleAllErrors(Error E, HandlerTs &&... Handlers)
Behaves the same as handleErrors, except that by contract all errors must be handled by the given han...
Definition: Error.h:966
Error write(MCStreamer &Out, ArrayRef< std::string > Inputs, bool ContinueOnCuIndexOverflow)
Definition: DWP.cpp:585
Error createStringError(std::error_code EC, char const *Fmt, const Ts &... Vals)
Create formatted StringError object.
Definition: Error.h:1246
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
Definition: STLExtras.h:1999
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
@ Dynamic
Denotes mode unknown at compile time.
OutputIt copy(R &&Range, OutputIt Out)
Definition: STLExtras.h:1921
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1846
unsigned encodeULEB128(uint64_t Value, raw_ostream &OS, unsigned PadTo=0)
Utility function to encode a ULEB128 value to an output stream.
Definition: LEB128.h:80
void consumeError(Error Err)
Consume a Error without doing anything.
Definition: Error.h:1043
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
SetVector< StringRef > getNonEmptySectionNames() const
Definition: DWARFYAML.cpp:25
StringRef Name
Definition: ELFYAML.h:215
std::optional< llvm::yaml::Hex64 > Offset
Definition: ELFYAML.h:216
llvm::yaml::Hex64 Val
Definition: ELFYAML.h:156
ELF_ELFCLASS Class
Definition: ELFYAML.h:114
llvm::yaml::Hex64 Size
Definition: ELFYAML.h:286
std::optional< yaml::BinaryRef > Pattern
Definition: ELFYAML.h:285
unsigned getMachine() const
Definition: ELFYAML.cpp:35
const SectionHeaderTable & getSectionHeaderTable() const
Definition: ELFYAML.h:720
FileHeader Header
Definition: ELFYAML.h:697
std::vector< ProgramHeader > ProgramHeaders
Definition: ELFYAML.h:698
std::optional< llvm::yaml::Hex64 > Align
Definition: ELFYAML.h:685
llvm::yaml::Hex64 PAddr
Definition: ELFYAML.h:684
std::optional< llvm::yaml::Hex64 > Offset
Definition: ELFYAML.h:688
llvm::yaml::Hex64 VAddr
Definition: ELFYAML.h:683
std::optional< llvm::yaml::Hex64 > MemSize
Definition: ELFYAML.h:687
std::optional< StringRef > FirstSec
Definition: ELFYAML.h:689
std::optional< StringRef > LastSec
Definition: ELFYAML.h:690
std::optional< llvm::yaml::Hex64 > FileSize
Definition: ELFYAML.h:686
std::vector< Chunk * > Chunks
Definition: ELFYAML.h:693
std::optional< llvm::yaml::Hex64 > Info
Definition: ELFYAML.h:363
std::optional< StringRef > Symbol
Definition: ELFYAML.h:594
llvm::yaml::Hex64 Offset
Definition: ELFYAML.h:591
std::optional< std::vector< SectionHeader > > Excluded
Definition: ELFYAML.h:302
std::optional< bool > NoHeaders
Definition: ELFYAML.h:303
size_t getNumHeaders(size_t SectionsNum) const
Definition: ELFYAML.h:305
std::optional< std::vector< SectionHeader > > Sections
Definition: ELFYAML.h:301
std::optional< llvm::yaml::Hex64 > Address
Definition: ELFYAML.h:229
std::optional< StringRef > Link
Definition: ELFYAML.h:230
std::optional< llvm::yaml::Hex64 > Size
Definition: ELFYAML.h:235
llvm::yaml::Hex64 AddressAlign
Definition: ELFYAML.h:231
std::optional< ELF_SHF > Flags
Definition: ELFYAML.h:228
std::optional< yaml::BinaryRef > Content
Definition: ELFYAML.h:234
std::optional< llvm::yaml::Hex64 > EntSize
Definition: ELFYAML.h:232
std::optional< std::vector< uint32_t > > Entries
Definition: ELFYAML.h:627
std::vector< VernauxEntry > AuxV
Definition: ELFYAML.h:459
Common declarations for yaml2obj.