LLVM 20.0.0git
M68kISelLowering.cpp
Go to the documentation of this file.
1//===-- M68kISelLowering.cpp - M68k DAG Lowering Impl -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file defines the interfaces that M68k uses to lower LLVM code into a
11/// selection DAG.
12///
13//===----------------------------------------------------------------------===//
14
15#include "M68kISelLowering.h"
16#include "M68kCallingConv.h"
17#include "M68kMachineFunction.h"
18#include "M68kSubtarget.h"
19#include "M68kTargetMachine.h"
21
22#include "llvm/ADT/Statistic.h"
31#include "llvm/IR/CallingConv.h"
35#include "llvm/Support/Debug.h"
39
40using namespace llvm;
41
42#define DEBUG_TYPE "M68k-isel"
43
44STATISTIC(NumTailCalls, "Number of tail calls");
45
47 const M68kSubtarget &STI)
48 : TargetLowering(TM), Subtarget(STI), TM(TM) {
49
50 MVT PtrVT = MVT::i32;
51
53
54 auto *RegInfo = Subtarget.getRegisterInfo();
55 setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
56
57 // Set up the register classes.
58 addRegisterClass(MVT::i8, &M68k::DR8RegClass);
59 addRegisterClass(MVT::i16, &M68k::XR16RegClass);
60 addRegisterClass(MVT::i32, &M68k::XR32RegClass);
61
62 for (auto VT : MVT::integer_valuetypes()) {
66 }
67
68 // We don't accept any truncstore of integer registers.
69 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
70 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
71 setTruncStoreAction(MVT::i64, MVT::i8, Expand);
72 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
73 setTruncStoreAction(MVT::i32, MVT::i8, Expand);
74 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
75
78 if (Subtarget.atLeastM68020())
80 else
83
84 for (auto OP :
87 setOperationAction(OP, MVT::i8, Promote);
88 setOperationAction(OP, MVT::i16, Legal);
89 setOperationAction(OP, MVT::i32, LibCall);
90 }
91
92 for (auto OP : {ISD::UMUL_LOHI, ISD::SMUL_LOHI}) {
93 setOperationAction(OP, MVT::i8, Expand);
94 setOperationAction(OP, MVT::i16, Expand);
95 }
96
97 for (auto OP : {ISD::SMULO, ISD::UMULO}) {
98 setOperationAction(OP, MVT::i8, Custom);
99 setOperationAction(OP, MVT::i16, Custom);
100 setOperationAction(OP, MVT::i32, Custom);
101 }
102
104 setOperationAction(OP, MVT::i32, Custom);
105
106 // Add/Sub overflow ops with MVT::Glues are lowered to CCR dependences.
107 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
112 }
113
114 // SADDO and friends are legal with this setup, i hope
115 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
120 }
121
124
125 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
131 }
132
133 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
138 }
139
146
151
154
156
158
159 // We lower the `atomic-compare-and-swap` to `__sync_val_compare_and_swap`
160 // for subtarget < M68020
162 setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i8, MVT::i16, MVT::i32},
163 Subtarget.atLeastM68020() ? Legal : LibCall);
164
166
167 // M68k does not have native read-modify-write support, so expand all of them
168 // to `__sync_fetch_*` for target < M68020, otherwise expand to CmpxChg.
169 // See `shouldExpandAtomicRMWInIR` below.
171 {
183 },
184 {MVT::i8, MVT::i16, MVT::i32}, LibCall);
185
187}
188
191 return Subtarget.atLeastM68020()
194}
195
198 return M68k::D0;
199}
200
203 return M68k::D1;
204}
205
208 return StringSwitch<InlineAsm::ConstraintCode>(ConstraintCode)
210 // We borrow ConstraintCode::Um for 'U'.
213}
214
216 LLVMContext &Context, EVT VT) const {
217 // M68k SETcc producess either 0x00 or 0xFF
218 return MVT::i8;
219}
220
222 EVT Ty) const {
223 if (Ty.isSimple()) {
224 return Ty.getSimpleVT();
225 }
226 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
227}
228
229#include "M68kGenCallingConv.inc"
230
232
233static StructReturnType
235 if (Outs.empty())
236 return NotStructReturn;
237
238 const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
239 if (!Flags.isSRet())
240 return NotStructReturn;
241 if (Flags.isInReg())
242 return RegStructReturn;
243 return StackStructReturn;
244}
245
246/// Determines whether a function uses struct return semantics.
247static StructReturnType
249 if (Ins.empty())
250 return NotStructReturn;
251
252 const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
253 if (!Flags.isSRet())
254 return NotStructReturn;
255 if (Flags.isInReg())
256 return RegStructReturn;
257 return StackStructReturn;
258}
259
260/// Make a copy of an aggregate at address specified by "Src" to address
261/// "Dst" with size and alignment information specified by the specific
262/// parameter attribute. The copy will be passed as a byval function parameter.
264 SDValue Chain, ISD::ArgFlagsTy Flags,
265 SelectionDAG &DAG, const SDLoc &DL) {
266 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), DL, MVT::i32);
267
268 return DAG.getMemcpy(
269 Chain, DL, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
270 /*isVolatile=*/false, /*AlwaysInline=*/true,
271 /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), MachinePointerInfo());
272}
273
274/// Return true if the calling convention is one that we can guarantee TCO for.
275static bool canGuaranteeTCO(CallingConv::ID CC) { return false; }
276
277/// Return true if we might ever do TCO for calls with this calling convention.
279 switch (CC) {
280 // C calling conventions:
281 case CallingConv::C:
282 return true;
283 default:
284 return canGuaranteeTCO(CC);
285 }
286}
287
288/// Return true if the function is being made into a tailcall target by
289/// changing its ABI.
290static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) {
291 return GuaranteedTailCallOpt && canGuaranteeTCO(CC);
292}
293
294/// Return true if the given stack call argument is already available in the
295/// same position (relatively) of the caller's incoming argument stack.
296static bool MatchingStackOffset(SDValue Arg, unsigned Offset,
299 const M68kInstrInfo *TII,
300 const CCValAssign &VA) {
301 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
302
303 for (;;) {
304 // Look through nodes that don't alter the bits of the incoming value.
305 unsigned Op = Arg.getOpcode();
307 Arg = Arg.getOperand(0);
308 continue;
309 }
310 if (Op == ISD::TRUNCATE) {
311 const SDValue &TruncInput = Arg.getOperand(0);
312 if (TruncInput.getOpcode() == ISD::AssertZext &&
313 cast<VTSDNode>(TruncInput.getOperand(1))->getVT() ==
314 Arg.getValueType()) {
315 Arg = TruncInput.getOperand(0);
316 continue;
317 }
318 }
319 break;
320 }
321
322 int FI = INT_MAX;
323 if (Arg.getOpcode() == ISD::CopyFromReg) {
324 Register VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
326 return false;
327 MachineInstr *Def = MRI->getVRegDef(VR);
328 if (!Def)
329 return false;
330 if (!Flags.isByVal()) {
331 if (!TII->isLoadFromStackSlot(*Def, FI))
332 return false;
333 } else {
334 unsigned Opcode = Def->getOpcode();
335 if ((Opcode == M68k::LEA32p || Opcode == M68k::LEA32f) &&
336 Def->getOperand(1).isFI()) {
337 FI = Def->getOperand(1).getIndex();
338 Bytes = Flags.getByValSize();
339 } else
340 return false;
341 }
342 } else if (auto *Ld = dyn_cast<LoadSDNode>(Arg)) {
343 if (Flags.isByVal())
344 // ByVal argument is passed in as a pointer but it's now being
345 // dereferenced. e.g.
346 // define @foo(%struct.X* %A) {
347 // tail call @bar(%struct.X* byval %A)
348 // }
349 return false;
350 SDValue Ptr = Ld->getBasePtr();
351 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
352 if (!FINode)
353 return false;
354 FI = FINode->getIndex();
355 } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
356 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
357 FI = FINode->getIndex();
358 Bytes = Flags.getByValSize();
359 } else
360 return false;
361
362 assert(FI != INT_MAX);
363 if (!MFI.isFixedObjectIndex(FI))
364 return false;
365
366 if (Offset != MFI.getObjectOffset(FI))
367 return false;
368
369 if (VA.getLocVT().getSizeInBits() > Arg.getValueType().getSizeInBits()) {
370 // If the argument location is wider than the argument type, check that any
371 // extension flags match.
372 if (Flags.isZExt() != MFI.isObjectZExt(FI) ||
373 Flags.isSExt() != MFI.isObjectSExt(FI)) {
374 return false;
375 }
376 }
377
378 return Bytes == MFI.getObjectSize(FI);
379}
380
382M68kTargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
385 int ReturnAddrIndex = FuncInfo->getRAIndex();
386
387 if (ReturnAddrIndex == 0) {
388 // Set up a frame object for the return address.
389 unsigned SlotSize = Subtarget.getSlotSize();
390 ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(
391 SlotSize, -(int64_t)SlotSize, false);
392 FuncInfo->setRAIndex(ReturnAddrIndex);
393 }
394
395 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout()));
396}
397
398SDValue M68kTargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
399 SDValue &OutRetAddr,
400 SDValue Chain,
401 bool IsTailCall, int FPDiff,
402 const SDLoc &DL) const {
403 EVT VT = getPointerTy(DAG.getDataLayout());
404 OutRetAddr = getReturnAddressFrameIndex(DAG);
405
406 // Load the "old" Return address.
407 OutRetAddr = DAG.getLoad(VT, DL, Chain, OutRetAddr, MachinePointerInfo());
408 return SDValue(OutRetAddr.getNode(), 1);
409}
410
411SDValue M68kTargetLowering::EmitTailCallStoreRetAddr(
412 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue RetFI,
413 EVT PtrVT, unsigned SlotSize, int FPDiff, const SDLoc &DL) const {
414 if (!FPDiff)
415 return Chain;
416
417 // Calculate the new stack slot for the return address.
418 int NewFO = MF.getFrameInfo().CreateFixedObject(
419 SlotSize, (int64_t)FPDiff - SlotSize, false);
420
421 SDValue NewFI = DAG.getFrameIndex(NewFO, PtrVT);
422 // Store the return address to the appropriate stack slot.
423 Chain = DAG.getStore(
424 Chain, DL, RetFI, NewFI,
426 return Chain;
427}
428
430M68kTargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
432 const SDLoc &DL, SelectionDAG &DAG,
433 const CCValAssign &VA,
434 MachineFrameInfo &MFI,
435 unsigned ArgIdx) const {
436 // Create the nodes corresponding to a load from this parameter slot.
437 ISD::ArgFlagsTy Flags = Ins[ArgIdx].Flags;
438 EVT ValVT;
439
440 // If value is passed by pointer we have address passed instead of the value
441 // itself.
443 ValVT = VA.getLocVT();
444 else
445 ValVT = VA.getValVT();
446
447 // Because we are dealing with BE architecture we need to offset loading of
448 // partial types
449 int Offset = VA.getLocMemOffset();
450 if (VA.getValVT() == MVT::i8) {
451 Offset += 3;
452 } else if (VA.getValVT() == MVT::i16) {
453 Offset += 2;
454 }
455
456 // TODO Interrupt handlers
457 // Calculate SP offset of interrupt parameter, re-arrange the slot normally
458 // taken by a return address.
459
460 // FIXME For now, all byval parameter objects are marked mutable. This can
461 // be changed with more analysis. In case of tail call optimization mark all
462 // arguments mutable. Since they could be overwritten by lowering of arguments
463 // in case of a tail call.
464 bool AlwaysUseMutable = shouldGuaranteeTCO(
465 CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
466 bool IsImmutable = !AlwaysUseMutable && !Flags.isByVal();
467
468 if (Flags.isByVal()) {
469 unsigned Bytes = Flags.getByValSize();
470 if (Bytes == 0)
471 Bytes = 1; // Don't create zero-sized stack objects.
472 int FI = MFI.CreateFixedObject(Bytes, Offset, IsImmutable);
473 // TODO Interrupt handlers
474 // Adjust SP offset of interrupt parameter.
475 return DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
476 } else {
477 int FI =
478 MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, Offset, IsImmutable);
479
480 // Set SExt or ZExt flag.
481 if (VA.getLocInfo() == CCValAssign::ZExt) {
482 MFI.setObjectZExt(FI, true);
483 } else if (VA.getLocInfo() == CCValAssign::SExt) {
484 MFI.setObjectSExt(FI, true);
485 }
486
487 // TODO Interrupt handlers
488 // Adjust SP offset of interrupt parameter.
489
490 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
491 SDValue Val = DAG.getLoad(
492 ValVT, DL, Chain, FIN,
494 return VA.isExtInLoc() ? DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val)
495 : Val;
496 }
497}
498
499SDValue M68kTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
500 SDValue Arg, const SDLoc &DL,
501 SelectionDAG &DAG,
502 const CCValAssign &VA,
503 ISD::ArgFlagsTy Flags) const {
504 unsigned LocMemOffset = VA.getLocMemOffset();
505 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, DL);
506 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
507 StackPtr, PtrOff);
508 if (Flags.isByVal())
509 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, DL);
510
511 return DAG.getStore(
512 Chain, DL, Arg, PtrOff,
514}
515
516//===----------------------------------------------------------------------===//
517// Call
518//===----------------------------------------------------------------------===//
519
520SDValue M68kTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
521 SmallVectorImpl<SDValue> &InVals) const {
522 SelectionDAG &DAG = CLI.DAG;
523 SDLoc &DL = CLI.DL;
525 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
527 SDValue Chain = CLI.Chain;
528 SDValue Callee = CLI.Callee;
529 CallingConv::ID CallConv = CLI.CallConv;
530 bool &IsTailCall = CLI.IsTailCall;
531 bool IsVarArg = CLI.IsVarArg;
532
535 bool IsSibcall = false;
537 // const M68kRegisterInfo *TRI = Subtarget.getRegisterInfo();
538
539 if (CallConv == CallingConv::M68k_INTR)
540 report_fatal_error("M68k interrupts may not be called directly");
541
542 auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
543 if (Attr.getValueAsBool())
544 IsTailCall = false;
545
546 // FIXME Add tailcalls support
547
548 bool IsMustTail = CLI.CB && CLI.CB->isMustTailCall();
549 if (IsMustTail) {
550 // Force this to be a tail call. The verifier rules are enough to ensure
551 // that we can lower this successfully without moving the return address
552 // around.
553 IsTailCall = true;
554 } else if (IsTailCall) {
555 // Check if it's really possible to do a tail call.
556 IsTailCall = IsEligibleForTailCallOptimization(
557 Callee, CallConv, IsVarArg, SR != NotStructReturn,
558 MF.getFunction().hasStructRetAttr(), CLI.RetTy, Outs, OutVals, Ins,
559 DAG);
560
561 // Sibcalls are automatically detected tailcalls which do not require
562 // ABI changes.
563 if (!MF.getTarget().Options.GuaranteedTailCallOpt && IsTailCall)
564 IsSibcall = true;
565
566 if (IsTailCall)
567 ++NumTailCalls;
568 }
569
570 assert(!(IsVarArg && canGuaranteeTCO(CallConv)) &&
571 "Var args not supported with calling convention fastcc");
572
573 // Analyze operands of the call, assigning locations to each operand.
575 SmallVector<Type *, 4> ArgTypes;
576 for (const auto &Arg : CLI.getArgs())
577 ArgTypes.emplace_back(Arg.Ty);
578 M68kCCState CCInfo(ArgTypes, CallConv, IsVarArg, MF, ArgLocs,
579 *DAG.getContext());
580 CCInfo.AnalyzeCallOperands(Outs, CC_M68k);
581
582 // Get a count of how many bytes are to be pushed on the stack.
583 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
584 if (IsSibcall) {
585 // This is a sibcall. The memory operands are available in caller's
586 // own caller's stack.
587 NumBytes = 0;
588 } else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
589 canGuaranteeTCO(CallConv)) {
590 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
591 }
592
593 int FPDiff = 0;
594 if (IsTailCall && !IsSibcall && !IsMustTail) {
595 // Lower arguments at fp - stackoffset + fpdiff.
596 unsigned NumBytesCallerPushed = MFI->getBytesToPopOnReturn();
597
598 FPDiff = NumBytesCallerPushed - NumBytes;
599
600 // Set the delta of movement of the returnaddr stackslot.
601 // But only set if delta is greater than previous delta.
602 if (FPDiff < MFI->getTCReturnAddrDelta())
603 MFI->setTCReturnAddrDelta(FPDiff);
604 }
605
606 unsigned NumBytesToPush = NumBytes;
607 unsigned NumBytesToPop = NumBytes;
608
609 // If we have an inalloca argument, all stack space has already been allocated
610 // for us and be right at the top of the stack. We don't support multiple
611 // arguments passed in memory when using inalloca.
612 if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
613 NumBytesToPush = 0;
614 if (!ArgLocs.back().isMemLoc())
615 report_fatal_error("cannot use inalloca attribute on a register "
616 "parameter");
617 if (ArgLocs.back().getLocMemOffset() != 0)
618 report_fatal_error("any parameter with the inalloca attribute must be "
619 "the only memory argument");
620 }
621
622 if (!IsSibcall)
623 Chain = DAG.getCALLSEQ_START(Chain, NumBytesToPush,
624 NumBytes - NumBytesToPush, DL);
625
626 SDValue RetFI;
627 // Load return address for tail calls.
628 if (IsTailCall && FPDiff)
629 Chain = EmitTailCallLoadRetAddr(DAG, RetFI, Chain, IsTailCall, FPDiff, DL);
630
632 SmallVector<SDValue, 8> MemOpChains;
634
635 // Walk the register/memloc assignments, inserting copies/loads. In the case
636 // of tail call optimization arguments are handle later.
637 const M68kRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
638 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
639 ISD::ArgFlagsTy Flags = Outs[i].Flags;
640
641 // Skip inalloca arguments, they have already been written.
642 if (Flags.isInAlloca())
643 continue;
644
645 CCValAssign &VA = ArgLocs[i];
646 EVT RegVT = VA.getLocVT();
647 SDValue Arg = OutVals[i];
648 bool IsByVal = Flags.isByVal();
649
650 // Promote the value if needed.
651 switch (VA.getLocInfo()) {
652 default:
653 llvm_unreachable("Unknown loc info!");
655 break;
657 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
658 break;
660 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
661 break;
663 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
664 break;
666 Arg = DAG.getBitcast(RegVT, Arg);
667 break;
669 // Store the argument.
670 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
671 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
672 Chain = DAG.getStore(
673 Chain, DL, Arg, SpillSlot,
675 Arg = SpillSlot;
676 break;
677 }
678 }
679
680 if (VA.isRegLoc()) {
681 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
682 } else if (!IsSibcall && (!IsTailCall || IsByVal)) {
683 assert(VA.isMemLoc());
684 if (!StackPtr.getNode()) {
685 StackPtr = DAG.getCopyFromReg(Chain, DL, RegInfo->getStackRegister(),
687 }
688 MemOpChains.push_back(
689 LowerMemOpCallTo(Chain, StackPtr, Arg, DL, DAG, VA, Flags));
690 }
691 }
692
693 if (!MemOpChains.empty())
694 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
695
696 // FIXME Make sure PIC style GOT works as expected
697 // The only time GOT is really needed is for Medium-PIC static data
698 // otherwise we are happy with pc-rel or static references
699
700 if (IsVarArg && IsMustTail) {
701 const auto &Forwards = MFI->getForwardedMustTailRegParms();
702 for (const auto &F : Forwards) {
703 SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
704 RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
705 }
706 }
707
708 // For tail calls lower the arguments to the 'real' stack slots. Sibcalls
709 // don't need this because the eligibility check rejects calls that require
710 // shuffling arguments passed in memory.
711 if (!IsSibcall && IsTailCall) {
712 // Force all the incoming stack arguments to be loaded from the stack
713 // before any new outgoing arguments are stored to the stack, because the
714 // outgoing stack slots may alias the incoming argument stack slots, and
715 // the alias isn't otherwise explicit. This is slightly more conservative
716 // than necessary, because it means that each store effectively depends
717 // on every argument instead of just those arguments it would clobber.
718 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
719
720 SmallVector<SDValue, 8> MemOpChains2;
721 SDValue FIN;
722 int FI = 0;
723 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
724 CCValAssign &VA = ArgLocs[i];
725 if (VA.isRegLoc())
726 continue;
727 assert(VA.isMemLoc());
728 SDValue Arg = OutVals[i];
729 ISD::ArgFlagsTy Flags = Outs[i].Flags;
730 // Skip inalloca arguments. They don't require any work.
731 if (Flags.isInAlloca())
732 continue;
733 // Create frame index.
734 int32_t Offset = VA.getLocMemOffset() + FPDiff;
735 uint32_t OpSize = (VA.getLocVT().getSizeInBits() + 7) / 8;
736 FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
737 FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
738
739 if (Flags.isByVal()) {
740 // Copy relative to framepointer.
742 if (!StackPtr.getNode()) {
743 StackPtr = DAG.getCopyFromReg(Chain, DL, RegInfo->getStackRegister(),
745 }
748
749 MemOpChains2.push_back(
750 CreateCopyOfByValArgument(Source, FIN, ArgChain, Flags, DAG, DL));
751 } else {
752 // Store relative to framepointer.
753 MemOpChains2.push_back(DAG.getStore(
754 ArgChain, DL, Arg, FIN,
756 }
757 }
758
759 if (!MemOpChains2.empty())
760 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains2);
761
762 // Store the return address to the appropriate stack slot.
763 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetFI,
765 Subtarget.getSlotSize(), FPDiff, DL);
766 }
767
768 // Build a sequence of copy-to-reg nodes chained together with token chain
769 // and flag operands which copy the outgoing args into registers.
770 SDValue InGlue;
771 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
772 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
773 RegsToPass[i].second, InGlue);
774 InGlue = Chain.getValue(1);
775 }
776
777 if (Callee->getOpcode() == ISD::GlobalAddress) {
778 // If the callee is a GlobalAddress node (quite common, every direct call
779 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
780 // it.
781 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
782
783 // We should use extra load for direct calls to dllimported functions in
784 // non-JIT mode.
785 const GlobalValue *GV = G->getGlobal();
786 if (!GV->hasDLLImportStorageClass()) {
787 unsigned char OpFlags = Subtarget.classifyGlobalFunctionReference(GV);
788
790 GV, DL, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags);
791
792 if (OpFlags == M68kII::MO_GOTPCREL) {
793
794 // Add a wrapper.
796 getPointerTy(DAG.getDataLayout()), Callee);
797
798 // Add extra indirection
799 Callee = DAG.getLoad(
800 getPointerTy(DAG.getDataLayout()), DL, DAG.getEntryNode(), Callee,
802 }
803 }
804 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
806 unsigned char OpFlags =
807 Subtarget.classifyGlobalFunctionReference(nullptr, *Mod);
808
810 S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags);
811 }
812
813 // Returns a chain & a flag for retval copy to use.
814 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
816
817 if (!IsSibcall && IsTailCall) {
818 Chain = DAG.getCALLSEQ_END(Chain, NumBytesToPop, 0, InGlue, DL);
819 InGlue = Chain.getValue(1);
820 }
821
822 Ops.push_back(Chain);
823 Ops.push_back(Callee);
824
825 if (IsTailCall)
826 Ops.push_back(DAG.getConstant(FPDiff, DL, MVT::i32));
827
828 // Add argument registers to the end of the list so that they are known live
829 // into the call.
830 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
831 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
832 RegsToPass[i].second.getValueType()));
833
834 // Add a register mask operand representing the call-preserved registers.
835 const uint32_t *Mask = RegInfo->getCallPreservedMask(MF, CallConv);
836 assert(Mask && "Missing call preserved mask for calling convention");
837
838 Ops.push_back(DAG.getRegisterMask(Mask));
839
840 if (InGlue.getNode())
841 Ops.push_back(InGlue);
842
843 if (IsTailCall) {
845 return DAG.getNode(M68kISD::TC_RETURN, DL, NodeTys, Ops);
846 }
847
848 Chain = DAG.getNode(M68kISD::CALL, DL, NodeTys, Ops);
849 InGlue = Chain.getValue(1);
850
851 // Create the CALLSEQ_END node.
852 unsigned NumBytesForCalleeToPop;
853 if (M68k::isCalleePop(CallConv, IsVarArg,
855 NumBytesForCalleeToPop = NumBytes; // Callee pops everything
856 } else if (!canGuaranteeTCO(CallConv) && SR == StackStructReturn) {
857 // If this is a call to a struct-return function, the callee
858 // pops the hidden struct pointer, so we have to push it back.
859 NumBytesForCalleeToPop = 4;
860 } else {
861 NumBytesForCalleeToPop = 0; // Callee pops nothing.
862 }
863
864 if (CLI.DoesNotReturn && !getTargetMachine().Options.TrapUnreachable) {
865 // No need to reset the stack after the call if the call doesn't return. To
866 // make the MI verify, we'll pretend the callee does it for us.
867 NumBytesForCalleeToPop = NumBytes;
868 }
869
870 // Returns a flag for retval copy to use.
871 if (!IsSibcall) {
872 Chain = DAG.getCALLSEQ_END(Chain, NumBytesToPop, NumBytesForCalleeToPop,
873 InGlue, DL);
874 InGlue = Chain.getValue(1);
875 }
876
877 // Handle result values, copying them out of physregs into vregs that we
878 // return.
879 return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG,
880 InVals);
881}
882
883SDValue M68kTargetLowering::LowerCallResult(
884 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg,
885 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
886 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
887
888 // Assign locations to each value returned by this call.
890 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
891 *DAG.getContext());
892 CCInfo.AnalyzeCallResult(Ins, RetCC_M68k);
893
894 // Copy all of the result registers out of their specified physreg.
895 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
896 CCValAssign &VA = RVLocs[i];
897 EVT CopyVT = VA.getLocVT();
898
899 /// ??? is this correct?
900 Chain = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), CopyVT, InGlue)
901 .getValue(1);
902 SDValue Val = Chain.getValue(0);
903
904 if (VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1)
905 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
906
907 InGlue = Chain.getValue(2);
908 InVals.push_back(Val);
909 }
910
911 return Chain;
912}
913
914//===----------------------------------------------------------------------===//
915// Formal Arguments Calling Convention Implementation
916//===----------------------------------------------------------------------===//
917
918SDValue M68kTargetLowering::LowerFormalArguments(
919 SDValue Chain, CallingConv::ID CCID, bool IsVarArg,
920 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
921 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
924 // const TargetFrameLowering &TFL = *Subtarget.getFrameLowering();
925
926 MachineFrameInfo &MFI = MF.getFrameInfo();
927
928 // Assign locations to all of the incoming arguments.
930 SmallVector<Type *, 4> ArgTypes;
931 for (const Argument &Arg : MF.getFunction().args())
932 ArgTypes.emplace_back(Arg.getType());
933 M68kCCState CCInfo(ArgTypes, CCID, IsVarArg, MF, ArgLocs, *DAG.getContext());
934
935 CCInfo.AnalyzeFormalArguments(Ins, CC_M68k);
936
937 unsigned LastVal = ~0U;
938 SDValue ArgValue;
939 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
940 CCValAssign &VA = ArgLocs[i];
941 assert(VA.getValNo() != LastVal && "Same value in different locations");
942 (void)LastVal;
943
944 LastVal = VA.getValNo();
945
946 if (VA.isRegLoc()) {
947 EVT RegVT = VA.getLocVT();
948 const TargetRegisterClass *RC;
949 if (RegVT == MVT::i32)
950 RC = &M68k::XR32RegClass;
951 else
952 llvm_unreachable("Unknown argument type!");
953
954 Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
955 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
956
957 // If this is an 8 or 16-bit value, it is really passed promoted to 32
958 // bits. Insert an assert[sz]ext to capture this, then truncate to the
959 // right size.
960 if (VA.getLocInfo() == CCValAssign::SExt) {
961 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
962 DAG.getValueType(VA.getValVT()));
963 } else if (VA.getLocInfo() == CCValAssign::ZExt) {
964 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
965 DAG.getValueType(VA.getValVT()));
966 } else if (VA.getLocInfo() == CCValAssign::BCvt) {
967 ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
968 }
969
970 if (VA.isExtInLoc()) {
971 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
972 }
973 } else {
974 assert(VA.isMemLoc());
975 ArgValue = LowerMemArgument(Chain, CCID, Ins, DL, DAG, VA, MFI, i);
976 }
977
978 // If value is passed via pointer - do a load.
979 // TODO Make sure this handling on indirect arguments is correct
981 ArgValue =
982 DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, MachinePointerInfo());
983
984 InVals.push_back(ArgValue);
985 }
986
987 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
988 // Swift calling convention does not require we copy the sret argument
989 // into %D0 for the return. We don't set SRetReturnReg for Swift.
990 if (CCID == CallingConv::Swift)
991 continue;
992
993 // ABI require that for returning structs by value we copy the sret argument
994 // into %D0 for the return. Save the argument into a virtual register so
995 // that we can access it from the return points.
996 if (Ins[i].Flags.isSRet()) {
997 unsigned Reg = MMFI->getSRetReturnReg();
998 if (!Reg) {
999 MVT PtrTy = getPointerTy(DAG.getDataLayout());
1001 MMFI->setSRetReturnReg(Reg);
1002 }
1003 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
1004 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
1005 break;
1006 }
1007 }
1008
1009 unsigned StackSize = CCInfo.getStackSize();
1010 // Align stack specially for tail calls.
1012 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1013
1014 // If the function takes variable number of arguments, make a frame index for
1015 // the start of the first vararg value... for expansion of llvm.va_start. We
1016 // can skip this if there are no va_start calls.
1017 if (MFI.hasVAStart()) {
1018 MMFI->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1019 }
1020
1021 if (IsVarArg && MFI.hasMustTailInVarArgFunc()) {
1022 // We forward some GPRs and some vector types.
1023 SmallVector<MVT, 2> RegParmTypes;
1024 MVT IntVT = MVT::i32;
1025 RegParmTypes.push_back(IntVT);
1026
1027 // Compute the set of forwarded registers. The rest are scratch.
1028 // ??? what is this for?
1031 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_M68k);
1032
1033 // Copy all forwards from physical to virtual registers.
1034 for (ForwardedRegister &F : Forwards) {
1035 // FIXME Can we use a less constrained schedule?
1036 SDValue RegVal = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
1038 Chain = DAG.getCopyToReg(Chain, DL, F.VReg, RegVal);
1039 }
1040 }
1041
1042 // Some CCs need callee pop.
1043 if (M68k::isCalleePop(CCID, IsVarArg,
1045 MMFI->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1046 } else {
1047 MMFI->setBytesToPopOnReturn(0); // Callee pops nothing.
1048 // If this is an sret function, the return should pop the hidden pointer.
1050 MMFI->setBytesToPopOnReturn(4);
1051 }
1052
1053 MMFI->setArgumentStackSize(StackSize);
1054
1055 return Chain;
1056}
1057
1058//===----------------------------------------------------------------------===//
1059// Return Value Calling Convention Implementation
1060//===----------------------------------------------------------------------===//
1061
1062bool M68kTargetLowering::CanLowerReturn(
1063 CallingConv::ID CCID, MachineFunction &MF, bool IsVarArg,
1064 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
1066 CCState CCInfo(CCID, IsVarArg, MF, RVLocs, Context);
1067 return CCInfo.CheckReturn(Outs, RetCC_M68k);
1068}
1069
1070SDValue
1071M68kTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CCID,
1072 bool IsVarArg,
1074 const SmallVectorImpl<SDValue> &OutVals,
1075 const SDLoc &DL, SelectionDAG &DAG) const {
1078
1080 CCState CCInfo(CCID, IsVarArg, MF, RVLocs, *DAG.getContext());
1081 CCInfo.AnalyzeReturn(Outs, RetCC_M68k);
1082
1083 SDValue Glue;
1085 // Operand #0 = Chain (updated below)
1086 RetOps.push_back(Chain);
1087 // Operand #1 = Bytes To Pop
1088 RetOps.push_back(
1089 DAG.getTargetConstant(MFI->getBytesToPopOnReturn(), DL, MVT::i32));
1090
1091 // Copy the result values into the output registers.
1092 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1093 CCValAssign &VA = RVLocs[i];
1094 assert(VA.isRegLoc() && "Can only return in registers!");
1095 SDValue ValToCopy = OutVals[i];
1096 EVT ValVT = ValToCopy.getValueType();
1097
1098 // Promote values to the appropriate types.
1099 if (VA.getLocInfo() == CCValAssign::SExt)
1100 ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), ValToCopy);
1101 else if (VA.getLocInfo() == CCValAssign::ZExt)
1102 ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), ValToCopy);
1103 else if (VA.getLocInfo() == CCValAssign::AExt) {
1104 if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1)
1105 ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), ValToCopy);
1106 else
1107 ValToCopy = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), ValToCopy);
1108 } else if (VA.getLocInfo() == CCValAssign::BCvt)
1109 ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
1110
1111 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), ValToCopy, Glue);
1112 Glue = Chain.getValue(1);
1113 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1114 }
1115
1116 // Swift calling convention does not require we copy the sret argument
1117 // into %d0 for the return, and SRetReturnReg is not set for Swift.
1118
1119 // ABI require that for returning structs by value we copy the sret argument
1120 // into %D0 for the return. Save the argument into a virtual register so that
1121 // we can access it from the return points.
1122 //
1123 // Checking Function.hasStructRetAttr() here is insufficient because the IR
1124 // may not have an explicit sret argument. If MFI.CanLowerReturn is
1125 // false, then an sret argument may be implicitly inserted in the SelDAG. In
1126 // either case MFI->setSRetReturnReg() will have been called.
1127 if (unsigned SRetReg = MFI->getSRetReturnReg()) {
1128 // ??? Can i just move this to the top and escape this explanation?
1129 // When we have both sret and another return value, we should use the
1130 // original Chain stored in RetOps[0], instead of the current Chain updated
1131 // in the above loop. If we only have sret, RetOps[0] equals to Chain.
1132
1133 // For the case of sret and another return value, we have
1134 // Chain_0 at the function entry
1135 // Chain_1 = getCopyToReg(Chain_0) in the above loop
1136 // If we use Chain_1 in getCopyFromReg, we will have
1137 // Val = getCopyFromReg(Chain_1)
1138 // Chain_2 = getCopyToReg(Chain_1, Val) from below
1139
1140 // getCopyToReg(Chain_0) will be glued together with
1141 // getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be
1142 // in Unit B, and we will have cyclic dependency between Unit A and Unit B:
1143 // Data dependency from Unit B to Unit A due to usage of Val in
1144 // getCopyToReg(Chain_1, Val)
1145 // Chain dependency from Unit A to Unit B
1146
1147 // So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg.
1148 SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg,
1150
1151 // ??? How will this work if CC does not use registers for args passing?
1152 // ??? What if I return multiple structs?
1153 unsigned RetValReg = M68k::D0;
1154 Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Glue);
1155 Glue = Chain.getValue(1);
1156
1157 RetOps.push_back(
1158 DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
1159 }
1160
1161 RetOps[0] = Chain; // Update chain.
1162
1163 // Add the glue if we have it.
1164 if (Glue.getNode())
1165 RetOps.push_back(Glue);
1166
1167 return DAG.getNode(M68kISD::RET, DL, MVT::Other, RetOps);
1168}
1169
1170//===----------------------------------------------------------------------===//
1171// Fast Calling Convention (tail call) implementation
1172//===----------------------------------------------------------------------===//
1173
1174// Like std call, callee cleans arguments, convention except that ECX is
1175// reserved for storing the tail called function address. Only 2 registers are
1176// free for argument passing (inreg). Tail call optimization is performed
1177// provided:
1178// * tailcallopt is enabled
1179// * caller/callee are fastcc
1180// On M68k_64 architecture with GOT-style position independent code only
1181// local (within module) calls are supported at the moment. To keep the stack
1182// aligned according to platform abi the function GetAlignedArgumentStackSize
1183// ensures that argument delta is always multiples of stack alignment. (Dynamic
1184// linkers need this - darwin's dyld for example) If a tail called function
1185// callee has more arguments than the caller the caller needs to make sure that
1186// there is room to move the RETADDR to. This is achieved by reserving an area
1187// the size of the argument delta right after the original RETADDR, but before
1188// the saved framepointer or the spilled registers e.g. caller(arg1, arg2)
1189// calls callee(arg1, arg2,arg3,arg4) stack layout:
1190// arg1
1191// arg2
1192// RETADDR
1193// [ new RETADDR
1194// move area ]
1195// (possible EBP)
1196// ESI
1197// EDI
1198// local1 ..
1199
1200/// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
1201/// requirement.
1202unsigned
1203M68kTargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1204 SelectionDAG &DAG) const {
1205 const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
1206 unsigned StackAlignment = TFI.getStackAlignment();
1207 uint64_t AlignMask = StackAlignment - 1;
1208 int64_t Offset = StackSize;
1209 unsigned SlotSize = Subtarget.getSlotSize();
1210 if ((Offset & AlignMask) <= (StackAlignment - SlotSize)) {
1211 // Number smaller than 12 so just add the difference.
1212 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1213 } else {
1214 // Mask out lower bits, add stackalignment once plus the 12 bytes.
1215 Offset =
1216 ((~AlignMask) & Offset) + StackAlignment + (StackAlignment - SlotSize);
1217 }
1218 return Offset;
1219}
1220
1221/// Check whether the call is eligible for tail call optimization. Targets
1222/// that want to do tail call optimization should implement this function.
1223bool M68kTargetLowering::IsEligibleForTailCallOptimization(
1224 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
1225 bool IsCalleeStructRet, bool IsCallerStructRet, Type *RetTy,
1227 const SmallVectorImpl<SDValue> &OutVals,
1228 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
1229 if (!mayTailCallThisCC(CalleeCC))
1230 return false;
1231
1232 // If -tailcallopt is specified, make fastcc functions tail-callable.
1234 const auto &CallerF = MF.getFunction();
1235
1236 CallingConv::ID CallerCC = CallerF.getCallingConv();
1237 bool CCMatch = CallerCC == CalleeCC;
1238
1240 if (canGuaranteeTCO(CalleeCC) && CCMatch)
1241 return true;
1242 return false;
1243 }
1244
1245 // Look for obvious safe cases to perform tail call optimization that do not
1246 // require ABI changes. This is what gcc calls sibcall.
1247
1248 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
1249 // emit a special epilogue.
1250 const M68kRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1251 if (RegInfo->hasStackRealignment(MF))
1252 return false;
1253
1254 // Also avoid sibcall optimization if either caller or callee uses struct
1255 // return semantics.
1256 if (IsCalleeStructRet || IsCallerStructRet)
1257 return false;
1258
1259 // Do not sibcall optimize vararg calls unless all arguments are passed via
1260 // registers.
1261 LLVMContext &C = *DAG.getContext();
1262 if (IsVarArg && !Outs.empty()) {
1263
1265 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, C);
1266
1267 CCInfo.AnalyzeCallOperands(Outs, CC_M68k);
1268 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
1269 if (!ArgLocs[i].isRegLoc())
1270 return false;
1271 }
1272
1273 // Check that the call results are passed in the same way.
1274 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, RetCC_M68k,
1275 RetCC_M68k))
1276 return false;
1277
1278 // The callee has to preserve all registers the caller needs to preserve.
1279 const M68kRegisterInfo *TRI = Subtarget.getRegisterInfo();
1280 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1281 if (!CCMatch) {
1282 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
1283 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
1284 return false;
1285 }
1286
1287 unsigned StackArgsSize = 0;
1288
1289 // If the callee takes no arguments then go on to check the results of the
1290 // call.
1291 if (!Outs.empty()) {
1292 // Check if stack adjustment is needed. For now, do not do this if any
1293 // argument is passed on the stack.
1295 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, C);
1296
1297 CCInfo.AnalyzeCallOperands(Outs, CC_M68k);
1298 StackArgsSize = CCInfo.getStackSize();
1299
1300 if (StackArgsSize) {
1301 // Check if the arguments are already laid out in the right way as
1302 // the caller's fixed stack objects.
1303 MachineFrameInfo &MFI = MF.getFrameInfo();
1304 const MachineRegisterInfo *MRI = &MF.getRegInfo();
1305 const M68kInstrInfo *TII = Subtarget.getInstrInfo();
1306 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1307 CCValAssign &VA = ArgLocs[i];
1308 SDValue Arg = OutVals[i];
1309 ISD::ArgFlagsTy Flags = Outs[i].Flags;
1311 return false;
1312 if (!VA.isRegLoc()) {
1313 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, MFI, MRI,
1314 TII, VA))
1315 return false;
1316 }
1317 }
1318 }
1319
1320 bool PositionIndependent = isPositionIndependent();
1321 // If the tailcall address may be in a register, then make sure it's
1322 // possible to register allocate for it. The call address can
1323 // only target %A0 or %A1 since the tail call must be scheduled after
1324 // callee-saved registers are restored. These happen to be the same
1325 // registers used to pass 'inreg' arguments so watch out for those.
1326 if ((!isa<GlobalAddressSDNode>(Callee) &&
1327 !isa<ExternalSymbolSDNode>(Callee)) ||
1328 PositionIndependent) {
1329 unsigned NumInRegs = 0;
1330 // In PIC we need an extra register to formulate the address computation
1331 // for the callee.
1332 unsigned MaxInRegs = PositionIndependent ? 1 : 2;
1333
1334 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1335 CCValAssign &VA = ArgLocs[i];
1336 if (!VA.isRegLoc())
1337 continue;
1338 Register Reg = VA.getLocReg();
1339 switch (Reg) {
1340 default:
1341 break;
1342 case M68k::A0:
1343 case M68k::A1:
1344 if (++NumInRegs == MaxInRegs)
1345 return false;
1346 break;
1347 }
1348 }
1349 }
1350
1351 const MachineRegisterInfo &MRI = MF.getRegInfo();
1352 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
1353 return false;
1354 }
1355
1356 bool CalleeWillPop = M68k::isCalleePop(
1357 CalleeCC, IsVarArg, MF.getTarget().Options.GuaranteedTailCallOpt);
1358
1359 if (unsigned BytesToPop =
1361 // If we have bytes to pop, the callee must pop them.
1362 bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize;
1363 if (!CalleePopMatches)
1364 return false;
1365 } else if (CalleeWillPop && StackArgsSize > 0) {
1366 // If we don't have bytes to pop, make sure the callee doesn't pop any.
1367 return false;
1368 }
1369
1370 return true;
1371}
1372
1373//===----------------------------------------------------------------------===//
1374// Custom Lower
1375//===----------------------------------------------------------------------===//
1376
1378 SelectionDAG &DAG) const {
1379 switch (Op.getOpcode()) {
1380 default:
1381 llvm_unreachable("Should not custom lower this!");
1382 case ISD::SADDO:
1383 case ISD::UADDO:
1384 case ISD::SSUBO:
1385 case ISD::USUBO:
1386 case ISD::SMULO:
1387 case ISD::UMULO:
1388 return LowerXALUO(Op, DAG);
1389 case ISD::SETCC:
1390 return LowerSETCC(Op, DAG);
1391 case ISD::SETCCCARRY:
1392 return LowerSETCCCARRY(Op, DAG);
1393 case ISD::SELECT:
1394 return LowerSELECT(Op, DAG);
1395 case ISD::BRCOND:
1396 return LowerBRCOND(Op, DAG);
1397 case ISD::ADDC:
1398 case ISD::ADDE:
1399 case ISD::SUBC:
1400 case ISD::SUBE:
1401 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1402 case ISD::ConstantPool:
1403 return LowerConstantPool(Op, DAG);
1404 case ISD::GlobalAddress:
1405 return LowerGlobalAddress(Op, DAG);
1407 return LowerExternalSymbol(Op, DAG);
1408 case ISD::BlockAddress:
1409 return LowerBlockAddress(Op, DAG);
1410 case ISD::JumpTable:
1411 return LowerJumpTable(Op, DAG);
1412 case ISD::VASTART:
1413 return LowerVASTART(Op, DAG);
1415 return LowerDYNAMIC_STACKALLOC(Op, DAG);
1416 case ISD::SHL_PARTS:
1417 return LowerShiftLeftParts(Op, DAG);
1418 case ISD::SRA_PARTS:
1419 return LowerShiftRightParts(Op, DAG, true);
1420 case ISD::SRL_PARTS:
1421 return LowerShiftRightParts(Op, DAG, false);
1422 case ISD::ATOMIC_FENCE:
1423 return LowerATOMICFENCE(Op, DAG);
1425 return LowerGlobalTLSAddress(Op, DAG);
1426 }
1427}
1428
1429SDValue M68kTargetLowering::LowerExternalSymbolCall(SelectionDAG &DAG,
1430 SDLoc Loc,
1431 llvm::StringRef SymbolName,
1432 ArgListTy &&ArgList) const {
1433 PointerType *PtrTy = PointerType::get(*DAG.getContext(), 0);
1434 CallLoweringInfo CLI(DAG);
1435 CLI.setDebugLoc(Loc)
1436 .setChain(DAG.getEntryNode())
1438 DAG.getExternalSymbol(SymbolName.data(),
1440 std::move(ArgList));
1441 return LowerCallTo(CLI).first;
1442}
1443
1444SDValue M68kTargetLowering::getTLSGetAddr(GlobalAddressSDNode *GA,
1445 SelectionDAG &DAG,
1446 unsigned TargetFlags) const {
1447 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1449 GA->getGlobal(), GA, GA->getValueType(0), GA->getOffset(), TargetFlags);
1450 SDValue Arg = DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, GOT, TGA);
1451
1452 PointerType *PtrTy = PointerType::get(*DAG.getContext(), 0);
1453
1454 ArgListTy Args;
1455 ArgListEntry Entry;
1456 Entry.Node = Arg;
1457 Entry.Ty = PtrTy;
1458 Args.push_back(Entry);
1459 return LowerExternalSymbolCall(DAG, SDLoc(GA), "__tls_get_addr",
1460 std::move(Args));
1461}
1462
1463SDValue M68kTargetLowering::getM68kReadTp(SDLoc Loc, SelectionDAG &DAG) const {
1464 return LowerExternalSymbolCall(DAG, Loc, "__m68k_read_tp", ArgListTy());
1465}
1466
1467SDValue M68kTargetLowering::LowerTLSGeneralDynamic(GlobalAddressSDNode *GA,
1468 SelectionDAG &DAG) const {
1469 return getTLSGetAddr(GA, DAG, M68kII::MO_TLSGD);
1470}
1471
1472SDValue M68kTargetLowering::LowerTLSLocalDynamic(GlobalAddressSDNode *GA,
1473 SelectionDAG &DAG) const {
1474 SDValue Addr = getTLSGetAddr(GA, DAG, M68kII::MO_TLSLDM);
1475 SDValue TGA =
1476 DAG.getTargetGlobalAddress(GA->getGlobal(), GA, GA->getValueType(0),
1478 return DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, TGA, Addr);
1479}
1480
1481SDValue M68kTargetLowering::LowerTLSInitialExec(GlobalAddressSDNode *GA,
1482 SelectionDAG &DAG) const {
1483 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1484 SDValue Tp = getM68kReadTp(SDLoc(GA), DAG);
1485 SDValue TGA =
1486 DAG.getTargetGlobalAddress(GA->getGlobal(), GA, GA->getValueType(0),
1488 SDValue Addr = DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, TGA, GOT);
1489 SDValue Offset =
1490 DAG.getLoad(MVT::i32, SDLoc(GA), DAG.getEntryNode(), Addr,
1492
1493 return DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, Offset, Tp);
1494}
1495
1496SDValue M68kTargetLowering::LowerTLSLocalExec(GlobalAddressSDNode *GA,
1497 SelectionDAG &DAG) const {
1498 SDValue Tp = getM68kReadTp(SDLoc(GA), DAG);
1499 SDValue TGA =
1500 DAG.getTargetGlobalAddress(GA->getGlobal(), GA, GA->getValueType(0),
1502 return DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, TGA, Tp);
1503}
1504
1505SDValue M68kTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1506 SelectionDAG &DAG) const {
1507 assert(Subtarget.isTargetELF());
1508
1509 auto *GA = cast<GlobalAddressSDNode>(Op);
1510 TLSModel::Model AccessModel = DAG.getTarget().getTLSModel(GA->getGlobal());
1511
1512 switch (AccessModel) {
1514 return LowerTLSGeneralDynamic(GA, DAG);
1516 return LowerTLSLocalDynamic(GA, DAG);
1518 return LowerTLSInitialExec(GA, DAG);
1520 return LowerTLSLocalExec(GA, DAG);
1521 }
1522
1523 llvm_unreachable("Unexpected TLS access model type");
1524}
1525
1526bool M68kTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
1527 SDValue C) const {
1528 // Shifts and add instructions in M68000 and M68010 support
1529 // up to 32 bits, but mul only has 16-bit variant. So it's almost
1530 // certainly beneficial to lower 8/16/32-bit mul to their
1531 // add / shifts counterparts. But for 64-bits mul, it might be
1532 // safer to just leave it to compiler runtime implementations.
1533 return VT.bitsLE(MVT::i32) || Subtarget.atLeastM68020();
1534}
1535
1536static bool isOverflowArithmetic(unsigned Opcode) {
1537 switch (Opcode) {
1538 case ISD::UADDO:
1539 case ISD::SADDO:
1540 case ISD::USUBO:
1541 case ISD::SSUBO:
1542 case ISD::UMULO:
1543 case ISD::SMULO:
1544 return true;
1545 default:
1546 return false;
1547 }
1548}
1549
1551 SDValue &Result, SDValue &CCR,
1552 unsigned &CC) {
1553 SDNode *N = Op.getNode();
1554 EVT VT = N->getValueType(0);
1555 SDValue LHS = N->getOperand(0);
1556 SDValue RHS = N->getOperand(1);
1557 SDLoc DL(Op);
1558
1559 unsigned TruncOp = 0;
1560 auto PromoteMULO = [&](unsigned ExtOp) {
1561 // We don't have 8-bit multiplications, so promote i8 version of U/SMULO
1562 // to i16.
1563 // Ideally this should be done by legalizer but sadly there is no promotion
1564 // rule for U/SMULO at this moment.
1565 if (VT == MVT::i8) {
1566 LHS = DAG.getNode(ExtOp, DL, MVT::i16, LHS);
1567 RHS = DAG.getNode(ExtOp, DL, MVT::i16, RHS);
1568 VT = MVT::i16;
1569 TruncOp = ISD::TRUNCATE;
1570 }
1571 };
1572
1573 bool NoOverflow = false;
1574 unsigned BaseOp = 0;
1575 switch (Op.getOpcode()) {
1576 default:
1577 llvm_unreachable("Unknown ovf instruction!");
1578 case ISD::SADDO:
1579 BaseOp = M68kISD::ADD;
1580 CC = M68k::COND_VS;
1581 break;
1582 case ISD::UADDO:
1583 BaseOp = M68kISD::ADD;
1584 CC = M68k::COND_CS;
1585 break;
1586 case ISD::SSUBO:
1587 BaseOp = M68kISD::SUB;
1588 CC = M68k::COND_VS;
1589 break;
1590 case ISD::USUBO:
1591 BaseOp = M68kISD::SUB;
1592 CC = M68k::COND_CS;
1593 break;
1594 case ISD::UMULO:
1595 PromoteMULO(ISD::ZERO_EXTEND);
1596 NoOverflow = VT != MVT::i32;
1597 BaseOp = NoOverflow ? ISD::MUL : M68kISD::UMUL;
1598 CC = M68k::COND_VS;
1599 break;
1600 case ISD::SMULO:
1601 PromoteMULO(ISD::SIGN_EXTEND);
1602 NoOverflow = VT != MVT::i32;
1603 BaseOp = NoOverflow ? ISD::MUL : M68kISD::SMUL;
1604 CC = M68k::COND_VS;
1605 break;
1606 }
1607
1608 SDVTList VTs;
1609 if (NoOverflow)
1610 VTs = DAG.getVTList(VT);
1611 else
1612 // Also sets CCR.
1613 VTs = DAG.getVTList(VT, MVT::i8);
1614
1615 SDValue Arith = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
1616 Result = Arith.getValue(0);
1617 if (TruncOp)
1618 // Right now the only place to truncate is from i16 to i8.
1619 Result = DAG.getNode(TruncOp, DL, MVT::i8, Arith);
1620
1621 if (NoOverflow)
1622 CCR = DAG.getConstant(0, DL, N->getValueType(1));
1623 else
1624 CCR = Arith.getValue(1);
1625}
1626
1627SDValue M68kTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
1628 SDNode *N = Op.getNode();
1629 SDLoc DL(Op);
1630
1631 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
1632 // a "setcc" instruction that checks the overflow flag.
1633 SDValue Result, CCR;
1634 unsigned CC;
1635 lowerOverflowArithmetic(Op, DAG, Result, CCR, CC);
1636
1637 SDValue Overflow;
1638 if (isa<ConstantSDNode>(CCR)) {
1639 // It's likely a result of operations that will not overflow
1640 // hence no setcc is needed.
1641 Overflow = CCR;
1642 } else {
1643 // Generate a M68kISD::SETCC.
1644 Overflow = DAG.getNode(M68kISD::SETCC, DL, N->getValueType(1),
1645 DAG.getConstant(CC, DL, MVT::i8), CCR);
1646 }
1647
1648 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Overflow);
1649}
1650
1651/// Create a BTST (Bit Test) node - Test bit \p BitNo in \p Src and set
1652/// condition according to equal/not-equal condition code \p CC.
1654 const SDLoc &DL, SelectionDAG &DAG) {
1655 // If Src is i8, promote it to i32 with any_extend. There is no i8 BTST
1656 // instruction. Since the shift amount is in-range-or-undefined, we know
1657 // that doing a bittest on the i32 value is ok.
1658 if (Src.getValueType() == MVT::i8 || Src.getValueType() == MVT::i16)
1659 Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Src);
1660
1661 // If the operand types disagree, extend the shift amount to match. Since
1662 // BTST ignores high bits (like shifts) we can use anyextend.
1663 if (Src.getValueType() != BitNo.getValueType())
1664 BitNo = DAG.getNode(ISD::ANY_EXTEND, DL, Src.getValueType(), BitNo);
1665
1666 SDValue BTST = DAG.getNode(M68kISD::BTST, DL, MVT::i32, Src, BitNo);
1667
1668 // NOTE BTST sets CCR.Z flag
1670 return DAG.getNode(M68kISD::SETCC, DL, MVT::i8,
1671 DAG.getConstant(Cond, DL, MVT::i8), BTST);
1672}
1673
1674/// Result of 'and' is compared against zero. Change to a BTST node if possible.
1676 SelectionDAG &DAG) {
1677 SDValue Op0 = And.getOperand(0);
1678 SDValue Op1 = And.getOperand(1);
1679 if (Op0.getOpcode() == ISD::TRUNCATE)
1680 Op0 = Op0.getOperand(0);
1681 if (Op1.getOpcode() == ISD::TRUNCATE)
1682 Op1 = Op1.getOperand(0);
1683
1684 SDValue LHS, RHS;
1685 if (Op1.getOpcode() == ISD::SHL)
1686 std::swap(Op0, Op1);
1687 if (Op0.getOpcode() == ISD::SHL) {
1688 if (isOneConstant(Op0.getOperand(0))) {
1689 // If we looked past a truncate, check that it's only truncating away
1690 // known zeros.
1691 unsigned BitWidth = Op0.getValueSizeInBits();
1692 unsigned AndBitWidth = And.getValueSizeInBits();
1693 if (BitWidth > AndBitWidth) {
1694 auto Known = DAG.computeKnownBits(Op0);
1695 if (Known.countMinLeadingZeros() < BitWidth - AndBitWidth)
1696 return SDValue();
1697 }
1698 LHS = Op1;
1699 RHS = Op0.getOperand(1);
1700 }
1701 } else if (auto *AndRHS = dyn_cast<ConstantSDNode>(Op1)) {
1702 uint64_t AndRHSVal = AndRHS->getZExtValue();
1703 SDValue AndLHS = Op0;
1704
1705 if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
1706 LHS = AndLHS.getOperand(0);
1707 RHS = AndLHS.getOperand(1);
1708 }
1709
1710 // Use BTST if the immediate can't be encoded in a TEST instruction.
1711 if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
1712 LHS = AndLHS;
1713 RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), DL, LHS.getValueType());
1714 }
1715 }
1716
1717 if (LHS.getNode())
1718 return getBitTestCondition(LHS, RHS, CC, DL, DAG);
1719
1720 return SDValue();
1721}
1722
1724 switch (SetCCOpcode) {
1725 default:
1726 llvm_unreachable("Invalid integer condition!");
1727 case ISD::SETEQ:
1728 return M68k::COND_EQ;
1729 case ISD::SETGT:
1730 return M68k::COND_GT;
1731 case ISD::SETGE:
1732 return M68k::COND_GE;
1733 case ISD::SETLT:
1734 return M68k::COND_LT;
1735 case ISD::SETLE:
1736 return M68k::COND_LE;
1737 case ISD::SETNE:
1738 return M68k::COND_NE;
1739 case ISD::SETULT:
1740 return M68k::COND_CS;
1741 case ISD::SETUGE:
1742 return M68k::COND_CC;
1743 case ISD::SETUGT:
1744 return M68k::COND_HI;
1745 case ISD::SETULE:
1746 return M68k::COND_LS;
1747 }
1748}
1749
1750/// Do a one-to-one translation of a ISD::CondCode to the M68k-specific
1751/// condition code, returning the condition code and the LHS/RHS of the
1752/// comparison to make.
1753static unsigned TranslateM68kCC(ISD::CondCode SetCCOpcode, const SDLoc &DL,
1754 bool IsFP, SDValue &LHS, SDValue &RHS,
1755 SelectionDAG &DAG) {
1756 if (!IsFP) {
1757 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1758 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnes()) {
1759 // X > -1 -> X == 0, jump !sign.
1760 RHS = DAG.getConstant(0, DL, RHS.getValueType());
1761 return M68k::COND_PL;
1762 }
1763 if (SetCCOpcode == ISD::SETLT && RHSC->isZero()) {
1764 // X < 0 -> X == 0, jump on sign.
1765 return M68k::COND_MI;
1766 }
1767 if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
1768 // X < 1 -> X <= 0
1769 RHS = DAG.getConstant(0, DL, RHS.getValueType());
1770 return M68k::COND_LE;
1771 }
1772 }
1773
1774 return TranslateIntegerM68kCC(SetCCOpcode);
1775 }
1776
1777 // First determine if it is required or is profitable to flip the operands.
1778
1779 // If LHS is a foldable load, but RHS is not, flip the condition.
1780 if (ISD::isNON_EXTLoad(LHS.getNode()) && !ISD::isNON_EXTLoad(RHS.getNode())) {
1781 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
1782 std::swap(LHS, RHS);
1783 }
1784
1785 switch (SetCCOpcode) {
1786 default:
1787 break;
1788 case ISD::SETOLT:
1789 case ISD::SETOLE:
1790 case ISD::SETUGT:
1791 case ISD::SETUGE:
1792 std::swap(LHS, RHS);
1793 break;
1794 }
1795
1796 // On a floating point condition, the flags are set as follows:
1797 // ZF PF CF op
1798 // 0 | 0 | 0 | X > Y
1799 // 0 | 0 | 1 | X < Y
1800 // 1 | 0 | 0 | X == Y
1801 // 1 | 1 | 1 | unordered
1802 switch (SetCCOpcode) {
1803 default:
1804 llvm_unreachable("Condcode should be pre-legalized away");
1805 case ISD::SETUEQ:
1806 case ISD::SETEQ:
1807 return M68k::COND_EQ;
1808 case ISD::SETOLT: // flipped
1809 case ISD::SETOGT:
1810 case ISD::SETGT:
1811 return M68k::COND_HI;
1812 case ISD::SETOLE: // flipped
1813 case ISD::SETOGE:
1814 case ISD::SETGE:
1815 return M68k::COND_CC;
1816 case ISD::SETUGT: // flipped
1817 case ISD::SETULT:
1818 case ISD::SETLT:
1819 return M68k::COND_CS;
1820 case ISD::SETUGE: // flipped
1821 case ISD::SETULE:
1822 case ISD::SETLE:
1823 return M68k::COND_LS;
1824 case ISD::SETONE:
1825 case ISD::SETNE:
1826 return M68k::COND_NE;
1827 case ISD::SETOEQ:
1828 case ISD::SETUNE:
1829 return M68k::COND_INVALID;
1830 }
1831}
1832
1833// Convert (truncate (srl X, N) to i1) to (bt X, N)
1835 const SDLoc &DL, SelectionDAG &DAG) {
1836
1837 assert(Op.getOpcode() == ISD::TRUNCATE && Op.getValueType() == MVT::i1 &&
1838 "Expected TRUNCATE to i1 node");
1839
1840 if (Op.getOperand(0).getOpcode() != ISD::SRL)
1841 return SDValue();
1842
1843 SDValue ShiftRight = Op.getOperand(0);
1844 return getBitTestCondition(ShiftRight.getOperand(0), ShiftRight.getOperand(1),
1845 CC, DL, DAG);
1846}
1847
1848/// \brief return true if \c Op has a use that doesn't just read flags.
1850 for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
1851 ++UI) {
1852 SDNode *User = *UI;
1853 unsigned UOpNo = UI.getOperandNo();
1854 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
1855 // Look pass truncate.
1856 UOpNo = User->use_begin().getOperandNo();
1857 User = *User->use_begin();
1858 }
1859
1860 if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
1861 !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
1862 return true;
1863 }
1864 return false;
1865}
1866
1867SDValue M68kTargetLowering::EmitTest(SDValue Op, unsigned M68kCC,
1868 const SDLoc &DL, SelectionDAG &DAG) const {
1869
1870 // CF and OF aren't always set the way we want. Determine which
1871 // of these we need.
1872 bool NeedCF = false;
1873 bool NeedOF = false;
1874 switch (M68kCC) {
1875 default:
1876 break;
1877 case M68k::COND_HI:
1878 case M68k::COND_CC:
1879 case M68k::COND_CS:
1880 case M68k::COND_LS:
1881 NeedCF = true;
1882 break;
1883 case M68k::COND_GT:
1884 case M68k::COND_GE:
1885 case M68k::COND_LT:
1886 case M68k::COND_LE:
1887 case M68k::COND_VS:
1888 case M68k::COND_VC: {
1889 // Check if we really need to set the
1890 // Overflow flag. If NoSignedWrap is present
1891 // that is not actually needed.
1892 switch (Op->getOpcode()) {
1893 case ISD::ADD:
1894 case ISD::SUB:
1895 case ISD::MUL:
1896 case ISD::SHL: {
1897 if (Op.getNode()->getFlags().hasNoSignedWrap())
1898 break;
1899 [[fallthrough]];
1900 }
1901 default:
1902 NeedOF = true;
1903 break;
1904 }
1905 break;
1906 }
1907 }
1908 // See if we can use the CCR value from the operand instead of
1909 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
1910 // we prove that the arithmetic won't overflow, we can't use OF or CF.
1911 if (Op.getResNo() != 0 || NeedOF || NeedCF) {
1912 // Emit a CMP with 0, which is the TEST pattern.
1913 return DAG.getNode(M68kISD::CMP, DL, MVT::i8,
1914 DAG.getConstant(0, DL, Op.getValueType()), Op);
1915 }
1916 unsigned Opcode = 0;
1917 unsigned NumOperands = 0;
1918
1919 // Truncate operations may prevent the merge of the SETCC instruction
1920 // and the arithmetic instruction before it. Attempt to truncate the operands
1921 // of the arithmetic instruction and use a reduced bit-width instruction.
1922 bool NeedTruncation = false;
1923 SDValue ArithOp = Op;
1924 if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
1925 SDValue Arith = Op->getOperand(0);
1926 // Both the trunc and the arithmetic op need to have one user each.
1927 if (Arith->hasOneUse())
1928 switch (Arith.getOpcode()) {
1929 default:
1930 break;
1931 case ISD::ADD:
1932 case ISD::SUB:
1933 case ISD::AND:
1934 case ISD::OR:
1935 case ISD::XOR: {
1936 NeedTruncation = true;
1937 ArithOp = Arith;
1938 }
1939 }
1940 }
1941
1942 // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
1943 // which may be the result of a CAST. We use the variable 'Op', which is the
1944 // non-casted variable when we check for possible users.
1945 switch (ArithOp.getOpcode()) {
1946 case ISD::ADD:
1947 Opcode = M68kISD::ADD;
1948 NumOperands = 2;
1949 break;
1950 case ISD::SHL:
1951 case ISD::SRL:
1952 // If we have a constant logical shift that's only used in a comparison
1953 // against zero turn it into an equivalent AND. This allows turning it into
1954 // a TEST instruction later.
1955 if ((M68kCC == M68k::COND_EQ || M68kCC == M68k::COND_NE) &&
1956 Op->hasOneUse() && isa<ConstantSDNode>(Op->getOperand(1)) &&
1957 !hasNonFlagsUse(Op)) {
1958 EVT VT = Op.getValueType();
1959 unsigned BitWidth = VT.getSizeInBits();
1960 unsigned ShAmt = Op->getConstantOperandVal(1);
1961 if (ShAmt >= BitWidth) // Avoid undefined shifts.
1962 break;
1963 APInt Mask = ArithOp.getOpcode() == ISD::SRL
1965 : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
1966 if (!Mask.isSignedIntN(32)) // Avoid large immediates.
1967 break;
1968 Op = DAG.getNode(ISD::AND, DL, VT, Op->getOperand(0),
1969 DAG.getConstant(Mask, DL, VT));
1970 }
1971 break;
1972
1973 case ISD::AND:
1974 // If the primary 'and' result isn't used, don't bother using
1975 // M68kISD::AND, because a TEST instruction will be better.
1976 if (!hasNonFlagsUse(Op)) {
1977 SDValue Op0 = ArithOp->getOperand(0);
1978 SDValue Op1 = ArithOp->getOperand(1);
1979 EVT VT = ArithOp.getValueType();
1980 bool IsAndn = isBitwiseNot(Op0) || isBitwiseNot(Op1);
1981 bool IsLegalAndnType = VT == MVT::i32 || VT == MVT::i64;
1982
1983 // But if we can combine this into an ANDN operation, then create an AND
1984 // now and allow it to be pattern matched into an ANDN.
1985 if (/*!Subtarget.hasBMI() ||*/ !IsAndn || !IsLegalAndnType)
1986 break;
1987 }
1988 [[fallthrough]];
1989 case ISD::SUB:
1990 case ISD::OR:
1991 case ISD::XOR:
1992 // Due to the ISEL shortcoming noted above, be conservative if this op is
1993 // likely to be selected as part of a load-modify-store instruction.
1994 for (const auto *U : Op.getNode()->uses())
1995 if (U->getOpcode() == ISD::STORE)
1996 goto default_case;
1997
1998 // Otherwise use a regular CCR-setting instruction.
1999 switch (ArithOp.getOpcode()) {
2000 default:
2001 llvm_unreachable("unexpected operator!");
2002 case ISD::SUB:
2003 Opcode = M68kISD::SUB;
2004 break;
2005 case ISD::XOR:
2006 Opcode = M68kISD::XOR;
2007 break;
2008 case ISD::AND:
2009 Opcode = M68kISD::AND;
2010 break;
2011 case ISD::OR:
2012 Opcode = M68kISD::OR;
2013 break;
2014 }
2015
2016 NumOperands = 2;
2017 break;
2018 case M68kISD::ADD:
2019 case M68kISD::SUB:
2020 case M68kISD::OR:
2021 case M68kISD::XOR:
2022 case M68kISD::AND:
2023 return SDValue(Op.getNode(), 1);
2024 default:
2025 default_case:
2026 break;
2027 }
2028
2029 // If we found that truncation is beneficial, perform the truncation and
2030 // update 'Op'.
2031 if (NeedTruncation) {
2032 EVT VT = Op.getValueType();
2033 SDValue WideVal = Op->getOperand(0);
2034 EVT WideVT = WideVal.getValueType();
2035 unsigned ConvertedOp = 0;
2036 // Use a target machine opcode to prevent further DAGCombine
2037 // optimizations that may separate the arithmetic operations
2038 // from the setcc node.
2039 switch (WideVal.getOpcode()) {
2040 default:
2041 break;
2042 case ISD::ADD:
2043 ConvertedOp = M68kISD::ADD;
2044 break;
2045 case ISD::SUB:
2046 ConvertedOp = M68kISD::SUB;
2047 break;
2048 case ISD::AND:
2049 ConvertedOp = M68kISD::AND;
2050 break;
2051 case ISD::OR:
2052 ConvertedOp = M68kISD::OR;
2053 break;
2054 case ISD::XOR:
2055 ConvertedOp = M68kISD::XOR;
2056 break;
2057 }
2058
2059 if (ConvertedOp) {
2060 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2061 if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
2062 SDValue V0 = DAG.getNode(ISD::TRUNCATE, DL, VT, WideVal.getOperand(0));
2063 SDValue V1 = DAG.getNode(ISD::TRUNCATE, DL, VT, WideVal.getOperand(1));
2064 Op = DAG.getNode(ConvertedOp, DL, VT, V0, V1);
2065 }
2066 }
2067 }
2068
2069 if (Opcode == 0) {
2070 // Emit a CMP with 0, which is the TEST pattern.
2071 return DAG.getNode(M68kISD::CMP, DL, MVT::i8,
2072 DAG.getConstant(0, DL, Op.getValueType()), Op);
2073 }
2074 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i8);
2075 SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
2076
2077 SDValue New = DAG.getNode(Opcode, DL, VTs, Ops);
2078 DAG.ReplaceAllUsesWith(Op, New);
2079 return SDValue(New.getNode(), 1);
2080}
2081
2082/// \brief Return true if the condition is an unsigned comparison operation.
2083static bool isM68kCCUnsigned(unsigned M68kCC) {
2084 switch (M68kCC) {
2085 default:
2086 llvm_unreachable("Invalid integer condition!");
2087 case M68k::COND_EQ:
2088 case M68k::COND_NE:
2089 case M68k::COND_CS:
2090 case M68k::COND_HI:
2091 case M68k::COND_LS:
2092 case M68k::COND_CC:
2093 return true;
2094 case M68k::COND_GT:
2095 case M68k::COND_GE:
2096 case M68k::COND_LT:
2097 case M68k::COND_LE:
2098 return false;
2099 }
2100}
2101
2102SDValue M68kTargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned M68kCC,
2103 const SDLoc &DL, SelectionDAG &DAG) const {
2104 if (isNullConstant(Op1))
2105 return EmitTest(Op0, M68kCC, DL, DAG);
2106
2107 assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) &&
2108 "Unexpected comparison operation for MVT::i1 operands");
2109
2110 if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
2111 Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
2112 // Only promote the compare up to I32 if it is a 16 bit operation
2113 // with an immediate. 16 bit immediates are to be avoided.
2114 if ((Op0.getValueType() == MVT::i16 &&
2115 (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1))) &&
2117 unsigned ExtendOp =
2119 Op0 = DAG.getNode(ExtendOp, DL, MVT::i32, Op0);
2120 Op1 = DAG.getNode(ExtendOp, DL, MVT::i32, Op1);
2121 }
2122 // Use SUB instead of CMP to enable CSE between SUB and CMP.
2123 SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i8);
2124 SDValue Sub = DAG.getNode(M68kISD::SUB, DL, VTs, Op0, Op1);
2125 return SDValue(Sub.getNode(), 1);
2126 }
2127 return DAG.getNode(M68kISD::CMP, DL, MVT::i8, Op0, Op1);
2128}
2129
2130/// Result of 'and' or 'trunc to i1' is compared against zero.
2131/// Change to a BTST node if possible.
2132SDValue M68kTargetLowering::LowerToBTST(SDValue Op, ISD::CondCode CC,
2133 const SDLoc &DL,
2134 SelectionDAG &DAG) const {
2135 if (Op.getOpcode() == ISD::AND)
2136 return LowerAndToBTST(Op, CC, DL, DAG);
2137 if (Op.getOpcode() == ISD::TRUNCATE && Op.getValueType() == MVT::i1)
2138 return LowerTruncateToBTST(Op, CC, DL, DAG);
2139 return SDValue();
2140}
2141
2142SDValue M68kTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2143 MVT VT = Op.getSimpleValueType();
2144 assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
2145
2146 SDValue Op0 = Op.getOperand(0);
2147 SDValue Op1 = Op.getOperand(1);
2148 SDLoc DL(Op);
2149 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2150
2151 // Optimize to BTST if possible.
2152 // Lower (X & (1 << N)) == 0 to BTST(X, N).
2153 // Lower ((X >>u N) & 1) != 0 to BTST(X, N).
2154 // Lower ((X >>s N) & 1) != 0 to BTST(X, N).
2155 // Lower (trunc (X >> N) to i1) to BTST(X, N).
2156 if (Op0.hasOneUse() && isNullConstant(Op1) &&
2157 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2158 if (SDValue NewSetCC = LowerToBTST(Op0, CC, DL, DAG)) {
2159 if (VT == MVT::i1)
2160 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, NewSetCC);
2161 return NewSetCC;
2162 }
2163 }
2164
2165 // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
2166 // these.
2167 if ((isOneConstant(Op1) || isNullConstant(Op1)) &&
2168 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2169
2170 // If the input is a setcc, then reuse the input setcc or use a new one with
2171 // the inverted condition.
2172 if (Op0.getOpcode() == M68kISD::SETCC) {
2174 bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1);
2175 if (!Invert)
2176 return Op0;
2177
2178 CCode = M68k::GetOppositeBranchCondition(CCode);
2179 SDValue SetCC =
2180 DAG.getNode(M68kISD::SETCC, DL, MVT::i8,
2181 DAG.getConstant(CCode, DL, MVT::i8), Op0.getOperand(1));
2182 if (VT == MVT::i1)
2183 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
2184 return SetCC;
2185 }
2186 }
2187 if (Op0.getValueType() == MVT::i1 && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2188 if (isOneConstant(Op1)) {
2190 return DAG.getSetCC(DL, VT, Op0, DAG.getConstant(0, DL, MVT::i1), NewCC);
2191 }
2192 if (!isNullConstant(Op1)) {
2193 SDValue Xor = DAG.getNode(ISD::XOR, DL, MVT::i1, Op0, Op1);
2194 return DAG.getSetCC(DL, VT, Xor, DAG.getConstant(0, DL, MVT::i1), CC);
2195 }
2196 }
2197
2198 bool IsFP = Op1.getSimpleValueType().isFloatingPoint();
2199 unsigned M68kCC = TranslateM68kCC(CC, DL, IsFP, Op0, Op1, DAG);
2200 if (M68kCC == M68k::COND_INVALID)
2201 return SDValue();
2202
2203 SDValue CCR = EmitCmp(Op0, Op1, M68kCC, DL, DAG);
2204 return DAG.getNode(M68kISD::SETCC, DL, MVT::i8,
2205 DAG.getConstant(M68kCC, DL, MVT::i8), CCR);
2206}
2207
2208SDValue M68kTargetLowering::LowerSETCCCARRY(SDValue Op,
2209 SelectionDAG &DAG) const {
2210 SDValue LHS = Op.getOperand(0);
2211 SDValue RHS = Op.getOperand(1);
2212 SDValue Carry = Op.getOperand(2);
2213 SDValue Cond = Op.getOperand(3);
2214 SDLoc DL(Op);
2215
2216 assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
2217 M68k::CondCode CC = TranslateIntegerM68kCC(cast<CondCodeSDNode>(Cond)->get());
2218
2219 EVT CarryVT = Carry.getValueType();
2220 APInt NegOne = APInt::getAllOnes(CarryVT.getScalarSizeInBits());
2221 Carry = DAG.getNode(M68kISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32), Carry,
2222 DAG.getConstant(NegOne, DL, CarryVT));
2223
2224 SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
2225 SDValue Cmp =
2226 DAG.getNode(M68kISD::SUBX, DL, VTs, LHS, RHS, Carry.getValue(1));
2227
2228 return DAG.getNode(M68kISD::SETCC, DL, MVT::i8,
2229 DAG.getConstant(CC, DL, MVT::i8), Cmp.getValue(1));
2230}
2231
2232/// Return true if opcode is a M68k logical comparison.
2234 unsigned Opc = Op.getNode()->getOpcode();
2235 if (Opc == M68kISD::CMP)
2236 return true;
2237 if (Op.getResNo() == 1 &&
2238 (Opc == M68kISD::ADD || Opc == M68kISD::SUB || Opc == M68kISD::ADDX ||
2239 Opc == M68kISD::SUBX || Opc == M68kISD::SMUL || Opc == M68kISD::UMUL ||
2240 Opc == M68kISD::OR || Opc == M68kISD::XOR || Opc == M68kISD::AND))
2241 return true;
2242
2243 if (Op.getResNo() == 2 && Opc == M68kISD::UMUL)
2244 return true;
2245
2246 return false;
2247}
2248
2250 if (V.getOpcode() != ISD::TRUNCATE)
2251 return false;
2252
2253 SDValue VOp0 = V.getOperand(0);
2254 unsigned InBits = VOp0.getValueSizeInBits();
2255 unsigned Bits = V.getValueSizeInBits();
2256 return DAG.MaskedValueIsZero(VOp0,
2257 APInt::getHighBitsSet(InBits, InBits - Bits));
2258}
2259
2260SDValue M68kTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2261 bool addTest = true;
2262 SDValue Cond = Op.getOperand(0);
2263 SDValue Op1 = Op.getOperand(1);
2264 SDValue Op2 = Op.getOperand(2);
2265 SDLoc DL(Op);
2266 SDValue CC;
2267
2268 if (Cond.getOpcode() == ISD::SETCC) {
2269 if (SDValue NewCond = LowerSETCC(Cond, DAG))
2270 Cond = NewCond;
2271 }
2272
2273 // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
2274 // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
2275 // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
2276 // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
2277 if (Cond.getOpcode() == M68kISD::SETCC &&
2278 Cond.getOperand(1).getOpcode() == M68kISD::CMP &&
2279 isNullConstant(Cond.getOperand(1).getOperand(0))) {
2280 SDValue Cmp = Cond.getOperand(1);
2281
2282 unsigned CondCode = Cond.getConstantOperandVal(0);
2283
2284 if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
2285 (CondCode == M68k::COND_EQ || CondCode == M68k::COND_NE)) {
2286 SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2;
2287
2288 SDValue CmpOp0 = Cmp.getOperand(1);
2289 // Apply further optimizations for special cases
2290 // (select (x != 0), -1, 0) -> neg & sbb
2291 // (select (x == 0), 0, -1) -> neg & sbb
2292 if (isNullConstant(Y) &&
2293 (isAllOnesConstant(Op1) == (CondCode == M68k::COND_NE))) {
2294
2295 SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
2296
2297 SDValue Neg =
2298 DAG.getNode(M68kISD::SUB, DL, VTs,
2299 DAG.getConstant(0, DL, CmpOp0.getValueType()), CmpOp0);
2300
2301 SDValue Res = DAG.getNode(M68kISD::SETCC_CARRY, DL, Op.getValueType(),
2302 DAG.getConstant(M68k::COND_CS, DL, MVT::i8),
2303 SDValue(Neg.getNode(), 1));
2304 return Res;
2305 }
2306
2307 Cmp = DAG.getNode(M68kISD::CMP, DL, MVT::i8,
2308 DAG.getConstant(1, DL, CmpOp0.getValueType()), CmpOp0);
2309
2310 SDValue Res = // Res = 0 or -1.
2311 DAG.getNode(M68kISD::SETCC_CARRY, DL, Op.getValueType(),
2312 DAG.getConstant(M68k::COND_CS, DL, MVT::i8), Cmp);
2313
2314 if (isAllOnesConstant(Op1) != (CondCode == M68k::COND_EQ))
2315 Res = DAG.getNOT(DL, Res, Res.getValueType());
2316
2317 if (!isNullConstant(Op2))
2318 Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
2319 return Res;
2320 }
2321 }
2322
2323 // Look past (and (setcc_carry (cmp ...)), 1).
2324 if (Cond.getOpcode() == ISD::AND &&
2325 Cond.getOperand(0).getOpcode() == M68kISD::SETCC_CARRY &&
2326 isOneConstant(Cond.getOperand(1)))
2327 Cond = Cond.getOperand(0);
2328
2329 // If condition flag is set by a M68kISD::CMP, then use it as the condition
2330 // setting operand in place of the M68kISD::SETCC.
2331 unsigned CondOpcode = Cond.getOpcode();
2332 if (CondOpcode == M68kISD::SETCC || CondOpcode == M68kISD::SETCC_CARRY) {
2333 CC = Cond.getOperand(0);
2334
2335 SDValue Cmp = Cond.getOperand(1);
2336 unsigned Opc = Cmp.getOpcode();
2337
2338 bool IllegalFPCMov = false;
2339
2340 if ((isM68kLogicalCmp(Cmp) && !IllegalFPCMov) || Opc == M68kISD::BTST) {
2341 Cond = Cmp;
2342 addTest = false;
2343 }
2344 } else if (isOverflowArithmetic(CondOpcode)) {
2345 // Result is unused here.
2347 unsigned CCode;
2348 lowerOverflowArithmetic(Cond, DAG, Result, Cond, CCode);
2349 CC = DAG.getConstant(CCode, DL, MVT::i8);
2350 addTest = false;
2351 }
2352
2353 if (addTest) {
2354 // Look past the truncate if the high bits are known zero.
2356 Cond = Cond.getOperand(0);
2357
2358 // We know the result of AND is compared against zero. Try to match
2359 // it to BT.
2360 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
2361 if (SDValue NewSetCC = LowerToBTST(Cond, ISD::SETNE, DL, DAG)) {
2362 CC = NewSetCC.getOperand(0);
2363 Cond = NewSetCC.getOperand(1);
2364 addTest = false;
2365 }
2366 }
2367 }
2368
2369 if (addTest) {
2370 CC = DAG.getConstant(M68k::COND_NE, DL, MVT::i8);
2371 Cond = EmitTest(Cond, M68k::COND_NE, DL, DAG);
2372 }
2373
2374 // a < b ? -1 : 0 -> RES = ~setcc_carry
2375 // a < b ? 0 : -1 -> RES = setcc_carry
2376 // a >= b ? -1 : 0 -> RES = setcc_carry
2377 // a >= b ? 0 : -1 -> RES = ~setcc_carry
2378 if (Cond.getOpcode() == M68kISD::SUB) {
2379 unsigned CondCode = CC->getAsZExtVal();
2380
2381 if ((CondCode == M68k::COND_CC || CondCode == M68k::COND_CS) &&
2382 (isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
2383 (isNullConstant(Op1) || isNullConstant(Op2))) {
2384 SDValue Res =
2385 DAG.getNode(M68kISD::SETCC_CARRY, DL, Op.getValueType(),
2386 DAG.getConstant(M68k::COND_CS, DL, MVT::i8), Cond);
2387 if (isAllOnesConstant(Op1) != (CondCode == M68k::COND_CS))
2388 return DAG.getNOT(DL, Res, Res.getValueType());
2389 return Res;
2390 }
2391 }
2392
2393 // M68k doesn't have an i8 cmov. If both operands are the result of a
2394 // truncate widen the cmov and push the truncate through. This avoids
2395 // introducing a new branch during isel and doesn't add any extensions.
2396 if (Op.getValueType() == MVT::i8 && Op1.getOpcode() == ISD::TRUNCATE &&
2397 Op2.getOpcode() == ISD::TRUNCATE) {
2398 SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
2399 if (T1.getValueType() == T2.getValueType() &&
2400 // Block CopyFromReg so partial register stalls are avoided.
2401 T1.getOpcode() != ISD::CopyFromReg &&
2402 T2.getOpcode() != ISD::CopyFromReg) {
2403 SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
2404 SDValue Cmov = DAG.getNode(M68kISD::CMOV, DL, VTs, T2, T1, CC, Cond);
2405 return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
2406 }
2407 }
2408
2409 // Simple optimization when Cond is a constant to avoid generating
2410 // M68kISD::CMOV if possible.
2411 // TODO: Generalize this to use SelectionDAG::computeKnownBits.
2412 if (auto *Const = dyn_cast<ConstantSDNode>(Cond.getNode())) {
2413 const APInt &C = Const->getAPIntValue();
2414 if (C.countr_zero() >= 5)
2415 return Op2;
2416 else if (C.countr_one() >= 5)
2417 return Op1;
2418 }
2419
2420 // M68kISD::CMOV means set the result (which is operand 1) to the RHS if
2421 // condition is true.
2422 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
2423 SDValue Ops[] = {Op2, Op1, CC, Cond};
2424 return DAG.getNode(M68kISD::CMOV, DL, VTs, Ops);
2425}
2426
2427/// Return true if node is an ISD::AND or ISD::OR of two M68k::SETcc nodes
2428/// each of which has no other use apart from the AND / OR.
2429static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
2430 Opc = Op.getOpcode();
2431 if (Opc != ISD::OR && Opc != ISD::AND)
2432 return false;
2433 return (M68k::IsSETCC(Op.getOperand(0).getOpcode()) &&
2434 Op.getOperand(0).hasOneUse() &&
2435 M68k::IsSETCC(Op.getOperand(1).getOpcode()) &&
2436 Op.getOperand(1).hasOneUse());
2437}
2438
2439/// Return true if node is an ISD::XOR of a M68kISD::SETCC and 1 and that the
2440/// SETCC node has a single use.
2442 if (Op.getOpcode() != ISD::XOR)
2443 return false;
2444 if (isOneConstant(Op.getOperand(1)))
2445 return Op.getOperand(0).getOpcode() == M68kISD::SETCC &&
2446 Op.getOperand(0).hasOneUse();
2447 return false;
2448}
2449
2450SDValue M68kTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2451 bool AddTest = true;
2452 SDValue Chain = Op.getOperand(0);
2453 SDValue Cond = Op.getOperand(1);
2454 SDValue Dest = Op.getOperand(2);
2455 SDLoc DL(Op);
2456 SDValue CC;
2457 bool Inverted = false;
2458
2459 if (Cond.getOpcode() == ISD::SETCC) {
2460 // Check for setcc([su]{add,sub}o == 0).
2461 if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
2462 isNullConstant(Cond.getOperand(1)) &&
2463 Cond.getOperand(0).getResNo() == 1 &&
2464 (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
2465 Cond.getOperand(0).getOpcode() == ISD::UADDO ||
2466 Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
2467 Cond.getOperand(0).getOpcode() == ISD::USUBO)) {
2468 Inverted = true;
2469 Cond = Cond.getOperand(0);
2470 } else {
2471 if (SDValue NewCond = LowerSETCC(Cond, DAG))
2472 Cond = NewCond;
2473 }
2474 }
2475
2476 // Look pass (and (setcc_carry (cmp ...)), 1).
2477 if (Cond.getOpcode() == ISD::AND &&
2478 Cond.getOperand(0).getOpcode() == M68kISD::SETCC_CARRY &&
2479 isOneConstant(Cond.getOperand(1)))
2480 Cond = Cond.getOperand(0);
2481
2482 // If condition flag is set by a M68kISD::CMP, then use it as the condition
2483 // setting operand in place of the M68kISD::SETCC.
2484 unsigned CondOpcode = Cond.getOpcode();
2485 if (CondOpcode == M68kISD::SETCC || CondOpcode == M68kISD::SETCC_CARRY) {
2486 CC = Cond.getOperand(0);
2487
2488 SDValue Cmp = Cond.getOperand(1);
2489 unsigned Opc = Cmp.getOpcode();
2490
2491 if (isM68kLogicalCmp(Cmp) || Opc == M68kISD::BTST) {
2492 Cond = Cmp;
2493 AddTest = false;
2494 } else {
2495 switch (CC->getAsZExtVal()) {
2496 default:
2497 break;
2498 case M68k::COND_VS:
2499 case M68k::COND_CS:
2500 // These can only come from an arithmetic instruction with overflow,
2501 // e.g. SADDO, UADDO.
2502 Cond = Cond.getNode()->getOperand(1);
2503 AddTest = false;
2504 break;
2505 }
2506 }
2507 }
2508 CondOpcode = Cond.getOpcode();
2509 if (isOverflowArithmetic(CondOpcode)) {
2511 unsigned CCode;
2512 lowerOverflowArithmetic(Cond, DAG, Result, Cond, CCode);
2513
2514 if (Inverted)
2516 CC = DAG.getConstant(CCode, DL, MVT::i8);
2517
2518 AddTest = false;
2519 } else {
2520 unsigned CondOpc;
2521 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
2522 SDValue Cmp = Cond.getOperand(0).getOperand(1);
2523 if (CondOpc == ISD::OR) {
2524 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
2525 // two branches instead of an explicit OR instruction with a
2526 // separate test.
2527 if (Cmp == Cond.getOperand(1).getOperand(1) && isM68kLogicalCmp(Cmp)) {
2528 CC = Cond.getOperand(0).getOperand(0);
2529 Chain = DAG.getNode(M68kISD::BRCOND, DL, Op.getValueType(), Chain,
2530 Dest, CC, Cmp);
2531 CC = Cond.getOperand(1).getOperand(0);
2532 Cond = Cmp;
2533 AddTest = false;
2534 }
2535 } else { // ISD::AND
2536 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
2537 // two branches instead of an explicit AND instruction with a
2538 // separate test. However, we only do this if this block doesn't
2539 // have a fall-through edge, because this requires an explicit
2540 // jmp when the condition is false.
2541 if (Cmp == Cond.getOperand(1).getOperand(1) && isM68kLogicalCmp(Cmp) &&
2542 Op.getNode()->hasOneUse()) {
2543 M68k::CondCode CCode =
2544 (M68k::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
2545 CCode = M68k::GetOppositeBranchCondition(CCode);
2546 CC = DAG.getConstant(CCode, DL, MVT::i8);
2547 SDNode *User = *Op.getNode()->use_begin();
2548 // Look for an unconditional branch following this conditional branch.
2549 // We need this because we need to reverse the successors in order
2550 // to implement FCMP_OEQ.
2551 if (User->getOpcode() == ISD::BR) {
2552 SDValue FalseBB = User->getOperand(1);
2553 SDNode *NewBR =
2554 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
2555 assert(NewBR == User);
2556 (void)NewBR;
2557 Dest = FalseBB;
2558
2559 Chain = DAG.getNode(M68kISD::BRCOND, DL, Op.getValueType(), Chain,
2560 Dest, CC, Cmp);
2561 M68k::CondCode CCode =
2562 (M68k::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
2563 CCode = M68k::GetOppositeBranchCondition(CCode);
2564 CC = DAG.getConstant(CCode, DL, MVT::i8);
2565 Cond = Cmp;
2566 AddTest = false;
2567 }
2568 }
2569 }
2570 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
2571 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
2572 // It should be transformed during dag combiner except when the condition
2573 // is set by a arithmetics with overflow node.
2574 M68k::CondCode CCode =
2575 (M68k::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
2576 CCode = M68k::GetOppositeBranchCondition(CCode);
2577 CC = DAG.getConstant(CCode, DL, MVT::i8);
2578 Cond = Cond.getOperand(0).getOperand(1);
2579 AddTest = false;
2580 }
2581 }
2582
2583 if (AddTest) {
2584 // Look pass the truncate if the high bits are known zero.
2586 Cond = Cond.getOperand(0);
2587
2588 // We know the result is compared against zero. Try to match it to BT.
2589 if (Cond.hasOneUse()) {
2590 if (SDValue NewSetCC = LowerToBTST(Cond, ISD::SETNE, DL, DAG)) {
2591 CC = NewSetCC.getOperand(0);
2592 Cond = NewSetCC.getOperand(1);
2593 AddTest = false;
2594 }
2595 }
2596 }
2597
2598 if (AddTest) {
2599 M68k::CondCode MxCond = Inverted ? M68k::COND_EQ : M68k::COND_NE;
2600 CC = DAG.getConstant(MxCond, DL, MVT::i8);
2601 Cond = EmitTest(Cond, MxCond, DL, DAG);
2602 }
2603 return DAG.getNode(M68kISD::BRCOND, DL, Op.getValueType(), Chain, Dest, CC,
2604 Cond);
2605}
2606
2607SDValue M68kTargetLowering::LowerADDC_ADDE_SUBC_SUBE(SDValue Op,
2608 SelectionDAG &DAG) const {
2609 MVT VT = Op.getNode()->getSimpleValueType(0);
2610
2611 // Let legalize expand this if it isn't a legal type yet.
2612 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2613 return SDValue();
2614
2615 SDVTList VTs = DAG.getVTList(VT, MVT::i8);
2616
2617 unsigned Opc;
2618 bool ExtraOp = false;
2619 switch (Op.getOpcode()) {
2620 default:
2621 llvm_unreachable("Invalid code");
2622 case ISD::ADDC:
2623 Opc = M68kISD::ADD;
2624 break;
2625 case ISD::ADDE:
2626 Opc = M68kISD::ADDX;
2627 ExtraOp = true;
2628 break;
2629 case ISD::SUBC:
2630 Opc = M68kISD::SUB;
2631 break;
2632 case ISD::SUBE:
2633 Opc = M68kISD::SUBX;
2634 ExtraOp = true;
2635 break;
2636 }
2637
2638 if (!ExtraOp)
2639 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
2640 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
2641 Op.getOperand(2));
2642}
2643
2644// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2645// their target countpart wrapped in the M68kISD::Wrapper node. Suppose N is
2646// one of the above mentioned nodes. It has to be wrapped because otherwise
2647// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2648// be used to form addressing mode. These wrapped nodes will be selected
2649// into MOV32ri.
2650SDValue M68kTargetLowering::LowerConstantPool(SDValue Op,
2651 SelectionDAG &DAG) const {
2652 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2653
2654 // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the
2655 // global base reg.
2656 unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
2657
2658 unsigned WrapperKind = M68kISD::Wrapper;
2659 if (M68kII::isPCRelGlobalReference(OpFlag)) {
2660 WrapperKind = M68kISD::WrapperPC;
2661 }
2662
2663 MVT PtrVT = getPointerTy(DAG.getDataLayout());
2665 CP->getConstVal(), PtrVT, CP->getAlign(), CP->getOffset(), OpFlag);
2666
2667 SDLoc DL(CP);
2668 Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
2669
2670 // With PIC, the address is actually $g + Offset.
2672 Result = DAG.getNode(ISD::ADD, DL, PtrVT,
2673 DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(), PtrVT),
2674 Result);
2675 }
2676
2677 return Result;
2678}
2679
2680SDValue M68kTargetLowering::LowerExternalSymbol(SDValue Op,
2681 SelectionDAG &DAG) const {
2682 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
2683
2684 // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the
2685 // global base reg.
2687 unsigned char OpFlag = Subtarget.classifyExternalReference(*Mod);
2688
2689 unsigned WrapperKind = M68kISD::Wrapper;
2690 if (M68kII::isPCRelGlobalReference(OpFlag)) {
2691 WrapperKind = M68kISD::WrapperPC;
2692 }
2693
2694 auto PtrVT = getPointerTy(DAG.getDataLayout());
2695 SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag);
2696
2697 SDLoc DL(Op);
2698 Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
2699
2700 // With PIC, the address is actually $g + Offset.
2702 Result = DAG.getNode(ISD::ADD, DL, PtrVT,
2703 DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(), PtrVT),
2704 Result);
2705 }
2706
2707 // For symbols that require a load from a stub to get the address, emit the
2708 // load.
2709 if (M68kII::isGlobalStubReference(OpFlag)) {
2710 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2712 }
2713
2714 return Result;
2715}
2716
2717SDValue M68kTargetLowering::LowerBlockAddress(SDValue Op,
2718 SelectionDAG &DAG) const {
2719 unsigned char OpFlags = Subtarget.classifyBlockAddressReference();
2720 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2721 int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
2722 SDLoc DL(Op);
2723 auto PtrVT = getPointerTy(DAG.getDataLayout());
2724
2725 // Create the TargetBlockAddressAddress node.
2726 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags);
2727
2728 if (M68kII::isPCRelBlockReference(OpFlags)) {
2729 Result = DAG.getNode(M68kISD::WrapperPC, DL, PtrVT, Result);
2730 } else {
2731 Result = DAG.getNode(M68kISD::Wrapper, DL, PtrVT, Result);
2732 }
2733
2734 // With PIC, the address is actually $g + Offset.
2735 if (M68kII::isGlobalRelativeToPICBase(OpFlags)) {
2736 Result =
2737 DAG.getNode(ISD::ADD, DL, PtrVT,
2738 DAG.getNode(M68kISD::GLOBAL_BASE_REG, DL, PtrVT), Result);
2739 }
2740
2741 return Result;
2742}
2743
2744SDValue M68kTargetLowering::LowerGlobalAddress(const GlobalValue *GV,
2745 const SDLoc &DL, int64_t Offset,
2746 SelectionDAG &DAG) const {
2747 unsigned char OpFlags = Subtarget.classifyGlobalReference(GV);
2748 auto PtrVT = getPointerTy(DAG.getDataLayout());
2749
2750 // Create the TargetGlobalAddress node, folding in the constant
2751 // offset if it is legal.
2753 if (M68kII::isDirectGlobalReference(OpFlags)) {
2754 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset);
2755 Offset = 0;
2756 } else {
2757 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2758 }
2759
2760 if (M68kII::isPCRelGlobalReference(OpFlags))
2761 Result = DAG.getNode(M68kISD::WrapperPC, DL, PtrVT, Result);
2762 else
2763 Result = DAG.getNode(M68kISD::Wrapper, DL, PtrVT, Result);
2764
2765 // With PIC, the address is actually $g + Offset.
2766 if (M68kII::isGlobalRelativeToPICBase(OpFlags)) {
2767 Result =
2768 DAG.getNode(ISD::ADD, DL, PtrVT,
2769 DAG.getNode(M68kISD::GLOBAL_BASE_REG, DL, PtrVT), Result);
2770 }
2771
2772 // For globals that require a load from a stub to get the address, emit the
2773 // load.
2774 if (M68kII::isGlobalStubReference(OpFlags)) {
2775 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2777 }
2778
2779 // If there was a non-zero offset that we didn't fold, create an explicit
2780 // addition for it.
2781 if (Offset != 0) {
2782 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2783 DAG.getConstant(Offset, DL, PtrVT));
2784 }
2785
2786 return Result;
2787}
2788
2789SDValue M68kTargetLowering::LowerGlobalAddress(SDValue Op,
2790 SelectionDAG &DAG) const {
2791 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2792 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
2793 return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
2794}
2795
2796//===----------------------------------------------------------------------===//
2797// Custom Lower Jump Table
2798//===----------------------------------------------------------------------===//
2799
2800SDValue M68kTargetLowering::LowerJumpTable(SDValue Op,
2801 SelectionDAG &DAG) const {
2802 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2803
2804 // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the
2805 // global base reg.
2806 unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
2807
2808 unsigned WrapperKind = M68kISD::Wrapper;
2809 if (M68kII::isPCRelGlobalReference(OpFlag)) {
2810 WrapperKind = M68kISD::WrapperPC;
2811 }
2812
2813 auto PtrVT = getPointerTy(DAG.getDataLayout());
2814 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
2815 SDLoc DL(JT);
2816 Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
2817
2818 // With PIC, the address is actually $g + Offset.
2820 Result = DAG.getNode(ISD::ADD, DL, PtrVT,
2821 DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(), PtrVT),
2822 Result);
2823 }
2824
2825 return Result;
2826}
2827
2829 return Subtarget.getJumpTableEncoding();
2830}
2831
2833 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
2834 unsigned uid, MCContext &Ctx) const {
2836 Ctx);
2837}
2838
2840 SelectionDAG &DAG) const {
2844
2845 // MachineJumpTableInfo::EK_LabelDifference32 entry
2846 return Table;
2847}
2848
2849// NOTE This only used for MachineJumpTableInfo::EK_LabelDifference32 entries
2851 const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const {
2852 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
2853}
2854
2857 if (Constraint.size() > 0) {
2858 switch (Constraint[0]) {
2859 case 'a':
2860 case 'd':
2861 return C_RegisterClass;
2862 case 'I':
2863 case 'J':
2864 case 'K':
2865 case 'L':
2866 case 'M':
2867 case 'N':
2868 case 'O':
2869 case 'P':
2870 return C_Immediate;
2871 case 'C':
2872 if (Constraint.size() == 2)
2873 switch (Constraint[1]) {
2874 case '0':
2875 case 'i':
2876 case 'j':
2877 return C_Immediate;
2878 default:
2879 break;
2880 }
2881 break;
2882 case 'Q':
2883 case 'U':
2884 return C_Memory;
2885 default:
2886 break;
2887 }
2888 }
2889
2890 return TargetLowering::getConstraintType(Constraint);
2891}
2892
2894 StringRef Constraint,
2895 std::vector<SDValue> &Ops,
2896 SelectionDAG &DAG) const {
2897 SDValue Result;
2898
2899 if (Constraint.size() == 1) {
2900 // Constant constraints
2901 switch (Constraint[0]) {
2902 case 'I':
2903 case 'J':
2904 case 'K':
2905 case 'L':
2906 case 'M':
2907 case 'N':
2908 case 'O':
2909 case 'P': {
2910 auto *C = dyn_cast<ConstantSDNode>(Op);
2911 if (!C)
2912 return;
2913
2914 int64_t Val = C->getSExtValue();
2915 switch (Constraint[0]) {
2916 case 'I': // constant integer in the range [1,8]
2917 if (Val > 0 && Val <= 8)
2918 break;
2919 return;
2920 case 'J': // constant signed 16-bit integer
2921 if (isInt<16>(Val))
2922 break;
2923 return;
2924 case 'K': // constant that is NOT in the range of [-0x80, 0x80)
2925 if (Val < -0x80 || Val >= 0x80)
2926 break;
2927 return;
2928 case 'L': // constant integer in the range [-8,-1]
2929 if (Val < 0 && Val >= -8)
2930 break;
2931 return;
2932 case 'M': // constant that is NOT in the range of [-0x100, 0x100]
2933 if (Val < -0x100 || Val >= 0x100)
2934 break;
2935 return;
2936 case 'N': // constant integer in the range [24,31]
2937 if (Val >= 24 && Val <= 31)
2938 break;
2939 return;
2940 case 'O': // constant integer 16
2941 if (Val == 16)
2942 break;
2943 return;
2944 case 'P': // constant integer in the range [8,15]
2945 if (Val >= 8 && Val <= 15)
2946 break;
2947 return;
2948 default:
2949 llvm_unreachable("Unhandled constant constraint");
2950 }
2951
2952 Result = DAG.getTargetConstant(Val, SDLoc(Op), Op.getValueType());
2953 break;
2954 }
2955 default:
2956 break;
2957 }
2958 }
2959
2960 if (Constraint.size() == 2) {
2961 switch (Constraint[0]) {
2962 case 'C':
2963 // Constant constraints start with 'C'
2964 switch (Constraint[1]) {
2965 case '0':
2966 case 'i':
2967 case 'j': {
2968 auto *C = dyn_cast<ConstantSDNode>(Op);
2969 if (!C)
2970 break;
2971
2972 int64_t Val = C->getSExtValue();
2973 switch (Constraint[1]) {
2974 case '0': // constant integer 0
2975 if (!Val)
2976 break;
2977 return;
2978 case 'i': // constant integer
2979 break;
2980 case 'j': // integer constant that doesn't fit in 16 bits
2981 if (!isInt<16>(C->getSExtValue()))
2982 break;
2983 return;
2984 default:
2985 llvm_unreachable("Unhandled constant constraint");
2986 }
2987
2988 Result = DAG.getTargetConstant(Val, SDLoc(Op), Op.getValueType());
2989 break;
2990 }
2991 default:
2992 break;
2993 }
2994 break;
2995 default:
2996 break;
2997 }
2998 }
2999
3000 if (Result.getNode()) {
3001 Ops.push_back(Result);
3002 return;
3003 }
3004
3005 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3006}
3007
3008std::pair<unsigned, const TargetRegisterClass *>
3010 StringRef Constraint,
3011 MVT VT) const {
3012 if (Constraint.size() == 1) {
3013 switch (Constraint[0]) {
3014 case 'r':
3015 case 'd':
3016 switch (VT.SimpleTy) {
3017 case MVT::i8:
3018 return std::make_pair(0U, &M68k::DR8RegClass);
3019 case MVT::i16:
3020 return std::make_pair(0U, &M68k::DR16RegClass);
3021 case MVT::i32:
3022 return std::make_pair(0U, &M68k::DR32RegClass);
3023 default:
3024 break;
3025 }
3026 break;
3027 case 'a':
3028 switch (VT.SimpleTy) {
3029 case MVT::i16:
3030 return std::make_pair(0U, &M68k::AR16RegClass);
3031 case MVT::i32:
3032 return std::make_pair(0U, &M68k::AR32RegClass);
3033 default:
3034 break;
3035 }
3036 break;
3037 default:
3038 break;
3039 }
3040 }
3041
3042 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3043}
3044
3045/// Determines whether the callee is required to pop its own arguments.
3046/// Callee pop is necessary to support tail calls.
3047bool M68k::isCalleePop(CallingConv::ID CC, bool IsVarArg, bool GuaranteeTCO) {
3048 return CC == CallingConv::M68k_RTD && !IsVarArg;
3049}
3050
3051// Return true if it is OK for this CMOV pseudo-opcode to be cascaded
3052// together with other CMOV pseudo-opcodes into a single basic-block with
3053// conditional jump around it.
3055 switch (MI.getOpcode()) {
3056 case M68k::CMOV8d:
3057 case M68k::CMOV16d:
3058 case M68k::CMOV32r:
3059 return true;
3060
3061 default:
3062 return false;
3063 }
3064}
3065
3066// The CCR operand of SelectItr might be missing a kill marker
3067// because there were multiple uses of CCR, and ISel didn't know
3068// which to mark. Figure out whether SelectItr should have had a
3069// kill marker, and set it if it should. Returns the correct kill
3070// marker value.
3073 const TargetRegisterInfo *TRI) {
3074 // Scan forward through BB for a use/def of CCR.
3075 MachineBasicBlock::iterator miI(std::next(SelectItr));
3076 for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
3077 const MachineInstr &mi = *miI;
3078 if (mi.readsRegister(M68k::CCR, /*TRI=*/nullptr))
3079 return false;
3080 if (mi.definesRegister(M68k::CCR, /*TRI=*/nullptr))
3081 break; // Should have kill-flag - update below.
3082 }
3083
3084 // If we hit the end of the block, check whether CCR is live into a
3085 // successor.
3086 if (miI == BB->end())
3087 for (const auto *SBB : BB->successors())
3088 if (SBB->isLiveIn(M68k::CCR))
3089 return false;
3090
3091 // We found a def, or hit the end of the basic block and CCR wasn't live
3092 // out. SelectMI should have a kill flag on CCR.
3093 SelectItr->addRegisterKilled(M68k::CCR, TRI);
3094 return true;
3095}
3096
3098M68kTargetLowering::EmitLoweredSelect(MachineInstr &MI,
3099 MachineBasicBlock *MBB) const {
3100 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3101 DebugLoc DL = MI.getDebugLoc();
3102
3103 // To "insert" a SELECT_CC instruction, we actually have to insert the
3104 // diamond control-flow pattern. The incoming instruction knows the
3105 // destination vreg to set, the condition code register to branch on, the
3106 // true/false values to select between, and a branch opcode to use.
3107 const BasicBlock *BB = MBB->getBasicBlock();
3109
3110 // ThisMBB:
3111 // ...
3112 // TrueVal = ...
3113 // cmp ccX, r1, r2
3114 // bcc Copy1MBB
3115 // fallthrough --> Copy0MBB
3116 MachineBasicBlock *ThisMBB = MBB;
3118
3119 // This code lowers all pseudo-CMOV instructions. Generally it lowers these
3120 // as described above, by inserting a MBB, and then making a PHI at the join
3121 // point to select the true and false operands of the CMOV in the PHI.
3122 //
3123 // The code also handles two different cases of multiple CMOV opcodes
3124 // in a row.
3125 //
3126 // Case 1:
3127 // In this case, there are multiple CMOVs in a row, all which are based on
3128 // the same condition setting (or the exact opposite condition setting).
3129 // In this case we can lower all the CMOVs using a single inserted MBB, and
3130 // then make a number of PHIs at the join point to model the CMOVs. The only
3131 // trickiness here, is that in a case like:
3132 //
3133 // t2 = CMOV cond1 t1, f1
3134 // t3 = CMOV cond1 t2, f2
3135 //
3136 // when rewriting this into PHIs, we have to perform some renaming on the
3137 // temps since you cannot have a PHI operand refer to a PHI result earlier
3138 // in the same block. The "simple" but wrong lowering would be:
3139 //
3140 // t2 = PHI t1(BB1), f1(BB2)
3141 // t3 = PHI t2(BB1), f2(BB2)
3142 //
3143 // but clearly t2 is not defined in BB1, so that is incorrect. The proper
3144 // renaming is to note that on the path through BB1, t2 is really just a
3145 // copy of t1, and do that renaming, properly generating:
3146 //
3147 // t2 = PHI t1(BB1), f1(BB2)
3148 // t3 = PHI t1(BB1), f2(BB2)
3149 //
3150 // Case 2, we lower cascaded CMOVs such as
3151 //
3152 // (CMOV (CMOV F, T, cc1), T, cc2)
3153 //
3154 // to two successives branches.
3155 MachineInstr *CascadedCMOV = nullptr;
3156 MachineInstr *LastCMOV = &MI;
3157 M68k::CondCode CC = M68k::CondCode(MI.getOperand(3).getImm());
3160 std::next(MachineBasicBlock::iterator(MI));
3161
3162 // Check for case 1, where there are multiple CMOVs with the same condition
3163 // first. Of the two cases of multiple CMOV lowerings, case 1 reduces the
3164 // number of jumps the most.
3165
3166 if (isCMOVPseudo(MI)) {
3167 // See if we have a string of CMOVS with the same condition.
3168 while (NextMIIt != MBB->end() && isCMOVPseudo(*NextMIIt) &&
3169 (NextMIIt->getOperand(3).getImm() == CC ||
3170 NextMIIt->getOperand(3).getImm() == OppCC)) {
3171 LastCMOV = &*NextMIIt;
3172 ++NextMIIt;
3173 }
3174 }
3175
3176 // This checks for case 2, but only do this if we didn't already find
3177 // case 1, as indicated by LastCMOV == MI.
3178 if (LastCMOV == &MI && NextMIIt != MBB->end() &&
3179 NextMIIt->getOpcode() == MI.getOpcode() &&
3180 NextMIIt->getOperand(2).getReg() == MI.getOperand(2).getReg() &&
3181 NextMIIt->getOperand(1).getReg() == MI.getOperand(0).getReg() &&
3182 NextMIIt->getOperand(1).isKill()) {
3183 CascadedCMOV = &*NextMIIt;
3184 }
3185
3186 MachineBasicBlock *Jcc1MBB = nullptr;
3187
3188 // If we have a cascaded CMOV, we lower it to two successive branches to
3189 // the same block. CCR is used by both, so mark it as live in the second.
3190 if (CascadedCMOV) {
3191 Jcc1MBB = F->CreateMachineBasicBlock(BB);
3192 F->insert(It, Jcc1MBB);
3193 Jcc1MBB->addLiveIn(M68k::CCR);
3194 }
3195
3196 MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(BB);
3197 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
3198 F->insert(It, Copy0MBB);
3199 F->insert(It, SinkMBB);
3200
3201 // Set the call frame size on entry to the new basic blocks.
3202 unsigned CallFrameSize = TII->getCallFrameSizeAt(MI);
3203 Copy0MBB->setCallFrameSize(CallFrameSize);
3204 SinkMBB->setCallFrameSize(CallFrameSize);
3205
3206 // If the CCR register isn't dead in the terminator, then claim that it's
3207 // live into the sink and copy blocks.
3208 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3209
3210 MachineInstr *LastCCRSUser = CascadedCMOV ? CascadedCMOV : LastCMOV;
3211 if (!LastCCRSUser->killsRegister(M68k::CCR, /*TRI=*/nullptr) &&
3212 !checkAndUpdateCCRKill(LastCCRSUser, MBB, TRI)) {
3213 Copy0MBB->addLiveIn(M68k::CCR);
3214 SinkMBB->addLiveIn(M68k::CCR);
3215 }
3216
3217 // Transfer the remainder of MBB and its successor edges to SinkMBB.
3218 SinkMBB->splice(SinkMBB->begin(), MBB,
3219 std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
3221
3222 // Add the true and fallthrough blocks as its successors.
3223 if (CascadedCMOV) {
3224 // The fallthrough block may be Jcc1MBB, if we have a cascaded CMOV.
3225 MBB->addSuccessor(Jcc1MBB);
3226
3227 // In that case, Jcc1MBB will itself fallthrough the Copy0MBB, and
3228 // jump to the SinkMBB.
3229 Jcc1MBB->addSuccessor(Copy0MBB);
3230 Jcc1MBB->addSuccessor(SinkMBB);
3231 } else {
3232 MBB->addSuccessor(Copy0MBB);
3233 }
3234
3235 // The true block target of the first (or only) branch is always SinkMBB.
3236 MBB->addSuccessor(SinkMBB);
3237
3238 // Create the conditional branch instruction.
3239 unsigned Opc = M68k::GetCondBranchFromCond(CC);
3240 BuildMI(MBB, DL, TII->get(Opc)).addMBB(SinkMBB);
3241
3242 if (CascadedCMOV) {
3243 unsigned Opc2 = M68k::GetCondBranchFromCond(
3244 (M68k::CondCode)CascadedCMOV->getOperand(3).getImm());
3245 BuildMI(Jcc1MBB, DL, TII->get(Opc2)).addMBB(SinkMBB);
3246 }
3247
3248 // Copy0MBB:
3249 // %FalseValue = ...
3250 // # fallthrough to SinkMBB
3251 Copy0MBB->addSuccessor(SinkMBB);
3252
3253 // SinkMBB:
3254 // %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
3255 // ...
3258 std::next(MachineBasicBlock::iterator(LastCMOV));
3259 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
3262
3263 // As we are creating the PHIs, we have to be careful if there is more than
3264 // one. Later CMOVs may reference the results of earlier CMOVs, but later
3265 // PHIs have to reference the individual true/false inputs from earlier PHIs.
3266 // That also means that PHI construction must work forward from earlier to
3267 // later, and that the code must maintain a mapping from earlier PHI's
3268 // destination registers, and the registers that went into the PHI.
3269
3270 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
3271 Register DestReg = MIIt->getOperand(0).getReg();
3272 Register Op1Reg = MIIt->getOperand(1).getReg();
3273 Register Op2Reg = MIIt->getOperand(2).getReg();
3274
3275 // If this CMOV we are generating is the opposite condition from
3276 // the jump we generated, then we have to swap the operands for the
3277 // PHI that is going to be generated.
3278 if (MIIt->getOperand(3).getImm() == OppCC)
3279 std::swap(Op1Reg, Op2Reg);
3280
3281 if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end())
3282 Op1Reg = RegRewriteTable[Op1Reg].first;
3283
3284 if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end())
3285 Op2Reg = RegRewriteTable[Op2Reg].second;
3286
3287 MIB =
3288 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(M68k::PHI), DestReg)
3289 .addReg(Op1Reg)
3290 .addMBB(Copy0MBB)
3291 .addReg(Op2Reg)
3292 .addMBB(ThisMBB);
3293
3294 // Add this PHI to the rewrite table.
3295 RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
3296 }
3297
3298 // If we have a cascaded CMOV, the second Jcc provides the same incoming
3299 // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes).
3300 if (CascadedCMOV) {
3301 MIB.addReg(MI.getOperand(2).getReg()).addMBB(Jcc1MBB);
3302 // Copy the PHI result to the register defined by the second CMOV.
3303 BuildMI(*SinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())),
3304 DL, TII->get(TargetOpcode::COPY),
3305 CascadedCMOV->getOperand(0).getReg())
3306 .addReg(MI.getOperand(0).getReg());
3307 CascadedCMOV->eraseFromParent();
3308 }
3309
3310 // Now remove the CMOV(s).
3311 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;)
3312 (MIIt++)->eraseFromParent();
3313
3314 return SinkMBB;
3315}
3316
3318M68kTargetLowering::EmitLoweredSegAlloca(MachineInstr &MI,
3319 MachineBasicBlock *BB) const {
3320 llvm_unreachable("Cannot lower Segmented Stack Alloca with stack-split on");
3321}
3322
3325 MachineBasicBlock *BB) const {
3326 switch (MI.getOpcode()) {
3327 default:
3328 llvm_unreachable("Unexpected instr type to insert");
3329 case M68k::CMOV8d:
3330 case M68k::CMOV16d:
3331 case M68k::CMOV32r:
3332 return EmitLoweredSelect(MI, BB);
3333 case M68k::SALLOCA:
3334 return EmitLoweredSegAlloca(MI, BB);
3335 }
3336}
3337
3338SDValue M68kTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3340 auto PtrVT = getPointerTy(MF.getDataLayout());
3342
3343 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3344 SDLoc DL(Op);
3345
3346 // vastart just stores the address of the VarArgsFrameIndex slot into the
3347 // memory location argument.
3348 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3349 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3350 MachinePointerInfo(SV));
3351}
3352
3353SDValue M68kTargetLowering::LowerATOMICFENCE(SDValue Op,
3354 SelectionDAG &DAG) const {
3355 // Lower to a memory barrier created from inline asm.
3356 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3357 LLVMContext &Ctx = *DAG.getContext();
3358
3359 const unsigned Flags = InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore |
3361 const SDValue AsmOperands[4] = {
3362 Op.getOperand(0), // Input chain
3364 "", TLI.getProgramPointerTy(
3365 DAG.getDataLayout())), // Empty inline asm string
3366 DAG.getMDNode(MDNode::get(Ctx, {})), // (empty) srcloc
3367 DAG.getTargetConstant(Flags, SDLoc(Op),
3368 TLI.getPointerTy(DAG.getDataLayout())), // Flags
3369 };
3370
3371 return DAG.getNode(ISD::INLINEASM, SDLoc(Op),
3372 DAG.getVTList(MVT::Other, MVT::Glue), AsmOperands);
3373}
3374
3375// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3376// Calls to _alloca are needed to probe the stack when allocating more than 4k
3377// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3378// that the guard pages used by the OS virtual memory manager are allocated in
3379// correct sequence.
3380SDValue M68kTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3381 SelectionDAG &DAG) const {
3383 bool SplitStack = MF.shouldSplitStack();
3384
3385 SDLoc DL(Op);
3386
3387 // Get the inputs.
3388 SDNode *Node = Op.getNode();
3389 SDValue Chain = Op.getOperand(0);
3390 SDValue Size = Op.getOperand(1);
3391 unsigned Align = Op.getConstantOperandVal(2);
3392 EVT VT = Node->getValueType(0);
3393
3394 // Chain the dynamic stack allocation so that it doesn't modify the stack
3395 // pointer when other instructions are using the stack.
3396 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3397
3399 if (SplitStack) {
3400 auto &MRI = MF.getRegInfo();
3401 auto SPTy = getPointerTy(DAG.getDataLayout());
3402 auto *ARClass = getRegClassFor(SPTy);
3403 Register Vreg = MRI.createVirtualRegister(ARClass);
3404 Chain = DAG.getCopyToReg(Chain, DL, Vreg, Size);
3405 Result = DAG.getNode(M68kISD::SEG_ALLOCA, DL, SPTy, Chain,
3406 DAG.getRegister(Vreg, SPTy));
3407 } else {
3408 auto &TLI = DAG.getTargetLoweringInfo();
3410 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
3411 " not tell us which reg is the stack pointer!");
3412
3413 SDValue SP = DAG.getCopyFromReg(Chain, DL, SPReg, VT);
3414 Chain = SP.getValue(1);
3415 const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
3416 unsigned StackAlign = TFI.getStackAlignment();
3417 Result = DAG.getNode(ISD::SUB, DL, VT, SP, Size); // Value
3418 if (Align > StackAlign)
3419 Result = DAG.getNode(ISD::AND, DL, VT, Result,
3420 DAG.getConstant(-(uint64_t)Align, DL, VT));
3421 Chain = DAG.getCopyToReg(Chain, DL, SPReg, Result); // Output chain
3422 }
3423
3424 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), DL);
3425
3426 SDValue Ops[2] = {Result, Chain};
3427 return DAG.getMergeValues(Ops, DL);
3428}
3429
3430SDValue M68kTargetLowering::LowerShiftLeftParts(SDValue Op,
3431 SelectionDAG &DAG) const {
3432 SDLoc DL(Op);
3433 SDValue Lo = Op.getOperand(0);
3434 SDValue Hi = Op.getOperand(1);
3435 SDValue Shamt = Op.getOperand(2);
3436 EVT VT = Lo.getValueType();
3437
3438 // if Shamt - register size < 0: // Shamt < register size
3439 // Lo = Lo << Shamt
3440 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (register size - 1 ^ Shamt))
3441 // else:
3442 // Lo = 0
3443 // Hi = Lo << (Shamt - register size)
3444
3445 SDValue Zero = DAG.getConstant(0, DL, VT);
3446 SDValue One = DAG.getConstant(1, DL, VT);
3447 SDValue MinusRegisterSize = DAG.getConstant(-32, DL, VT);
3448 SDValue RegisterSizeMinus1 = DAG.getConstant(32 - 1, DL, VT);
3449 SDValue ShamtMinusRegisterSize =
3450 DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusRegisterSize);
3451 SDValue RegisterSizeMinus1Shamt =
3452 DAG.getNode(ISD::XOR, DL, VT, RegisterSizeMinus1, Shamt);
3453
3454 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3455 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3456 SDValue ShiftRightLo =
3457 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, RegisterSizeMinus1Shamt);
3458 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3459 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3460 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusRegisterSize);
3461
3462 SDValue CC =
3463 DAG.getSetCC(DL, MVT::i8, ShamtMinusRegisterSize, Zero, ISD::SETLT);
3464
3465 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3466 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3467
3468 return DAG.getMergeValues({Lo, Hi}, DL);
3469}
3470
3471SDValue M68kTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3472 bool IsSRA) const {
3473 SDLoc DL(Op);
3474 SDValue Lo = Op.getOperand(0);
3475 SDValue Hi = Op.getOperand(1);
3476 SDValue Shamt = Op.getOperand(2);
3477 EVT VT = Lo.getValueType();
3478
3479 // SRA expansion:
3480 // if Shamt - register size < 0: // Shamt < register size
3481 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (register size - 1 ^ Shamt))
3482 // Hi = Hi >>s Shamt
3483 // else:
3484 // Lo = Hi >>s (Shamt - register size);
3485 // Hi = Hi >>s (register size - 1)
3486 //
3487 // SRL expansion:
3488 // if Shamt - register size < 0: // Shamt < register size
3489 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (register size - 1 ^ Shamt))
3490 // Hi = Hi >>u Shamt
3491 // else:
3492 // Lo = Hi >>u (Shamt - register size);
3493 // Hi = 0;
3494
3495 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3496
3497 SDValue Zero = DAG.getConstant(0, DL, VT);
3498 SDValue One = DAG.getConstant(1, DL, VT);
3499 SDValue MinusRegisterSize = DAG.getConstant(-32, DL, VT);
3500 SDValue RegisterSizeMinus1 = DAG.getConstant(32 - 1, DL, VT);
3501 SDValue ShamtMinusRegisterSize =
3502 DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusRegisterSize);
3503 SDValue RegisterSizeMinus1Shamt =
3504 DAG.getNode(ISD::XOR, DL, VT, RegisterSizeMinus1, Shamt);
3505
3506 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3507 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3508 SDValue ShiftLeftHi =
3509 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, RegisterSizeMinus1Shamt);
3510 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3511 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3512 SDValue LoFalse =
3513 DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusRegisterSize);
3514 SDValue HiFalse =
3515 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, RegisterSizeMinus1) : Zero;
3516
3517 SDValue CC =
3518 DAG.getSetCC(DL, MVT::i8, ShamtMinusRegisterSize, Zero, ISD::SETLT);
3519
3520 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3521 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3522
3523 return DAG.getMergeValues({Lo, Hi}, DL);
3524}
3525
3526//===----------------------------------------------------------------------===//
3527// DAG Combine
3528//===----------------------------------------------------------------------===//
3529
3531 SelectionDAG &DAG) {
3532 return DAG.getNode(M68kISD::SETCC, dl, MVT::i8,
3533 DAG.getConstant(Cond, dl, MVT::i8), CCR);
3534}
3535// When legalizing carry, we create carries via add X, -1
3536// If that comes from an actual carry, via setcc, we use the
3537// carry directly.
3539 if (CCR.getOpcode() == M68kISD::ADD) {
3540 if (isAllOnesConstant(CCR.getOperand(1))) {
3541 SDValue Carry = CCR.getOperand(0);
3542 while (Carry.getOpcode() == ISD::TRUNCATE ||
3543 Carry.getOpcode() == ISD::ZERO_EXTEND ||
3544 Carry.getOpcode() == ISD::SIGN_EXTEND ||
3545 Carry.getOpcode() == ISD::ANY_EXTEND ||
3546 (Carry.getOpcode() == ISD::AND &&
3547 isOneConstant(Carry.getOperand(1))))
3548 Carry = Carry.getOperand(0);
3549 if (Carry.getOpcode() == M68kISD::SETCC ||
3550 Carry.getOpcode() == M68kISD::SETCC_CARRY) {
3551 if (Carry.getConstantOperandVal(0) == M68k::COND_CS)
3552 return Carry.getOperand(1);
3553 }
3554 }
3555 }
3556
3557 return SDValue();
3558}
3559
3560/// Optimize a CCR definition used according to the condition code \p CC into
3561/// a simpler CCR value, potentially returning a new \p CC and replacing uses
3562/// of chain values.
3564 SelectionDAG &DAG,
3565 const M68kSubtarget &Subtarget) {
3566 if (CC == M68k::COND_CS)
3567 if (SDValue Flags = combineCarryThroughADD(CCR))
3568 return Flags;
3569
3570 return SDValue();
3571}
3572
3573// Optimize RES = M68kISD::SETCC CONDCODE, CCR_INPUT
3575 const M68kSubtarget &Subtarget) {
3576 SDLoc DL(N);
3577 M68k::CondCode CC = M68k::CondCode(N->getConstantOperandVal(0));
3578 SDValue CCR = N->getOperand(1);
3579
3580 // Try to simplify the CCR and condition code operands.
3581 if (SDValue Flags = combineSetCCCCR(CCR, CC, DAG, Subtarget))
3582 return getSETCC(CC, Flags, DL, DAG);
3583
3584 return SDValue();
3585}
3587 const M68kSubtarget &Subtarget) {
3588 SDLoc DL(N);
3589 M68k::CondCode CC = M68k::CondCode(N->getConstantOperandVal(2));
3590 SDValue CCR = N->getOperand(3);
3591
3592 // Try to simplify the CCR and condition code operands.
3593 // Make sure to not keep references to operands, as combineSetCCCCR can
3594 // RAUW them under us.
3595 if (SDValue Flags = combineSetCCCCR(CCR, CC, DAG, Subtarget)) {
3596 SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
3597 return DAG.getNode(M68kISD::BRCOND, DL, N->getVTList(), N->getOperand(0),
3598 N->getOperand(1), Cond, Flags);
3599 }
3600
3601 return SDValue();
3602}
3603
3605 if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) {
3606 MVT VT = N->getSimpleValueType(0);
3607 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3608 return DAG.getNode(M68kISD::SUBX, SDLoc(N), VTs, N->getOperand(0),
3609 N->getOperand(1), Flags);
3610 }
3611
3612 return SDValue();
3613}
3614
3615// Optimize RES, CCR = M68kISD::ADDX LHS, RHS, CCR
3618 if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) {
3619 MVT VT = N->getSimpleValueType(0);
3620 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3621 return DAG.getNode(M68kISD::ADDX, SDLoc(N), VTs, N->getOperand(0),
3622 N->getOperand(1), Flags);
3623 }
3624
3625 return SDValue();
3626}
3627
3628SDValue M68kTargetLowering::PerformDAGCombine(SDNode *N,
3629 DAGCombinerInfo &DCI) const {
3630 SelectionDAG &DAG = DCI.DAG;
3631 switch (N->getOpcode()) {
3632 case M68kISD::SUBX:
3633 return combineSUBX(N, DAG);
3634 case M68kISD::ADDX:
3635 return combineADDX(N, DAG, DCI);
3636 case M68kISD::SETCC:
3637 return combineM68kSetCC(N, DAG, Subtarget);
3638 case M68kISD::BRCOND:
3639 return combineM68kBrCond(N, DAG, Subtarget);
3640 }
3641
3642 return SDValue();
3643}
3644
3645//===----------------------------------------------------------------------===//
3646// M68kISD Node Names
3647//===----------------------------------------------------------------------===//
3648const char *M68kTargetLowering::getTargetNodeName(unsigned Opcode) const {
3649 switch (Opcode) {
3650 case M68kISD::CALL:
3651 return "M68kISD::CALL";
3652 case M68kISD::TAIL_CALL:
3653 return "M68kISD::TAIL_CALL";
3654 case M68kISD::RET:
3655 return "M68kISD::RET";
3656 case M68kISD::TC_RETURN:
3657 return "M68kISD::TC_RETURN";
3658 case M68kISD::ADD:
3659 return "M68kISD::ADD";
3660 case M68kISD::SUB:
3661 return "M68kISD::SUB";
3662 case M68kISD::ADDX:
3663 return "M68kISD::ADDX";
3664 case M68kISD::SUBX:
3665 return "M68kISD::SUBX";
3666 case M68kISD::SMUL:
3667 return "M68kISD::SMUL";
3668 case M68kISD::UMUL:
3669 return "M68kISD::UMUL";
3670 case M68kISD::OR:
3671 return "M68kISD::OR";
3672 case M68kISD::XOR:
3673 return "M68kISD::XOR";
3674 case M68kISD::AND:
3675 return "M68kISD::AND";
3676 case M68kISD::CMP:
3677 return "M68kISD::CMP";
3678 case M68kISD::BTST:
3679 return "M68kISD::BTST";
3680 case M68kISD::SELECT:
3681 return "M68kISD::SELECT";
3682 case M68kISD::CMOV:
3683 return "M68kISD::CMOV";
3684 case M68kISD::BRCOND:
3685 return "M68kISD::BRCOND";
3686 case M68kISD::SETCC:
3687 return "M68kISD::SETCC";
3689 return "M68kISD::SETCC_CARRY";
3691 return "M68kISD::GLOBAL_BASE_REG";
3692 case M68kISD::Wrapper:
3693 return "M68kISD::Wrapper";
3694 case M68kISD::WrapperPC:
3695 return "M68kISD::WrapperPC";
3697 return "M68kISD::SEG_ALLOCA";
3698 default:
3699 return NULL;
3700 }
3701}
3702
3704 bool IsVarArg) const {
3705 if (Return)
3706 return RetCC_M68k_C;
3707 else
3708 return CC_M68k_C;
3709}
unsigned const MachineRegisterInfo * MRI
static SDValue getSETCC(AArch64CC::CondCode CC, SDValue NZCV, const SDLoc &DL, SelectionDAG &DAG)
Helper function to create 'CSET', which is equivalent to 'CSINC <Wd>, WZR, WZR, invert(<cond>)'.
static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls)
Return true if the calling convention is one that we can guarantee TCO for.
static bool mayTailCallThisCC(CallingConv::ID CC)
Return true if we might ever do TCO for calls with this calling convention.
static bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, MachineFrameInfo &MFI, const MachineRegisterInfo *MRI, const TargetInstrInfo *TII)
MatchingStackOffset - Return true if the given stack call argument is already available in the same p...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
return RetTy
uint64_t Addr
uint64_t Size
Symbol * Sym
Definition: ELF_riscv.cpp:479
const HexagonInstrInfo * TII
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, const SDLoc &dl)
CreateCopyOfByValArgument - Make a copy of an aggregate at address specified by "Src" to address "Dst...
IRTranslator LLVM IR MI
static LVOptions Options
Definition: LVOptions.cpp:25
This file contains the custom routines for the M68k Calling Convention that aren't done by tablegen.
static SDValue LowerTruncateToBTST(SDValue Op, ISD::CondCode CC, const SDLoc &DL, SelectionDAG &DAG)
static void lowerOverflowArithmetic(SDValue Op, SelectionDAG &DAG, SDValue &Result, SDValue &CCR, unsigned &CC)
static SDValue combineADDX(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI)
static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc)
Return true if node is an ISD::AND or ISD::OR of two M68k::SETcc nodes each of which has no other use...
static bool hasNonFlagsUse(SDValue Op)
return true if Op has a use that doesn't just read flags.
static bool isM68kCCUnsigned(unsigned M68kCC)
Return true if the condition is an unsigned comparison operation.
static StructReturnType callIsStructReturn(const SmallVectorImpl< ISD::OutputArg > &Outs)
static bool isXor1OfSetCC(SDValue Op)
Return true if node is an ISD::XOR of a M68kISD::SETCC and 1 and that the SETCC node has a single use...
static SDValue LowerAndToBTST(SDValue And, ISD::CondCode CC, const SDLoc &DL, SelectionDAG &DAG)
Result of 'and' is compared against zero. Change to a BTST node if possible.
static SDValue combineM68kBrCond(SDNode *N, SelectionDAG &DAG, const M68kSubtarget &Subtarget)
static M68k::CondCode TranslateIntegerM68kCC(ISD::CondCode SetCCOpcode)
static StructReturnType argsAreStructReturn(const SmallVectorImpl< ISD::InputArg > &Ins)
Determines whether a function uses struct return semantics.
static bool isCMOVPseudo(MachineInstr &MI)
static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt)
Return true if the function is being made into a tailcall target by changing its ABI.
static bool isM68kLogicalCmp(SDValue Op)
Return true if opcode is a M68k logical comparison.
static SDValue combineM68kSetCC(SDNode *N, SelectionDAG &DAG, const M68kSubtarget &Subtarget)
static SDValue combineSetCCCCR(SDValue CCR, M68k::CondCode &CC, SelectionDAG &DAG, const M68kSubtarget &Subtarget)
Optimize a CCR definition used according to the condition code CC into a simpler CCR value,...
static SDValue combineCarryThroughADD(SDValue CCR)
static bool isOverflowArithmetic(unsigned Opcode)
static SDValue getBitTestCondition(SDValue Src, SDValue BitNo, ISD::CondCode CC, const SDLoc &DL, SelectionDAG &DAG)
Create a BTST (Bit Test) node - Test bit BitNo in Src and set condition according to equal/not-equal ...
StructReturnType
@ NotStructReturn
@ RegStructReturn
@ StackStructReturn
static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG)
static bool checkAndUpdateCCRKill(MachineBasicBlock::iterator SelectItr, MachineBasicBlock *BB, const TargetRegisterInfo *TRI)
static SDValue combineSUBX(SDNode *N, SelectionDAG &DAG)
static unsigned TranslateM68kCC(ISD::CondCode SetCCOpcode, const SDLoc &DL, bool IsFP, SDValue &LHS, SDValue &RHS, SelectionDAG &DAG)
Do a one-to-one translation of a ISD::CondCode to the M68k-specific condition code,...
This file defines the interfaces that M68k uses to lower LLVM code into a selection DAG.
This file declares the M68k specific subclass of MachineFunctionInfo.
This file declares the M68k specific subclass of TargetSubtargetInfo.
This file declares the M68k specific subclass of TargetMachine.
This file contains declarations for M68k ELF object file lowering.
#define F(x, y, z)
Definition: MD5.cpp:55
#define G(x, y, z)
Definition: MD5.cpp:56
unsigned const TargetRegisterInfo * TRI
#define T1
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
const MachineOperand & RHS
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
#define OP(OPC)
Definition: SandboxIR.h:663
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:77
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:211
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition: APInt.h:273
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
an instruction that atomically reads a memory location, combines it with another value,...
Definition: Instructions.h:696
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
The address of a basic block.
Definition: Constants.h:890
CCState - This class holds information needed while lowering arguments and return values.
static bool resultsCompatible(CallingConv::ID CalleeCC, CallingConv::ID CallerCC, MachineFunction &MF, LLVMContext &C, const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn CalleeFn, CCAssignFn CallerFn)
Returns true if the results of the two calling conventions are compatible.
CCValAssign - Represent assignment of one arg/retval to a location.
bool isRegLoc() const
Register getLocReg() const
LocInfo getLocInfo() const
bool isMemLoc() const
bool isExtInLoc() const
int64_t getLocMemOffset() const
unsigned getValNo() const
bool isMustTailCall() const
Tests if this call site must be tail call optimized.
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
A debug info location.
Definition: DebugLoc.h:33
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
iterator end()
Definition: DenseMap.h:84
iterator_range< arg_iterator > args()
Definition: Function.h:890
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition: Function.cpp:769
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition: Function.h:702
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:281
bool hasStructRetAttr() const
Determine if the function returns a structure through first or second pointer argument.
Definition: Function.h:686
const GlobalValue * getGlobal() const
bool hasDLLImportStorageClass() const
Definition: GlobalValue.h:278
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:656
Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override
TargetInstrInfo overrides.
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
SmallVectorImpl< ForwardedRegister > & getForwardedMustTailRegParms()
void setBytesToPopOnReturn(unsigned bytes)
void setArgumentStackSize(unsigned size)
unsigned char classifyExternalReference(const Module &M) const
Classify a external variable reference for the current subtarget according to how we should reference...
unsigned char classifyBlockAddressReference() const
Classify a blockaddress reference for the current subtarget according to how we should reference it i...
unsigned getSlotSize() const
getSlotSize - Stack slot size in bytes.
const M68kInstrInfo * getInstrInfo() const override
unsigned char classifyGlobalReference(const GlobalValue *GV, const Module &M) const
Classify a global variable reference for the current subtarget according to how we should reference i...
unsigned getJumpTableEncoding() const
unsigned char classifyLocalReference(const GlobalValue *GV) const
Classify a global variable reference for the current subtarget according to how we should reference i...
const M68kRegisterInfo * getRegisterInfo() const override
bool atLeastM68020() const
Definition: M68kSubtarget.h:89
unsigned char classifyGlobalFunctionReference(const GlobalValue *GV, const Module &M) const
Classify a global function reference for the current subtarget.
bool isTargetELF() const
const M68kFrameLowering * getFrameLowering() const override
ConstraintType getConstraintType(StringRef ConstraintStr) const override
Given a constraint, return the type of constraint it is for this target.
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override
EVT is not used in-tree, but is used by out-of-tree target.
const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned uid, MCContext &Ctx) const override
SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const override
Returns relocation base for the given PIC jumptable.
const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const override
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
CCAssignFn * getCCAssignFn(CallingConv::ID CC, bool Return, bool IsVarArg) const
M68kTargetLowering(const M68kTargetMachine &TM, const M68kSubtarget &STI)
InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const override
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
Provide custom lowering hooks for some operations.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the value type to use for ISD::SETCC.
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
Context object for machine code objects.
Definition: MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:34
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx)
Definition: MCExpr.h:393
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1542
Machine Value Type.
SimpleValueType SimpleTy
static auto integer_valuetypes()
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
MCSymbol * getSymbol() const
Return the MCSymbol for this basic block.
void setCallFrameSize(unsigned N)
Set the call frame size on entry to this basic block.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
iterator_range< succ_iterator > successors()
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
void setObjectZExt(int ObjectIdx, bool IsZExt)
void setObjectSExt(int ObjectIdx, bool IsSExt)
void setHasTailCall(bool V=true)
bool isObjectZExt(int ObjectIdx) const
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
bool isObjectSExt(int ObjectIdx) const
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCSymbol * getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate=false) const
getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const LLVMTargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
bool shouldSplitStack() const
Should we be emitting segmented stack stuff for the function.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
Definition: MachineInstr.h:69
bool readsRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr reads the specified register.
bool killsRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr kills the specified register.
bool definesRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr fully defines the specified register.
void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:579
@ EK_Custom32
EK_Custom32 - Each entry is a 32-bit value that is custom lowered by the TargetLowering::LowerCustomJ...
int64_t getImm() const
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Class to represent pointers.
Definition: DerivedTypes.h:646
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
static constexpr bool isVirtualRegister(unsigned Reg)
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:71
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
bool hasOneUse() const
Return true if there is exactly one use of this node.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:226
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
Definition: SelectionDAG.h:736
SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), AAResults *AA=nullptr)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getGLOBAL_OFFSET_TABLE(EVT VT)
Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
Definition: SelectionDAG.h:493
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
Definition: SelectionDAG.h:746
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
const DataLayout & getDataLayout() const
Definition: SelectionDAG.h:487
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
SDValue getRegister(unsigned Reg, EVT VT)
SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
Definition: SelectionDAG.h:488
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N)
Definition: SelectionDAG.h:787
SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
SDValue getValueType(EVT)
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
Definition: SelectionDAG.h:690
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
Definition: SelectionDAG.h:782
MachineFunction & getMachineFunction() const
Definition: SelectionDAG.h:482
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT)
Definition: SelectionDAG.h:813
SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
SDValue getRegisterMask(const uint32_t *RegMask)
bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVMContext * getContext() const
Definition: SelectionDAG.h:500
SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
SDValue getTargetConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offset=0, unsigned TargetFlags=0)
Definition: SelectionDAG.h:753
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
Definition: SelectionDAG.h:570
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:950
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:149
A switch()-like statement whose cases are string literals.
Definition: StringSwitch.h:44
StringSwitch & Case(StringLiteral S, T Value)
Definition: StringSwitch.h:69
R Default(T Value)
Definition: StringSwitch.h:182
Information about stack frame layout on the target.
unsigned getStackAlignment() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
TargetInstrInfo - Interface to description of machine instruction set.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
std::vector< ArgListEntry > ArgListTy
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
bool isPositionIndependent() const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
TLSModel::Model getTLSModel(const GlobalValue *GV) const
Returns the TLS model which should be used for the given global variable.
TargetOptions Options
unsigned GuaranteedTailCallOpt
GuaranteedTailCallOpt - This flag is enabled when -tailcallopt is specified on the commandline.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
Value * getOperand(unsigned i) const
Definition: User.h:169
LLVM Value Representation.
Definition: Value.h:74
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
use_iterator use_begin()
Definition: Value.h:360
self_iterator getIterator()
Definition: ilist_node.h:132
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:121
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ M68k_INTR
Used for M68k interrupt routines.
Definition: CallingConv.h:235
@ Swift
Calling convention for Swift.
Definition: CallingConv.h:69
@ M68k_RTD
Used for M68k rtd-based CC (similar to X86's stdcall).
Definition: CallingConv.h:252
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition: ISDOpcodes.h:779
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition: ISDOpcodes.h:243
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
Definition: ISDOpcodes.h:1194
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
Definition: ISDOpcodes.h:1190
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition: ISDOpcodes.h:257
@ ATOMIC_LOAD_NAND
Definition: ISDOpcodes.h:1337
@ BSWAP
Byte Swap and Counting operators.
Definition: ISDOpcodes.h:743
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
Definition: ISDOpcodes.h:1223
@ ATOMIC_LOAD_MAX
Definition: ISDOpcodes.h:1339
@ ATOMIC_LOAD_UMIN
Definition: ISDOpcodes.h:1340
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition: ISDOpcodes.h:276
@ ADD
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:246
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:813
@ GlobalAddress
Definition: ISDOpcodes.h:78
@ ATOMIC_FENCE
OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.
Definition: ISDOpcodes.h:1301
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition: ISDOpcodes.h:262
@ ATOMIC_LOAD_OR
Definition: ISDOpcodes.h:1335
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition: ISDOpcodes.h:953
@ ATOMIC_LOAD_XOR
Definition: ISDOpcodes.h:1336
@ GlobalTLSAddress
Definition: ISDOpcodes.h:79
@ FrameIndex
Definition: ISDOpcodes.h:80
@ SIGN_EXTEND
Conversion operators.
Definition: ISDOpcodes.h:804
@ BR
Control flow instructions. These all have token chains.
Definition: ISDOpcodes.h:1115
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition: ISDOpcodes.h:787
@ BR_CC
BR_CC - Conditional branch.
Definition: ISDOpcodes.h:1145
@ SSUBO
Same for subtraction.
Definition: ISDOpcodes.h:334
@ ATOMIC_LOAD_MIN
Definition: ISDOpcodes.h:1338
@ BR_JT
BR_JT - Jumptable branch.
Definition: ISDOpcodes.h:1124
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition: ISDOpcodes.h:756
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
Definition: ISDOpcodes.h:1219
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition: ISDOpcodes.h:215
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition: ISDOpcodes.h:330
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition: ISDOpcodes.h:673
@ SHL
Shift and rotation operations.
Definition: ISDOpcodes.h:734
@ ATOMIC_LOAD_AND
Definition: ISDOpcodes.h:1333
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:810
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition: ISDOpcodes.h:771
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
Definition: ISDOpcodes.h:1316
@ ATOMIC_LOAD_UMAX
Definition: ISDOpcodes.h:1341
@ SMULO
Same for multiplication.
Definition: ISDOpcodes.h:338
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
Definition: ISDOpcodes.h:1109
@ ConstantPool
Definition: ISDOpcodes.h:82
@ ATOMIC_LOAD_ADD
Definition: ISDOpcodes.h:1331
@ ATOMIC_LOAD_SUB
Definition: ISDOpcodes.h:1332
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:708
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition: ISDOpcodes.h:286
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition: ISDOpcodes.h:52
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
Definition: ISDOpcodes.h:1330
@ ExternalSymbol
Definition: ISDOpcodes.h:83
@ INLINEASM
INLINEASM - Represents an inline asm block.
Definition: ISDOpcodes.h:1162
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:816
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
Definition: ISDOpcodes.h:1214
@ BRCOND
BRCOND - Conditional branch.
Definition: ISDOpcodes.h:1138
@ BlockAddress
Definition: ISDOpcodes.h:84
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition: ISDOpcodes.h:793
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition: ISDOpcodes.h:61
@ AssertZext
Definition: ISDOpcodes.h:62
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1603
static bool isPCRelBlockReference(unsigned char Flag)
Return True if the Block is referenced using PC.
Definition: M68kBaseInfo.h:243
static bool isGlobalRelativeToPICBase(unsigned char TargetFlag)
Return true if the specified global value reference is relative to a 32-bit PIC base (M68kISD::GLOBAL...
Definition: M68kBaseInfo.h:221
static bool isGlobalStubReference(unsigned char TargetFlag)
Return true if the specified TargetFlag operand is a reference to a stub for a global,...
Definition: M68kBaseInfo.h:195
static bool isPCRelGlobalReference(unsigned char Flag)
Return True if the specified GlobalValue requires PC addressing mode.
Definition: M68kBaseInfo.h:232
@ MO_TLSLDM
On a symbol operand, this indicates that the immediate is the offset to the slot in GOT which stores ...
Definition: M68kBaseInfo.h:177
@ MO_TLSLE
On a symbol operand, this indicates that the immediate is the offset to the variable within in the th...
Definition: M68kBaseInfo.h:189
@ MO_TLSGD
On a symbol operand, this indicates that the immediate is the offset to the slot in GOT which stores ...
Definition: M68kBaseInfo.h:165
@ MO_GOTPCREL
On a symbol operand this indicates that the immediate is offset to the GOT entry for the symbol name ...
Definition: M68kBaseInfo.h:153
@ MO_TLSIE
On a symbol operand, this indicates that the immediate is the offset to the variable within the threa...
Definition: M68kBaseInfo.h:183
@ MO_TLSLD
On a symbol operand, this indicates that the immediate is the offset to variable within the thread lo...
Definition: M68kBaseInfo.h:171
static bool isDirectGlobalReference(unsigned char Flag)
Return True if the specified GlobalValue is a direct reference for a symbol.
Definition: M68kBaseInfo.h:207
@ SETCC
M68k SetCC.
@ BRCOND
M68k conditional branches.
@ CMOV
M68k conditional moves.
@ BTST
M68k bit-test instructions.
@ CMP
M68k compare and logical compare instructions.
@ SELECT
M68k Select.
@ WrapperPC
Special wrapper used under M68k PIC mode for PC relative displacements.
@ Wrapper
A wrapper node for TargetConstantPool, TargetExternalSymbol, and TargetGlobalAddress.
static bool IsSETCC(unsigned SETCC)
static unsigned GetCondBranchFromCond(M68k::CondCode CC)
Definition: M68kInstrInfo.h:97
bool isCalleePop(CallingConv::ID CallingConv, bool IsVarArg, bool GuaranteeTCO)
Determines whether the callee is required to pop its own arguments.
static M68k::CondCode GetOppositeBranchCondition(M68k::CondCode CC)
Definition: M68kInstrInfo.h:58
@ GeneralDynamic
Definition: CodeGen.h:46
Reg
All possible values of the reg field in the ModR/M byte.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
unsigned Log2_64_Ceil(uint64_t Value)
Return the ceil log base 2 of the specified value, 64 if the value is zero.
Definition: MathExtras.h:359
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:296
bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
@ Mod
The access may modify the value stored in memory.
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
DWARFExpression::Operation Op
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Extended Value Type.
Definition: ValueTypes.h:35
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition: ValueTypes.h:137
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition: ValueTypes.h:371
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:307
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:168
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition: ValueTypes.h:319
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition: ValueTypes.h:299
Describes a register that needs to be forwarded from the prologue to a musttail call.
Custom state to propagate llvm type info to register CC assigner.
This class contains a discriminated union of information about pointers in memory operands,...
static MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
static MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
SmallVector< ISD::InputArg, 32 > Ins
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
CallLoweringInfo & setChain(SDValue InChain)