41#define DEBUG_TYPE "gisel-known-bits"
49 "Analysis for ComputingKnownBits",
false,
true)
52 : MF(MF),
MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()),
57 switch (
MI->getOpcode()) {
58 case TargetOpcode::COPY:
60 case TargetOpcode::G_ASSERT_ALIGN: {
62 return Align(
MI->getOperand(2).getImm());
64 case TargetOpcode::G_FRAME_INDEX: {
65 int FrameIdx =
MI->getOperand(1).getIndex();
66 return MF.getFrameInfo().getObjectAlign(FrameIdx);
68 case TargetOpcode::G_INTRINSIC:
69 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
70 case TargetOpcode::G_INTRINSIC_CONVERGENT:
71 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
73 return TL.computeKnownAlignForTargetInstr(*
this, R, MRI,
Depth + 1);
78 assert(
MI.getNumExplicitDefs() == 1 &&
79 "expected single return generic instruction");
84 const LLT Ty = MRI.getType(R);
94 const APInt &DemandedElts,
102 LLT Ty = MRI.getType(R);
103 unsigned BitWidth = Ty.getScalarSizeInBits();
115[[maybe_unused]]
static void
118 <<
"] Computed for: " <<
MI <<
"[" <<
Depth <<
"] Known: 0x"
129 const APInt &DemandedElts,
160 const APInt &DemandedElts,
163 unsigned Opcode =
MI.getOpcode();
164 LLT DstTy = MRI.getType(R);
178 "DemandedElt width should equal the fixed vector number of elements");
181 "DemandedElt width should be 1 for scalars or scalable vectors");
206 TL.computeKnownBitsForTargetInstr(*
this, R, Known, DemandedElts, MRI,
209 case TargetOpcode::G_BUILD_VECTOR: {
214 if (!DemandedElts[
I])
228 case TargetOpcode::G_SPLAT_VECTOR: {
236 case TargetOpcode::COPY:
237 case TargetOpcode::G_PHI:
238 case TargetOpcode::PHI: {
244 assert(
MI.getOperand(0).getSubReg() == 0 &&
"Is this code in SSA?");
247 for (
unsigned Idx = 1; Idx <
MI.getNumOperands(); Idx += 2) {
250 LLT SrcTy = MRI.getType(SrcReg);
258 if (SrcReg.
isVirtual() && Src.getSubReg() == 0 &&
268 Depth + (Opcode != TargetOpcode::COPY));
283 case TargetOpcode::G_CONSTANT: {
287 case TargetOpcode::G_FRAME_INDEX: {
288 int FrameIdx =
MI.getOperand(1).getIndex();
289 TL.computeKnownBitsForFrameIndex(FrameIdx, Known, MF);
292 case TargetOpcode::G_SUB: {
300 case TargetOpcode::G_XOR: {
309 case TargetOpcode::G_PTR_ADD: {
313 LLT Ty = MRI.getType(
MI.getOperand(1).getReg());
314 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
318 case TargetOpcode::G_ADD: {
326 case TargetOpcode::G_AND: {
336 case TargetOpcode::G_OR: {
346 case TargetOpcode::G_MUL: {
354 case TargetOpcode::G_UMULH: {
362 case TargetOpcode::G_SMULH: {
370 case TargetOpcode::G_SELECT: {
371 computeKnownBitsMin(
MI.getOperand(2).getReg(),
MI.getOperand(3).getReg(),
372 Known, DemandedElts,
Depth + 1);
375 case TargetOpcode::G_SMIN: {
385 case TargetOpcode::G_SMAX: {
395 case TargetOpcode::G_UMIN: {
404 case TargetOpcode::G_UMAX: {
413 case TargetOpcode::G_FCMP:
414 case TargetOpcode::G_ICMP: {
417 if (TL.getBooleanContents(DstTy.
isVector(),
418 Opcode == TargetOpcode::G_FCMP) ==
424 case TargetOpcode::G_SEXT: {
432 case TargetOpcode::G_ASSERT_SEXT:
433 case TargetOpcode::G_SEXT_INREG: {
436 Known = Known.
sextInReg(
MI.getOperand(2).getImm());
439 case TargetOpcode::G_ANYEXT: {
445 case TargetOpcode::G_LOAD: {
453 case TargetOpcode::G_SEXTLOAD:
454 case TargetOpcode::G_ZEXTLOAD: {
461 Known = Opcode == TargetOpcode::G_SEXTLOAD
466 case TargetOpcode::G_ASHR: {
475 case TargetOpcode::G_LSHR: {
484 case TargetOpcode::G_SHL: {
493 case TargetOpcode::G_INTTOPTR:
494 case TargetOpcode::G_PTRTOINT:
499 case TargetOpcode::G_ZEXT:
500 case TargetOpcode::G_TRUNC: {
506 case TargetOpcode::G_ASSERT_ZEXT: {
510 unsigned SrcBitWidth =
MI.getOperand(2).getImm();
511 assert(SrcBitWidth &&
"SrcBitWidth can't be zero");
513 Known.
Zero |= (~InMask);
514 Known.
One &= (~Known.Zero);
517 case TargetOpcode::G_ASSERT_ALIGN: {
518 int64_t LogOfAlign =
Log2_64(
MI.getOperand(2).getImm());
527 case TargetOpcode::G_MERGE_VALUES: {
528 unsigned NumOps =
MI.getNumOperands();
529 unsigned OpSize = MRI.getType(
MI.getOperand(1).getReg()).getSizeInBits();
531 for (
unsigned I = 0;
I !=
NumOps - 1; ++
I) {
534 DemandedElts,
Depth + 1);
539 case TargetOpcode::G_UNMERGE_VALUES: {
540 unsigned NumOps =
MI.getNumOperands();
542 LLT SrcTy = MRI.getType(SrcReg);
544 if (SrcTy.isVector() && SrcTy.getScalarType() != DstTy.
getScalarType())
549 for (; DstIdx !=
NumOps - 1 &&
MI.getOperand(DstIdx).
getReg() != R;
553 APInt SubDemandedElts = DemandedElts;
554 if (SrcTy.isVector()) {
557 DemandedElts.
zext(SrcTy.getNumElements()).
shl(DstIdx * DstLanes);
563 if (SrcTy.isVector())
564 Known = std::move(SrcOpKnown);
569 case TargetOpcode::G_BSWAP: {
575 case TargetOpcode::G_BITREVERSE: {
581 case TargetOpcode::G_CTPOP: {
593 case TargetOpcode::G_UBFX: {
594 KnownBits SrcOpKnown, OffsetKnown, WidthKnown;
604 case TargetOpcode::G_SBFX: {
605 KnownBits SrcOpKnown, OffsetKnown, WidthKnown;
622 case TargetOpcode::G_UADDO:
623 case TargetOpcode::G_UADDE:
624 case TargetOpcode::G_SADDO:
625 case TargetOpcode::G_SADDE:
626 case TargetOpcode::G_USUBO:
627 case TargetOpcode::G_USUBE:
628 case TargetOpcode::G_SSUBO:
629 case TargetOpcode::G_SSUBE:
630 case TargetOpcode::G_UMULO:
631 case TargetOpcode::G_SMULO: {
632 if (
MI.getOperand(1).getReg() == R) {
635 if (TL.getBooleanContents(DstTy.
isVector(),
false) ==
642 case TargetOpcode::G_CTLZ:
643 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
653 case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
660 LLT VecVT = MRI.getType(InVec);
678 if (ConstEltNo && ConstEltNo->ult(NumSrcElts))
685 case TargetOpcode::G_SHUFFLE_VECTOR: {
686 APInt DemandedLHS, DemandedRHS;
689 unsigned NumElts = MRI.getType(
MI.getOperand(1).getReg()).getNumElements();
691 DemandedElts, DemandedLHS, DemandedRHS))
712 case TargetOpcode::G_CONCAT_VECTORS: {
713 if (MRI.getType(
MI.getOperand(0).getReg()).isScalableVector())
718 unsigned NumSubVectorElts =
719 MRI.getType(
MI.getOperand(1).getReg()).getNumElements();
723 DemandedElts.
extractBits(NumSubVectorElts,
I * NumSubVectorElts);
735 case TargetOpcode::G_ABS: {
749 Ty = Ty.getScalarType();
758 LLT Ty = MRI.getType(R);
761 computeKnownFPClass(R, DemandedElts, InterestedClasses, Known,
Depth);
764void GISelValueTracking::computeKnownFPClassForFPTrunc(
772 KnownFPClass KnownSrc;
773 computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
786void GISelValueTracking::computeKnownFPClass(
Register R,
787 const APInt &DemandedElts,
791 assert(Known.
isUnknown() &&
"should not be called with known information");
801 MachineInstr &
MI = *MRI.getVRegDef(R);
802 unsigned Opcode =
MI.getOpcode();
803 LLT DstTy = MRI.getType(R);
811 switch (Cst->getKind()) {
813 auto APF = Cst->getScalarValue();
815 Known.
SignBit = APF.isNegative();
820 bool SignBitAllZero =
true;
821 bool SignBitAllOne =
true;
823 for (
auto C : *Cst) {
826 SignBitAllZero =
false;
828 SignBitAllOne =
false;
831 if (SignBitAllOne != SignBitAllZero)
847 KnownNotFromFlags |=
fcNan;
849 KnownNotFromFlags |=
fcInf;
853 InterestedClasses &= ~KnownNotFromFlags;
855 auto ClearClassesFromFlags =
862 const MachineFunction *MF =
MI.getMF();
866 TL.computeKnownFPClassForTargetInstr(*
this, R, Known, DemandedElts, MRI,
869 case TargetOpcode::G_FNEG: {
871 computeKnownFPClass(Val, DemandedElts, InterestedClasses, Known,
Depth + 1);
875 case TargetOpcode::G_SELECT: {
898 bool LookThroughFAbsFNeg = CmpLHS !=
LHS && CmpLHS !=
RHS;
899 std::tie(TestedValue, MaskIfTrue, MaskIfFalse) =
905 MaskIfTrue = TestedMask;
906 MaskIfFalse = ~TestedMask;
909 if (TestedValue ==
LHS) {
911 FilterLHS = MaskIfTrue;
912 }
else if (TestedValue ==
RHS) {
914 FilterRHS = MaskIfFalse;
918 computeKnownFPClass(
LHS, DemandedElts, InterestedClasses & FilterLHS, Known,
922 computeKnownFPClass(
RHS, DemandedElts, InterestedClasses & FilterRHS,
929 case TargetOpcode::G_FCOPYSIGN: {
930 Register Magnitude =
MI.getOperand(1).getReg();
933 KnownFPClass KnownSign;
935 computeKnownFPClass(Magnitude, DemandedElts, InterestedClasses, Known,
937 computeKnownFPClass(Sign, DemandedElts, InterestedClasses, KnownSign,
942 case TargetOpcode::G_FMA:
943 case TargetOpcode::G_STRICT_FMA:
944 case TargetOpcode::G_FMAD: {
959 KnownFPClass KnownAddend;
960 computeKnownFPClass(
C, DemandedElts, InterestedClasses, KnownAddend,
967 case TargetOpcode::G_FSQRT:
968 case TargetOpcode::G_STRICT_FSQRT: {
969 KnownFPClass KnownSrc;
971 if (InterestedClasses &
fcNan)
976 computeKnownFPClass(Val, DemandedElts, InterestedSrcs, KnownSrc,
Depth + 1);
991 case TargetOpcode::G_FABS: {
996 computeKnownFPClass(Val, DemandedElts, InterestedClasses, Known,
1002 case TargetOpcode::G_FSIN:
1003 case TargetOpcode::G_FCOS:
1004 case TargetOpcode::G_FSINCOS: {
1007 KnownFPClass KnownSrc;
1009 computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
1017 case TargetOpcode::G_FMAXNUM:
1018 case TargetOpcode::G_FMINNUM:
1019 case TargetOpcode::G_FMINNUM_IEEE:
1020 case TargetOpcode::G_FMAXIMUM:
1021 case TargetOpcode::G_FMINIMUM:
1022 case TargetOpcode::G_FMAXNUM_IEEE:
1023 case TargetOpcode::G_FMAXIMUMNUM:
1024 case TargetOpcode::G_FMINIMUMNUM: {
1027 KnownFPClass KnownLHS, KnownRHS;
1029 computeKnownFPClass(
LHS, DemandedElts, InterestedClasses, KnownLHS,
1031 computeKnownFPClass(
RHS, DemandedElts, InterestedClasses, KnownRHS,
1035 Known = KnownLHS | KnownRHS;
1038 if (NeverNaN && (Opcode == TargetOpcode::G_FMINNUM ||
1039 Opcode == TargetOpcode::G_FMAXNUM ||
1040 Opcode == TargetOpcode::G_FMINIMUMNUM ||
1041 Opcode == TargetOpcode::G_FMAXIMUMNUM))
1044 if (Opcode == TargetOpcode::G_FMAXNUM ||
1045 Opcode == TargetOpcode::G_FMAXIMUMNUM ||
1046 Opcode == TargetOpcode::G_FMAXNUM_IEEE) {
1054 }
else if (Opcode == TargetOpcode::G_FMAXIMUM) {
1060 }
else if (Opcode == TargetOpcode::G_FMINNUM ||
1061 Opcode == TargetOpcode::G_FMINIMUMNUM ||
1062 Opcode == TargetOpcode::G_FMINNUM_IEEE) {
1070 }
else if (Opcode == TargetOpcode::G_FMINIMUM) {
1102 }
else if ((Opcode == TargetOpcode::G_FMAXIMUM ||
1103 Opcode == TargetOpcode::G_FMINIMUM) ||
1104 Opcode == TargetOpcode::G_FMAXIMUMNUM ||
1105 Opcode == TargetOpcode::G_FMINIMUMNUM ||
1106 Opcode == TargetOpcode::G_FMAXNUM_IEEE ||
1107 Opcode == TargetOpcode::G_FMINNUM_IEEE ||
1113 if ((Opcode == TargetOpcode::G_FMAXIMUM ||
1114 Opcode == TargetOpcode::G_FMAXNUM ||
1115 Opcode == TargetOpcode::G_FMAXIMUMNUM ||
1116 Opcode == TargetOpcode::G_FMAXNUM_IEEE) &&
1119 else if ((Opcode == TargetOpcode::G_FMINIMUM ||
1120 Opcode == TargetOpcode::G_FMINNUM ||
1121 Opcode == TargetOpcode::G_FMINIMUMNUM ||
1122 Opcode == TargetOpcode::G_FMINNUM_IEEE) &&
1129 case TargetOpcode::G_FCANONICALIZE: {
1131 KnownFPClass KnownSrc;
1132 computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
1154 DenormalMode DenormMode = MF->getDenormalMode(FPType);
1173 case TargetOpcode::G_VECREDUCE_FMAX:
1174 case TargetOpcode::G_VECREDUCE_FMIN:
1175 case TargetOpcode::G_VECREDUCE_FMAXIMUM:
1176 case TargetOpcode::G_VECREDUCE_FMINIMUM: {
1182 computeKnownFPClass(Val,
MI.getFlags(), InterestedClasses,
Depth + 1);
1188 case TargetOpcode::G_TRUNC:
1189 case TargetOpcode::G_FFLOOR:
1190 case TargetOpcode::G_FCEIL:
1191 case TargetOpcode::G_FRINT:
1192 case TargetOpcode::G_FNEARBYINT:
1193 case TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND:
1194 case TargetOpcode::G_INTRINSIC_ROUND: {
1196 KnownFPClass KnownSrc;
1202 computeKnownFPClass(Val, DemandedElts, InterestedSrcs, KnownSrc,
Depth + 1);
1219 case TargetOpcode::G_FEXP:
1220 case TargetOpcode::G_FEXP2:
1221 case TargetOpcode::G_FEXP10: {
1227 KnownFPClass KnownSrc;
1228 computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
1237 case TargetOpcode::G_FLOG:
1238 case TargetOpcode::G_FLOG2:
1239 case TargetOpcode::G_FLOG10: {
1254 KnownFPClass KnownSrc;
1255 computeKnownFPClass(Val, DemandedElts, InterestedSrcs, KnownSrc,
Depth + 1);
1265 DenormalMode
Mode = MF->getDenormalMode(FltSem);
1272 case TargetOpcode::G_FPOWI: {
1277 LLT ExpTy = MRI.getType(Exp);
1279 Exp, ExpTy.
isVector() ? DemandedElts : APInt(1, 1),
Depth + 1);
1281 if (ExponentKnownBits.
Zero[0]) {
1295 KnownFPClass KnownSrc;
1296 computeKnownFPClass(Val, DemandedElts,
fcNegative, KnownSrc,
Depth + 1);
1301 case TargetOpcode::G_FLDEXP:
1302 case TargetOpcode::G_STRICT_FLDEXP: {
1304 KnownFPClass KnownSrc;
1305 computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
1322 if ((InterestedClasses & ExpInfoMask) ==
fcNone)
1331 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
1332 computeKnownFPClassForFPTrunc(
MI, DemandedElts, InterestedClasses, Known,
1336 case TargetOpcode::G_FADD:
1337 case TargetOpcode::G_STRICT_FADD:
1338 case TargetOpcode::G_FSUB:
1339 case TargetOpcode::G_STRICT_FSUB: {
1342 KnownFPClass KnownLHS, KnownRHS;
1344 (Opcode == TargetOpcode::G_FADD ||
1345 Opcode == TargetOpcode::G_STRICT_FADD) &&
1347 bool WantNaN = (InterestedClasses &
fcNan) !=
fcNone;
1350 if (!WantNaN && !WantNegative && !WantNegZero)
1356 if (InterestedClasses &
fcNan)
1357 InterestedSrcs |=
fcInf;
1358 computeKnownFPClass(
RHS, DemandedElts, InterestedSrcs, KnownRHS,
Depth + 1);
1363 (Opcode == TargetOpcode::G_FSUB ||
1364 Opcode == TargetOpcode::G_STRICT_FSUB)) {
1368 computeKnownFPClass(
LHS, DemandedElts, InterestedSrcs, KnownLHS,
1376 if (Opcode == TargetOpcode::G_FADD ||
1377 Opcode == TargetOpcode::G_STRICT_FADD) {
1404 case TargetOpcode::G_FMUL:
1405 case TargetOpcode::G_STRICT_FMUL: {
1418 KnownFPClass KnownLHS, KnownRHS;
1419 computeKnownFPClass(
RHS, DemandedElts, NeedForNan, KnownRHS,
Depth + 1);
1423 computeKnownFPClass(
LHS, DemandedElts, NeedForNan, KnownLHS,
Depth + 1);
1450 case TargetOpcode::G_FDIV:
1451 case TargetOpcode::G_FREM: {
1457 if (Opcode == TargetOpcode::G_FDIV) {
1468 const bool WantNan = (InterestedClasses &
fcNan) !=
fcNone;
1470 const bool WantPositive = Opcode == TargetOpcode::G_FREM &&
1472 if (!WantNan && !WantNegative && !WantPositive)
1475 KnownFPClass KnownLHS, KnownRHS;
1478 KnownRHS,
Depth + 1);
1480 bool KnowSomethingUseful =
1483 if (KnowSomethingUseful || WantPositive) {
1488 computeKnownFPClass(
LHS, DemandedElts, InterestedClasses & InterestedLHS,
1489 KnownLHS,
Depth + 1);
1492 if (Opcode == TargetOpcode::G_FDIV) {
1533 case TargetOpcode::G_FPEXT: {
1537 computeKnownFPClass(R, DemandedElts, InterestedClasses, Known,
Depth + 1);
1541 LLT SrcTy = MRI.getType(Src).getScalarType();
1558 case TargetOpcode::G_FPTRUNC: {
1559 computeKnownFPClassForFPTrunc(
MI, DemandedElts, InterestedClasses, Known,
1563 case TargetOpcode::G_SITOFP:
1564 case TargetOpcode::G_UITOFP: {
1573 if (Opcode == TargetOpcode::G_UITOFP)
1577 LLT Ty = MRI.getType(Val);
1579 if (InterestedClasses &
fcInf) {
1584 if (Opcode == TargetOpcode::G_SITOFP)
1598 case TargetOpcode::G_BUILD_VECTOR:
1599 case TargetOpcode::G_CONCAT_VECTORS: {
1606 for (
unsigned Idx = 0; Idx <
Merge.getNumSources(); ++Idx) {
1608 bool NeedsElt = DemandedElts[Idx];
1614 computeKnownFPClass(Src, Known, InterestedClasses,
Depth + 1);
1617 KnownFPClass Known2;
1618 computeKnownFPClass(Src, Known2, InterestedClasses,
Depth + 1);
1630 case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1640 LLT VecTy = MRI.getType(Vec);
1645 if (CIdx && CIdx->ult(NumElts))
1647 return computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known,
1653 case TargetOpcode::G_INSERT_VECTOR_ELT: {
1659 LLT VecTy = MRI.getType(Vec);
1667 APInt DemandedVecElts = DemandedElts;
1668 bool NeedsElt =
true;
1670 if (CIdx && CIdx->ult(NumElts)) {
1671 DemandedVecElts.
clearBit(CIdx->getZExtValue());
1672 NeedsElt = DemandedElts[CIdx->getZExtValue()];
1677 computeKnownFPClass(Elt, Known, InterestedClasses,
Depth + 1);
1686 if (!DemandedVecElts.
isZero()) {
1687 KnownFPClass Known2;
1688 computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known2,
1695 case TargetOpcode::G_SHUFFLE_VECTOR: {
1699 APInt DemandedLHS, DemandedRHS;
1701 assert(DemandedElts == APInt(1, 1));
1702 DemandedLHS = DemandedRHS = DemandedElts;
1705 DemandedElts, DemandedLHS,
1712 if (!!DemandedLHS) {
1714 computeKnownFPClass(
LHS, DemandedLHS, InterestedClasses, Known,
1724 if (!!DemandedRHS) {
1725 KnownFPClass Known2;
1727 computeKnownFPClass(
RHS, DemandedRHS, InterestedClasses, Known2,
1733 case TargetOpcode::COPY: {
1736 if (!Src.isVirtual())
1739 computeKnownFPClass(Src, DemandedElts, InterestedClasses, Known,
Depth + 1);
1750 computeKnownFPClass(R, DemandedElts, InterestedClasses, KnownClasses,
Depth);
1751 return KnownClasses;
1757 computeKnownFPClass(R, Known, InterestedClasses,
Depth);
1765 InterestedClasses &=
~fcNan;
1767 InterestedClasses &=
~fcInf;
1770 computeKnownFPClass(R, DemandedElts, InterestedClasses,
Depth);
1773 Result.KnownFPClasses &=
~fcNan;
1775 Result.KnownFPClasses &=
~fcInf;
1781 LLT Ty = MRI.getType(R);
1782 APInt DemandedElts =
1784 return computeKnownFPClass(R, DemandedElts, Flags, InterestedClasses,
Depth);
1788unsigned GISelValueTracking::computeNumSignBitsMin(
Register Src0,
Register Src1,
1789 const APInt &DemandedElts,
1793 if (Src1SignBits == 1)
1810 case TargetOpcode::G_SEXTLOAD:
1813 case TargetOpcode::G_ZEXTLOAD:
1826 const APInt &DemandedElts,
1829 unsigned Opcode =
MI.getOpcode();
1831 if (Opcode == TargetOpcode::G_CONSTANT)
1832 return MI.getOperand(1).getCImm()->getValue().getNumSignBits();
1840 LLT DstTy = MRI.getType(R);
1850 unsigned FirstAnswer = 1;
1852 case TargetOpcode::COPY: {
1854 if (Src.getReg().isVirtual() && Src.getSubReg() == 0 &&
1855 MRI.getType(Src.getReg()).isValid()) {
1862 case TargetOpcode::G_SEXT: {
1864 LLT SrcTy = MRI.getType(Src);
1868 case TargetOpcode::G_ASSERT_SEXT:
1869 case TargetOpcode::G_SEXT_INREG: {
1872 unsigned SrcBits =
MI.getOperand(2).getImm();
1873 unsigned InRegBits = TyBits - SrcBits + 1;
1877 case TargetOpcode::G_LOAD: {
1884 case TargetOpcode::G_SEXTLOAD: {
1899 case TargetOpcode::G_ZEXTLOAD: {
1914 case TargetOpcode::G_AND:
1915 case TargetOpcode::G_OR:
1916 case TargetOpcode::G_XOR: {
1918 unsigned Src1NumSignBits =
1920 if (Src1NumSignBits != 1) {
1922 unsigned Src2NumSignBits =
1924 FirstAnswer = std::min(Src1NumSignBits, Src2NumSignBits);
1928 case TargetOpcode::G_ASHR: {
1933 FirstAnswer = std::min<uint64_t>(FirstAnswer + *
C, TyBits);
1936 case TargetOpcode::G_SHL: {
1939 if (std::optional<ConstantRange> ShAmtRange =
1941 uint64_t MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
1942 uint64_t MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
1952 if (ExtOpc == TargetOpcode::G_SEXT || ExtOpc == TargetOpcode::G_ZEXT ||
1953 ExtOpc == TargetOpcode::G_ANYEXT) {
1954 LLT ExtTy = MRI.getType(Src1);
1956 LLT ExtendeeTy = MRI.getType(Extendee);
1960 if (SizeDiff <= MinShAmt) {
1964 return Tmp - MaxShAmt;
1970 return Tmp - MaxShAmt;
1974 case TargetOpcode::G_TRUNC: {
1976 LLT SrcTy = MRI.getType(Src);
1980 unsigned NumSrcBits = SrcTy.getScalarSizeInBits();
1982 if (NumSrcSignBits > (NumSrcBits - DstTyBits))
1983 return NumSrcSignBits - (NumSrcBits - DstTyBits);
1986 case TargetOpcode::G_SELECT: {
1987 return computeNumSignBitsMin(
MI.getOperand(2).getReg(),
1988 MI.getOperand(3).getReg(), DemandedElts,
1991 case TargetOpcode::G_SMIN:
1992 case TargetOpcode::G_SMAX:
1993 case TargetOpcode::G_UMIN:
1994 case TargetOpcode::G_UMAX:
1996 return computeNumSignBitsMin(
MI.getOperand(1).getReg(),
1997 MI.getOperand(2).getReg(), DemandedElts,
1999 case TargetOpcode::G_SADDO:
2000 case TargetOpcode::G_SADDE:
2001 case TargetOpcode::G_UADDO:
2002 case TargetOpcode::G_UADDE:
2003 case TargetOpcode::G_SSUBO:
2004 case TargetOpcode::G_SSUBE:
2005 case TargetOpcode::G_USUBO:
2006 case TargetOpcode::G_USUBE:
2007 case TargetOpcode::G_SMULO:
2008 case TargetOpcode::G_UMULO: {
2012 if (
MI.getOperand(1).getReg() == R) {
2013 if (TL.getBooleanContents(DstTy.
isVector(),
false) ==
2020 case TargetOpcode::G_SUB: {
2022 unsigned Src2NumSignBits =
2024 if (Src2NumSignBits == 1)
2034 if ((Known2.
Zero | 1).isAllOnes())
2041 FirstAnswer = Src2NumSignBits;
2048 unsigned Src1NumSignBits =
2050 if (Src1NumSignBits == 1)
2055 FirstAnswer = std::min(Src1NumSignBits, Src2NumSignBits) - 1;
2058 case TargetOpcode::G_ADD: {
2060 unsigned Src2NumSignBits =
2062 if (Src2NumSignBits <= 2)
2066 unsigned Src1NumSignBits =
2068 if (Src1NumSignBits == 1)
2077 if ((Known1.
Zero | 1).isAllOnes())
2083 FirstAnswer = Src1NumSignBits;
2092 FirstAnswer = std::min(Src1NumSignBits, Src2NumSignBits) - 1;
2095 case TargetOpcode::G_FCMP:
2096 case TargetOpcode::G_ICMP: {
2097 bool IsFP = Opcode == TargetOpcode::G_FCMP;
2100 auto BC = TL.getBooleanContents(DstTy.
isVector(), IsFP);
2107 case TargetOpcode::G_BUILD_VECTOR: {
2109 FirstAnswer = TyBits;
2110 APInt SingleDemandedElt(1, 1);
2112 if (!DemandedElts[
I])
2117 FirstAnswer = std::min(FirstAnswer, Tmp2);
2120 if (FirstAnswer == 1)
2125 case TargetOpcode::G_CONCAT_VECTORS: {
2126 if (MRI.getType(
MI.getOperand(0).getReg()).isScalableVector())
2128 FirstAnswer = TyBits;
2131 unsigned NumSubVectorElts =
2132 MRI.getType(
MI.getOperand(1).getReg()).getNumElements();
2135 DemandedElts.
extractBits(NumSubVectorElts,
I * NumSubVectorElts);
2140 FirstAnswer = std::min(FirstAnswer, Tmp2);
2143 if (FirstAnswer == 1)
2148 case TargetOpcode::G_SHUFFLE_VECTOR: {
2151 APInt DemandedLHS, DemandedRHS;
2153 unsigned NumElts = MRI.getType(Src1).getNumElements();
2155 DemandedElts, DemandedLHS, DemandedRHS))
2161 if (FirstAnswer == 1)
2163 if (!!DemandedRHS) {
2166 FirstAnswer = std::min(FirstAnswer, Tmp2);
2170 case TargetOpcode::G_SPLAT_VECTOR: {
2174 unsigned NumSrcBits = MRI.getType(Src).getSizeInBits();
2175 if (NumSrcSignBits > (NumSrcBits - TyBits))
2176 return NumSrcSignBits - (NumSrcBits - TyBits);
2179 case TargetOpcode::G_INTRINSIC:
2180 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
2181 case TargetOpcode::G_INTRINSIC_CONVERGENT:
2182 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
2185 TL.computeNumSignBitsForTargetInstr(*
this, R, DemandedElts, MRI,
Depth);
2187 FirstAnswer = std::max(FirstAnswer, NumBits);
2207 Mask <<= Mask.getBitWidth() - TyBits;
2208 return std::max(FirstAnswer, Mask.countl_one());
2212 LLT Ty = MRI.getType(R);
2213 APInt DemandedElts =
2222 unsigned Opcode =
MI.getOpcode();
2224 LLT Ty = MRI.getType(R);
2225 unsigned BitWidth = Ty.getScalarSizeInBits();
2227 if (Opcode == TargetOpcode::G_CONSTANT) {
2228 const APInt &ShAmt =
MI.getOperand(1).getCImm()->getValue();
2230 return std::nullopt;
2234 if (Opcode == TargetOpcode::G_BUILD_VECTOR) {
2235 const APInt *MinAmt =
nullptr, *MaxAmt =
nullptr;
2236 for (
unsigned I = 0, E =
MI.getNumOperands() - 1;
I != E; ++
I) {
2237 if (!DemandedElts[
I])
2240 if (
Op->getOpcode() != TargetOpcode::G_CONSTANT) {
2241 MinAmt = MaxAmt =
nullptr;
2245 const APInt &ShAmt =
Op->getOperand(1).getCImm()->getValue();
2247 return std::nullopt;
2248 if (!MinAmt || MinAmt->
ugt(ShAmt))
2250 if (!MaxAmt || MaxAmt->ult(ShAmt))
2253 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
2254 "Failed to find matching min/max shift amounts");
2255 if (MinAmt && MaxAmt)
2265 return std::nullopt;
2270 if (std::optional<ConstantRange> AmtRange =
2272 return AmtRange->getUnsignedMin().getZExtValue();
2273 return std::nullopt;
2291 Info = std::make_unique<GISelValueTracking>(MF, MaxDepth);
2316 if (!MO.isReg() || MO.getReg().isPhysical())
2319 if (!
MRI.getType(Reg).isValid())
2321 KnownBits Known = VTA.getKnownBits(Reg);
2322 unsigned SignedBits = VTA.computeNumSignBits(Reg);
2323 OS <<
" " << MO <<
" KnownBits:" << Known <<
" SignBits:" << SignedBits
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Utilities for dealing with flags related to floating point properties and mode controls.
static void dumpResult(const MachineInstr &MI, const KnownBits &Known, unsigned Depth)
static unsigned computeNumSignBitsFromRangeMetadata(const GAnyLoad *Ld, unsigned TyBits)
Compute the known number of sign bits with attached range metadata in the memory operand.
Provides analysis for querying information about KnownBits during GISel passes.
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
Implement a low-level type suitable for MachineInstr level instruction selection.
Contains matchers for matching SSA Machine Instructions.
Promote Memory to Register
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file describes how to lower LLVM code to machine code.
static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty)
static Function * getFunction(FunctionType *Ty, const Twine &Name, Module *M)
static LLVM_ABI bool isRepresentableAsNormalIn(const fltSemantics &Src, const fltSemantics &Dst)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
void setAllBits()
Set every bit to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
void setPreservesAll()
Set by analyses that do not transform their input at all.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
This class represents a range of values.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
Represents any generic load, including sign/zero extending variants.
const MDNode * getRanges() const
Returns the Ranges that describes the dereference.
static LLVM_ABI std::optional< GFConstant > getConstant(Register Const, const MachineRegisterInfo &MRI)
To use KnownBitsInfo analysis in a pass, KnownBitsInfo &Info = getAnalysis<GISelValueTrackingInfoAnal...
GISelValueTracking & get(MachineFunction &MF)
bool runOnMachineFunction(MachineFunction &MF) override
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
GISelValueTracking Result
LLVM_ABI Result run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
LLVM_ABI PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
unsigned getMaxDepth() const
KnownBits getKnownBits(Register R)
Align computeKnownAlignment(Register R, unsigned Depth=0)
std::optional< ConstantRange > getValidShiftAmountRange(Register R, const APInt &DemandedElts, unsigned Depth)
If a G_SHL/G_ASHR/G_LSHR node with shift operand R has shift amounts that are all less than the eleme...
bool maskedValueIsZero(Register Val, const APInt &Mask)
std::optional< uint64_t > getValidMinimumShiftAmount(Register R, const APInt &DemandedElts, unsigned Depth=0)
If a G_SHL/G_ASHR/G_LSHR node with shift operand R has shift amounts that are all less than the eleme...
bool signBitIsZero(Register Op)
const DataLayout & getDataLayout() const
unsigned computeNumSignBits(Register R, const APInt &DemandedElts, unsigned Depth=0)
APInt getKnownOnes(Register R)
KnownBits getKnownBits(MachineInstr &MI)
APInt getKnownZeroes(Register R)
void computeKnownBitsImpl(Register R, KnownBits &Known, const APInt &DemandedElts, unsigned Depth=0)
Register getCondReg() const
Register getFalseReg() const
Register getTrueReg() const
Register getSrc2Reg() const
Register getSrc1Reg() const
ArrayRef< int > getMask() const
constexpr bool isScalableVector() const
Returns true if the LLT is a scalable vector.
constexpr unsigned getScalarSizeInBits() const
constexpr bool isValid() const
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
constexpr bool isFixedVector() const
Returns true if the LLT is a fixed vector.
constexpr LLT getScalarType() const
TypeSize getValue() const
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
LLT getMemoryType() const
Return the memory type of the memory reference.
const MDNode * getRanges() const
Return the range tag for the memory reference.
LocationSize getSizeInBits() const
Return the size in bits of the memory reference.
MachineOperand class - Representation of each machine instruction operand.
Register getReg() const
getReg - Returns the register number.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
operand_type_match m_Reg()
operand_type_match m_Pred()
bind_ty< FPClassTest > m_FPClassTest(FPClassTest &T)
bool mi_match(Reg R, const MachineRegisterInfo &MRI, Pattern &&P)
ClassifyOp_match< LHS, Test, TargetOpcode::G_IS_FPCLASS > m_GIsFPClass(const LHS &L, const Test &T)
Matches the register and immediate used in a fpclass test G_IS_FPCLASS val, 96.
CompareOp_match< Pred, LHS, RHS, TargetOpcode::G_FCMP > m_GFCmp(const Pred &P, const LHS &L, const RHS &R)
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI std::optional< APInt > getIConstantVRegVal(Register VReg, const MachineRegisterInfo &MRI)
If VReg is defined by a G_CONSTANT, return the corresponding value.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI const llvm::fltSemantics & getFltSemanticForLLT(LLT Ty)
Get the appropriate floating point arithmetic semantic based on the bit size of the given scalar LLT.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
AnalysisManager< MachineFunction > MachineFunctionAnalysisManager
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, FPClassTest RHSClass, bool LookThroughSrc=true)
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
constexpr unsigned MaxAnalysisRecursionDepth
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
DWARFExpression::Operation Op
std::string toString(const APInt &I, unsigned Radix, bool Signed, bool formatAsCLiteral=false, bool UpperCase=true, bool InsertSeparators=false)
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
static uint32_t extractBits(uint64_t Val, uint32_t Hi, uint32_t Lo)
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
constexpr bool outputsAreZero() const
Return true if output denormals should be flushed to 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getIEEE()
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
KnownBits reverseBits() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits sub(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from subtraction of LHS and RHS.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
bool isAllOnes() const
Returns true if value is all one bits.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
void copysign(const KnownFPClass &Sign)
bool isKnownNeverSubnormal() const
Return true if it's known this can never be a subnormal.
LLVM_ABI bool isKnownNeverLogicalZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a zero.
bool isKnownNeverPosZero() const
Return true if it's known this can never be a literal positive zero.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
void signBitMustBeZero()
Assume the sign bit is zero.
LLVM_ABI bool isKnownNeverLogicalPosZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a positive zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
LLVM_ABI bool isKnownNeverLogicalNegZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a negative zero.