LLVM 19.0.0git
MLRegAllocEvictAdvisor.cpp
Go to the documentation of this file.
1//===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of the ML eviction advisor and reward injection pass
10//
11//===----------------------------------------------------------------------===//
12
13#include "AllocationOrder.h"
15#include "RegAllocGreedy.h"
19#if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TFLITE)
23#endif
32#include "llvm/CodeGen/Passes.h"
35#include "llvm/IR/Module.h"
37#include "llvm/Pass.h"
38#include "llvm/PassRegistry.h"
41
42#include <array>
43#include <bitset>
44#include <memory>
45
46using namespace llvm;
47
48#define DEBUG_TYPE "ml-regalloc"
49
50// Generated header in release (AOT) mode
51#if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
52#include "RegAllocEvictModel.h"
53using CompiledModelType = RegAllocEvictModel;
54#else
56#endif
57
59 "regalloc-evict-interactive-channel-base", cl::Hidden,
61 "Base file path for the interactive mode. The incoming filename should "
62 "have the name <regalloc-evict-interactive-channel-base>.in, while the "
63 "outgoing name should be "
64 "<regalloc-evict-interactive-channel-base>.out"));
65
66// Options that only make sense in development mode
67#ifdef LLVM_HAVE_TFLITE
68#include "RegAllocScore.h"
70
71static cl::opt<std::string> TrainingLog(
72 "regalloc-training-log", cl::Hidden,
73 cl::desc("Training log for the register allocator eviction model"));
74
75static cl::opt<std::string> ModelUnderTraining(
76 "regalloc-model", cl::Hidden,
77 cl::desc("The model being trained for register allocation eviction"));
78
80 "regalloc-enable-development-features", cl::Hidden,
81 cl::desc("Whether or not to enable features under development for the ML "
82 "regalloc advisor"));
83
84#else
85static const bool EnableDevelopmentFeatures = false;
86#endif // #ifdef LLVM_HAVE_TFLITE
87
88/// The score injection pass.
89/// This pass calculates the score for a function and inserts it in the log, but
90/// this happens only in development mode. It's a no-op otherwise.
91namespace llvm {
93
95public:
96 static char ID;
97
100 }
101
102 ~RegAllocScoring() override = default;
103
104 StringRef getPassName() const override {
105 return "Register Allocation Pass Scoring";
106 }
107
108 /// RegAllocReward analysis usage.
109 void getAnalysisUsage(AnalysisUsage &AU) const override {
110 AU.setPreservesAll();
115 }
116
117 /// Performs this pass
118 bool runOnMachineFunction(MachineFunction &) override;
119};
120
121char RegAllocScoring::ID = 0;
123
124} // namespace llvm
125
126INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass",
127 "Register Allocation Scoring Pass", false, false)
128
129// ===================================
130// Common ML Advisor declarations
131// ===================================
132namespace {
133// The model can only accept a specified number of opcodes and will error it if
134// fed an opcode it hasn't seen before. This constant sets the current cutoff.
135static const int OpcodeValueCutoff = 17716;
136
137// Most features are as described above, so we'll reuse this vector in defining
138// them.
139static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences};
140
141// --------------
142// Features table
143// --------------
144// For each interfering live range (incl. the candidate) we collect a number of
145// features. However, because the features are of different types (and because
146// of ML best practices), we organize the tensors per feature, not per
147// candidate. Each such tensor has a scalar value corresponding to the
148// interferring live range at that position, in the order in AllocationOrder.
149// The last position corresponds to the virt reg seeking allocation.
150// Exception to all that is the progression feature, which is just a scalar (see
151// its documentation for details).
152// Note on naming: the "_by_max" are normalized using the largest value of that
153// tensor, as observed in the current decision making stage (i.e. for the
154// current call to the advisor's tryFindEvictionCandidate)
155//
156// The feature list format: type, name, shape, documentation.
157// Note: we can really just use int64 and float, hence the modeling of some
158// bools as int64 values.
159#define RA_EVICT_FEATURES_LIST(M) \
160 M(int64_t, mask, PerLiveRangeShape, \
161 "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \
162 "it " \
163 "can't be evicted)") \
164 M(int64_t, is_free, PerLiveRangeShape, \
165 "boolean values, 1 if this phys reg is actually free (no interferences)") \
166 M(float, nr_urgent, PerLiveRangeShape, \
167 "number of 'urgent' intervals, normalized. Urgent are those that are OK " \
168 "to break cascades") \
169 M(float, nr_broken_hints, PerLiveRangeShape, \
170 "if this position were evicted, how many broken hints would there be") \
171 M(int64_t, is_hint, PerLiveRangeShape, \
172 "is this a preferred phys reg for the candidate") \
173 M(int64_t, is_local, PerLiveRangeShape, \
174 "is this live range local to a basic block") \
175 M(float, nr_rematerializable, PerLiveRangeShape, \
176 "nr rematerializable ranges") \
177 M(float, nr_defs_and_uses, PerLiveRangeShape, \
178 "bb freq - weighed nr defs and uses") \
179 M(float, weighed_reads_by_max, PerLiveRangeShape, \
180 "bb freq - weighed nr of reads, normalized") \
181 M(float, weighed_writes_by_max, PerLiveRangeShape, \
182 "bb feq - weighed nr of writes, normalized") \
183 M(float, weighed_read_writes_by_max, PerLiveRangeShape, \
184 "bb freq - weighed nr of uses that are both read and writes, normalized") \
185 M(float, weighed_indvars_by_max, PerLiveRangeShape, \
186 "bb freq - weighed nr of uses that are indvars, normalized") \
187 M(float, hint_weights_by_max, PerLiveRangeShape, \
188 "bb freq - weighed nr of uses that are hints, normalized") \
189 M(float, start_bb_freq_by_max, PerLiveRangeShape, \
190 "the freq in the start block, normalized") \
191 M(float, end_bb_freq_by_max, PerLiveRangeShape, \
192 "freq of end block, normalized") \
193 M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \
194 "hottest BB freq, normalized") \
195 M(float, liverange_size, PerLiveRangeShape, \
196 "size (instr index diff) of the LR") \
197 M(float, use_def_density, PerLiveRangeShape, \
198 "the max weight, as computed by the manual heuristic") \
199 M(int64_t, max_stage, PerLiveRangeShape, \
200 "largest stage of an interval in this LR") \
201 M(int64_t, min_stage, PerLiveRangeShape, \
202 "lowest stage of an interval in this LR") \
203 M(float, progress, {1}, "ratio of current queue size to initial size")
204
205#ifdef LLVM_HAVE_TFLITE
206#define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) \
207 M(int64_t, instructions, InstructionsShape, \
208 "Opcodes of the instructions covered by the eviction problem")
209
210#define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) \
211 M(int64_t, instructions_mapping, InstructionsMappingShape, \
212 "A binary matrix mapping LRs to instruction opcodes") \
213 M(float, mbb_frequencies, MBBFrequencyShape, \
214 "A vector of machine basic block frequencies") \
215 M(int64_t, mbb_mapping, InstructionsShape, \
216 "A vector of indices mapping instructions to MBBs")
217#else
218#define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M)
219#define RA_EVICT_REST_DEVELOPMENT_FEATURES(M)
220#endif
221
222// The model learns to pick one of the mask == 1 interferences. This is the
223// name of the output tensor. The contract with the model is that the output
224// will be guaranteed to be to a mask == 1 position. Using a macro here to
225// avoid 'not used' warnings (and keep cond compilation to a minimum)
226#define DecisionName "index_to_evict"
227static const TensorSpec DecisionSpec =
228 TensorSpec::createSpec<int64_t>(DecisionName, {1});
229
230// Named features index.
231enum FeatureIDs {
232#define _FEATURE_IDX_SIMPLE(_, name, __, ___) name
233#define _FEATURE_IDX(A, B, C, D) _FEATURE_IDX_SIMPLE(A, B, C, D),
235#ifdef LLVM_HAVE_TFLITE
237#else
239#endif // #ifdef LLVM_HAVE_TFLITE
240 RA_EVICT_REST_DEVELOPMENT_FEATURES(_FEATURE_IDX) FeaturesWithDevelopmentCount
241#undef _FEATURE_IDX
242#undef _FEATURE_IDX_SIMPLE
243};
244
245// The ML advisor will typically have a sparse input to the evaluator, because
246// various phys regs won't be available. It's easier (maintenance-wise) to
247// bulk-reset the state of the evaluator each time we are about to use it
248// again.
249template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) {
250 size_t Ret = sizeof(T);
251 for (const auto V : Shape)
252 Ret *= V;
253 return Ret;
254}
255
256void resetInputs(MLModelRunner &Runner) {
257#define _RESET(TYPE, NAME, SHAPE, __) \
258 std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \
259 getTotalSize<TYPE>(SHAPE));
264#undef _RESET
265 }
266}
267
268// Per-live interval components that get aggregated into the feature values
269// that will be passed to the evaluator.
270struct LIFeatureComponents {
271 double R = 0;
272 double W = 0;
273 double RW = 0;
274 double IndVarUpdates = 0;
275 double HintWeights = 0.0;
276 int64_t NrDefsAndUses = 0;
277 float HottestBlockFreq = 0.0;
278 bool IsRemat = false;
279};
280
281using CandidateRegList =
282 std::array<std::pair<MCRegister, bool>, NumberOfInterferences>;
283using FeaturesListNormalizer =
285
286/// The ML evictor (commonalities between release and development mode)
287class MLEvictAdvisor : public RegAllocEvictionAdvisor {
288public:
289 MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
290 MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI,
291 const MachineLoopInfo &Loops);
292
293protected:
294 const RegAllocEvictionAdvisor &getDefaultAdvisor() const {
295 return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor);
296 }
297
298 // The assumption is that if the Runner could not be constructed, we emit-ed
299 // error, and we shouldn't be asking for it here.
300 const MLModelRunner &getRunner() const { return *Runner; }
301
302 /// This just calls Evaluate on the Runner, but in the development mode
303 /// case, if we're just capturing the log of the default advisor, it needs
304 /// to call the latter instead, so we need to pass all the necessary
305 /// parameters for it. In the development case, it will also log.
306 virtual int64_t
307 tryFindEvictionCandidatePosition(const LiveInterval &VirtReg,
308 const AllocationOrder &Order,
309 unsigned OrderLimit, uint8_t CostPerUseLimit,
310 const SmallVirtRegSet &FixedRegisters) const;
311
312 /// Load the features of the given VirtReg (allocated or not) at column Pos,
313 /// but if that can't be evicted, return false instead.
314 bool
315 loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg,
316 bool IsHint, const SmallVirtRegSet &FixedRegisters,
317 llvm::SmallVectorImpl<float> &Largest, size_t Pos,
318 SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const;
319
320private:
321 static float getInitialQueueSize(const MachineFunction &MF);
322
324 const LiveInterval &VirtReg, const AllocationOrder &Order,
325 uint8_t CostPerUseLimit,
326 const SmallVirtRegSet &FixedRegisters) const override;
327
328 void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals,
329 llvm::SmallVectorImpl<float> &Largest, size_t Pos,
330 int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent,
331 SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const;
332
333 // Point-in-time: we didn't learn this, so we always delegate to the
334 // default.
336 const LiveInterval &VirtReg, MCRegister PhysReg,
337 const SmallVirtRegSet &FixedRegisters) const override {
338 return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg,
339 FixedRegisters);
340 }
341
342 const LIFeatureComponents &
343 getLIFeatureComponents(const LiveInterval &LI) const;
344
345 // Hold on to a default advisor for:
346 // 1) the implementation of canEvictHintInterference, because we didn't
347 // learn that nuance yet; 2) for bootstrapping (logging) in the development
348 // mode case.
349 const DefaultEvictionAdvisor DefaultAdvisor;
350 MLModelRunner *const Runner;
351 const MachineBlockFrequencyInfo &MBFI;
352 const MachineLoopInfo &Loops;
353
354 // Indices of those features we don't want to normalize.
355 // This could be static and shared, but its initialization is non-trivial.
356 std::bitset<FeatureIDs::FeatureCount> DoNotNormalize;
357 const float InitialQSize;
358
359 using RegID = unsigned;
360 mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures;
361};
362
363#define _DECL_FEATURES(type, name, shape, _) \
364 TensorSpec::createSpec<type>(#name, shape),
365
366// ===================================
367// Release (AOT) - specifics
368// ===================================
369class ReleaseModeEvictionAdvisorAnalysis final
371public:
372 ReleaseModeEvictionAdvisorAnalysis()
373 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) {
378 } else {
380 }
381 }
382 // support for isa<> and dyn_cast.
383 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
384 return R->getAdvisorMode() == AdvisorMode::Release;
385 }
386
387private:
388 std::vector<TensorSpec> InputFeatures;
389
390 void getAnalysisUsage(AnalysisUsage &AU) const override {
394 }
395
396 std::unique_ptr<RegAllocEvictionAdvisor>
397 getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
398 if (!Runner) {
399 if (InteractiveChannelBaseName.empty())
400 Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
402 else
403 Runner = std::make_unique<InteractiveModelRunner>(
407 }
408 return std::make_unique<MLEvictAdvisor>(
409 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
410 getAnalysis<MachineLoopInfo>());
411 }
412 std::unique_ptr<MLModelRunner> Runner;
413};
414
415// ===================================
416// Development mode-specifics
417// ===================================
418//
419// Features we log
420#ifdef LLVM_HAVE_TFLITE
421static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
422
423// Features we bind on the model. The tensor names have a prefix, and we also
424// need to include some tensors that are expected to be present by the
425// training algo.
426// TODO: can we just get rid of these?
427#define _DECL_TRAIN_FEATURES(type, name, shape, _) \
428 TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
429
430class DevelopmentModeEvictAdvisor : public MLEvictAdvisor {
431public:
432 DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
433 MLModelRunner *Runner,
434 const MachineBlockFrequencyInfo &MBFI,
435 const MachineLoopInfo &Loops, Logger *Log)
436 : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {}
437
438private:
439 int64_t tryFindEvictionCandidatePosition(
440 const LiveInterval &VirtReg, const AllocationOrder &Order,
441 unsigned OrderLimit, uint8_t CostPerUseLimit,
442 const SmallVirtRegSet &FixedRegisters) const override;
443
444 Logger *const Log;
445};
446
447class DevelopmentModeEvictionAdvisorAnalysis final
449public:
450 DevelopmentModeEvictionAdvisorAnalysis()
451 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) {
456 TrainingInputFeatures = {
457 RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES)
458 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_TRAIN_FEATURES)
459 RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_TRAIN_FEATURES)
460 TensorSpec::createSpec<float>("action_discount", {1}),
461 TensorSpec::createSpec<int32_t>("action_step_type", {1}),
462 TensorSpec::createSpec<float>("action_reward", {1})};
463 } else {
465 TrainingInputFeatures = {
466 RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES)
467 TensorSpec::createSpec<float>("action_discount", {1}),
468 TensorSpec::createSpec<int32_t>("action_step_type", {1}),
469 TensorSpec::createSpec<float>("action_reward", {1})};
470 }
471 }
472 // support for isa<> and dyn_cast.
473 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
474 return R->getAdvisorMode() == AdvisorMode::Development;
475 }
476
477 void logRewardIfNeeded(const MachineFunction &MF,
478 llvm::function_ref<float()> GetReward) override {
479 if (!Log || !Log->hasAnyObservationForContext(MF.getName()))
480 return;
481 // The function pass manager would run all the function passes for a
482 // function, so we assume the last context belongs to this function. If
483 // this invariant ever changes, we can implement at that time switching
484 // contexts. At this point, it'd be an error
485 if (Log->currentContext() != MF.getName()) {
487 "The training log context shouldn't have had changed.");
488 }
489 if (Log->hasObservationInProgress())
490 Log->logReward<float>(GetReward());
491 }
492
493private:
494 std::vector<TensorSpec> InputFeatures;
495 std::vector<TensorSpec> TrainingInputFeatures;
496
497 void getAnalysisUsage(AnalysisUsage &AU) const override {
501 }
502
503 bool doInitialization(Module &M) override {
504 LLVMContext &Ctx = M.getContext();
505 if (ModelUnderTraining.empty() && TrainingLog.empty()) {
506 Ctx.emitError("Regalloc development mode should be requested with at "
507 "least logging enabled and/or a training model");
508 return false;
509 }
510 if (ModelUnderTraining.empty())
511 Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures);
512 else
513 Runner = ModelUnderTrainingRunner::createAndEnsureValid(
514 Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures);
515 if (!Runner) {
516 Ctx.emitError("Regalloc: could not set up the model runner");
517 return false;
518 }
519 if (TrainingLog.empty())
520 return false;
521 std::error_code EC;
522 auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
523 if (EC) {
524 M.getContext().emitError(EC.message() + ":" + TrainingLog);
525 return false;
526 }
527 std::vector<TensorSpec> LFS = InputFeatures;
528 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get()))
529 append_range(LFS, MUTR->extraOutputsForLoggingSpecs());
530 // We always log the output; in particular, if we're not evaluating, we
531 // don't have an output spec json file. That's why we handle the
532 // 'normal' output separately.
533 LFS.push_back(DecisionSpec);
534
535 Log = std::make_unique<Logger>(std::move(OS), LFS, Reward,
536 /*IncludeReward*/ true);
537 return false;
538 }
539
540 std::unique_ptr<RegAllocEvictionAdvisor>
541 getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
542 if (!Runner)
543 return nullptr;
544 if (Log)
545 Log->switchContext(MF.getName());
546 return std::make_unique<DevelopmentModeEvictAdvisor>(
547 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
548 getAnalysis<MachineLoopInfo>(), Log.get());
549 }
550
551 std::unique_ptr<MLModelRunner> Runner;
552 std::unique_ptr<Logger> Log;
553};
554
555#endif //#ifdef LLVM_HAVE_TFLITE
556} // namespace
557
558float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) {
559 auto &MRI = MF.getRegInfo();
560 float Ret = 0.0;
561 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
563 if (MRI.reg_nodbg_empty(Reg))
564 continue;
565 ++Ret;
566 }
567 return Ret;
568}
569
570MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
571 MLModelRunner *Runner,
572 const MachineBlockFrequencyInfo &MBFI,
573 const MachineLoopInfo &Loops)
574 : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA),
575 Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops),
576 InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) {
577 assert(this->Runner);
578 Runner->switchContext(MF.getName());
579 DoNotNormalize.set(FeatureIDs::mask);
580 DoNotNormalize.set(FeatureIDs::is_free);
581 DoNotNormalize.set(FeatureIDs::is_hint);
582 DoNotNormalize.set(FeatureIDs::is_local);
583 DoNotNormalize.set(FeatureIDs::min_stage);
584 DoNotNormalize.set(FeatureIDs::max_stage);
585 DoNotNormalize.set(FeatureIDs::progress);
586}
587
588int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition(
589 const LiveInterval &, const AllocationOrder &, unsigned, uint8_t,
590 const SmallVirtRegSet &) const {
591 int64_t Ret = Runner->evaluate<int64_t>();
592 assert(Ret >= 0);
594 return Ret;
595}
596
597bool MLEvictAdvisor::loadInterferenceFeatures(
598 const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
599 const SmallVirtRegSet &FixedRegisters,
600 llvm::SmallVectorImpl<float> &Largest, size_t Pos,
601 llvm::SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const {
602 // It is only possible to evict virtual register interference.
603 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) {
604 // leave unavailable
605 return false;
606 }
607
608 const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
609 int64_t LocalIntfs = 0;
610 float NrUrgent = 0.0f;
611
612 // The cascade tracking is the same as in the default advisor
613 unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg());
614
616 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
617 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
618 // Different from the default heuristic, we don't make any assumptions
619 // about what having more than 10 results in the query may mean.
620 const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff);
621 if (IFIntervals.empty() && InterferingIntervals.empty())
622 continue;
623 if (IFIntervals.size() >= EvictInterferenceCutoff)
624 return false;
625 InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end());
626 for (const LiveInterval *Intf : reverse(IFIntervals)) {
627 assert(Intf->reg().isVirtual() &&
628 "Only expecting virtual register interference from query");
629 // This is the same set of legality checks as in the default case: don't
630 // try to evict fixed regs or 'done' ones. Also don't break cascades,
631 // except in the urgent case, with the same nuances used in the default
632 // heuristic.
633 // We could try sharing this between the advisors, but it may end up
634 // more complex than it is right now.
635 if (FixedRegisters.count(Intf->reg()))
636 return false;
637 if (RA.getExtraInfo().getStage(*Intf) == RS_Done)
638 return false;
639 bool Urgent =
640 !VirtReg.isSpillable() &&
641 (Intf->isSpillable() ||
642 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
643 RegClassInfo.getNumAllocatableRegs(
644 MRI->getRegClass(Intf->reg())));
645 // Only evict older cascades or live ranges without a cascade.
646 unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg());
647 if (Cascade <= IntfCascade) {
648 if (!Urgent)
649 return false;
650 ++NrUrgent;
651 }
652
653 LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
654 (!EnableLocalReassign || !canReassign(*Intf, PhysReg)));
655 }
656 }
657 // OK, so if we made it this far, this LR is an eviction candidate, load its
658 // features.
659 extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs,
660 NrUrgent, LRPosInfo);
661 return true;
662}
663
664MCRegister MLEvictAdvisor::tryFindEvictionCandidate(
665 const LiveInterval &VirtReg, const AllocationOrder &Order,
666 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const {
667 auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit);
668 if (!MaybeOrderLimit)
670 unsigned OrderLimit = *MaybeOrderLimit;
671
672 // The heuristic sets initial costs such as, if CostPerUseLimit is
673 // max<uint8_t>, then any of the costs of the legally-evictable intervals
674 // would be lower. When that happens, one of those will be selected.
675 // Therefore, we allow the candidate be selected, unless the candidate is
676 // unspillable, in which case it would be incorrect to not find a register
677 // for it.
678 const bool MustFindEviction =
679 (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u));
680 // Number of available candidates - if 0, no need to continue.
681 size_t Available = 0;
682 // Make sure we don't have leftover partial state from an attempt where we
683 // had no available candidates and bailed out early.
684 resetInputs(*Runner);
685
686 // Track the index->register mapping because AllocationOrder doesn't do that
687 // and we'd have to scan it.
688 // Also track their mask, to write asserts/debug.
689 CandidateRegList Regs;
690 Regs.fill({0, false});
691
692 // Track the largest value of features seen during this eviction session. We
693 // only normalize (some of) the float features, but it's just simpler to
694 // dimension 'Largest' to all the features, especially since we have the
695 // 'DoNotNormalize' list.
696 FeaturesListNormalizer Largest(FeatureIDs::FeatureCount, 0.0);
697
698 // Same overal idea as in the default eviction policy - we visit the values
699 // of AllocationOrder one at a time. If it's not legally available, we mask
700 // off the corresponding feature column (==do nothing because we already
701 // reset all the features to 0) Use Pos to capture the column we load
702 // features at - in AllocationOrder order.
703 size_t Pos = 0;
705 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
706 ++I, ++Pos) {
707 MCRegister PhysReg = *I;
708 assert(!Regs[Pos].second);
709 assert(PhysReg);
710 if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) {
711 continue;
712 }
713 if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters,
714 Largest, Pos, LRPosInfo)) {
715 ++Available;
716 Regs[Pos] = std::make_pair(PhysReg, true);
717 }
718 }
719 if (Available == 0) {
720 // Nothing to decide, nothing to learn.
721 assert(!MustFindEviction);
723 }
724 const size_t ValidPosLimit = Pos;
725 // If we must find eviction, the candidate should be masked out of the
726 // decision making process.
727 Regs[CandidateVirtRegPos].second = !MustFindEviction;
728 if (!MustFindEviction)
729 extractFeatures(SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest,
730 CandidateVirtRegPos, /*IsHint*/ 0,
731 /*LocalIntfsCount*/ 0,
732 /*NrUrgent*/ 0.0, LRPosInfo);
733 assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had "
734 "nothing to allocate initially.");
735#ifdef LLVM_HAVE_TFLITE
738 LRPosInfo, Runner,
739 [this](SlotIndex InputIndex) -> int {
740 auto *CurrentMachineInstruction =
741 LIS->getInstructionFromIndex(InputIndex);
742 if (!CurrentMachineInstruction) {
743 return -1;
744 }
745 return CurrentMachineInstruction->getOpcode();
746 },
747 [this](SlotIndex InputIndex) -> float {
748 auto *CurrentMachineInstruction =
749 LIS->getInstructionFromIndex(InputIndex);
751 CurrentMachineInstruction->getParent());
752 },
753 [this](SlotIndex InputIndex) -> MachineBasicBlock * {
754 auto *CurrentMachineInstruction =
755 LIS->getInstructionFromIndex(InputIndex);
756 return CurrentMachineInstruction->getParent();
757 },
758 FeatureIDs::instructions, FeatureIDs::instructions_mapping,
759 FeatureIDs::mbb_frequencies, FeatureIDs::mbb_mapping,
760 LIS->getSlotIndexes()->getLastIndex());
761 }
762#endif // #ifdef LLVM_HAVE_TFLITE
763 // Normalize the features.
764 for (auto &V : Largest)
765 V = V ? V : 1.0;
766 for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount;
767 ++FeatureIndex) {
768 if (DoNotNormalize.test(FeatureIndex))
769 continue;
770 for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) {
771 Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex];
772 }
773 }
774 *Runner->getTensor<float>(FeatureIDs::progress) =
775 static_cast<float>(RA.getQueueSize()) / InitialQSize;
776
777 // Get a decision.
778 size_t CandidatePos = tryFindEvictionCandidatePosition(
779 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
780 // The contract with the ML side is that CandidatePos is mask == 1 (i.e.
781 // Regs[CandidatePos].second)
782 assert(Regs[CandidatePos].second);
783 if (CandidatePos == CandidateVirtRegPos) {
784 assert(!MustFindEviction);
786 }
787 assert(CandidatePos < ValidPosLimit);
788 (void)ValidPosLimit;
789 return Regs[CandidatePos].first;
790}
791
792const LIFeatureComponents &
793MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const {
794 RegID ID = LI.reg().id();
795 LIFeatureComponents Empty;
796 auto I = CachedFeatures.insert(std::make_pair(ID, Empty));
797 LIFeatureComponents &Ret = I.first->getSecond();
798 if (!I.second)
799 return Ret;
800
803
805 I = MRI->reg_instr_nodbg_begin(LI.reg()),
806 E = MRI->reg_instr_nodbg_end();
807 I != E;) {
808 MachineInstr *MI = &*(I++);
809
810 ++Ret.NrDefsAndUses;
811 if (!Visited.insert(MI).second)
812 continue;
813
814 if (MI->isIdentityCopy() || MI->isImplicitDef())
815 continue;
816
817 bool Reads, Writes;
818 std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
819
820 float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent());
821 Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq);
822
823 Ret.R += (Reads && !Writes) * Freq;
824 Ret.W += (!Reads && Writes) * Freq;
825 Ret.RW += (Reads && Writes) * Freq;
826
827 auto *MBB = MI->getParent();
828 auto *Loop = Loops.getLoopFor(MBB);
829 bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
830
831 if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB))
832 Ret.IndVarUpdates += Freq;
833
834 if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI))
835 Ret.HintWeights += Freq;
836 }
838 LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo());
839 return Ret;
840}
841
842// Overall, this currently mimics what we do for weight calculation, but instead
843// of accummulating the various features, we keep them separate.
844void MLEvictAdvisor::extractFeatures(
846 llvm::SmallVectorImpl<float> &Largest, size_t Pos, int64_t IsHint,
847 int64_t LocalIntfsCount, float NrUrgent,
848 SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const {
849 int64_t NrDefsAndUses = 0;
850 int64_t NrBrokenHints = 0;
851 double R = 0.0;
852 double W = 0.0;
853 double RW = 0.0;
854 double IndVarUpdates = 0.0;
855 double HintWeights = 0.0;
856 float StartBBFreq = 0.0;
857 float EndBBFreq = 0.0;
858 float HottestBlockFreq = 0.0;
859 int32_t NrRematerializable = 0;
860 float TotalWeight = 0.0;
861
862 SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex();
863 SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex();
864 int64_t MaxStage = 0;
865 int64_t MinStage =
866 Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max();
867
868 for (const auto *L : Intervals) {
869 const LiveInterval &LI = *L;
870 MaxStage = std::max<int64_t>(
871 MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
872 MinStage = std::min<int64_t>(
873 MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
874
875 TotalWeight = std::max(TotalWeight, LI.weight());
876
877 if (LI.beginIndex() < StartSI)
878 StartSI = LI.beginIndex();
879
880 if (LI.endIndex() > EndSI)
881 EndSI = LI.endIndex();
882 const LIFeatureComponents &LIFC = getLIFeatureComponents(LI);
883 NrBrokenHints += VRM->hasPreferredPhys(LI.reg());
884
885 NrDefsAndUses += LIFC.NrDefsAndUses;
886 HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq);
887 R += LIFC.R;
888 W += LIFC.W;
889 RW += LIFC.RW;
890
891 IndVarUpdates += LIFC.IndVarUpdates;
892
893 HintWeights += LIFC.HintWeights;
894 NrRematerializable += LIFC.IsRemat;
895
897 for (auto CurrentSegment : LI) {
898 LRPosInfo.push_back(
899 LRStartEndInfo{CurrentSegment.start, CurrentSegment.end, Pos});
900 }
901 }
902 }
903 size_t Size = 0;
904 if (!Intervals.empty()) {
905 StartBBFreq =
906 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI));
907 if (EndSI >= LIS->getSlotIndexes()->getLastIndex())
908 EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex();
909 EndBBFreq =
910 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI));
911 Size = StartSI.distance(EndSI);
912 }
913 // Set the features at the column 'Pos'.
914#define SET(ID, TYPE, VAL) \
915 do { \
916 Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \
917 if (!DoNotNormalize.test(FeatureIDs::ID)) \
918 Largest[FeatureIDs::ID] = \
919 std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \
920 } while (false)
921 SET(mask, int64_t, 1);
922 SET(is_free, int64_t, Intervals.empty());
923 SET(nr_urgent, float, NrUrgent);
924 SET(nr_broken_hints, float, NrBrokenHints);
925 SET(is_hint, int64_t, IsHint);
926 SET(is_local, int64_t, LocalIntfsCount);
927 SET(nr_rematerializable, float, NrRematerializable);
928 SET(nr_defs_and_uses, float, NrDefsAndUses);
929 SET(weighed_reads_by_max, float, R);
930 SET(weighed_writes_by_max, float, W);
931 SET(weighed_read_writes_by_max, float, RW);
932 SET(weighed_indvars_by_max, float, IndVarUpdates);
933 SET(hint_weights_by_max, float, HintWeights);
934 SET(start_bb_freq_by_max, float, StartBBFreq);
935 SET(end_bb_freq_by_max, float, EndBBFreq);
936 SET(hottest_bb_freq_by_max, float, HottestBlockFreq);
937 SET(liverange_size, float, Size);
938 SET(use_def_density, float, TotalWeight);
939 SET(max_stage, int64_t, MaxStage);
940 SET(min_stage, int64_t, MinStage);
941#undef SET
942}
943
945 SmallVectorImpl<LRStartEndInfo> &LRPosInfo, MLModelRunner *RegallocRunner,
946 function_ref<int(SlotIndex)> GetOpcode,
947 function_ref<float(SlotIndex)> GetMBBFreq,
948 function_ref<MachineBasicBlock *(SlotIndex)> GetMBBReference,
949 const int InstructionsIndex, const int InstructionsMappingIndex,
950 const int MBBFreqIndex, const int MBBMappingIndex,
951 const SlotIndex LastIndex) {
952 // This function extracts instruction based features relevant to the eviction
953 // problem currently being solved. This function ends up extracting two
954 // tensors.
955 // 1 - A vector of size max instruction count. It contains the opcodes of the
956 // instructions spanned by all the intervals in the current instance of the
957 // eviction problem.
958 // 2 - A binary mapping matrix of size (LR count * max
959 // instruction count) which maps where the LRs are live to the actual opcodes
960 // for which they are live.
961 // 3 - A vector of size max supported MBB count storing MBB frequencies,
962 // encompassing all of the MBBs covered by the eviction problem.
963 // 4 - A vector of size max instruction count of indices to members of the MBB
964 // frequency vector, mapping each instruction to its associated MBB.
965
966 // Start off by sorting the segments based on the beginning slot index.
967 std::sort(
968 LRPosInfo.begin(), LRPosInfo.end(),
969 [](LRStartEndInfo A, LRStartEndInfo B) { return A.Begin < B.Begin; });
970 size_t InstructionIndex = 0;
971 size_t CurrentSegmentIndex = 0;
972 SlotIndex CurrentIndex = LRPosInfo[0].Begin;
973 std::map<MachineBasicBlock *, size_t> VisitedMBBs;
974 size_t CurrentMBBIndex = 0;
975 // This loop processes all the segments sequentially by starting at the
976 // beginning slot index of the first segment, iterating through all the slot
977 // indices before the end slot index of that segment (while checking for
978 // overlaps with segments that start at greater slot indices). After hitting
979 // that end index, the current segment being processed gets bumped until they
980 // are all processed or the max instruction count is hit, where everything is
981 // just truncated.
982 while (true) {
983 // If the index that we are currently at is within the current segment and
984 // we haven't hit the max instruction count, continue processing the current
985 // segment.
986 while (CurrentIndex <= LRPosInfo[CurrentSegmentIndex].End &&
987 InstructionIndex < ModelMaxSupportedInstructionCount) {
988 int CurrentOpcode = GetOpcode(CurrentIndex);
989 // If the current machine instruction is null, skip it
990 if (CurrentOpcode == -1) {
991 // If we're currently at the last index in the SlotIndex analysis,
992 // we can't go any further, so return from the function
993 if (CurrentIndex >= LastIndex) {
994 return;
995 }
996 CurrentIndex = CurrentIndex.getNextIndex();
997 continue;
998 }
999 MachineBasicBlock *CurrentMBBReference = GetMBBReference(CurrentIndex);
1000 if (VisitedMBBs.count(CurrentMBBReference) == 0) {
1001 VisitedMBBs[CurrentMBBReference] = CurrentMBBIndex;
1002 ++CurrentMBBIndex;
1003 }
1004 extractMBBFrequency(CurrentIndex, InstructionIndex, VisitedMBBs,
1005 GetMBBFreq, CurrentMBBReference, RegallocRunner,
1006 MBBFreqIndex, MBBMappingIndex);
1007 // Current code assumes we're not going to get any disjointed segments
1008 assert(LRPosInfo[CurrentSegmentIndex].Begin <= CurrentIndex);
1009 RegallocRunner->getTensor<int64_t>(InstructionsIndex)[InstructionIndex] =
1010 CurrentOpcode < OpcodeValueCutoff ? CurrentOpcode : 0;
1011 // set value in the binary mapping matrix for the current instruction
1012 auto CurrentSegmentPosition = LRPosInfo[CurrentSegmentIndex].Pos;
1013 RegallocRunner->getTensor<int64_t>(
1014 InstructionsMappingIndex)[CurrentSegmentPosition *
1016 InstructionIndex] = 1;
1017 // All of the segments are sorted based on the beginning slot index, but
1018 // this doesn't mean that the beginning slot index of the next segment is
1019 // after the end segment of the one being currently processed. This while
1020 // loop checks for overlapping segments and modifies the portion of the
1021 // column in the mapping matrix for the currently processed instruction
1022 // for the LR it is checking. Also make sure that the beginning of the
1023 // current segment we're checking for overlap in is less than the current
1024 // index, otherwise we're done checking overlaps.
1025 size_t OverlapCheckCurrentSegment = CurrentSegmentIndex + 1;
1026 while (OverlapCheckCurrentSegment < LRPosInfo.size() &&
1027 LRPosInfo[OverlapCheckCurrentSegment].Begin <= CurrentIndex) {
1028 auto OverlapCurrentSegmentPosition =
1029 LRPosInfo[OverlapCheckCurrentSegment].Pos;
1030 if (LRPosInfo[OverlapCheckCurrentSegment].End >= CurrentIndex) {
1031 RegallocRunner->getTensor<int64_t>(
1032 InstructionsMappingIndex)[OverlapCurrentSegmentPosition *
1034 InstructionIndex] = 1;
1035 }
1036 ++OverlapCheckCurrentSegment;
1037 }
1038 ++InstructionIndex;
1039 if (CurrentIndex >= LastIndex) {
1040 return;
1041 }
1042 CurrentIndex = CurrentIndex.getNextIndex();
1043 }
1044 // if we've just finished processing through the last segment or if we've
1045 // hit the maximum number of instructions, break out of the loop.
1046 if (CurrentSegmentIndex == LRPosInfo.size() - 1 ||
1047 InstructionIndex >= ModelMaxSupportedInstructionCount) {
1048 break;
1049 }
1050 // If the segments are not overlapping, we need to move to the beginning
1051 // index of the next segment to avoid having instructions not attached to
1052 // any register.
1053 if (LRPosInfo[CurrentSegmentIndex + 1].Begin >
1054 LRPosInfo[CurrentSegmentIndex].End) {
1055 CurrentIndex = LRPosInfo[CurrentSegmentIndex + 1].Begin;
1056 }
1057 ++CurrentSegmentIndex;
1058 }
1059}
1060
1061void extractMBBFrequency(const SlotIndex CurrentIndex,
1062 const size_t CurrentInstructionIndex,
1063 std::map<MachineBasicBlock *, size_t> &VisitedMBBs,
1064 function_ref<float(SlotIndex)> GetMBBFreq,
1065 MachineBasicBlock *CurrentMBBReference,
1066 MLModelRunner *RegallocRunner, const int MBBFreqIndex,
1067 const int MBBMappingIndex) {
1068 size_t CurrentMBBIndex = VisitedMBBs[CurrentMBBReference];
1069 float CurrentMBBFreq = GetMBBFreq(CurrentIndex);
1070 if (CurrentMBBIndex < ModelMaxSupportedMBBCount) {
1071 RegallocRunner->getTensor<float>(MBBFreqIndex)[CurrentMBBIndex] =
1072 CurrentMBBFreq;
1073 RegallocRunner->getTensor<int64_t>(
1074 MBBMappingIndex)[CurrentInstructionIndex] = CurrentMBBIndex;
1075 }
1076}
1077
1078// Development mode-specific implementations
1079#ifdef LLVM_HAVE_TFLITE
1080
1082 return new DevelopmentModeEvictionAdvisorAnalysis();
1083}
1084
1085int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition(
1086 const LiveInterval &VirtReg, const AllocationOrder &Order,
1087 unsigned OrderLimit, uint8_t CostPerUseLimit,
1088 const SmallVirtRegSet &FixedRegisters) const {
1089 int64_t Ret = 0;
1090 if (isa<ModelUnderTrainingRunner>(getRunner())) {
1091 Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition(
1092 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
1093 } else {
1094 MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate(
1095 VirtReg, Order, CostPerUseLimit, FixedRegisters);
1096 // Find the index of the selected PhysReg. We need it for logging,
1097 // otherwise this is wasted cycles (but so would starting development mode
1098 // without a model nor logging)
1099 if (!PhysReg)
1101 else
1102 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit);
1103 I != E; ++I, ++Ret)
1104 if (*I == PhysReg)
1105 break;
1106 }
1107 if (TrainingLog.empty())
1108 return Ret;
1109 // TODO(mtrofin): when we support optional rewards, this can go away. In the
1110 // meantime, we log the "pretend" reward (0) for the previous observation
1111 // before starting a new one.
1112 if (Log->hasObservationInProgress())
1113 Log->logReward<float>(0.0);
1114
1115 Log->startObservation();
1116 size_t CurrentFeature = 0;
1118 ? FeatureIDs::FeaturesWithDevelopmentCount
1119 : FeatureIDs::FeatureCount;
1120 for (; CurrentFeature < FeatureCount; ++CurrentFeature) {
1121 Log->logTensorValue(CurrentFeature,
1122 reinterpret_cast<const char *>(
1123 getRunner().getTensorUntyped(CurrentFeature)));
1124 }
1125 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner()))
1126 for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size();
1127 ++I, ++CurrentFeature)
1128 Log->logTensorValue(
1129 CurrentFeature,
1130 reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I)));
1131 // The output is right after the features and the extra outputs
1132 Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret));
1133 Log->endObservation();
1134 return Ret;
1135}
1136
1138 std::optional<float> CachedReward;
1139 auto GetReward = [&]() {
1140 if (!CachedReward)
1141 CachedReward = static_cast<float>(
1142 calculateRegAllocScore(MF, getAnalysis<MachineBlockFrequencyInfo>())
1143 .getScore());
1144 return *CachedReward;
1145 };
1146
1147 getAnalysis<RegAllocEvictionAdvisorAnalysis>().logRewardIfNeeded(MF,
1148 GetReward);
1149 getAnalysis<RegAllocPriorityAdvisorAnalysis>().logRewardIfNeeded(MF,
1150 GetReward);
1151 return false;
1152}
1153#endif // #ifdef LLVM_HAVE_TFLITE
1154
1156 return llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() ||
1158 ? new ReleaseModeEvictionAdvisorAnalysis()
1159 : nullptr;
1160}
1161
1162// In all cases except development mode, we don't need scoring.
1163#if !defined(LLVM_HAVE_TFLITE)
1165#endif
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock & MBB
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
SmallVector< uint32_t, 0 > Writes
Definition: ELF_riscv.cpp:497
@ Available
We know the block is fully available. This is a fixpoint.
Hexagon Hardware Loops
IRTranslator LLVM IR MI
Live Register Matrix
#define I(x, y, z)
Definition: MD5.cpp:58
static cl::opt< std::string > InteractiveChannelBaseName("inliner-interactive-channel-base", cl::Hidden, cl::desc("Base file path for the interactive mode. The incoming filename should " "have the name <inliner-interactive-channel-base>.in, while the " "outgoing name should be <inliner-interactive-channel-base>.out"))
static const bool EnableDevelopmentFeatures
void extractMBBFrequency(const SlotIndex CurrentIndex, const size_t CurrentInstructionIndex, std::map< MachineBasicBlock *, size_t > &VisitedMBBs, function_ref< float(SlotIndex)> GetMBBFreq, MachineBasicBlock *CurrentMBBReference, MLModelRunner *RegallocRunner, const int MBBFreqIndex, const int MBBMappingIndex)
#define RA_EVICT_FEATURES_LIST(M)
#define _FEATURE_IDX_SIMPLE(_, name, __, ___)
#define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M)
#define SET(ID, TYPE, VAL)
#define _RESET(TYPE, NAME, SHAPE, __)
#define RA_EVICT_REST_DEVELOPMENT_FEATURES(M)
void extractInstructionFeatures(SmallVectorImpl< LRStartEndInfo > &LRPosInfo, MLModelRunner *RegallocRunner, function_ref< int(SlotIndex)> GetOpcode, function_ref< float(SlotIndex)> GetMBBFreq, function_ref< MachineBasicBlock *(SlotIndex)> GetMBBReference, const int InstructionsIndex, const int InstructionsMappingIndex, const int MBBFreqIndex, const int MBBMappingIndex, const SlotIndex LastIndex)
static cl::opt< std::string > InteractiveChannelBaseName("regalloc-evict-interactive-channel-base", cl::Hidden, cl::desc("Base file path for the interactive mode. The incoming filename should " "have the name <regalloc-evict-interactive-channel-base>.in, while the " "outgoing name should be " "<regalloc-evict-interactive-channel-base>.out"))
#define _FEATURE_IDX(A, B, C, D)
#define _DECL_FEATURES(type, name, shape, _)
#define DecisionName
static const int ModelMaxSupportedInstructionCount
static const int64_t CandidateVirtRegPos
static const int64_t ModelMaxSupportedMBBCount
static const int64_t NumberOfInterferences
unsigned const TargetRegisterInfo * TRI
Module.h This file contains the declarations for the Module class.
if(VerifyEach)
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
SI optimize exec mask operations pre RA
raw_pwrite_stream & OS
Iterator getOrderLimitEnd(unsigned OrderLimit) const
Iterator begin() const
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesAll()
Set by analyses that do not transform their input at all.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition: Function.cpp:358
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
void emitError(uint64_t LocCookie, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
Query interferences between a single live virtual register and a live interval union.
const SmallVectorImpl< const LiveInterval * > & interferingVRegs(unsigned MaxInterferingRegs=std::numeric_limits< unsigned >::max())
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:687
float weight() const
Definition: LiveInterval.h:719
Register reg() const
Definition: LiveInterval.h:718
bool isSpillable() const
isSpillable - Can this interval be spilled?
Definition: LiveInterval.h:826
SlotIndex beginIndex() const
beginIndex - Return the lowest numbered slot covered.
Definition: LiveInterval.h:385
SlotIndex endIndex() const
endNumber - return the maximum point of the range of the whole, exclusive.
Definition: LiveInterval.h:392
@ IK_VirtReg
Virtual register interference.
Definition: LiveRegMatrix.h:90
Logging utility - given an ordered specification of features, and assuming a scalar reward,...
bool isLoopExiting(const BlockT *BB) const
True if terminator in the block can branch to another block that is outside of the current loop.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
static constexpr unsigned NoRegister
Definition: MCRegister.h:52
MLModelRunner interface: abstraction of a mechanism for evaluating a ML model.
Definition: MLModelRunner.h:26
virtual void switchContext(StringRef Name)
Definition: MLModelRunner.h:54
T * getTensor(I FeatureID)
Definition: MLModelRunner.h:37
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineBlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate machine basic b...
double getBlockFreqRelativeToEntryBlock(const MachineBasicBlock *MBB) const
Compute the frequency of the block, relative to the entry block.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
Definition: MachineInstr.h:69
defusechain_iterator - This class provides iterator support for machine operands in the function that...
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
A mock class satisfying the interface expected by ReleaseModeModelRunner for its TGen parameter.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual bool doInitialization(Module &)
doInitialization - Virtual method overridden by subclasses to do any necessary initialization before ...
Definition: Pass.h:119
ImmutableAnalysis abstraction for fetching the Eviction Advisor.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
virtual std::unique_ptr< RegAllocEvictionAdvisor > getAdvisor(const MachineFunction &MF, const RAGreedy &RA)=0
Get an advisor for the given context (i.e. machine function, etc)
virtual void logRewardIfNeeded(const MachineFunction &MF, llvm::function_ref< float()> GetReward)
virtual bool canEvictHintInterference(const LiveInterval &VirtReg, MCRegister PhysReg, const SmallVirtRegSet &FixedRegisters) const =0
Find out if we can evict the live ranges occupying the given PhysReg, which is a hint (preferred regi...
virtual MCRegister tryFindEvictionCandidate(const LiveInterval &VirtReg, const AllocationOrder &Order, uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const =0
Find a physical register that can be freed by evicting the FixedRegisters, or return NoRegister.
double getScore() const
StringRef getPassName() const override
getPassName - Return a nice clean name for a pass.
void getAnalysisUsage(AnalysisUsage &AU) const override
RegAllocReward analysis usage.
~RegAllocScoring() override=default
bool runOnMachineFunction(MachineFunction &) override
Performs this pass.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
static Register index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
Definition: Register.h:84
constexpr unsigned id() const
Definition: Register.h:103
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:64
SlotIndex getNextIndex() const
Returns the next index.
Definition: SlotIndexes.h:261
int distance(SlotIndex other) const
Return the distance from this index to the given one.
Definition: SlotIndexes.h:192
SlotIndex getPrevIndex() const
Returns the previous index.
Definition: SlotIndexes.h:281
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:344
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:479
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition: SmallSet.h:166
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:696
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const TargetInstrInfo * getInstrInfo() const
static Register copyHint(const MachineInstr *MI, unsigned Reg, const TargetRegisterInfo &TRI, const MachineRegisterInfo &MRI)
Return the preferred allocation register for reg, given a COPY instruction.
static bool isRematerializable(const LiveInterval &LI, const LiveIntervals &LIS, const VirtRegMap &VRM, const TargetInstrInfo &TII)
Determine if all values in LI are rematerializable.
An efficient, type-erasing, non-owning reference to a callable.
Reg
All possible values of the reg field in the ModR/M byte.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2067
static const TensorSpec DecisionSpec
RegAllocScore calculateRegAllocScore(const MachineFunction &MF, const MachineBlockFrequencyInfo &MBFI)
Calculate a score.
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:419
const char *const DecisionName
static const std::vector< TensorSpec > InputFeatures
@ RS_Done
There is nothing more we can do to this live range.
FunctionPass * createRegAllocScoringPass()
When learning an eviction policy, extract score(reward) information, otherwise this does nothing.
void initializeRegAllocScoringPass(PassRegistry &)
RegAllocEvictionAdvisorAnalysis * createReleaseModeAdvisor()
RegAllocEvictionAdvisorAnalysis * createDevelopmentModeAdvisor()
cl::opt< unsigned > EvictInterferenceCutoff
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1849
static const std::vector< int64_t > PerLiveRangeShape
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858