LLVM  10.0.0svn
FunctionComparator.cpp
Go to the documentation of this file.
1 //===- FunctionComparator.h - Function Comparator -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the FunctionComparator and GlobalNumberState classes
10 // which are used by the MergeFunctions pass for comparing functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CallSite.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
45 #include <cassert>
46 #include <cstddef>
47 #include <cstdint>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "functioncomparator"
53 
54 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
55  if (L < R) return -1;
56  if (L > R) return 1;
57  return 0;
58 }
59 
60 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
61  if ((int)L < (int)R) return -1;
62  if ((int)L > (int)R) return 1;
63  return 0;
64 }
65 
66 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
67  if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
68  return Res;
69  if (L.ugt(R)) return 1;
70  if (R.ugt(L)) return -1;
71  return 0;
72 }
73 
74 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
75  // Floats are ordered first by semantics (i.e. float, double, half, etc.),
76  // then by value interpreted as a bitstring (aka APInt).
77  const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
78  if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
80  return Res;
81  if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
83  return Res;
84  if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
86  return Res;
87  if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
89  return Res;
90  return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
91 }
92 
94  // Prevent heavy comparison, compare sizes first.
95  if (int Res = cmpNumbers(L.size(), R.size()))
96  return Res;
97 
98  // Compare strings lexicographically only when it is necessary: only when
99  // strings are equal in size.
100  return L.compare(R);
101 }
102 
103 int FunctionComparator::cmpAttrs(const AttributeList L,
104  const AttributeList R) const {
105  if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
106  return Res;
107 
108  for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) {
109  AttributeSet LAS = L.getAttributes(i);
110  AttributeSet RAS = R.getAttributes(i);
111  AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
112  AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
113  for (; LI != LE && RI != RE; ++LI, ++RI) {
114  Attribute LA = *LI;
115  Attribute RA = *RI;
116  if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
117  if (LA.getKindAsEnum() != RA.getKindAsEnum())
118  return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
119 
120  Type *TyL = LA.getValueAsType();
121  Type *TyR = RA.getValueAsType();
122  if (TyL && TyR)
123  return cmpTypes(TyL, TyR);
124 
125  // Two pointers, at least one null, so the comparison result is
126  // independent of the value of a real pointer.
127  return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
128  }
129  if (LA < RA)
130  return -1;
131  if (RA < LA)
132  return 1;
133  }
134  if (LI != LE)
135  return 1;
136  if (RI != RE)
137  return -1;
138  }
139  return 0;
140 }
141 
142 int FunctionComparator::cmpRangeMetadata(const MDNode *L,
143  const MDNode *R) const {
144  if (L == R)
145  return 0;
146  if (!L)
147  return -1;
148  if (!R)
149  return 1;
150  // Range metadata is a sequence of numbers. Make sure they are the same
151  // sequence.
152  // TODO: Note that as this is metadata, it is possible to drop and/or merge
153  // this data when considering functions to merge. Thus this comparison would
154  // return 0 (i.e. equivalent), but merging would become more complicated
155  // because the ranges would need to be unioned. It is not likely that
156  // functions differ ONLY in this metadata if they are actually the same
157  // function semantically.
158  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
159  return Res;
160  for (size_t I = 0; I < L->getNumOperands(); ++I) {
161  ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
162  ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
163  if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
164  return Res;
165  }
166  return 0;
167 }
168 
169 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
170  const Instruction *R) const {
171  ImmutableCallSite LCS(L);
172  ImmutableCallSite RCS(R);
173 
174  assert(LCS && RCS && "Must be calls or invokes!");
175  assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
176 
177  if (int Res =
179  return Res;
180 
181  for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
182  auto OBL = LCS.getOperandBundleAt(i);
183  auto OBR = RCS.getOperandBundleAt(i);
184 
185  if (int Res = OBL.getTagName().compare(OBR.getTagName()))
186  return Res;
187 
188  if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
189  return Res;
190  }
191 
192  return 0;
193 }
194 
195 /// Constants comparison:
196 /// 1. Check whether type of L constant could be losslessly bitcasted to R
197 /// type.
198 /// 2. Compare constant contents.
199 /// For more details see declaration comments.
201  const Constant *R) const {
202  Type *TyL = L->getType();
203  Type *TyR = R->getType();
204 
205  // Check whether types are bitcastable. This part is just re-factored
206  // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
207  // we also pack into result which type is "less" for us.
208  int TypesRes = cmpTypes(TyL, TyR);
209  if (TypesRes != 0) {
210  // Types are different, but check whether we can bitcast them.
211  if (!TyL->isFirstClassType()) {
212  if (TyR->isFirstClassType())
213  return -1;
214  // Neither TyL nor TyR are values of first class type. Return the result
215  // of comparing the types
216  return TypesRes;
217  }
218  if (!TyR->isFirstClassType()) {
219  if (TyL->isFirstClassType())
220  return 1;
221  return TypesRes;
222  }
223 
224  // Vector -> Vector conversions are always lossless if the two vector types
225  // have the same size, otherwise not.
226  unsigned TyLWidth = 0;
227  unsigned TyRWidth = 0;
228 
229  if (auto *VecTyL = dyn_cast<VectorType>(TyL))
230  TyLWidth = VecTyL->getBitWidth();
231  if (auto *VecTyR = dyn_cast<VectorType>(TyR))
232  TyRWidth = VecTyR->getBitWidth();
233 
234  if (TyLWidth != TyRWidth)
235  return cmpNumbers(TyLWidth, TyRWidth);
236 
237  // Zero bit-width means neither TyL nor TyR are vectors.
238  if (!TyLWidth) {
239  PointerType *PTyL = dyn_cast<PointerType>(TyL);
240  PointerType *PTyR = dyn_cast<PointerType>(TyR);
241  if (PTyL && PTyR) {
242  unsigned AddrSpaceL = PTyL->getAddressSpace();
243  unsigned AddrSpaceR = PTyR->getAddressSpace();
244  if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
245  return Res;
246  }
247  if (PTyL)
248  return 1;
249  if (PTyR)
250  return -1;
251 
252  // TyL and TyR aren't vectors, nor pointers. We don't know how to
253  // bitcast them.
254  return TypesRes;
255  }
256  }
257 
258  // OK, types are bitcastable, now check constant contents.
259 
260  if (L->isNullValue() && R->isNullValue())
261  return TypesRes;
262  if (L->isNullValue() && !R->isNullValue())
263  return 1;
264  if (!L->isNullValue() && R->isNullValue())
265  return -1;
266 
267  auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
268  auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
269  if (GlobalValueL && GlobalValueR) {
270  return cmpGlobalValues(GlobalValueL, GlobalValueR);
271  }
272 
273  if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
274  return Res;
275 
276  if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
277  const auto *SeqR = cast<ConstantDataSequential>(R);
278  // This handles ConstantDataArray and ConstantDataVector. Note that we
279  // compare the two raw data arrays, which might differ depending on the host
280  // endianness. This isn't a problem though, because the endiness of a module
281  // will affect the order of the constants, but this order is the same
282  // for a given input module and host platform.
283  return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
284  }
285 
286  switch (L->getValueID()) {
287  case Value::UndefValueVal:
288  case Value::ConstantTokenNoneVal:
289  return TypesRes;
290  case Value::ConstantIntVal: {
291  const APInt &LInt = cast<ConstantInt>(L)->getValue();
292  const APInt &RInt = cast<ConstantInt>(R)->getValue();
293  return cmpAPInts(LInt, RInt);
294  }
295  case Value::ConstantFPVal: {
296  const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
297  const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
298  return cmpAPFloats(LAPF, RAPF);
299  }
300  case Value::ConstantArrayVal: {
301  const ConstantArray *LA = cast<ConstantArray>(L);
302  const ConstantArray *RA = cast<ConstantArray>(R);
303  uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
304  uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
305  if (int Res = cmpNumbers(NumElementsL, NumElementsR))
306  return Res;
307  for (uint64_t i = 0; i < NumElementsL; ++i) {
308  if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
309  cast<Constant>(RA->getOperand(i))))
310  return Res;
311  }
312  return 0;
313  }
314  case Value::ConstantStructVal: {
315  const ConstantStruct *LS = cast<ConstantStruct>(L);
316  const ConstantStruct *RS = cast<ConstantStruct>(R);
317  unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
318  unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
319  if (int Res = cmpNumbers(NumElementsL, NumElementsR))
320  return Res;
321  for (unsigned i = 0; i != NumElementsL; ++i) {
322  if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
323  cast<Constant>(RS->getOperand(i))))
324  return Res;
325  }
326  return 0;
327  }
328  case Value::ConstantVectorVal: {
329  const ConstantVector *LV = cast<ConstantVector>(L);
330  const ConstantVector *RV = cast<ConstantVector>(R);
331  unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
332  unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
333  if (int Res = cmpNumbers(NumElementsL, NumElementsR))
334  return Res;
335  for (uint64_t i = 0; i < NumElementsL; ++i) {
336  if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
337  cast<Constant>(RV->getOperand(i))))
338  return Res;
339  }
340  return 0;
341  }
342  case Value::ConstantExprVal: {
343  const ConstantExpr *LE = cast<ConstantExpr>(L);
344  const ConstantExpr *RE = cast<ConstantExpr>(R);
345  unsigned NumOperandsL = LE->getNumOperands();
346  unsigned NumOperandsR = RE->getNumOperands();
347  if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
348  return Res;
349  for (unsigned i = 0; i < NumOperandsL; ++i) {
350  if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
351  cast<Constant>(RE->getOperand(i))))
352  return Res;
353  }
354  return 0;
355  }
356  case Value::BlockAddressVal: {
357  const BlockAddress *LBA = cast<BlockAddress>(L);
358  const BlockAddress *RBA = cast<BlockAddress>(R);
359  if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
360  return Res;
361  if (LBA->getFunction() == RBA->getFunction()) {
362  // They are BBs in the same function. Order by which comes first in the
363  // BB order of the function. This order is deterministic.
364  Function* F = LBA->getFunction();
365  BasicBlock *LBB = LBA->getBasicBlock();
366  BasicBlock *RBB = RBA->getBasicBlock();
367  if (LBB == RBB)
368  return 0;
369  for(BasicBlock &BB : F->getBasicBlockList()) {
370  if (&BB == LBB) {
371  assert(&BB != RBB);
372  return -1;
373  }
374  if (&BB == RBB)
375  return 1;
376  }
377  llvm_unreachable("Basic Block Address does not point to a basic block in "
378  "its function.");
379  return -1;
380  } else {
381  // cmpValues said the functions are the same. So because they aren't
382  // literally the same pointer, they must respectively be the left and
383  // right functions.
384  assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
385  // cmpValues will tell us if these are equivalent BasicBlocks, in the
386  // context of their respective functions.
387  return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
388  }
389  }
390  default: // Unknown constant, abort.
391  LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
392  llvm_unreachable("Constant ValueID not recognized.");
393  return -1;
394  }
395 }
396 
398  uint64_t LNumber = GlobalNumbers->getNumber(L);
399  uint64_t RNumber = GlobalNumbers->getNumber(R);
400  return cmpNumbers(LNumber, RNumber);
401 }
402 
403 /// cmpType - compares two types,
404 /// defines total ordering among the types set.
405 /// See method declaration comments for more details.
406 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
407  PointerType *PTyL = dyn_cast<PointerType>(TyL);
408  PointerType *PTyR = dyn_cast<PointerType>(TyR);
409 
410  const DataLayout &DL = FnL->getParent()->getDataLayout();
411  if (PTyL && PTyL->getAddressSpace() == 0)
412  TyL = DL.getIntPtrType(TyL);
413  if (PTyR && PTyR->getAddressSpace() == 0)
414  TyR = DL.getIntPtrType(TyR);
415 
416  if (TyL == TyR)
417  return 0;
418 
419  if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
420  return Res;
421 
422  switch (TyL->getTypeID()) {
423  default:
424  llvm_unreachable("Unknown type!");
425  case Type::IntegerTyID:
426  return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
427  cast<IntegerType>(TyR)->getBitWidth());
428  // TyL == TyR would have returned true earlier, because types are uniqued.
429  case Type::VoidTyID:
430  case Type::FloatTyID:
431  case Type::DoubleTyID:
432  case Type::X86_FP80TyID:
433  case Type::FP128TyID:
434  case Type::PPC_FP128TyID:
435  case Type::LabelTyID:
436  case Type::MetadataTyID:
437  case Type::TokenTyID:
438  return 0;
439 
440  case Type::PointerTyID:
441  assert(PTyL && PTyR && "Both types must be pointers here.");
442  return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
443 
444  case Type::StructTyID: {
445  StructType *STyL = cast<StructType>(TyL);
446  StructType *STyR = cast<StructType>(TyR);
447  if (STyL->getNumElements() != STyR->getNumElements())
448  return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
449 
450  if (STyL->isPacked() != STyR->isPacked())
451  return cmpNumbers(STyL->isPacked(), STyR->isPacked());
452 
453  for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
454  if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
455  return Res;
456  }
457  return 0;
458  }
459 
460  case Type::FunctionTyID: {
461  FunctionType *FTyL = cast<FunctionType>(TyL);
462  FunctionType *FTyR = cast<FunctionType>(TyR);
463  if (FTyL->getNumParams() != FTyR->getNumParams())
464  return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
465 
466  if (FTyL->isVarArg() != FTyR->isVarArg())
467  return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
468 
469  if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
470  return Res;
471 
472  for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
473  if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
474  return Res;
475  }
476  return 0;
477  }
478 
479  case Type::ArrayTyID:
480  case Type::VectorTyID: {
481  auto *STyL = cast<SequentialType>(TyL);
482  auto *STyR = cast<SequentialType>(TyR);
483  if (STyL->getNumElements() != STyR->getNumElements())
484  return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
485  return cmpTypes(STyL->getElementType(), STyR->getElementType());
486  }
487  }
488 }
489 
490 // Determine whether the two operations are the same except that pointer-to-A
491 // and pointer-to-B are equivalent. This should be kept in sync with
492 // Instruction::isSameOperationAs.
493 // Read method declaration comments for more details.
495  const Instruction *R,
496  bool &needToCmpOperands) const {
497  needToCmpOperands = true;
498  if (int Res = cmpValues(L, R))
499  return Res;
500 
501  // Differences from Instruction::isSameOperationAs:
502  // * replace type comparison with calls to cmpTypes.
503  // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
504  // * because of the above, we don't test for the tail bit on calls later on.
505  if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
506  return Res;
507 
508  if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
509  needToCmpOperands = false;
510  const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
511  if (int Res =
512  cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
513  return Res;
514  return cmpGEPs(GEPL, GEPR);
515  }
516 
517  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
518  return Res;
519 
520  if (int Res = cmpTypes(L->getType(), R->getType()))
521  return Res;
522 
523  if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
525  return Res;
526 
527  // We have two instructions of identical opcode and #operands. Check to see
528  // if all operands are the same type
529  for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
530  if (int Res =
531  cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
532  return Res;
533  }
534 
535  // Check special state that is a part of some instructions.
536  if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
537  if (int Res = cmpTypes(AI->getAllocatedType(),
538  cast<AllocaInst>(R)->getAllocatedType()))
539  return Res;
540  return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
541  }
542  if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
543  if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
544  return Res;
545  if (int Res =
546  cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
547  return Res;
548  if (int Res =
549  cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
550  return Res;
551  if (int Res = cmpNumbers(LI->getSyncScopeID(),
552  cast<LoadInst>(R)->getSyncScopeID()))
553  return Res;
554  return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
555  cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
556  }
557  if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
558  if (int Res =
559  cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
560  return Res;
561  if (int Res =
562  cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
563  return Res;
564  if (int Res =
565  cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
566  return Res;
567  return cmpNumbers(SI->getSyncScopeID(),
568  cast<StoreInst>(R)->getSyncScopeID());
569  }
570  if (const CmpInst *CI = dyn_cast<CmpInst>(L))
571  return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
572  if (auto CSL = CallSite(const_cast<Instruction *>(L))) {
573  auto CSR = CallSite(const_cast<Instruction *>(R));
574  if (int Res = cmpNumbers(CSL.getCallingConv(), CSR.getCallingConv()))
575  return Res;
576  if (int Res = cmpAttrs(CSL.getAttributes(), CSR.getAttributes()))
577  return Res;
578  if (int Res = cmpOperandBundlesSchema(L, R))
579  return Res;
580  if (const CallInst *CI = dyn_cast<CallInst>(L))
581  if (int Res = cmpNumbers(CI->getTailCallKind(),
582  cast<CallInst>(R)->getTailCallKind()))
583  return Res;
584  return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range),
585  R->getMetadata(LLVMContext::MD_range));
586  }
587  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
588  ArrayRef<unsigned> LIndices = IVI->getIndices();
589  ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
590  if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
591  return Res;
592  for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
593  if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
594  return Res;
595  }
596  return 0;
597  }
598  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
599  ArrayRef<unsigned> LIndices = EVI->getIndices();
600  ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
601  if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
602  return Res;
603  for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
604  if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
605  return Res;
606  }
607  }
608  if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
609  if (int Res =
610  cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
611  return Res;
612  return cmpNumbers(FI->getSyncScopeID(),
613  cast<FenceInst>(R)->getSyncScopeID());
614  }
615  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
616  if (int Res = cmpNumbers(CXI->isVolatile(),
617  cast<AtomicCmpXchgInst>(R)->isVolatile()))
618  return Res;
619  if (int Res = cmpNumbers(CXI->isWeak(),
620  cast<AtomicCmpXchgInst>(R)->isWeak()))
621  return Res;
622  if (int Res =
623  cmpOrderings(CXI->getSuccessOrdering(),
624  cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
625  return Res;
626  if (int Res =
627  cmpOrderings(CXI->getFailureOrdering(),
628  cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
629  return Res;
630  return cmpNumbers(CXI->getSyncScopeID(),
631  cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
632  }
633  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
634  if (int Res = cmpNumbers(RMWI->getOperation(),
635  cast<AtomicRMWInst>(R)->getOperation()))
636  return Res;
637  if (int Res = cmpNumbers(RMWI->isVolatile(),
638  cast<AtomicRMWInst>(R)->isVolatile()))
639  return Res;
640  if (int Res = cmpOrderings(RMWI->getOrdering(),
641  cast<AtomicRMWInst>(R)->getOrdering()))
642  return Res;
643  return cmpNumbers(RMWI->getSyncScopeID(),
644  cast<AtomicRMWInst>(R)->getSyncScopeID());
645  }
646  if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
647  const PHINode *PNR = cast<PHINode>(R);
648  // Ensure that in addition to the incoming values being identical
649  // (checked by the caller of this function), the incoming blocks
650  // are also identical.
651  for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
652  if (int Res =
653  cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
654  return Res;
655  }
656  }
657  return 0;
658 }
659 
660 // Determine whether two GEP operations perform the same underlying arithmetic.
661 // Read method declaration comments for more details.
662 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
663  const GEPOperator *GEPR) const {
664  unsigned int ASL = GEPL->getPointerAddressSpace();
665  unsigned int ASR = GEPR->getPointerAddressSpace();
666 
667  if (int Res = cmpNumbers(ASL, ASR))
668  return Res;
669 
670  // When we have target data, we can reduce the GEP down to the value in bytes
671  // added to the address.
672  const DataLayout &DL = FnL->getParent()->getDataLayout();
673  unsigned BitWidth = DL.getPointerSizeInBits(ASL);
674  APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
675  if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
676  GEPR->accumulateConstantOffset(DL, OffsetR))
677  return cmpAPInts(OffsetL, OffsetR);
678  if (int Res = cmpTypes(GEPL->getSourceElementType(),
679  GEPR->getSourceElementType()))
680  return Res;
681 
682  if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
683  return Res;
684 
685  for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
686  if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
687  return Res;
688  }
689 
690  return 0;
691 }
692 
693 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
694  const InlineAsm *R) const {
695  // InlineAsm's are uniqued. If they are the same pointer, obviously they are
696  // the same, otherwise compare the fields.
697  if (L == R)
698  return 0;
699  if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
700  return Res;
701  if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
702  return Res;
703  if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
704  return Res;
705  if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
706  return Res;
707  if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
708  return Res;
709  if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
710  return Res;
711  assert(L->getFunctionType() != R->getFunctionType());
712  return 0;
713 }
714 
715 /// Compare two values used by the two functions under pair-wise comparison. If
716 /// this is the first time the values are seen, they're added to the mapping so
717 /// that we will detect mismatches on next use.
718 /// See comments in declaration for more details.
719 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
720  // Catch self-reference case.
721  if (L == FnL) {
722  if (R == FnR)
723  return 0;
724  return -1;
725  }
726  if (R == FnR) {
727  if (L == FnL)
728  return 0;
729  return 1;
730  }
731 
732  const Constant *ConstL = dyn_cast<Constant>(L);
733  const Constant *ConstR = dyn_cast<Constant>(R);
734  if (ConstL && ConstR) {
735  if (L == R)
736  return 0;
737  return cmpConstants(ConstL, ConstR);
738  }
739 
740  if (ConstL)
741  return 1;
742  if (ConstR)
743  return -1;
744 
745  const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
746  const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
747 
748  if (InlineAsmL && InlineAsmR)
749  return cmpInlineAsm(InlineAsmL, InlineAsmR);
750  if (InlineAsmL)
751  return 1;
752  if (InlineAsmR)
753  return -1;
754 
755  auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
756  RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
757 
758  return cmpNumbers(LeftSN.first->second, RightSN.first->second);
759 }
760 
761 // Test whether two basic blocks have equivalent behaviour.
763  const BasicBlock *BBR) const {
764  BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
765  BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
766 
767  do {
768  bool needToCmpOperands = true;
769  if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
770  return Res;
771  if (needToCmpOperands) {
772  assert(InstL->getNumOperands() == InstR->getNumOperands());
773 
774  for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
775  Value *OpL = InstL->getOperand(i);
776  Value *OpR = InstR->getOperand(i);
777  if (int Res = cmpValues(OpL, OpR))
778  return Res;
779  // cmpValues should ensure this is true.
780  assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
781  }
782  }
783 
784  ++InstL;
785  ++InstR;
786  } while (InstL != InstLE && InstR != InstRE);
787 
788  if (InstL != InstLE && InstR == InstRE)
789  return 1;
790  if (InstL == InstLE && InstR != InstRE)
791  return -1;
792  return 0;
793 }
794 
796  if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
797  return Res;
798 
799  if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
800  return Res;
801 
802  if (FnL->hasGC()) {
803  if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
804  return Res;
805  }
806 
807  if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
808  return Res;
809 
810  if (FnL->hasSection()) {
811  if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
812  return Res;
813  }
814 
815  if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
816  return Res;
817 
818  // TODO: if it's internal and only used in direct calls, we could handle this
819  // case too.
820  if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
821  return Res;
822 
823  if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
824  return Res;
825 
826  assert(FnL->arg_size() == FnR->arg_size() &&
827  "Identically typed functions have different numbers of args!");
828 
829  // Visit the arguments so that they get enumerated in the order they're
830  // passed in.
832  ArgRI = FnR->arg_begin(),
833  ArgLE = FnL->arg_end();
834  ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
835  if (cmpValues(&*ArgLI, &*ArgRI) != 0)
836  llvm_unreachable("Arguments repeat!");
837  }
838  return 0;
839 }
840 
841 // Test whether the two functions have equivalent behaviour.
843  beginCompare();
844 
845  if (int Res = compareSignature())
846  return Res;
847 
848  // We do a CFG-ordered walk since the actual ordering of the blocks in the
849  // linked list is immaterial. Our walk starts at the entry block for both
850  // functions, then takes each block from each terminator in order. As an
851  // artifact, this also means that unreachable blocks are ignored.
852  SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
853  SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
854 
855  FnLBBs.push_back(&FnL->getEntryBlock());
856  FnRBBs.push_back(&FnR->getEntryBlock());
857 
858  VisitedBBs.insert(FnLBBs[0]);
859  while (!FnLBBs.empty()) {
860  const BasicBlock *BBL = FnLBBs.pop_back_val();
861  const BasicBlock *BBR = FnRBBs.pop_back_val();
862 
863  if (int Res = cmpValues(BBL, BBR))
864  return Res;
865 
866  if (int Res = cmpBasicBlocks(BBL, BBR))
867  return Res;
868 
869  const Instruction *TermL = BBL->getTerminator();
870  const Instruction *TermR = BBR->getTerminator();
871 
872  assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
873  for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
874  if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
875  continue;
876 
877  FnLBBs.push_back(TermL->getSuccessor(i));
878  FnRBBs.push_back(TermR->getSuccessor(i));
879  }
880  }
881  return 0;
882 }
883 
884 namespace {
885 
886 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
887 // hash of a sequence of 64bit ints, but the entire input does not need to be
888 // available at once. This interface is necessary for functionHash because it
889 // needs to accumulate the hash as the structure of the function is traversed
890 // without saving these values to an intermediate buffer. This form of hashing
891 // is not often needed, as usually the object to hash is just read from a
892 // buffer.
893 class HashAccumulator64 {
894  uint64_t Hash;
895 
896 public:
897  // Initialize to random constant, so the state isn't zero.
898  HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
899 
900  void add(uint64_t V) {
901  Hash = hashing::detail::hash_16_bytes(Hash, V);
902  }
903 
904  // No finishing is required, because the entire hash value is used.
905  uint64_t getHash() { return Hash; }
906 };
907 
908 } // end anonymous namespace
909 
910 // A function hash is calculated by considering only the number of arguments and
911 // whether a function is varargs, the order of basic blocks (given by the
912 // successors of each basic block in depth first order), and the order of
913 // opcodes of each instruction within each of these basic blocks. This mirrors
914 // the strategy compare() uses to compare functions by walking the BBs in depth
915 // first order and comparing each instruction in sequence. Because this hash
916 // does not look at the operands, it is insensitive to things such as the
917 // target of calls and the constants used in the function, which makes it useful
918 // when possibly merging functions which are the same modulo constants and call
919 // targets.
921  HashAccumulator64 H;
922  H.add(F.isVarArg());
923  H.add(F.arg_size());
924 
927 
928  // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
929  // accumulating the hash of the function "structure." (BB and opcode sequence)
930  BBs.push_back(&F.getEntryBlock());
931  VisitedBBs.insert(BBs[0]);
932  while (!BBs.empty()) {
933  const BasicBlock *BB = BBs.pop_back_val();
934  // This random value acts as a block header, as otherwise the partition of
935  // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
936  H.add(45798);
937  for (auto &Inst : *BB) {
938  H.add(Inst.getOpcode());
939  }
940  const Instruction *Term = BB->getTerminator();
941  for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
942  if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
943  continue;
944  BBs.push_back(Term->getSuccessor(i));
945  }
946  }
947  return H.getHash();
948 }
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
const Function & getFunction() const
Definition: Function.h:133
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
Definition: Function.h:176
int cmpGlobalValues(GlobalValue *L, GlobalValue *R) const
Compares two global values by number.
StringRef getSection() const
Get the custom section of this global if it has one.
Definition: GlobalObject.h:109
7: Labels
Definition: Type.h:64
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:722
This instruction extracts a struct member or array element value from an aggregate value...
This class represents an incoming formal argument to a Function.
Definition: Argument.h:29
unsigned getValueID() const
Return an ID for the concrete type of this object.
Definition: Value.h:484
int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR) const
Test whether two basic blocks have equivalent behaviour.
This class represents lattice values for constants.
Definition: AllocatorList.h:23
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:140
Type * getElementType(unsigned N) const
Definition: DerivedTypes.h:351
int compareSignature() const
Compares the signature and other general attributes of the two functions.
2: 32-bit floating point type
Definition: Type.h:59
BasicBlock * getSuccessor(unsigned Idx) const
Return the specified successor. This instruction must be a terminator.
An instruction for ordering other memory operations.
Definition: Instructions.h:460
An instruction that atomically checks whether a specified value is in a memory location, and, if it is, stores a new value there.
Definition: Instructions.h:536
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:350
LLVM_NODISCARD int compare(StringRef RHS) const
compare - Compare two strings; the result is -1, 0, or 1 if this string is lexicographically less tha...
Definition: StringRef.h:188
This class represents a function call, abstracting a target machine&#39;s calling convention.
This file contains the declarations for metadata subclasses.
const std::string & getAsmString() const
Definition: InlineAsm.h:80
unsigned getPointerAddressSpace() const
Method to return the address space of the pointer operand.
Definition: Operator.h:501
unsigned second
arg_iterator arg_end()
Definition: Function.h:709
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Definition: DataLayout.h:392
13: Structures
Definition: Type.h:73
Metadata node.
Definition: Metadata.h:863
F(f)
4: 80-bit floating point type (X87)
Definition: Type.h:61
int cmpAPInts(const APInt &L, const APInt &R) const
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1068
const fltSemantics & getSemantics() const
Definition: APFloat.h:1170
An instruction for reading from memory.
Definition: Instructions.h:169
an instruction that atomically reads a memory location, combines it with another value, and then stores the result back.
Definition: Instructions.h:699
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:144
unsigned index_end() const
Definition: Attributes.h:657
15: Pointers
Definition: Type.h:75
12: Functions
Definition: Type.h:72
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1517
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
Definition: Operator.cpp:34
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:273
bool hasSideEffects() const
Definition: InlineAsm.h:66
Function * getFunction() const
Definition: Constants.h:865
int cmpAPFloats(const APFloat &L, const APFloat &R) const
SI optimize exec mask operations pre RA
The address of a basic block.
Definition: Constants.h:839
static uint32_t getAlignment(const MCSectionCOFF &Sec)
uint64_t FunctionHash
Hash a function.
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:369
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:138
Class to represent struct types.
Definition: DerivedTypes.h:238
This file contains the simple types necessary to represent the attributes associated with functions a...
static ExponentType semanticsMaxExponent(const fltSemantics &)
Definition: APFloat.cpp:194
This file implements a class to represent arbitrary precision integral constant values and operations...
AtomicOrdering
Atomic ordering for LLVM&#39;s memory model.
void beginCompare()
Start the comparison.
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:85
Class to represent function types.
Definition: DerivedTypes.h:108
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:888
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:246
bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value. ...
Definition: Type.h:244
static unsigned int semanticsSizeInBits(const fltSemantics &)
Definition: APFloat.cpp:201
int cmpOperations(const Instruction *L, const Instruction *R, bool &needToCmpOperands) const
Compare two Instructions for equivalence, similar to Instruction::isSameOperationAs.
Type * getValueAsType() const
Return the attribute&#39;s value as a Type.
Definition: Attributes.cpp:227
bool isVarArg() const
Definition: DerivedTypes.h:128
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:244
LLVM_NODISCARD size_t size() const
size - Get the string size.
Definition: StringRef.h:144
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:137
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:125
BasicBlock * getBasicBlock() const
Definition: Constants.h:866
const std::string & getGC() const
Definition: Function.cpp:478
uint64_t hash_16_bytes(uint64_t low, uint64_t high)
Definition: Hashing.h:177
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:223
An instruction for storing to memory.
Definition: Instructions.h:325
uint64_t getNumber(GlobalValue *Global)
static ExponentType semanticsMinExponent(const fltSemantics &)
Definition: APFloat.cpp:198
unsigned getNumSuccessors() const
Return the number of successors that this instruction has.
Value * getOperand(unsigned i) const
Definition: User.h:169
Class to represent pointers.
Definition: DerivedTypes.h:579
static FunctionHash functionHash(Function &)
AttributeSet getAttributes(unsigned Index) const
The attributes for the specified index are returned.
unsigned getRawSubclassOptionalData() const
Return the raw optional flags value contained in this value.
Definition: Value.h:491
11: Arbitrary bit width integers
Definition: Type.h:71
const BasicBlock & getEntryBlock() const
Definition: Function.h:669
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:881
0: type with no size
Definition: Type.h:57
LLVM Basic Block Representation.
Definition: BasicBlock.h:57
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:148
This is an important base class in LLVM.
Definition: Constant.h:41
This file contains the declarations for the subclasses of Constant, which represent the different fla...
10: Tokens
Definition: Type.h:67
#define H(x, y, z)
Definition: MD5.cpp:57
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Definition: DerivedTypes.h:144
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:370
This file declares a class to represent arbitrary precision floating point values and provide a varie...
iterator begin() const
Definition: Attributes.cpp:699
constexpr double e
Definition: MathExtras.h:57
Attribute::AttrKind getKindAsEnum() const
Return the attribute&#39;s kind as an enum (Attribute::AttrKind).
Definition: Attributes.cpp:199
6: 128-bit floating point type (two 64-bits, PowerPC)
Definition: Type.h:63
size_t arg_size() const
Definition: Function.h:733
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:607
arg_iterator arg_begin()
Definition: Function.h:700
Constant Vector Declarations.
Definition: Constants.h:499
int cmpMem(StringRef L, StringRef R) const
bool isAlignStack() const
Definition: InlineAsm.h:67
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const std::string & getConstraintString() const
Definition: InlineAsm.h:81
14: Arrays
Definition: Type.h:74
Predicate getPredicate(unsigned Condition, unsigned Hint)
Return predicate consisting of specified condition and hint bits.
Definition: PPCPredicates.h:87
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:191
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:417
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
16: SIMD &#39;packed&#39; format, or other vector type
Definition: Type.h:76
iterator end()
Definition: BasicBlock.h:275
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:212
static uint64_t add(uint64_t LeftOp, uint64_t RightOp)
Definition: FileCheck.cpp:215
bool hasSection() const
Check if this global has a custom object file section.
Definition: GlobalObject.h:101
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:837
Module.h This file contains the declarations for the Module class.
unsigned getNumOperandBundles() const
Definition: CallSite.h:544
Type * getReturnType() const
Definition: DerivedTypes.h:129
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:374
bool isTypeAttribute() const
Return true if the attribute is a type attribute.
Definition: Attributes.cpp:195
static unsigned int semanticsPrecision(const fltSemantics &)
Definition: APFloat.cpp:190
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
8: Metadata
Definition: Type.h:65
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:163
ConstantArray - Constant Array Declarations.
Definition: Constants.h:413
Class for arbitrary precision integers.
Definition: APInt.h:69
unsigned getNumAttrSets() const
static bool isWeak(const MCSymbolELF &Sym)
int compare()
Test whether the two functions have equivalent behaviour.
int cmpTypes(Type *TyL, Type *TyR) const
cmpType - compares two types, defines total ordering among the types set.
bool ugt(const APInt &RHS) const
Unsigned greather than comparison.
Definition: APInt.h:1254
bool isPacked() const
Definition: DerivedTypes.h:298
bool hasGC() const
hasGC/getGC/setGC/clearGC - The name of the garbage collection algorithm to use during code generatio...
Definition: Function.h:354
iterator end() const
Definition: Attributes.cpp:703
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:55
Establish a view to a call site for examination.
Definition: CallSite.h:906
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
#define I(x, y, z)
Definition: MD5.cpp:58
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:332
const BasicBlockListType & getBasicBlockList() const
Get the underlying elements of the Function...
Definition: Function.h:662
FunctionType * getFunctionType() const
getFunctionType - InlineAsm&#39;s are always pointers to functions.
Definition: InlineAsm.cpp:56
AsmDialect getDialect() const
Definition: InlineAsm.h:68
3: 64-bit floating point type
Definition: Type.h:60
bool isCall() const
Return true if a CallInst is enclosed.
Definition: CallSite.h:87
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:575
LLVM Value Representation.
Definition: Value.h:74
int cmpValues(const Value *L, const Value *R) const
Assign or look up previously assigned numbers for the two values, and return whether the numbers are ...
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:48
int cmpConstants(const Constant *L, const Constant *R) const
Constants comparison.
Type * getSourceElementType() const
Definition: Operator.cpp:22
APInt bitcastToAPInt() const
Definition: APFloat.h:1109
OperandBundleUse getOperandBundleAt(unsigned Index) const
Definition: CallSite.h:564
static bool isVolatile(Instruction *Inst)
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1074
#define LLVM_DEBUG(X)
Definition: Debug.h:122
unsigned index_begin() const
Use these to iterate over the valid attribute indices.
Definition: Attributes.h:656
an instruction to allocate memory on the stack
Definition: Instructions.h:59
This instruction inserts a struct field of array element value into an aggregate value.
5: 128-bit floating point type (112-bit mantissa)
Definition: Type.h:62
int cmpNumbers(uint64_t L, uint64_t R) const