97#define DEBUG_TYPE "loop-idiom"
99STATISTIC(NumMemSet,
"Number of memset's formed from loop stores");
100STATISTIC(NumMemCpy,
"Number of memcpy's formed from loop load+stores");
101STATISTIC(NumMemMove,
"Number of memmove's formed from loop load+stores");
102STATISTIC(NumStrLen,
"Number of strlen's and wcslen's formed from loop loads");
104 NumShiftUntilBitTest,
105 "Number of uncountable loops recognized as 'shift until bitttest' idiom");
107 "Number of uncountable loops recognized as 'shift until zero' idiom");
113 cl::desc(
"Options to disable Loop Idiom Recognize Pass."),
120 cl::desc(
"Proceed with loop idiom recognize pass, but do "
121 "not convert loop(s) to memset."),
128 cl::desc(
"Proceed with loop idiom recognize pass, but do "
129 "not convert loop(s) to memcpy."),
136 cl::desc(
"Proceed with loop idiom recognize pass, but do "
137 "not convert loop(s) to strlen."),
144 cl::desc(
"Proceed with loop idiom recognize pass, "
145 "enable conversion of loop(s) to wcslen."),
152 cl::desc(
"Proceed with loop idiom recognize pass, "
153 "but do not optimize CRC loops."),
158 "use-lir-code-size-heurs",
159 cl::desc(
"Use loop idiom recognition code size heuristics when compiling "
164 "loop-idiom-force-memset-pattern-intrinsic",
165 cl::desc(
"Use memset.pattern intrinsic whenever possible"),
cl::init(
false),
174class LoopIdiomRecognize {
175 Loop *CurLoop =
nullptr;
184 bool ApplyCodeSizeHeuristics;
185 std::unique_ptr<MemorySSAUpdater> MSSAU;
194 :
AA(
AA), DT(DT), LI(LI), SE(SE), TLI(TLI),
TTI(
TTI),
DL(
DL), ORE(ORE) {
196 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
199 bool runOnLoop(Loop *L);
202 using StoreList = SmallVector<StoreInst *, 8>;
203 using StoreListMap = MapVector<Value *, StoreList>;
205 StoreListMap StoreRefsForMemset;
206 StoreListMap StoreRefsForMemsetPattern;
207 StoreList StoreRefsForMemcpy;
209 bool HasMemsetPattern;
213 enum LegalStoreKind {
218 UnorderedAtomicMemcpy,
226 bool runOnCountableLoop();
227 bool runOnLoopBlock(BasicBlock *BB,
const SCEV *BECount,
228 SmallVectorImpl<BasicBlock *> &ExitBlocks);
230 void collectStores(BasicBlock *BB);
231 LegalStoreKind isLegalStore(StoreInst *SI);
232 enum class ForMemset {
No,
Yes };
233 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL,
const SCEV *BECount,
236 template <
typename MemInst>
237 bool processLoopMemIntrinsic(
239 bool (LoopIdiomRecognize::*Processor)(MemInst *,
const SCEV *),
240 const SCEV *BECount);
241 bool processLoopMemCpy(MemCpyInst *MCI,
const SCEV *BECount);
242 bool processLoopMemSet(MemSetInst *MSI,
const SCEV *BECount);
244 bool processLoopStridedStore(
Value *DestPtr,
const SCEV *StoreSizeSCEV,
245 MaybeAlign StoreAlignment,
Value *StoredVal,
246 Instruction *TheStore,
247 SmallPtrSetImpl<Instruction *> &Stores,
248 const SCEVAddRecExpr *Ev,
const SCEV *BECount,
249 bool IsNegStride,
bool IsLoopMemset =
false);
250 bool processLoopStoreOfLoopLoad(StoreInst *SI,
const SCEV *BECount);
251 bool processLoopStoreOfLoopLoad(
Value *DestPtr,
Value *SourcePtr,
252 const SCEV *StoreSize, MaybeAlign StoreAlign,
253 MaybeAlign LoadAlign, Instruction *TheStore,
254 Instruction *TheLoad,
255 const SCEVAddRecExpr *StoreEv,
256 const SCEVAddRecExpr *LoadEv,
257 const SCEV *BECount);
258 bool avoidLIRForMultiBlockLoop(
bool IsMemset =
false,
259 bool IsLoopMemset =
false);
260 bool optimizeCRCLoop(
const PolynomialInfo &
Info);
266 bool runOnNoncountableLoop();
268 bool recognizePopcount();
269 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
270 PHINode *CntPhi,
Value *Var);
272 bool ZeroCheck,
size_t CanonicalSize);
274 Instruction *DefX, PHINode *CntPhi,
275 Instruction *CntInst);
276 bool recognizeAndInsertFFS();
277 bool recognizeShiftUntilLessThan();
278 void transformLoopToCountable(
Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
279 Instruction *CntInst, PHINode *CntPhi,
280 Value *Var, Instruction *DefX,
282 bool IsCntPhiUsedOutsideLoop,
283 bool InsertSub =
false);
285 bool recognizeShiftUntilBitTest();
286 bool recognizeShiftUntilZero();
287 bool recognizeAndInsertStrLen();
299 const auto *
DL = &L.getHeader()->getDataLayout();
306 LoopIdiomRecognize LIR(&AR.
AA, &AR.
DT, &AR.
LI, &AR.
SE, &AR.
TLI, &AR.
TTI,
308 if (!LIR.runOnLoop(&L))
319 I->eraseFromParent();
328bool LoopIdiomRecognize::runOnLoop(
Loop *L) {
332 if (!
L->getLoopPreheader())
337 if (Name ==
"memset" || Name ==
"memcpy" || Name ==
"strlen" ||
342 ApplyCodeSizeHeuristics =
345 HasMemset = TLI->
has(LibFunc_memset);
351 HasMemsetPattern = TLI->
has(LibFunc_memset_pattern16);
352 HasMemcpy = TLI->
has(LibFunc_memcpy);
357 return runOnCountableLoop();
359 return runOnNoncountableLoop();
362bool LoopIdiomRecognize::runOnCountableLoop() {
365 "runOnCountableLoop() called on a loop without a predictable"
366 "backedge-taken count");
388 bool MadeChange =
false;
396 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
403 optimizeCRCLoop(*Res);
438 if (
DL->isBigEndian())
450 Type *CTy =
C->getType();
457LoopIdiomRecognize::LegalStoreKind
460 if (
SI->isVolatile())
461 return LegalStoreKind::None;
463 if (!
SI->isUnordered())
464 return LegalStoreKind::None;
467 if (
SI->getMetadata(LLVMContext::MD_nontemporal))
468 return LegalStoreKind::None;
470 Value *StoredVal =
SI->getValueOperand();
471 Value *StorePtr =
SI->getPointerOperand();
476 return LegalStoreKind::None;
484 return LegalStoreKind::None;
493 return LegalStoreKind::None;
504 bool UnorderedAtomic =
SI->isUnordered() && !
SI->isSimple();
513 return LegalStoreKind::Memset;
521 return LegalStoreKind::MemsetPattern;
528 unsigned StoreSize =
DL->getTypeStoreSize(
SI->getValueOperand()->getType());
530 if (StoreSize != StrideAP && StoreSize != -StrideAP)
531 return LegalStoreKind::None;
538 return LegalStoreKind::None;
541 return LegalStoreKind::None;
551 return LegalStoreKind::None;
554 UnorderedAtomic = UnorderedAtomic || LI->
isAtomic();
555 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
556 : LegalStoreKind::Memcpy;
559 return LegalStoreKind::None;
562void LoopIdiomRecognize::collectStores(
BasicBlock *BB) {
563 StoreRefsForMemset.clear();
564 StoreRefsForMemsetPattern.clear();
565 StoreRefsForMemcpy.clear();
572 switch (isLegalStore(
SI)) {
573 case LegalStoreKind::None:
576 case LegalStoreKind::Memset: {
579 StoreRefsForMemset[Ptr].push_back(
SI);
581 case LegalStoreKind::MemsetPattern: {
584 StoreRefsForMemsetPattern[Ptr].push_back(
SI);
586 case LegalStoreKind::Memcpy:
587 case LegalStoreKind::UnorderedAtomicMemcpy:
588 StoreRefsForMemcpy.push_back(
SI);
591 assert(
false &&
"unhandled return value");
600bool LoopIdiomRecognize::runOnLoopBlock(
610 bool MadeChange =
false;
617 for (
auto &SL : StoreRefsForMemset)
618 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
620 for (
auto &SL : StoreRefsForMemsetPattern)
621 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
624 for (
auto &
SI : StoreRefsForMemcpy)
625 MadeChange |= processLoopStoreOfLoopLoad(
SI, BECount);
627 MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
628 BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
629 MadeChange |= processLoopMemIntrinsic<MemSetInst>(
630 BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
637 const SCEV *BECount, ForMemset For) {
645 for (
unsigned i = 0, e = SL.
size(); i < e; ++i) {
646 assert(SL[i]->
isSimple() &&
"Expected only non-volatile stores.");
648 Value *FirstStoredVal = SL[i]->getValueOperand();
649 Value *FirstStorePtr = SL[i]->getPointerOperand();
653 unsigned FirstStoreSize =
DL->getTypeStoreSize(SL[i]->getValueOperand()->
getType());
656 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
661 Value *FirstSplatValue =
nullptr;
662 Constant *FirstPatternValue =
nullptr;
664 if (For == ForMemset::Yes)
669 assert((FirstSplatValue || FirstPatternValue) &&
670 "Expected either splat value or pattern value.");
678 for (j = i + 1;
j <
e; ++
j)
680 for (j = i;
j > 0; --
j)
683 for (
auto &k : IndexQueue) {
684 assert(SL[k]->
isSimple() &&
"Expected only non-volatile stores.");
685 Value *SecondStorePtr = SL[
k]->getPointerOperand();
690 if (FirstStride != SecondStride)
693 Value *SecondStoredVal = SL[
k]->getValueOperand();
694 Value *SecondSplatValue =
nullptr;
695 Constant *SecondPatternValue =
nullptr;
697 if (For == ForMemset::Yes)
702 assert((SecondSplatValue || SecondPatternValue) &&
703 "Expected either splat value or pattern value.");
706 if (For == ForMemset::Yes) {
708 FirstSplatValue = SecondSplatValue;
709 if (FirstSplatValue != SecondSplatValue)
713 FirstPatternValue = SecondPatternValue;
714 if (FirstPatternValue != SecondPatternValue)
719 ConsecutiveChain[SL[i]] = SL[
k];
739 unsigned StoreSize = 0;
742 while (Tails.
count(
I) || Heads.count(
I)) {
743 if (TransformedStores.
count(
I))
747 StoreSize +=
DL->getTypeStoreSize(
I->getValueOperand()->getType());
749 I = ConsecutiveChain[
I];
759 if (StoreSize != Stride && StoreSize != -Stride)
762 bool IsNegStride = StoreSize == -Stride;
766 if (processLoopStridedStore(StorePtr, StoreSizeSCEV,
768 HeadStore, AdjacentStores, StoreEv, BECount,
780template <
typename MemInst>
781bool LoopIdiomRecognize::processLoopMemIntrinsic(
783 bool (LoopIdiomRecognize::*Processor)(MemInst *,
const SCEV *),
784 const SCEV *BECount) {
785 bool MadeChange =
false;
791 if (!(this->*Processor)(
MI, BECount))
805bool LoopIdiomRecognize::processLoopMemCpy(
MemCpyInst *MCI,
806 const SCEV *BECount) {
817 if (!Dest || !Source)
825 const APInt *StoreStrideValue, *LoadStrideValue;
836 if ((SizeInBytes >> 32) != 0)
844 if (SizeInBytes != *StoreStrideValue && SizeInBytes != -*StoreStrideValue) {
847 <<
ore::NV(
"Inst",
"memcpy") <<
" in "
849 <<
" function will not be hoisted: "
850 <<
ore::NV(
"Reason",
"memcpy size is not equal to stride");
855 int64_t StoreStrideInt = StoreStrideValue->
getSExtValue();
856 int64_t LoadStrideInt = LoadStrideValue->
getSExtValue();
858 if (StoreStrideInt != LoadStrideInt)
861 return processLoopStoreOfLoopLoad(
868bool LoopIdiomRecognize::processLoopMemSet(
MemSetInst *MSI,
869 const SCEV *BECount) {
884 const SCEV *PointerStrideSCEV;
893 bool IsNegStride =
false;
896 if (IsConstantSize) {
906 if (SizeInBytes != *Stride && SizeInBytes != -*Stride)
909 IsNegStride = SizeInBytes == -*Stride;
917 if (
Pointer->getType()->getPointerAddressSpace() != 0) {
930 const SCEV *PositiveStrideSCEV =
933 LLVM_DEBUG(
dbgs() <<
" MemsetSizeSCEV: " << *MemsetSizeSCEV <<
"\n"
934 <<
" PositiveStrideSCEV: " << *PositiveStrideSCEV
937 if (PositiveStrideSCEV != MemsetSizeSCEV) {
940 const SCEV *FoldedPositiveStride =
942 const SCEV *FoldedMemsetSize =
946 <<
" FoldedMemsetSize: " << *FoldedMemsetSize <<
"\n"
947 <<
" FoldedPositiveStride: " << *FoldedPositiveStride
950 if (FoldedPositiveStride != FoldedMemsetSize) {
976 const SCEV *BECount,
const SCEV *StoreSizeSCEV,
986 const APInt *BECst, *ConstSize;
990 std::optional<uint64_t> SizeInt = ConstSize->
tryZExtValue();
992 if (BEInt && SizeInt)
1014 Type *IntPtr,
const SCEV *StoreSizeSCEV,
1017 if (!StoreSizeSCEV->
isOne()) {
1032 const SCEV *StoreSizeSCEV,
Loop *CurLoop,
1034 const SCEV *TripCountSCEV =
1043bool LoopIdiomRecognize::processLoopStridedStore(
1047 const SCEV *BECount,
bool IsNegStride,
bool IsLoopMemset) {
1059 Type *DestInt8PtrTy = Builder.getPtrTy(DestAS);
1070 if (!Expander.isSafeToExpand(Start))
1079 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->
getTerminator());
1091 StoreSizeSCEV, *
AA, Stores))
1094 if (avoidLIRForMultiBlockLoop(
true, IsLoopMemset))
1106 std::optional<int64_t> BytesWritten;
1109 const SCEV *TripCountS =
1111 if (!Expander.isSafeToExpand(TripCountS))
1114 if (!ConstStoreSize)
1116 Value *TripCount = Expander.expandCodeFor(TripCountS, IntIdxTy,
1118 uint64_t PatternRepsPerTrip =
1119 (ConstStoreSize->
getValue()->getZExtValue() * 8) /
1120 DL->getTypeSizeInBits(PatternValue->
getType());
1125 PatternRepsPerTrip == 1
1127 : Builder.CreateMul(TripCount,
1129 PatternRepsPerTrip));
1135 const SCEV *NumBytesS =
1136 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop,
DL, SE);
1140 if (!Expander.isSafeToExpand(NumBytesS))
1143 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->
getTerminator());
1145 BytesWritten = CI->getZExtValue();
1147 assert(MemsetArg &&
"MemsetArg should have been set");
1151 AATags = AATags.
merge(
Store->getAAMetadata());
1153 AATags = AATags.
extendTo(BytesWritten.value());
1159 NewCall = Builder.CreateMemSet(BasePtr, SplatValue, MemsetArg,
1166 NewCall = Builder.CreateIntrinsic(
1167 Intrinsic::experimental_memset_pattern,
1168 {DestInt8PtrTy, PatternValue->
getType(), IntIdxTy},
1169 {
BasePtr, PatternValue, MemsetArg,
1182 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1188 <<
" from store to: " << *Ev <<
" at: " << *TheStore
1194 R <<
"Transformed loop-strided store in "
1196 <<
" function into a call to "
1199 if (!Stores.empty())
1201 for (
auto *
I : Stores) {
1202 R <<
ore::NV(
"FromBlock",
I->getParent()->getName())
1210 for (
auto *
I : Stores) {
1212 MSSAU->removeMemoryAccess(
I,
true);
1216 MSSAU->getMemorySSA()->verifyMemorySSA();
1218 ExpCleaner.markResultUsed();
1225bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
StoreInst *
SI,
1226 const SCEV *BECount) {
1227 assert(
SI->isUnordered() &&
"Expected only non-volatile non-ordered stores.");
1229 Value *StorePtr =
SI->getPointerOperand();
1231 unsigned StoreSize =
DL->getTypeStoreSize(
SI->getValueOperand()->getType());
1244 return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV,
1246 StoreEv, LoadEv, BECount);
1250class MemmoveVerifier {
1252 explicit MemmoveVerifier(
const Value &LoadBasePtr,
const Value &StoreBasePtr,
1253 const DataLayout &
DL)
1255 LoadBasePtr.stripPointerCasts(), LoadOff,
DL)),
1257 StoreBasePtr.stripPointerCasts(), StoreOff,
DL)),
1258 IsSameObject(BP1 == BP2) {}
1260 bool loadAndStoreMayFormMemmove(
unsigned StoreSize,
bool IsNegStride,
1261 const Instruction &TheLoad,
1262 bool IsMemCpy)
const {
1266 if ((!IsNegStride && LoadOff <= StoreOff) ||
1267 (IsNegStride && LoadOff >= StoreOff))
1273 DL.getTypeSizeInBits(TheLoad.
getType()).getFixedValue() / 8;
1274 if (BP1 != BP2 || LoadSize != int64_t(StoreSize))
1276 if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) ||
1277 (IsNegStride && LoadOff + LoadSize > StoreOff))
1284 const DataLayout &
DL;
1285 int64_t LoadOff = 0;
1286 int64_t StoreOff = 0;
1291 const bool IsSameObject;
1295bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
1325 assert(ConstStoreSize &&
"store size is expected to be a constant");
1328 bool IsNegStride = StoreSize == -Stride;
1341 Value *StoreBasePtr = Expander.expandCodeFor(
1342 StrStart, Builder.getPtrTy(StrAS), Preheader->
getTerminator());
1354 IgnoredInsts.
insert(TheStore);
1357 const StringRef InstRemark = IsMemCpy ?
"memcpy" :
"load and store";
1359 bool LoopAccessStore =
1361 StoreSizeSCEV, *
AA, IgnoredInsts);
1362 if (LoopAccessStore) {
1368 IgnoredInsts.
insert(TheLoad);
1370 BECount, StoreSizeSCEV, *
AA, IgnoredInsts)) {
1374 <<
ore::NV(
"Inst", InstRemark) <<
" in "
1376 <<
" function will not be hoisted: "
1377 <<
ore::NV(
"Reason",
"The loop may access store location");
1381 IgnoredInsts.
erase(TheLoad);
1394 Value *LoadBasePtr = Expander.expandCodeFor(LdStart, Builder.getPtrTy(LdAS),
1399 MemmoveVerifier
Verifier(*LoadBasePtr, *StoreBasePtr, *
DL);
1400 if (IsMemCpy && !
Verifier.IsSameObject)
1401 IgnoredInsts.
erase(TheStore);
1403 StoreSizeSCEV, *
AA, IgnoredInsts)) {
1406 <<
ore::NV(
"Inst", InstRemark) <<
" in "
1408 <<
" function will not be hoisted: "
1409 <<
ore::NV(
"Reason",
"The loop may access load location");
1415 bool UseMemMove = IsMemCpy ?
Verifier.IsSameObject : LoopAccessStore;
1424 assert((StoreAlign && LoadAlign) &&
1425 "Expect unordered load/store to have align.");
1426 if (*StoreAlign < StoreSize || *LoadAlign < StoreSize)
1433 if (StoreSize >
TTI->getAtomicMemIntrinsicMaxElementSize())
1438 if (!
Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad,
1442 if (avoidLIRForMultiBlockLoop())
1447 const SCEV *NumBytesS =
1448 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop,
DL, SE);
1451 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->
getTerminator());
1455 AATags = AATags.
merge(StoreAATags);
1457 AATags = AATags.
extendTo(CI->getZExtValue());
1467 NewCall = Builder.CreateMemMove(StoreBasePtr, StoreAlign, LoadBasePtr,
1468 LoadAlign, NumBytes,
1472 Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign,
1473 NumBytes,
false, AATags);
1478 NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1479 StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize,
1485 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1491 <<
" from load ptr=" << *LoadEv <<
" at: " << *TheLoad
1493 <<
" from store ptr=" << *StoreEv <<
" at: " << *TheStore
1499 <<
"Formed a call to "
1501 <<
"() intrinsic from " <<
ore::NV(
"Inst", InstRemark)
1512 MSSAU->removeMemoryAccess(TheStore,
true);
1515 MSSAU->getMemorySSA()->verifyMemorySSA();
1520 ExpCleaner.markResultUsed();
1527bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(
bool IsMemset,
1528 bool IsLoopMemset) {
1529 if (ApplyCodeSizeHeuristics && CurLoop->
getNumBlocks() > 1) {
1530 if (CurLoop->
isOutermost() && (!IsMemset || !IsLoopMemset)) {
1532 <<
" : LIR " << (IsMemset ?
"Memset" :
"Memcpy")
1533 <<
" avoided: multi-block top-level loop\n");
1556 std::array<Constant *, 256> CRCConstants;
1558 CRCConstants.begin(),
1559 [CRCTy](
const APInt &
E) { return ConstantInt::get(CRCTy, E); });
1581 unsigned NewBTC = (
Info.TripCount / 8) - 1;
1588 Value *ExitLimit = ConstantInt::get(
IV->getType(), NewBTC);
1590 Value *NewExitCond =
1591 Builder.CreateICmp(ExitPred,
IV, ExitLimit,
"exit.cond");
1610 Type *OpTy =
Op->getType();
1614 return LoByte(Builder,
1615 CRCBW > 8 ? Builder.CreateLShr(
1616 Op, ConstantInt::get(OpTy, CRCBW - 8), Name)
1626 PHINode *CRCPhi = Builder.CreatePHI(CRCTy, 2,
"crc");
1630 Value *CRC = CRCPhi;
1634 Value *Indexer = CRC;
1642 Value *IVBits = Builder.CreateZExtOrTrunc(
1643 Builder.CreateShl(
IV, 3,
"iv.bits"), DataTy,
"iv.indexer");
1644 Value *DataIndexer =
1645 Info.ByteOrderSwapped
1646 ? Builder.CreateShl(
Data, IVBits,
"data.indexer")
1647 : Builder.CreateLShr(
Data, IVBits,
"data.indexer");
1648 Indexer = Builder.CreateXor(
1650 Builder.CreateZExtOrTrunc(Indexer, DataTy,
"crc.indexer.cast"),
1651 "crc.data.indexer");
1654 Indexer =
Info.ByteOrderSwapped ? HiIdx(Builder, Indexer,
"indexer.hi")
1655 : LoByte(Builder, Indexer,
"indexer.lo");
1658 Indexer = Builder.CreateZExt(
1663 Value *CRCTableGEP =
1664 Builder.CreateInBoundsGEP(CRCTy, GV, Indexer,
"tbl.ptradd");
1665 Value *CRCTableLd = Builder.CreateLoad(CRCTy, CRCTableGEP,
"tbl.ld");
1669 Value *CRCNext = CRCTableLd;
1672 ? Builder.CreateShl(CRC, 8,
"crc.be.shift")
1673 : Builder.CreateLShr(CRC, 8,
"crc.le.shift");
1674 CRCNext = Builder.CreateXor(CRCShift, CRCTableLd,
"crc.next");
1679 Info.ComputedValue->replaceUsesOutsideBlock(CRCNext,
1692bool LoopIdiomRecognize::runOnNoncountableLoop() {
1695 <<
"] Noncountable Loop %"
1698 return recognizePopcount() || recognizeAndInsertFFS() ||
1699 recognizeShiftUntilBitTest() || recognizeShiftUntilZero() ||
1700 recognizeShiftUntilLessThan() || recognizeAndInsertStrLen();
1710 bool JmpOnZero =
false) {
1719 if (!CmpZero || !CmpZero->isZero())
1730 return Cond->getOperand(0);
1737class StrlenVerifier {
1739 explicit StrlenVerifier(
const Loop *CurLoop, ScalarEvolution *SE,
1740 const TargetLibraryInfo *TLI)
1741 : CurLoop(CurLoop), SE(SE), TLI(TLI) {}
1743 bool isValidStrlenIdiom() {
1765 if (!LoopBody || LoopBody->
size() >= 15)
1784 const SCEV *LoadEv = SE->
getSCEV(IncPtr);
1797 if (OpWidth != StepSize * 8)
1799 if (OpWidth != 8 && OpWidth != 16 && OpWidth != 32)
1802 if (OpWidth != WcharSize * 8)
1806 for (Instruction &
I : *LoopBody)
1807 if (
I.mayHaveSideEffects())
1814 for (PHINode &PN : LoopExitBB->
phis()) {
1818 const SCEV *Ev = SE->
getSCEV(&PN);
1828 if (!AddRecEv || !AddRecEv->
isAffine())
1842 const Loop *CurLoop;
1843 ScalarEvolution *SE;
1844 const TargetLibraryInfo *TLI;
1847 ConstantInt *StepSizeCI;
1848 const SCEV *LoadBaseEv;
1913bool LoopIdiomRecognize::recognizeAndInsertStrLen() {
1917 StrlenVerifier
Verifier(CurLoop, SE, TLI);
1919 if (!
Verifier.isValidStrlenIdiom())
1926 assert(Preheader && LoopBody && LoopExitBB && LoopTerm &&
1927 "Should be verified to be valid by StrlenVerifier");
1942 Builder.SetCurrentDebugLocation(CurLoop->
getStartLoc());
1945 Value *MaterialzedBase = Expander.expandCodeFor(
1947 Builder.GetInsertPoint());
1949 Value *StrLenFunc =
nullptr;
1951 StrLenFunc =
emitStrLen(MaterialzedBase, Builder, *
DL, TLI);
1953 StrLenFunc =
emitWcsLen(MaterialzedBase, Builder, *
DL, TLI);
1955 assert(StrLenFunc &&
"Failed to emit strlen function.");
1974 StrlenEv,
Base->getType())));
1976 Value *MaterializedPHI = Expander.expandCodeFor(NewEv, NewEv->
getType(),
1977 Builder.GetInsertPoint());
1993 "loop body must have a successor that is it self");
1995 ? Builder.getFalse()
1996 : Builder.getTrue();
2001 LLVM_DEBUG(
dbgs() <<
" Formed strlen idiom: " << *StrLenFunc <<
"\n");
2005 <<
"Transformed " << StrLenFunc->
getName() <<
" loop idiom";
2033 return Cond->getOperand(0);
2044 if (PhiX && PhiX->getParent() == LoopEntry &&
2045 (PhiX->getOperand(0) == DefX || PhiX->
getOperand(1) == DefX))
2111 if (DefX->
getOpcode() != Instruction::LShr)
2114 IntrinID = Intrinsic::ctlz;
2116 if (!Shft || !Shft->
isOne())
2130 if (Inst.
getOpcode() != Instruction::Add)
2182 Value *VarX1, *VarX0;
2185 DefX2 = CountInst =
nullptr;
2186 VarX1 = VarX0 =
nullptr;
2187 PhiX = CountPhi =
nullptr;
2201 if (!DefX2 || DefX2->
getOpcode() != Instruction::And)
2212 if (!SubOneOp || SubOneOp->
getOperand(0) != VarX1)
2218 (SubOneOp->
getOpcode() == Instruction::Add &&
2231 CountInst =
nullptr;
2234 if (Inst.
getOpcode() != Instruction::Add)
2238 if (!Inc || !Inc->
isOne())
2246 bool LiveOutLoop =
false;
2273 CntInst = CountInst;
2313 Value *VarX =
nullptr;
2328 if (!DefX || !DefX->
isShift())
2330 IntrinID = DefX->
getOpcode() == Instruction::Shl ? Intrinsic::cttz :
2333 if (!Shft || !Shft->
isOne())
2358 if (Inst.
getOpcode() != Instruction::Add)
2381bool LoopIdiomRecognize::isProfitableToInsertFFS(
Intrinsic::ID IntrinID,
2382 Value *InitX,
bool ZeroCheck,
2383 size_t CanonicalSize) {
2390 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
2404bool LoopIdiomRecognize::insertFFSIfProfitable(
Intrinsic::ID IntrinID,
2408 bool IsCntPhiUsedOutsideLoop =
false;
2411 IsCntPhiUsedOutsideLoop =
true;
2414 bool IsCntInstUsedOutsideLoop =
false;
2417 IsCntInstUsedOutsideLoop =
true;
2422 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
2428 bool ZeroCheck =
false;
2437 if (!IsCntPhiUsedOutsideLoop) {
2456 size_t IdiomCanonicalSize = 6;
2457 if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, IdiomCanonicalSize))
2460 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
2462 IsCntPhiUsedOutsideLoop);
2469bool LoopIdiomRecognize::recognizeAndInsertFFS() {
2484 return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst);
2487bool LoopIdiomRecognize::recognizeShiftUntilLessThan() {
2498 APInt LoopThreshold;
2500 CntPhi, DefX, LoopThreshold))
2503 if (LoopThreshold == 2) {
2505 return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst);
2509 if (LoopThreshold != 4)
2527 APInt PreLoopThreshold;
2529 PreLoopThreshold != 2)
2532 bool ZeroCheck =
true;
2541 size_t IdiomCanonicalSize = 6;
2542 if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, IdiomCanonicalSize))
2546 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
2557bool LoopIdiomRecognize::recognizePopcount() {
2571 if (LoopBody->
size() >= 20) {
2590 if (!PreCondBI || PreCondBI->isUnconditional())
2599 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
2657void LoopIdiomRecognize::transformLoopToCountable(
2660 bool ZeroCheck,
bool IsCntPhiUsedOutsideLoop,
bool InsertSub) {
2665 Builder.SetCurrentDebugLocation(
DL);
2674 if (IsCntPhiUsedOutsideLoop) {
2675 if (DefX->
getOpcode() == Instruction::AShr)
2676 InitXNext = Builder.CreateAShr(InitX, 1);
2677 else if (DefX->
getOpcode() == Instruction::LShr)
2678 InitXNext = Builder.CreateLShr(InitX, 1);
2679 else if (DefX->
getOpcode() == Instruction::Shl)
2680 InitXNext = Builder.CreateShl(InitX, 1);
2688 Count = Builder.CreateSub(
2691 Count = Builder.CreateSub(
Count, ConstantInt::get(CountTy, 1));
2693 if (IsCntPhiUsedOutsideLoop)
2694 Count = Builder.CreateAdd(
Count, ConstantInt::get(CountTy, 1));
2696 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->
getType());
2703 if (!InitConst || !InitConst->
isZero())
2704 NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2708 NewCount = Builder.CreateSub(CntInitVal, NewCount);
2726 Builder.SetInsertPoint(LbCond);
2728 TcPhi, ConstantInt::get(CountTy, 1),
"tcdec",
false,
true));
2737 LbCond->
setOperand(1, ConstantInt::get(CountTy, 0));
2741 if (IsCntPhiUsedOutsideLoop)
2751void LoopIdiomRecognize::transformLoopToPopcount(
BasicBlock *PreCondBB,
2764 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
2767 NewCount = PopCntZext =
2770 if (NewCount != PopCnt)
2779 if (!InitConst || !InitConst->
isZero()) {
2780 NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2792 Value *Opnd0 = PopCntZext;
2793 Value *Opnd1 = ConstantInt::get(PopCntZext->
getType(), 0);
2798 Builder.CreateICmp(PreCond->
getPredicate(), Opnd0, Opnd1));
2799 PreCondBr->setCondition(NewPreCond);
2833 Builder.SetInsertPoint(LbCond);
2835 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
2836 "tcdec",
false,
true));
2845 LbCond->
setOperand(1, ConstantInt::get(Ty, 0));
2866 template <
typename ITy>
bool match(ITy *V)
const {
2867 return L->isLoopInvariant(V) &&
SubPattern.match(V);
2872template <
typename Ty>
2903 " Performing shift-until-bittest idiom detection.\n");
2913 assert(LoopPreheaderBB &&
"There is always a loop preheader.");
2920 Value *CmpLHS, *CmpRHS;
2931 auto MatchVariableBitMask = [&]() {
2941 auto MatchDecomposableConstantBitMask = [&]() {
2943 CmpLHS, CmpRHS, Pred,
true,
2945 if (Res && Res->Mask.isPowerOf2()) {
2949 BitMask = ConstantInt::get(CurrX->
getType(), Res->Mask);
2950 BitPos = ConstantInt::get(CurrX->
getType(), Res->Mask.logBase2());
2956 if (!MatchVariableBitMask() && !MatchDecomposableConstantBitMask()) {
2963 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
2968 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
2973 "Expected BaseX to be available in the preheader!");
2984 "Should only get equality predicates here.");
2994 if (TrueBB != LoopHeaderBB) {
3053bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
3054 bool MadeChange =
false;
3056 Value *
X, *BitMask, *BitPos, *XCurr;
3061 " shift-until-bittest idiom detection failed.\n");
3071 assert(LoopPreheaderBB &&
"There is always a loop preheader.");
3074 assert(SuccessorBB &&
"There is only a single successor.");
3080 Type *Ty =
X->getType();
3094 " Intrinsic is too costly, not beneficial\n");
3097 if (
TTI->getArithmeticInstrCost(Instruction::Shl, Ty,
CostKind) >
3109 std::optional<BasicBlock::iterator> InsertPt = std::nullopt;
3111 InsertPt = BitPosI->getInsertionPointAfterDef();
3119 return U.getUser() != BitPosFrozen;
3121 BitPos = BitPosFrozen;
3127 BitPos->
getName() +
".lowbitmask");
3129 Builder.CreateOr(LowBitMask, BitMask, BitPos->
getName() +
".mask");
3130 Value *XMasked = Builder.CreateAnd(
X, Mask,
X->getName() +
".masked");
3131 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
3132 IntrID, Ty, {XMasked, Builder.getTrue()},
3133 nullptr, XMasked->
getName() +
".numleadingzeros");
3134 Value *XMaskedNumActiveBits = Builder.CreateSub(
3136 XMasked->
getName() +
".numactivebits",
true,
3138 Value *XMaskedLeadingOnePos =
3140 XMasked->
getName() +
".leadingonepos",
false,
3143 Value *LoopBackedgeTakenCount = Builder.CreateSub(
3144 BitPos, XMaskedLeadingOnePos, CurLoop->
getName() +
".backedgetakencount",
3148 Value *LoopTripCount =
3149 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
3150 CurLoop->
getName() +
".tripcount",
true,
3157 Value *NewX = Builder.CreateShl(
X, LoopBackedgeTakenCount);
3160 I->copyIRFlags(XNext,
true);
3172 NewXNext = Builder.CreateShl(
X, LoopTripCount);
3177 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
3182 I->copyIRFlags(XNext,
true);
3193 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->
begin());
3194 auto *
IV = Builder.CreatePHI(Ty, 2, CurLoop->
getName() +
".iv");
3200 Builder.CreateAdd(
IV, ConstantInt::get(Ty, 1),
IV->getName() +
".next",
3201 true, Bitwidth != 2);
3204 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
3205 CurLoop->
getName() +
".ivcheck");
3207 const bool HasBranchWeights =
3211 auto *BI = Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
3212 if (HasBranchWeights) {
3214 std::swap(BranchWeights[0], BranchWeights[1]);
3224 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
3225 IV->addIncoming(IVNext, LoopHeaderBB);
3236 ++NumShiftUntilBitTest;
3272 const SCEV *&ExtraOffsetExpr,
3273 bool &InvertedCond) {
3275 " Performing shift-until-zero idiom detection.\n");
3288 assert(LoopPreheaderBB &&
"There is always a loop preheader.");
3299 !
match(ValShiftedIsZero,
3313 IntrinID = ValShifted->
getOpcode() == Instruction::Shl ? Intrinsic::cttz
3322 else if (
match(NBits,
3326 ExtraOffsetExpr = SE->
getSCEV(ExtraOffset);
3334 if (!IVPN || IVPN->getParent() != LoopHeaderBB) {
3339 Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB);
3350 "Should only get equality predicates here.");
3361 if (FalseBB != LoopHeaderBB) {
3372 if (ValShifted->
getOpcode() == Instruction::AShr &&
3436bool LoopIdiomRecognize::recognizeShiftUntilZero() {
3437 bool MadeChange =
false;
3443 const SCEV *ExtraOffsetExpr;
3446 Start, Val, ExtraOffsetExpr, InvertedCond)) {
3448 " shift-until-zero idiom detection failed.\n");
3458 assert(LoopPreheaderBB &&
"There is always a loop preheader.");
3461 assert(SuccessorBB &&
"There is only a single successor.");
3464 Builder.SetCurrentDebugLocation(
IV->getDebugLoc());
3480 " Intrinsic is too costly, not beneficial\n");
3487 bool OffsetIsZero = ExtraOffsetExpr->
isZero();
3491 CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic(
3492 IntrID, Ty, {Val, Builder.getFalse()},
3493 nullptr, Val->
getName() +
".numleadingzeros");
3494 Value *ValNumActiveBits = Builder.CreateSub(
3496 Val->
getName() +
".numactivebits",
true,
3500 Expander.setInsertPoint(&*Builder.GetInsertPoint());
3501 Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr);
3503 Value *ValNumActiveBitsOffset = Builder.CreateAdd(
3504 ValNumActiveBits, ExtraOffset, ValNumActiveBits->
getName() +
".offset",
3505 OffsetIsZero,
true);
3506 Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty},
3507 {ValNumActiveBitsOffset,
Start},
3508 nullptr,
"iv.final");
3511 IVFinal, Start, CurLoop->
getName() +
".backedgetakencount",
3512 OffsetIsZero,
true));
3516 Value *LoopTripCount =
3517 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
3518 CurLoop->
getName() +
".tripcount",
true,
3524 IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB);
3529 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->
begin());
3530 auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->
getName() +
".iv");
3535 Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() +
".next",
3536 true, Bitwidth != 2);
3539 auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount,
3540 CurLoop->
getName() +
".ivcheck");
3541 auto *NewIVCheck = CIVCheck;
3543 NewIVCheck = Builder.CreateNot(CIVCheck);
3544 NewIVCheck->takeName(ValShiftedIsZero);
3548 auto *IVDePHId = Builder.CreateAdd(CIV, Start,
"",
false,
3550 IVDePHId->takeName(
IV);
3555 const bool HasBranchWeights =
3559 auto *BI = Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB);
3560 if (HasBranchWeights) {
3562 std::swap(BranchWeights[0], BranchWeights[1]);
3570 CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
3571 CIV->addIncoming(CIVNext, LoopHeaderBB);
3579 IV->replaceAllUsesWith(IVDePHId);
3580 IV->eraseFromParent();
3589 ++NumShiftUntilZero;
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
This file defines the DenseMap class.
static const HTTPClientCleanup Cleanup
static bool mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, const SCEV *BECount, unsigned StoreSize, AliasAnalysis &AA, SmallPtrSetImpl< Instruction * > &Ignored)
mayLoopAccessLocation - Return true if the specified loop might access the specified pointer location...
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static Value * matchCondition(BranchInst *BI, BasicBlock *LoopEntry, bool JmpOnZero=false)
Check if the given conditional branch is based on the comparison between a variable and zero,...
static PHINode * getRecurrenceVar(Value *VarX, Instruction *DefX, BasicBlock *LoopEntry)
static CallInst * createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, const DebugLoc &DL, bool ZeroCheck, Intrinsic::ID IID)
static bool detectShiftUntilLessThanIdiom(Loop *CurLoop, const DataLayout &DL, Intrinsic::ID &IntrinID, Value *&InitX, Instruction *&CntInst, PHINode *&CntPhi, Instruction *&DefX, APInt &Threshold)
Return true if the idiom is detected in the loop.
static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, Value *&BitMask, Value *&BitPos, Value *&CurrX, Instruction *&NextX)
Return true if the idiom is detected in the loop.
static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, Instruction *&CntInst, PHINode *&CntPhi, Value *&Var)
Return true iff the idiom is detected in the loop.
static Constant * getMemSetPatternValue(Value *V, const DataLayout *DL)
getMemSetPatternValue - If a strided store of the specified value is safe to turn into a memset....
static CallInst * createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, const DebugLoc &DL)
static const SCEV * getNumBytes(const SCEV *BECount, Type *IntPtr, const SCEV *StoreSizeSCEV, Loop *CurLoop, const DataLayout *DL, ScalarEvolution *SE)
Compute the number of bytes as a SCEV from the backedge taken count.
static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, Intrinsic::ID &IntrinID, Value *&InitX, Instruction *&CntInst, PHINode *&CntPhi, Instruction *&DefX)
Return true if the idiom is detected in the loop.
static const SCEV * getStartForNegStride(const SCEV *Start, const SCEV *BECount, Type *IntPtr, const SCEV *StoreSizeSCEV, ScalarEvolution *SE)
static APInt getStoreStride(const SCEVAddRecExpr *StoreEv)
static Value * matchShiftULTCondition(BranchInst *BI, BasicBlock *LoopEntry, APInt &Threshold)
Check if the given conditional branch is based on an unsigned less-than comparison between a variable...
match_LoopInvariant< Ty > m_LoopInvariant(const Ty &M, const Loop *L)
Matches if the value is loop-invariant.
static void deleteDeadInstruction(Instruction *I)
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first DebugLoc that has line number information, given a range of instructions.
This file implements a map that provides insertion order iteration.
This file provides utility analysis objects describing memory locations.
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
Contains a collection of routines for determining if a given instruction is guaranteed to execute if ...
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static bool isSimple(Instruction *I)
verify safepoint Safepoint IR Verifier
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static const uint32_t IV[8]
Class for arbitrary precision integers.
std::optional< uint64_t > tryZExtValue() const
Get zero extended value if possible.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getBitWidth() const
Return the number of bits in the APInt.
int64_t getSExtValue() const
Get sign extended value.
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI iterator_range< filter_iterator< BasicBlock::const_iterator, std::function< bool(const Instruction &)> > > instructionsWithoutDebug(bool SkipPseudoOp=true) const
Return a const iterator range over the instructions in the block, skipping any debug instructions.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction & front() const
InstListType::iterator iterator
Instruction iterators...
LLVM_ABI const_iterator getFirstNonPHIOrDbgOrAlloca() const
Returns an iterator to the first instruction in this block that is not a PHINode, a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
BinaryOps getOpcode() const
Conditional or Unconditional Branch instruction.
void setCondition(Value *V)
bool isConditional() const
unsigned getNumSuccessors() const
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
This class represents a function call, abstracting a target machine's calling convention.
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLE
signed less or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
bool isOne() const
This is just a convenience method to make client code smaller for a common case.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
A parsed version of the target data layout string in and methods for querying it.
LLVM_ABI IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This class represents a freeze function that returns random concrete value if an operand is either a ...
PointerType * getType() const
Global values are always pointers.
@ PrivateLinkage
Like Internal, but omit from symbol table.
static CRCTable genSarwateTable(const APInt &GenPoly, bool ByteOrderSwapped)
Generate a lookup table of 256 entries by interleaving the generating polynomial.
This instruction compares its operands according to the predicate given to the constructor.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
ConstantInt * getInt1(bool V)
Get a constant value representing either true or false.
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
LLVM_ABI void insertBefore(InstListType::iterator InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified position.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
This class provides an interface for updating the loop pass manager based on mutations to the loop ne...
An instruction for reading from memory.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
static LocationSize precise(uint64_t Value)
static constexpr LocationSize afterPointer()
Any location after the base pointer (but still within the underlying object).
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
bool isOutermost() const
Return true if the loop does not have a parent (natural) loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
unsigned getNumBlocks() const
Get the number of blocks in this loop in constant time.
unsigned getNumBackEdges() const
Calculate the number of back edges to the loop header.
BlockT * getHeader() const
BlockT * getExitBlock() const
If getExitBlocks would return exactly one block, return that block.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
void getUniqueExitBlocks(SmallVectorImpl< BlockT * > &ExitBlocks) const
Return all unique successor blocks of this loop.
block_iterator block_begin() const
BlockT * getUniqueExitBlock() const
If getUniqueExitBlocks would return exactly one block, return that block.
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
ICmpInst * getLatchCmpInst() const
Get the latch condition instruction.
StringRef getName() const
PHINode * getCanonicalInductionVariable() const
Check to see if the loop has a canonical induction variable: an integer recurrence that starts at 0 a...
This class wraps the llvm.memcpy intrinsic.
Value * getLength() const
Value * getDest() const
This is just like getRawDest, but it strips off any cast instructions (including addrspacecast) that ...
MaybeAlign getDestAlign() const
bool isForceInlined() const
This class wraps the llvm.memset and llvm.memset.inline intrinsics.
MaybeAlign getSourceAlign() const
Value * getSource() const
This is just like getRawSource, but it strips off any cast instructions that feed it,...
Representation for a specific memory location.
An analysis that produces MemorySSA for a function.
Encapsulates MemorySSA, including all data associated with memory accesses.
A Module instance is used to store all the information related to an LLVM module.
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStart() const
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
This class represents a constant integer value.
ConstantInt * getValue() const
const APInt & getAPInt() const
Helper to remove instructions inserted during SCEV expansion, unless they are marked as used.
This class uses information about analyze scalars to rewrite expressions in canonical form.
const SCEV * getOperand(unsigned i) const
This class represents an analyzed expression in the program.
LLVM_ABI bool isOne() const
Return true if the expression is a constant one.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI bool isNonConstantNegative() const
Return true if the specified scev is negated, but not a constant.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
Return true if the specified loop has an analyzable loop-invariant backedge-taken count.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getTruncateOrZeroExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
A vector that has set insertion semantics.
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
Simple and conservative implementation of LoopSafetyInfo that can give false-positive answers to its ...
void computeLoopSafetyInfo(const Loop *CurLoop) override
Computes safety information for a loop checks loop body & header for the possibility of may throw exc...
bool anyBlockMayThrow() const override
Returns true iff any block of the loop for which this info is contains an instruction that may throw ...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
void insert_range(Range &&R)
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Value * getValueOperand()
Value * getPointerOperand()
StringRef - Represent a constant reference to a string, i.e.
Provides information about what library functions are available for the current target.
unsigned getWCharSize(const Module &M) const
Returns the size of the wchar_t type in bytes or 0 if the size is unknown.
bool has(LibFunc F) const
Tests whether a library function is available.
Triple - Helper class for working with autoconf configuration names.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
A Use represents the edge between a Value definition and its users.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI void replaceUsesWithIf(Value *New, llvm::function_ref< bool(Use &U)> ShouldReplace)
Go through the uses list for this definition and make each use point to "V" if the callback ShouldRep...
LLVM_ABI void replaceUsesOutsideBlock(Value *V, BasicBlock *BB)
replaceUsesOutsideBlock - Go through the uses list for this definition and make each use point to "V"...
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Value handle that is nullable, but tries to track the Value.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
OperandType
Operands are tagged with one of the values of this enum.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
class_match< const SCEVConstant > m_SCEVConstant()
specificloop_ty m_SpecificLoop(const Loop *L)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bool match(const SCEV *S, const Pattern &P)
specificscev_ty m_scev_Specific(const SCEV *S)
Match if we have a specific specified SCEV.
class_match< const SCEV > m_SCEV()
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
DiagnosticInfoOptimizationBase::Argument NV
DiagnosticInfoOptimizationBase::setExtraArgs setExtraArgs
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
static cl::opt< bool, true > EnableLIRPWcslen("disable-loop-idiom-wcslen", cl::desc("Proceed with loop idiom recognize pass, " "enable conversion of loop(s) to wcslen."), cl::location(DisableLIRP::Wcslen), cl::init(false), cl::ReallyHidden)
static cl::opt< bool, true > DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", cl::desc("Proceed with loop idiom recognize pass, but do " "not convert loop(s) to memcpy."), cl::location(DisableLIRP::Memcpy), cl::init(false), cl::ReallyHidden)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
static cl::opt< bool, true > DisableLIRPStrlen("disable-loop-idiom-strlen", cl::desc("Proceed with loop idiom recognize pass, but do " "not convert loop(s) to strlen."), cl::location(DisableLIRP::Strlen), cl::init(false), cl::ReallyHidden)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
static cl::opt< bool > ForceMemsetPatternIntrinsic("loop-idiom-force-memset-pattern-intrinsic", cl::desc("Use memset.pattern intrinsic whenever possible"), cl::init(false), cl::Hidden)
LLVM_ABI bool isLibFuncEmittable(const Module *M, const TargetLibraryInfo *TLI, LibFunc TheLibFunc)
Check whether the library function is available on target and also that it in the current Module is a...
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
AnalysisManager< Loop, LoopStandardAnalysisResults & > LoopAnalysisManager
The loop analysis manager.
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
LLVM_ABI bool isMustProgress(const Loop *L)
Return true if this loop can be assumed to make progress.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
FunctionAddr VTableAddr Count
bool isModOrRefSet(const ModRefInfo MRI)
LLVM_ABI Value * emitStrLen(Value *Ptr, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the strlen function to the builder, for the specified pointer.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
@ ModRef
The access may reference and may modify the value stored in memory.
@ Mod
The access may modify the value stored in memory.
static cl::opt< bool, true > DisableLIRPHashRecognize("disable-" DEBUG_TYPE "-hashrecognize", cl::desc("Proceed with loop idiom recognize pass, " "but do not optimize CRC loops."), cl::location(DisableLIRP::HashRecognize), cl::init(false), cl::ReallyHidden)
FunctionAddr VTableAddr uintptr_t uintptr_t Data
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
LLVM_ABI bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, ScalarEvolution &SE, bool CheckType=true)
Returns true if the memory operations A and B are consecutive.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
LLVM_ABI Value * emitWcsLen(Value *Ptr, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the wcslen function to the builder, for the specified pointer.
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI PreservedAnalyses getLoopPassPreservedAnalyses()
Returns the minimum set of Analyses that all loop passes must preserve.
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
static cl::opt< bool > UseLIRCodeSizeHeurs("use-lir-code-size-heurs", cl::desc("Use loop idiom recognition code size heuristics when compiling " "with -Os/-Oz"), cl::init(true), cl::Hidden)
LLVM_ABI bool RecursivelyDeleteDeadPHINode(PHINode *PN, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
If the specified value is an effectively dead PHI node, due to being a def-use chain of single-use no...
cl::opt< bool > ProfcheckDisableMetadataFixes("profcheck-disable-metadata-fixes", cl::Hidden, cl::init(false), cl::desc("Disable metadata propagation fixes discovered through Issue #147390"))
static cl::opt< bool, true > DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", cl::desc("Proceed with loop idiom recognize pass, but do " "not convert loop(s) to memset."), cl::location(DisableLIRP::Memset), cl::init(false), cl::ReallyHidden)
static cl::opt< bool, true > DisableLIRPAll("disable-" DEBUG_TYPE "-all", cl::desc("Options to disable Loop Idiom Recognize Pass."), cl::location(DisableLIRP::All), cl::init(false), cl::ReallyHidden)
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
std::optional< DecomposedBitTest > decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate Pred, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
LLVM_ABI AAMDNodes merge(const AAMDNodes &Other) const
Given two sets of AAMDNodes applying to potentially different locations, determine the best AAMDNodes...
AAMDNodes extendTo(ssize_t Len) const
Create a new AAMDNode that describes this AAMDNode after extending it to apply to a series of bytes o...
static bool Memcpy
When true, Memcpy is disabled.
static bool Wcslen
When true, Wcslen is disabled.
static bool Strlen
When true, Strlen is disabled.
static bool HashRecognize
When true, HashRecognize is disabled.
static bool Memset
When true, Memset is disabled.
static bool All
When true, the entire pass is disabled.
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...
TargetTransformInfo & TTI
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
The structure that is returned when a polynomial algorithm was recognized by the analysis.
Match loop-invariant value.
match_LoopInvariant(const SubPattern_t &SP, const Loop *L)