LLVM 20.0.0git
SimpleLoopUnswitch.cpp
Go to the documentation of this file.
1///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10#include "llvm/ADT/DenseMap.h"
11#include "llvm/ADT/STLExtras.h"
12#include "llvm/ADT/Sequence.h"
13#include "llvm/ADT/SetVector.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/ADT/Twine.h"
20#include "llvm/Analysis/CFG.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/Constant.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/Dominators.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/IRBuilder.h"
40#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
44#include "llvm/IR/Module.h"
47#include "llvm/IR/Use.h"
48#include "llvm/IR/Value.h"
51#include "llvm/Support/Debug.h"
62#include <algorithm>
63#include <cassert>
64#include <iterator>
65#include <numeric>
66#include <optional>
67#include <utility>
68
69#define DEBUG_TYPE "simple-loop-unswitch"
70
71using namespace llvm;
72using namespace llvm::PatternMatch;
73
74STATISTIC(NumBranches, "Number of branches unswitched");
75STATISTIC(NumSwitches, "Number of switches unswitched");
76STATISTIC(NumSelects, "Number of selects turned into branches for unswitching");
77STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
78STATISTIC(NumTrivial, "Number of unswitches that are trivial");
80 NumCostMultiplierSkipped,
81 "Number of unswitch candidates that had their cost multiplier skipped");
82STATISTIC(NumInvariantConditionsInjected,
83 "Number of invariant conditions injected and unswitched");
84
86 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
87 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
88 "following the configuration passed into the pass."));
89
90static cl::opt<int>
91 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
92 cl::desc("The cost threshold for unswitching a loop."));
93
95 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
96 cl::desc("Enable unswitch cost multiplier that prohibits exponential "
97 "explosion in nontrivial unswitch."));
99 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
100 cl::desc("Toplevel siblings divisor for cost multiplier."));
102 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
103 cl::desc("Number of unswitch candidates that are ignored when calculating "
104 "cost multiplier."));
106 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
107 cl::desc("If enabled, simple loop unswitching will also consider "
108 "llvm.experimental.guard intrinsics as unswitch candidates."));
110 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
111 cl::init(false), cl::Hidden,
112 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
113 "null checks to save time analyzing if we can keep it."));
115 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
116 cl::desc("Max number of memory uses to explore during "
117 "partial unswitching analysis"),
118 cl::init(100), cl::Hidden);
120 "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden,
121 cl::desc("If enabled, the freeze instruction will be added to condition "
122 "of loop unswitch to prevent miscompilation."));
123
125 "simple-loop-unswitch-inject-invariant-conditions", cl::Hidden,
126 cl::desc("Whether we should inject new invariants and unswitch them to "
127 "eliminate some existing (non-invariant) conditions."),
128 cl::init(true));
129
131 "simple-loop-unswitch-inject-invariant-condition-hotness-threshold",
132 cl::Hidden, cl::desc("Only try to inject loop invariant conditions and "
133 "unswitch on them to eliminate branches that are "
134 "not-taken 1/<this option> times or less."),
135 cl::init(16));
136
138namespace {
139struct CompareDesc {
140 BranchInst *Term;
141 Value *Invariant;
142 BasicBlock *InLoopSucc;
143
144 CompareDesc(BranchInst *Term, Value *Invariant, BasicBlock *InLoopSucc)
145 : Term(Term), Invariant(Invariant), InLoopSucc(InLoopSucc) {}
146};
147
148struct InjectedInvariant {
150 Value *LHS;
151 Value *RHS;
152 BasicBlock *InLoopSucc;
153
154 InjectedInvariant(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
155 BasicBlock *InLoopSucc)
156 : Pred(Pred), LHS(LHS), RHS(RHS), InLoopSucc(InLoopSucc) {}
157};
158
159struct NonTrivialUnswitchCandidate {
160 Instruction *TI = nullptr;
161 TinyPtrVector<Value *> Invariants;
162 std::optional<InstructionCost> Cost;
163 std::optional<InjectedInvariant> PendingInjection;
164 NonTrivialUnswitchCandidate(
165 Instruction *TI, ArrayRef<Value *> Invariants,
166 std::optional<InstructionCost> Cost = std::nullopt,
167 std::optional<InjectedInvariant> PendingInjection = std::nullopt)
168 : TI(TI), Invariants(Invariants), Cost(Cost),
169 PendingInjection(PendingInjection) {};
170
171 bool hasPendingInjection() const { return PendingInjection.has_value(); }
172};
173} // end anonymous namespace.
174
175// Helper to skip (select x, true, false), which matches both a logical AND and
176// OR and can confuse code that tries to determine if \p Cond is either a
177// logical AND or OR but not both.
179 Value *CondNext;
180 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
181 Cond = CondNext;
182 return Cond;
183}
184
185/// Collect all of the loop invariant input values transitively used by the
186/// homogeneous instruction graph from a given root.
187///
188/// This essentially walks from a root recursively through loop variant operands
189/// which have perform the same logical operation (AND or OR) and finds all
190/// inputs which are loop invariant. For some operations these can be
191/// re-associated and unswitched out of the loop entirely.
194 const LoopInfo &LI) {
195 assert(!L.isLoopInvariant(&Root) &&
196 "Only need to walk the graph if root itself is not invariant.");
197 TinyPtrVector<Value *> Invariants;
198
199 bool IsRootAnd = match(&Root, m_LogicalAnd());
200 bool IsRootOr = match(&Root, m_LogicalOr());
201
202 // Build a worklist and recurse through operators collecting invariants.
205 Worklist.push_back(&Root);
206 Visited.insert(&Root);
207 do {
208 Instruction &I = *Worklist.pop_back_val();
209 for (Value *OpV : I.operand_values()) {
210 // Skip constants as unswitching isn't interesting for them.
211 if (isa<Constant>(OpV))
212 continue;
213
214 // Add it to our result if loop invariant.
215 if (L.isLoopInvariant(OpV)) {
216 Invariants.push_back(OpV);
217 continue;
218 }
219
220 // If not an instruction with the same opcode, nothing we can do.
221 Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV));
222
223 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
224 (IsRootOr && match(OpI, m_LogicalOr())))) {
225 // Visit this operand.
226 if (Visited.insert(OpI).second)
227 Worklist.push_back(OpI);
228 }
229 }
230 } while (!Worklist.empty());
231
232 return Invariants;
233}
234
235static void replaceLoopInvariantUses(const Loop &L, Value *Invariant,
236 Constant &Replacement) {
237 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
238
239 // Replace uses of LIC in the loop with the given constant.
240 // We use make_early_inc_range as set invalidates the iterator.
241 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
242 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
243
244 // Replace this use within the loop body.
245 if (UserI && L.contains(UserI))
246 U.set(&Replacement);
247 }
248}
249
250/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
251/// incoming values along this edge.
253 const BasicBlock &ExitingBB,
254 const BasicBlock &ExitBB) {
255 for (const Instruction &I : ExitBB) {
256 auto *PN = dyn_cast<PHINode>(&I);
257 if (!PN)
258 // No more PHIs to check.
259 return true;
260
261 // If the incoming value for this edge isn't loop invariant the unswitch
262 // won't be trivial.
263 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
264 return false;
265 }
266 llvm_unreachable("Basic blocks should never be empty!");
267}
268
269/// Copy a set of loop invariant values \p ToDuplicate and insert them at the
270/// end of \p BB and conditionally branch on the copied condition. We only
271/// branch on a single value.
273 BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
274 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze,
275 const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) {
276 IRBuilder<> IRB(&BB);
277
278 SmallVector<Value *> FrozenInvariants;
279 for (Value *Inv : Invariants) {
280 if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT))
281 Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr");
282 FrozenInvariants.push_back(Inv);
283 }
284
285 Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants)
286 : IRB.CreateAnd(FrozenInvariants);
287 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
288 Direction ? &NormalSucc : &UnswitchedSucc);
289}
290
291/// Copy a set of loop invariant values, and conditionally branch on them.
293 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
294 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
295 MemorySSAUpdater *MSSAU) {
297 for (auto *Val : reverse(ToDuplicate)) {
298 Instruction *Inst = cast<Instruction>(Val);
299 Instruction *NewInst = Inst->clone();
300 NewInst->insertInto(&BB, BB.end());
301 RemapInstruction(NewInst, VMap,
303 VMap[Val] = NewInst;
304
305 if (!MSSAU)
306 continue;
307
308 MemorySSA *MSSA = MSSAU->getMemorySSA();
309 if (auto *MemUse =
310 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
311 auto *DefiningAccess = MemUse->getDefiningAccess();
312 // Get the first defining access before the loop.
313 while (L.contains(DefiningAccess->getBlock())) {
314 // If the defining access is a MemoryPhi, get the incoming
315 // value for the pre-header as defining access.
316 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
317 DefiningAccess =
318 MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
319 else
320 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
321 }
322 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
323 NewInst->getParent(),
325 }
326 }
327
328 IRBuilder<> IRB(&BB);
329 Value *Cond = VMap[ToDuplicate[0]];
330 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
331 Direction ? &NormalSucc : &UnswitchedSucc);
332}
333
334/// Rewrite the PHI nodes in an unswitched loop exit basic block.
335///
336/// Requires that the loop exit and unswitched basic block are the same, and
337/// that the exiting block was a unique predecessor of that block. Rewrites the
338/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
339/// PHI nodes from the old preheader that now contains the unswitched
340/// terminator.
342 BasicBlock &OldExitingBB,
343 BasicBlock &OldPH) {
344 for (PHINode &PN : UnswitchedBB.phis()) {
345 // When the loop exit is directly unswitched we just need to update the
346 // incoming basic block. We loop to handle weird cases with repeated
347 // incoming blocks, but expect to typically only have one operand here.
348 for (auto i : seq<int>(0, PN.getNumOperands())) {
349 assert(PN.getIncomingBlock(i) == &OldExitingBB &&
350 "Found incoming block different from unique predecessor!");
351 PN.setIncomingBlock(i, &OldPH);
352 }
353 }
354}
355
356/// Rewrite the PHI nodes in the loop exit basic block and the split off
357/// unswitched block.
358///
359/// Because the exit block remains an exit from the loop, this rewrites the
360/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
361/// nodes into the unswitched basic block to select between the value in the
362/// old preheader and the loop exit.
364 BasicBlock &UnswitchedBB,
365 BasicBlock &OldExitingBB,
366 BasicBlock &OldPH,
367 bool FullUnswitch) {
368 assert(&ExitBB != &UnswitchedBB &&
369 "Must have different loop exit and unswitched blocks!");
370 BasicBlock::iterator InsertPt = UnswitchedBB.begin();
371 for (PHINode &PN : ExitBB.phis()) {
372 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
373 PN.getName() + ".split");
374 NewPN->insertBefore(InsertPt);
375
376 // Walk backwards over the old PHI node's inputs to minimize the cost of
377 // removing each one. We have to do this weird loop manually so that we
378 // create the same number of new incoming edges in the new PHI as we expect
379 // each case-based edge to be included in the unswitched switch in some
380 // cases.
381 // FIXME: This is really, really gross. It would be much cleaner if LLVM
382 // allowed us to create a single entry for a predecessor block without
383 // having separate entries for each "edge" even though these edges are
384 // required to produce identical results.
385 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
386 if (PN.getIncomingBlock(i) != &OldExitingBB)
387 continue;
388
389 Value *Incoming = PN.getIncomingValue(i);
390 if (FullUnswitch)
391 // No more edge from the old exiting block to the exit block.
392 PN.removeIncomingValue(i);
393
394 NewPN->addIncoming(Incoming, &OldPH);
395 }
396
397 // Now replace the old PHI with the new one and wire the old one in as an
398 // input to the new one.
399 PN.replaceAllUsesWith(NewPN);
400 NewPN->addIncoming(&PN, &ExitBB);
401 }
402}
403
404/// Hoist the current loop up to the innermost loop containing a remaining exit.
405///
406/// Because we've removed an exit from the loop, we may have changed the set of
407/// loops reachable and need to move the current loop up the loop nest or even
408/// to an entirely separate nest.
409static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
410 DominatorTree &DT, LoopInfo &LI,
411 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
412 // If the loop is already at the top level, we can't hoist it anywhere.
413 Loop *OldParentL = L.getParentLoop();
414 if (!OldParentL)
415 return;
416
418 L.getExitBlocks(Exits);
419 Loop *NewParentL = nullptr;
420 for (auto *ExitBB : Exits)
421 if (Loop *ExitL = LI.getLoopFor(ExitBB))
422 if (!NewParentL || NewParentL->contains(ExitL))
423 NewParentL = ExitL;
424
425 if (NewParentL == OldParentL)
426 return;
427
428 // The new parent loop (if different) should always contain the old one.
429 if (NewParentL)
430 assert(NewParentL->contains(OldParentL) &&
431 "Can only hoist this loop up the nest!");
432
433 // The preheader will need to move with the body of this loop. However,
434 // because it isn't in this loop we also need to update the primary loop map.
435 assert(OldParentL == LI.getLoopFor(&Preheader) &&
436 "Parent loop of this loop should contain this loop's preheader!");
437 LI.changeLoopFor(&Preheader, NewParentL);
438
439 // Remove this loop from its old parent.
440 OldParentL->removeChildLoop(&L);
441
442 // Add the loop either to the new parent or as a top-level loop.
443 if (NewParentL)
444 NewParentL->addChildLoop(&L);
445 else
446 LI.addTopLevelLoop(&L);
447
448 // Remove this loops blocks from the old parent and every other loop up the
449 // nest until reaching the new parent. Also update all of these
450 // no-longer-containing loops to reflect the nesting change.
451 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
452 OldContainingL = OldContainingL->getParentLoop()) {
453 llvm::erase_if(OldContainingL->getBlocksVector(),
454 [&](const BasicBlock *BB) {
455 return BB == &Preheader || L.contains(BB);
456 });
457
458 OldContainingL->getBlocksSet().erase(&Preheader);
459 for (BasicBlock *BB : L.blocks())
460 OldContainingL->getBlocksSet().erase(BB);
461
462 // Because we just hoisted a loop out of this one, we have essentially
463 // created new exit paths from it. That means we need to form LCSSA PHI
464 // nodes for values used in the no-longer-nested loop.
465 formLCSSA(*OldContainingL, DT, &LI, SE);
466
467 // We shouldn't need to form dedicated exits because the exit introduced
468 // here is the (just split by unswitching) preheader. However, after trivial
469 // unswitching it is possible to get new non-dedicated exits out of parent
470 // loop so let's conservatively form dedicated exit blocks and figure out
471 // if we can optimize later.
472 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
473 /*PreserveLCSSA*/ true);
474 }
475}
476
477// Return the top-most loop containing ExitBB and having ExitBB as exiting block
478// or the loop containing ExitBB, if there is no parent loop containing ExitBB
479// as exiting block.
481 const LoopInfo &LI) {
482 Loop *TopMost = LI.getLoopFor(ExitBB);
483 Loop *Current = TopMost;
484 while (Current) {
485 if (Current->isLoopExiting(ExitBB))
486 TopMost = Current;
487 Current = Current->getParentLoop();
488 }
489 return TopMost;
490}
491
492/// Unswitch a trivial branch if the condition is loop invariant.
493///
494/// This routine should only be called when loop code leading to the branch has
495/// been validated as trivial (no side effects). This routine checks if the
496/// condition is invariant and one of the successors is a loop exit. This
497/// allows us to unswitch without duplicating the loop, making it trivial.
498///
499/// If this routine fails to unswitch the branch it returns false.
500///
501/// If the branch can be unswitched, this routine splits the preheader and
502/// hoists the branch above that split. Preserves loop simplified form
503/// (splitting the exit block as necessary). It simplifies the branch within
504/// the loop to an unconditional branch but doesn't remove it entirely. Further
505/// cleanup can be done with some simplifycfg like pass.
506///
507/// If `SE` is not null, it will be updated based on the potential loop SCEVs
508/// invalidated by this.
510 LoopInfo &LI, ScalarEvolution *SE,
511 MemorySSAUpdater *MSSAU) {
512 assert(BI.isConditional() && "Can only unswitch a conditional branch!");
513 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
514
515 // The loop invariant values that we want to unswitch.
516 TinyPtrVector<Value *> Invariants;
517
518 // When true, we're fully unswitching the branch rather than just unswitching
519 // some input conditions to the branch.
520 bool FullUnswitch = false;
521
523 if (L.isLoopInvariant(Cond)) {
524 Invariants.push_back(Cond);
525 FullUnswitch = true;
526 } else {
527 if (auto *CondInst = dyn_cast<Instruction>(Cond))
528 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
529 if (Invariants.empty()) {
530 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n");
531 return false;
532 }
533 }
534
535 // Check that one of the branch's successors exits, and which one.
536 bool ExitDirection = true;
537 int LoopExitSuccIdx = 0;
538 auto *LoopExitBB = BI.getSuccessor(0);
539 if (L.contains(LoopExitBB)) {
540 ExitDirection = false;
541 LoopExitSuccIdx = 1;
542 LoopExitBB = BI.getSuccessor(1);
543 if (L.contains(LoopExitBB)) {
544 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n");
545 return false;
546 }
547 }
548 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
549 auto *ParentBB = BI.getParent();
550 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
551 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n");
552 return false;
553 }
554
555 // When unswitching only part of the branch's condition, we need the exit
556 // block to be reached directly from the partially unswitched input. This can
557 // be done when the exit block is along the true edge and the branch condition
558 // is a graph of `or` operations, or the exit block is along the false edge
559 // and the condition is a graph of `and` operations.
560 if (!FullUnswitch) {
561 if (ExitDirection ? !match(Cond, m_LogicalOr())
562 : !match(Cond, m_LogicalAnd())) {
563 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for "
564 "non-full unswitch!\n");
565 return false;
566 }
567 }
568
569 LLVM_DEBUG({
570 dbgs() << " unswitching trivial invariant conditions for: " << BI
571 << "\n";
572 for (Value *Invariant : Invariants) {
573 dbgs() << " " << *Invariant << " == true";
574 if (Invariant != Invariants.back())
575 dbgs() << " ||";
576 dbgs() << "\n";
577 }
578 });
579
580 // If we have scalar evolutions, we need to invalidate them including this
581 // loop, the loop containing the exit block and the topmost parent loop
582 // exiting via LoopExitBB.
583 if (SE) {
584 if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
585 SE->forgetLoop(ExitL);
586 else
587 // Forget the entire nest as this exits the entire nest.
588 SE->forgetTopmostLoop(&L);
590 }
591
592 if (MSSAU && VerifyMemorySSA)
593 MSSAU->getMemorySSA()->verifyMemorySSA();
594
595 // Split the preheader, so that we know that there is a safe place to insert
596 // the conditional branch. We will change the preheader to have a conditional
597 // branch on LoopCond.
598 BasicBlock *OldPH = L.getLoopPreheader();
599 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
600
601 // Now that we have a place to insert the conditional branch, create a place
602 // to branch to: this is the exit block out of the loop that we are
603 // unswitching. We need to split this if there are other loop predecessors.
604 // Because the loop is in simplified form, *any* other predecessor is enough.
605 BasicBlock *UnswitchedBB;
606 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
607 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
608 "A branch's parent isn't a predecessor!");
609 UnswitchedBB = LoopExitBB;
610 } else {
611 UnswitchedBB =
612 SplitBlock(LoopExitBB, LoopExitBB->begin(), &DT, &LI, MSSAU, "", false);
613 }
614
615 if (MSSAU && VerifyMemorySSA)
616 MSSAU->getMemorySSA()->verifyMemorySSA();
617
618 // Actually move the invariant uses into the unswitched position. If possible,
619 // we do this by moving the instructions, but when doing partial unswitching
620 // we do it by building a new merge of the values in the unswitched position.
621 OldPH->getTerminator()->eraseFromParent();
622 if (FullUnswitch) {
623 // If fully unswitching, we can use the existing branch instruction.
624 // Splice it into the old PH to gate reaching the new preheader and re-point
625 // its successors.
626 BI.moveBefore(*OldPH, OldPH->end());
627 BI.setCondition(Cond);
628 if (MSSAU) {
629 // Temporarily clone the terminator, to make MSSA update cheaper by
630 // separating "insert edge" updates from "remove edge" ones.
631 BI.clone()->insertInto(ParentBB, ParentBB->end());
632 } else {
633 // Create a new unconditional branch that will continue the loop as a new
634 // terminator.
635 Instruction *NewBI = BranchInst::Create(ContinueBB, ParentBB);
636 NewBI->setDebugLoc(BI.getDebugLoc());
637 }
638 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
639 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
640 } else {
641 // Only unswitching a subset of inputs to the condition, so we will need to
642 // build a new branch that merges the invariant inputs.
643 if (ExitDirection)
645 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
646 "condition!");
647 else
649 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
650 " condition!");
652 *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH,
653 FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT);
654 }
655
656 // Update the dominator tree with the added edge.
657 DT.insertEdge(OldPH, UnswitchedBB);
658
659 // After the dominator tree was updated with the added edge, update MemorySSA
660 // if available.
661 if (MSSAU) {
663 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
664 MSSAU->applyInsertUpdates(Updates, DT);
665 }
666
667 // Finish updating dominator tree and memory ssa for full unswitch.
668 if (FullUnswitch) {
669 if (MSSAU) {
670 Instruction *Term = ParentBB->getTerminator();
671 // Remove the cloned branch instruction and create unconditional branch
672 // now.
673 Instruction *NewBI = BranchInst::Create(ContinueBB, ParentBB);
674 NewBI->setDebugLoc(Term->getDebugLoc());
675 Term->eraseFromParent();
676 MSSAU->removeEdge(ParentBB, LoopExitBB);
677 }
678 DT.deleteEdge(ParentBB, LoopExitBB);
679 }
680
681 if (MSSAU && VerifyMemorySSA)
682 MSSAU->getMemorySSA()->verifyMemorySSA();
683
684 // Rewrite the relevant PHI nodes.
685 if (UnswitchedBB == LoopExitBB)
686 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
687 else
688 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
689 *ParentBB, *OldPH, FullUnswitch);
690
691 // The constant we can replace all of our invariants with inside the loop
692 // body. If any of the invariants have a value other than this the loop won't
693 // be entered.
694 ConstantInt *Replacement = ExitDirection
697
698 // Since this is an i1 condition we can also trivially replace uses of it
699 // within the loop with a constant.
700 for (Value *Invariant : Invariants)
701 replaceLoopInvariantUses(L, Invariant, *Replacement);
702
703 // If this was full unswitching, we may have changed the nesting relationship
704 // for this loop so hoist it to its correct parent if needed.
705 if (FullUnswitch)
706 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
707
708 if (MSSAU && VerifyMemorySSA)
709 MSSAU->getMemorySSA()->verifyMemorySSA();
710
711 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
712 ++NumTrivial;
713 ++NumBranches;
714 return true;
715}
716
717/// Unswitch a trivial switch if the condition is loop invariant.
718///
719/// This routine should only be called when loop code leading to the switch has
720/// been validated as trivial (no side effects). This routine checks if the
721/// condition is invariant and that at least one of the successors is a loop
722/// exit. This allows us to unswitch without duplicating the loop, making it
723/// trivial.
724///
725/// If this routine fails to unswitch the switch it returns false.
726///
727/// If the switch can be unswitched, this routine splits the preheader and
728/// copies the switch above that split. If the default case is one of the
729/// exiting cases, it copies the non-exiting cases and points them at the new
730/// preheader. If the default case is not exiting, it copies the exiting cases
731/// and points the default at the preheader. It preserves loop simplified form
732/// (splitting the exit blocks as necessary). It simplifies the switch within
733/// the loop by removing now-dead cases. If the default case is one of those
734/// unswitched, it replaces its destination with a new basic block containing
735/// only unreachable. Such basic blocks, while technically loop exits, are not
736/// considered for unswitching so this is a stable transform and the same
737/// switch will not be revisited. If after unswitching there is only a single
738/// in-loop successor, the switch is further simplified to an unconditional
739/// branch. Still more cleanup can be done with some simplifycfg like pass.
740///
741/// If `SE` is not null, it will be updated based on the potential loop SCEVs
742/// invalidated by this.
744 LoopInfo &LI, ScalarEvolution *SE,
745 MemorySSAUpdater *MSSAU) {
746 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
747 Value *LoopCond = SI.getCondition();
748
749 // If this isn't switching on an invariant condition, we can't unswitch it.
750 if (!L.isLoopInvariant(LoopCond))
751 return false;
752
753 auto *ParentBB = SI.getParent();
754
755 // The same check must be used both for the default and the exit cases. We
756 // should never leave edges from the switch instruction to a basic block that
757 // we are unswitching, hence the condition used to determine the default case
758 // needs to also be used to populate ExitCaseIndices, which is then used to
759 // remove cases from the switch.
760 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
761 // BBToCheck is not an exit block if it is inside loop L.
762 if (L.contains(&BBToCheck))
763 return false;
764 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
765 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
766 return false;
767 // We do not unswitch a block that only has an unreachable statement, as
768 // it's possible this is a previously unswitched block. Only unswitch if
769 // either the terminator is not unreachable, or, if it is, it's not the only
770 // instruction in the block.
771 auto *TI = BBToCheck.getTerminator();
772 bool isUnreachable = isa<UnreachableInst>(TI);
773 return !isUnreachable || BBToCheck.getFirstNonPHIOrDbg() != TI;
774 };
775
776 SmallVector<int, 4> ExitCaseIndices;
777 for (auto Case : SI.cases())
778 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
779 ExitCaseIndices.push_back(Case.getCaseIndex());
780 BasicBlock *DefaultExitBB = nullptr;
783 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
784 DefaultExitBB = SI.getDefaultDest();
785 } else if (ExitCaseIndices.empty())
786 return false;
787
788 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
789
790 if (MSSAU && VerifyMemorySSA)
791 MSSAU->getMemorySSA()->verifyMemorySSA();
792
793 // We may need to invalidate SCEVs for the outermost loop reached by any of
794 // the exits.
795 Loop *OuterL = &L;
796
797 if (DefaultExitBB) {
798 // Check the loop containing this exit.
799 Loop *ExitL = getTopMostExitingLoop(DefaultExitBB, LI);
800 if (!ExitL || ExitL->contains(OuterL))
801 OuterL = ExitL;
802 }
803 for (unsigned Index : ExitCaseIndices) {
804 auto CaseI = SI.case_begin() + Index;
805 // Compute the outer loop from this exit.
806 Loop *ExitL = getTopMostExitingLoop(CaseI->getCaseSuccessor(), LI);
807 if (!ExitL || ExitL->contains(OuterL))
808 OuterL = ExitL;
809 }
810
811 if (SE) {
812 if (OuterL)
813 SE->forgetLoop(OuterL);
814 else
815 SE->forgetTopmostLoop(&L);
816 }
817
818 if (DefaultExitBB) {
819 // Clear out the default destination temporarily to allow accurate
820 // predecessor lists to be examined below.
821 SI.setDefaultDest(nullptr);
822 }
823
824 // Store the exit cases into a separate data structure and remove them from
825 // the switch.
826 SmallVector<std::tuple<ConstantInt *, BasicBlock *,
828 4> ExitCases;
829 ExitCases.reserve(ExitCaseIndices.size());
831 // We walk the case indices backwards so that we remove the last case first
832 // and don't disrupt the earlier indices.
833 for (unsigned Index : reverse(ExitCaseIndices)) {
834 auto CaseI = SI.case_begin() + Index;
835 // Save the value of this case.
836 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
837 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
838 // Delete the unswitched cases.
839 SIW.removeCase(CaseI);
840 }
841
842 // Check if after this all of the remaining cases point at the same
843 // successor.
844 BasicBlock *CommonSuccBB = nullptr;
845 if (SI.getNumCases() > 0 &&
846 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
847 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
848 }))
849 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
850 if (!DefaultExitBB) {
851 // If we're not unswitching the default, we need it to match any cases to
852 // have a common successor or if we have no cases it is the common
853 // successor.
854 if (SI.getNumCases() == 0)
855 CommonSuccBB = SI.getDefaultDest();
856 else if (SI.getDefaultDest() != CommonSuccBB)
857 CommonSuccBB = nullptr;
858 }
859
860 // Split the preheader, so that we know that there is a safe place to insert
861 // the switch.
862 BasicBlock *OldPH = L.getLoopPreheader();
863 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
864 OldPH->getTerminator()->eraseFromParent();
865
866 // Now add the unswitched switch. This new switch instruction inherits the
867 // debug location of the old switch, because it semantically replace the old
868 // one.
869 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
870 NewSI->setDebugLoc(SIW->getDebugLoc());
871 SwitchInstProfUpdateWrapper NewSIW(*NewSI);
872
873 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
874 // First, we split any exit blocks with remaining in-loop predecessors. Then
875 // we update the PHIs in one of two ways depending on if there was a split.
876 // We walk in reverse so that we split in the same order as the cases
877 // appeared. This is purely for convenience of reading the resulting IR, but
878 // it doesn't cost anything really.
879 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
881 // Handle the default exit if necessary.
882 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
883 // ranges aren't quite powerful enough yet.
884 if (DefaultExitBB) {
885 if (pred_empty(DefaultExitBB)) {
886 UnswitchedExitBBs.insert(DefaultExitBB);
887 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
888 } else {
889 auto *SplitBB =
890 SplitBlock(DefaultExitBB, DefaultExitBB->begin(), &DT, &LI, MSSAU);
891 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
892 *ParentBB, *OldPH,
893 /*FullUnswitch*/ true);
894 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
895 }
896 }
897 // Note that we must use a reference in the for loop so that we update the
898 // container.
899 for (auto &ExitCase : reverse(ExitCases)) {
900 // Grab a reference to the exit block in the pair so that we can update it.
901 BasicBlock *ExitBB = std::get<1>(ExitCase);
902
903 // If this case is the last edge into the exit block, we can simply reuse it
904 // as it will no longer be a loop exit. No mapping necessary.
905 if (pred_empty(ExitBB)) {
906 // Only rewrite once.
907 if (UnswitchedExitBBs.insert(ExitBB).second)
908 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
909 continue;
910 }
911
912 // Otherwise we need to split the exit block so that we retain an exit
913 // block from the loop and a target for the unswitched condition.
914 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
915 if (!SplitExitBB) {
916 // If this is the first time we see this, do the split and remember it.
917 SplitExitBB = SplitBlock(ExitBB, ExitBB->begin(), &DT, &LI, MSSAU);
918 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
919 *ParentBB, *OldPH,
920 /*FullUnswitch*/ true);
921 }
922 // Update the case pair to point to the split block.
923 std::get<1>(ExitCase) = SplitExitBB;
924 }
925
926 // Now add the unswitched cases. We do this in reverse order as we built them
927 // in reverse order.
928 for (auto &ExitCase : reverse(ExitCases)) {
929 ConstantInt *CaseVal = std::get<0>(ExitCase);
930 BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
931
932 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
933 }
934
935 // If the default was unswitched, re-point it and add explicit cases for
936 // entering the loop.
937 if (DefaultExitBB) {
938 NewSIW->setDefaultDest(DefaultExitBB);
939 NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
940
941 // We removed all the exit cases, so we just copy the cases to the
942 // unswitched switch.
943 for (const auto &Case : SI.cases())
944 NewSIW.addCase(Case.getCaseValue(), NewPH,
946 } else if (DefaultCaseWeight) {
947 // We have to set branch weight of the default case.
948 uint64_t SW = *DefaultCaseWeight;
949 for (const auto &Case : SI.cases()) {
950 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
951 assert(W &&
952 "case weight must be defined as default case weight is defined");
953 SW += *W;
954 }
955 NewSIW.setSuccessorWeight(0, SW);
956 }
957
958 // If we ended up with a common successor for every path through the switch
959 // after unswitching, rewrite it to an unconditional branch to make it easy
960 // to recognize. Otherwise we potentially have to recognize the default case
961 // pointing at unreachable and other complexity.
962 if (CommonSuccBB) {
963 BasicBlock *BB = SI.getParent();
964 // We may have had multiple edges to this common successor block, so remove
965 // them as predecessors. We skip the first one, either the default or the
966 // actual first case.
967 bool SkippedFirst = DefaultExitBB == nullptr;
968 for (auto Case : SI.cases()) {
969 assert(Case.getCaseSuccessor() == CommonSuccBB &&
970 "Non-common successor!");
971 (void)Case;
972 if (!SkippedFirst) {
973 SkippedFirst = true;
974 continue;
975 }
976 CommonSuccBB->removePredecessor(BB,
977 /*KeepOneInputPHIs*/ true);
978 }
979 // Now nuke the switch and replace it with a direct branch.
980 Instruction *NewBI = BranchInst::Create(CommonSuccBB, BB);
981 NewBI->setDebugLoc(SIW->getDebugLoc());
982 SIW.eraseFromParent();
983 } else if (DefaultExitBB) {
984 assert(SI.getNumCases() > 0 &&
985 "If we had no cases we'd have a common successor!");
986 // Move the last case to the default successor. This is valid as if the
987 // default got unswitched it cannot be reached. This has the advantage of
988 // being simple and keeping the number of edges from this switch to
989 // successors the same, and avoiding any PHI update complexity.
990 auto LastCaseI = std::prev(SI.case_end());
991
992 SI.setDefaultDest(LastCaseI->getCaseSuccessor());
994 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
995 SIW.removeCase(LastCaseI);
996 }
997
998 // Walk the unswitched exit blocks and the unswitched split blocks and update
999 // the dominator tree based on the CFG edits. While we are walking unordered
1000 // containers here, the API for applyUpdates takes an unordered list of
1001 // updates and requires them to not contain duplicates.
1003 for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
1004 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
1005 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
1006 }
1007 for (auto SplitUnswitchedPair : SplitExitBBMap) {
1008 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
1009 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
1010 }
1011
1012 if (MSSAU) {
1013 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
1014 if (VerifyMemorySSA)
1015 MSSAU->getMemorySSA()->verifyMemorySSA();
1016 } else {
1017 DT.applyUpdates(DTUpdates);
1018 }
1019
1020 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1021
1022 // We may have changed the nesting relationship for this loop so hoist it to
1023 // its correct parent if needed.
1024 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
1025
1026 if (MSSAU && VerifyMemorySSA)
1027 MSSAU->getMemorySSA()->verifyMemorySSA();
1028
1029 ++NumTrivial;
1030 ++NumSwitches;
1031 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
1032 return true;
1033}
1034
1035/// This routine scans the loop to find a branch or switch which occurs before
1036/// any side effects occur. These can potentially be unswitched without
1037/// duplicating the loop. If a branch or switch is successfully unswitched the
1038/// scanning continues to see if subsequent branches or switches have become
1039/// trivial. Once all trivial candidates have been unswitched, this routine
1040/// returns.
1041///
1042/// The return value indicates whether anything was unswitched (and therefore
1043/// changed).
1044///
1045/// If `SE` is not null, it will be updated based on the potential loop SCEVs
1046/// invalidated by this.
1048 LoopInfo &LI, ScalarEvolution *SE,
1049 MemorySSAUpdater *MSSAU) {
1050 bool Changed = false;
1051
1052 // If loop header has only one reachable successor we should keep looking for
1053 // trivial condition candidates in the successor as well. An alternative is
1054 // to constant fold conditions and merge successors into loop header (then we
1055 // only need to check header's terminator). The reason for not doing this in
1056 // LoopUnswitch pass is that it could potentially break LoopPassManager's
1057 // invariants. Folding dead branches could either eliminate the current loop
1058 // or make other loops unreachable. LCSSA form might also not be preserved
1059 // after deleting branches. The following code keeps traversing loop header's
1060 // successors until it finds the trivial condition candidate (condition that
1061 // is not a constant). Since unswitching generates branches with constant
1062 // conditions, this scenario could be very common in practice.
1063 BasicBlock *CurrentBB = L.getHeader();
1065 Visited.insert(CurrentBB);
1066 do {
1067 // Check if there are any side-effecting instructions (e.g. stores, calls,
1068 // volatile loads) in the part of the loop that the code *would* execute
1069 // without unswitching.
1070 if (MSSAU) // Possible early exit with MSSA
1071 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
1072 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
1073 return Changed;
1074 if (llvm::any_of(*CurrentBB,
1075 [](Instruction &I) { return I.mayHaveSideEffects(); }))
1076 return Changed;
1077
1078 Instruction *CurrentTerm = CurrentBB->getTerminator();
1079
1080 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1081 // Don't bother trying to unswitch past a switch with a constant
1082 // condition. This should be removed prior to running this pass by
1083 // simplifycfg.
1084 if (isa<Constant>(SI->getCondition()))
1085 return Changed;
1086
1087 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
1088 // Couldn't unswitch this one so we're done.
1089 return Changed;
1090
1091 // Mark that we managed to unswitch something.
1092 Changed = true;
1093
1094 // If unswitching turned the terminator into an unconditional branch then
1095 // we can continue. The unswitching logic specifically works to fold any
1096 // cases it can into an unconditional branch to make it easier to
1097 // recognize here.
1098 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1099 if (!BI || BI->isConditional())
1100 return Changed;
1101
1102 CurrentBB = BI->getSuccessor(0);
1103 continue;
1104 }
1105
1106 auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1107 if (!BI)
1108 // We do not understand other terminator instructions.
1109 return Changed;
1110
1111 // Don't bother trying to unswitch past an unconditional branch or a branch
1112 // with a constant value. These should be removed by simplifycfg prior to
1113 // running this pass.
1114 if (!BI->isConditional() ||
1115 isa<Constant>(skipTrivialSelect(BI->getCondition())))
1116 return Changed;
1117
1118 // Found a trivial condition candidate: non-foldable conditional branch. If
1119 // we fail to unswitch this, we can't do anything else that is trivial.
1120 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1121 return Changed;
1122
1123 // Mark that we managed to unswitch something.
1124 Changed = true;
1125
1126 // If we only unswitched some of the conditions feeding the branch, we won't
1127 // have collapsed it to a single successor.
1128 BI = cast<BranchInst>(CurrentBB->getTerminator());
1129 if (BI->isConditional())
1130 return Changed;
1131
1132 // Follow the newly unconditional branch into its successor.
1133 CurrentBB = BI->getSuccessor(0);
1134
1135 // When continuing, if we exit the loop or reach a previous visited block,
1136 // then we can not reach any trivial condition candidates (unfoldable
1137 // branch instructions or switch instructions) and no unswitch can happen.
1138 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1139
1140 return Changed;
1141}
1142
1143/// Build the cloned blocks for an unswitched copy of the given loop.
1144///
1145/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1146/// after the split block (`SplitBB`) that will be used to select between the
1147/// cloned and original loop.
1148///
1149/// This routine handles cloning all of the necessary loop blocks and exit
1150/// blocks including rewriting their instructions and the relevant PHI nodes.
1151/// Any loop blocks or exit blocks which are dominated by a different successor
1152/// than the one for this clone of the loop blocks can be trivially skipped. We
1153/// use the `DominatingSucc` map to determine whether a block satisfies that
1154/// property with a simple map lookup.
1155///
1156/// It also correctly creates the unconditional branch in the cloned
1157/// unswitched parent block to only point at the unswitched successor.
1158///
1159/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1160/// block splitting is correctly reflected in `LoopInfo`, essentially all of
1161/// the cloned blocks (and their loops) are left without full `LoopInfo`
1162/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1163/// blocks to them but doesn't create the cloned `DominatorTree` structure and
1164/// instead the caller must recompute an accurate DT. It *does* correctly
1165/// update the `AssumptionCache` provided in `AC`.
1167 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1168 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1169 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1171 ValueToValueMapTy &VMap,
1173 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU,
1174 ScalarEvolution *SE) {
1176 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1177
1178 // We will need to clone a bunch of blocks, wrap up the clone operation in
1179 // a helper.
1180 auto CloneBlock = [&](BasicBlock *OldBB) {
1181 // Clone the basic block and insert it before the new preheader.
1182 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1183 NewBB->moveBefore(LoopPH);
1184
1185 // Record this block and the mapping.
1186 NewBlocks.push_back(NewBB);
1187 VMap[OldBB] = NewBB;
1188
1189 return NewBB;
1190 };
1191
1192 // We skip cloning blocks when they have a dominating succ that is not the
1193 // succ we are cloning for.
1194 auto SkipBlock = [&](BasicBlock *BB) {
1195 auto It = DominatingSucc.find(BB);
1196 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1197 };
1198
1199 // First, clone the preheader.
1200 auto *ClonedPH = CloneBlock(LoopPH);
1201
1202 // Then clone all the loop blocks, skipping the ones that aren't necessary.
1203 for (auto *LoopBB : L.blocks())
1204 if (!SkipBlock(LoopBB))
1205 CloneBlock(LoopBB);
1206
1207 // Split all the loop exit edges so that when we clone the exit blocks, if
1208 // any of the exit blocks are *also* a preheader for some other loop, we
1209 // don't create multiple predecessors entering the loop header.
1210 for (auto *ExitBB : ExitBlocks) {
1211 if (SkipBlock(ExitBB))
1212 continue;
1213
1214 // When we are going to clone an exit, we don't need to clone all the
1215 // instructions in the exit block and we want to ensure we have an easy
1216 // place to merge the CFG, so split the exit first. This is always safe to
1217 // do because there cannot be any non-loop predecessors of a loop exit in
1218 // loop simplified form.
1219 auto *MergeBB = SplitBlock(ExitBB, ExitBB->begin(), &DT, &LI, MSSAU);
1220
1221 // Rearrange the names to make it easier to write test cases by having the
1222 // exit block carry the suffix rather than the merge block carrying the
1223 // suffix.
1224 MergeBB->takeName(ExitBB);
1225 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1226
1227 // Now clone the original exit block.
1228 auto *ClonedExitBB = CloneBlock(ExitBB);
1229 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1230 "Exit block should have been split to have one successor!");
1231 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1232 "Cloned exit block has the wrong successor!");
1233
1234 // Remap any cloned instructions and create a merge phi node for them.
1235 for (auto ZippedInsts : llvm::zip_first(
1236 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1237 llvm::make_range(ClonedExitBB->begin(),
1238 std::prev(ClonedExitBB->end())))) {
1239 Instruction &I = std::get<0>(ZippedInsts);
1240 Instruction &ClonedI = std::get<1>(ZippedInsts);
1241
1242 // The only instructions in the exit block should be PHI nodes and
1243 // potentially a landing pad.
1244 assert(
1245 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1246 "Bad instruction in exit block!");
1247 // We should have a value map between the instruction and its clone.
1248 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1249
1250 // Forget SCEVs based on exit phis in case SCEV looked through the phi.
1251 if (SE)
1252 if (auto *PN = dyn_cast<PHINode>(&I))
1254
1255 BasicBlock::iterator InsertPt = MergeBB->getFirstInsertionPt();
1256
1257 auto *MergePN =
1258 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi");
1259 MergePN->insertBefore(InsertPt);
1260 MergePN->setDebugLoc(InsertPt->getDebugLoc());
1261 I.replaceAllUsesWith(MergePN);
1262 MergePN->addIncoming(&I, ExitBB);
1263 MergePN->addIncoming(&ClonedI, ClonedExitBB);
1264 }
1265 }
1266
1267 // Rewrite the instructions in the cloned blocks to refer to the instructions
1268 // in the cloned blocks. We have to do this as a second pass so that we have
1269 // everything available. Also, we have inserted new instructions which may
1270 // include assume intrinsics, so we update the assumption cache while
1271 // processing this.
1272 Module *M = ClonedPH->getParent()->getParent();
1273 for (auto *ClonedBB : NewBlocks)
1274 for (Instruction &I : *ClonedBB) {
1275 RemapDbgRecordRange(M, I.getDbgRecordRange(), VMap,
1277 RemapInstruction(&I, VMap,
1279 if (auto *II = dyn_cast<AssumeInst>(&I))
1281 }
1282
1283 // Update any PHI nodes in the cloned successors of the skipped blocks to not
1284 // have spurious incoming values.
1285 for (auto *LoopBB : L.blocks())
1286 if (SkipBlock(LoopBB))
1287 for (auto *SuccBB : successors(LoopBB))
1288 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1289 for (PHINode &PN : ClonedSuccBB->phis())
1290 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1291
1292 // Remove the cloned parent as a predecessor of any successor we ended up
1293 // cloning other than the unswitched one.
1294 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1295 for (auto *SuccBB : successors(ParentBB)) {
1296 if (SuccBB == UnswitchedSuccBB)
1297 continue;
1298
1299 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1300 if (!ClonedSuccBB)
1301 continue;
1302
1303 ClonedSuccBB->removePredecessor(ClonedParentBB,
1304 /*KeepOneInputPHIs*/ true);
1305 }
1306
1307 // Replace the cloned branch with an unconditional branch to the cloned
1308 // unswitched successor.
1309 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1310 Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1311 // Trivial Simplification. If Terminator is a conditional branch and
1312 // condition becomes dead - erase it.
1313 Value *ClonedConditionToErase = nullptr;
1314 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1315 ClonedConditionToErase = BI->getCondition();
1316 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1317 ClonedConditionToErase = SI->getCondition();
1318
1319 Instruction *BI = BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1320 BI->setDebugLoc(ClonedTerminator->getDebugLoc());
1321 ClonedTerminator->eraseFromParent();
1322
1323 if (ClonedConditionToErase)
1324 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1325 MSSAU);
1326
1327 // If there are duplicate entries in the PHI nodes because of multiple edges
1328 // to the unswitched successor, we need to nuke all but one as we replaced it
1329 // with a direct branch.
1330 for (PHINode &PN : ClonedSuccBB->phis()) {
1331 bool Found = false;
1332 // Loop over the incoming operands backwards so we can easily delete as we
1333 // go without invalidating the index.
1334 for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1335 if (PN.getIncomingBlock(i) != ClonedParentBB)
1336 continue;
1337 if (!Found) {
1338 Found = true;
1339 continue;
1340 }
1341 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1342 }
1343 }
1344
1345 // Record the domtree updates for the new blocks.
1347 for (auto *ClonedBB : NewBlocks) {
1348 for (auto *SuccBB : successors(ClonedBB))
1349 if (SuccSet.insert(SuccBB).second)
1350 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1351 SuccSet.clear();
1352 }
1353
1354 return ClonedPH;
1355}
1356
1357/// Recursively clone the specified loop and all of its children.
1358///
1359/// The target parent loop for the clone should be provided, or can be null if
1360/// the clone is a top-level loop. While cloning, all the blocks are mapped
1361/// with the provided value map. The entire original loop must be present in
1362/// the value map. The cloned loop is returned.
1363static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1364 const ValueToValueMapTy &VMap, LoopInfo &LI) {
1365 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1366 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1367 ClonedL.reserveBlocks(OrigL.getNumBlocks());
1368 for (auto *BB : OrigL.blocks()) {
1369 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1370 ClonedL.addBlockEntry(ClonedBB);
1371 if (LI.getLoopFor(BB) == &OrigL)
1372 LI.changeLoopFor(ClonedBB, &ClonedL);
1373 }
1374 };
1375
1376 // We specially handle the first loop because it may get cloned into
1377 // a different parent and because we most commonly are cloning leaf loops.
1378 Loop *ClonedRootL = LI.AllocateLoop();
1379 if (RootParentL)
1380 RootParentL->addChildLoop(ClonedRootL);
1381 else
1382 LI.addTopLevelLoop(ClonedRootL);
1383 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1384
1385 if (OrigRootL.isInnermost())
1386 return ClonedRootL;
1387
1388 // If we have a nest, we can quickly clone the entire loop nest using an
1389 // iterative approach because it is a tree. We keep the cloned parent in the
1390 // data structure to avoid repeatedly querying through a map to find it.
1391 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1392 // Build up the loops to clone in reverse order as we'll clone them from the
1393 // back.
1394 for (Loop *ChildL : llvm::reverse(OrigRootL))
1395 LoopsToClone.push_back({ClonedRootL, ChildL});
1396 do {
1397 Loop *ClonedParentL, *L;
1398 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1399 Loop *ClonedL = LI.AllocateLoop();
1400 ClonedParentL->addChildLoop(ClonedL);
1401 AddClonedBlocksToLoop(*L, *ClonedL);
1402 for (Loop *ChildL : llvm::reverse(*L))
1403 LoopsToClone.push_back({ClonedL, ChildL});
1404 } while (!LoopsToClone.empty());
1405
1406 return ClonedRootL;
1407}
1408
1409/// Build the cloned loops of an original loop from unswitching.
1410///
1411/// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1412/// operation. We need to re-verify that there even is a loop (as the backedge
1413/// may not have been cloned), and even if there are remaining backedges the
1414/// backedge set may be different. However, we know that each child loop is
1415/// undisturbed, we only need to find where to place each child loop within
1416/// either any parent loop or within a cloned version of the original loop.
1417///
1418/// Because child loops may end up cloned outside of any cloned version of the
1419/// original loop, multiple cloned sibling loops may be created. All of them
1420/// are returned so that the newly introduced loop nest roots can be
1421/// identified.
1422static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1423 const ValueToValueMapTy &VMap, LoopInfo &LI,
1424 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1425 Loop *ClonedL = nullptr;
1426
1427 auto *OrigPH = OrigL.getLoopPreheader();
1428 auto *OrigHeader = OrigL.getHeader();
1429
1430 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1431 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1432
1433 // We need to know the loops of the cloned exit blocks to even compute the
1434 // accurate parent loop. If we only clone exits to some parent of the
1435 // original parent, we want to clone into that outer loop. We also keep track
1436 // of the loops that our cloned exit blocks participate in.
1437 Loop *ParentL = nullptr;
1438 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1440 ClonedExitsInLoops.reserve(ExitBlocks.size());
1441 for (auto *ExitBB : ExitBlocks)
1442 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1443 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1444 ExitLoopMap[ClonedExitBB] = ExitL;
1445 ClonedExitsInLoops.push_back(ClonedExitBB);
1446 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1447 ParentL = ExitL;
1448 }
1449 assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1450 ParentL->contains(OrigL.getParentLoop())) &&
1451 "The computed parent loop should always contain (or be) the parent of "
1452 "the original loop.");
1453
1454 // We build the set of blocks dominated by the cloned header from the set of
1455 // cloned blocks out of the original loop. While not all of these will
1456 // necessarily be in the cloned loop, it is enough to establish that they
1457 // aren't in unreachable cycles, etc.
1458 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1459 for (auto *BB : OrigL.blocks())
1460 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1461 ClonedLoopBlocks.insert(ClonedBB);
1462
1463 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1464 // skipped cloning some region of this loop which can in turn skip some of
1465 // the backedges so we have to rebuild the blocks in the loop based on the
1466 // backedges that remain after cloning.
1468 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1469 for (auto *Pred : predecessors(ClonedHeader)) {
1470 // The only possible non-loop header predecessor is the preheader because
1471 // we know we cloned the loop in simplified form.
1472 if (Pred == ClonedPH)
1473 continue;
1474
1475 // Because the loop was in simplified form, the only non-loop predecessor
1476 // should be the preheader.
1477 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1478 "header other than the preheader "
1479 "that is not part of the loop!");
1480
1481 // Insert this block into the loop set and on the first visit (and if it
1482 // isn't the header we're currently walking) put it into the worklist to
1483 // recurse through.
1484 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1485 Worklist.push_back(Pred);
1486 }
1487
1488 // If we had any backedges then there *is* a cloned loop. Put the header into
1489 // the loop set and then walk the worklist backwards to find all the blocks
1490 // that remain within the loop after cloning.
1491 if (!BlocksInClonedLoop.empty()) {
1492 BlocksInClonedLoop.insert(ClonedHeader);
1493
1494 while (!Worklist.empty()) {
1495 BasicBlock *BB = Worklist.pop_back_val();
1496 assert(BlocksInClonedLoop.count(BB) &&
1497 "Didn't put block into the loop set!");
1498
1499 // Insert any predecessors that are in the possible set into the cloned
1500 // set, and if the insert is successful, add them to the worklist. Note
1501 // that we filter on the blocks that are definitely reachable via the
1502 // backedge to the loop header so we may prune out dead code within the
1503 // cloned loop.
1504 for (auto *Pred : predecessors(BB))
1505 if (ClonedLoopBlocks.count(Pred) &&
1506 BlocksInClonedLoop.insert(Pred).second)
1507 Worklist.push_back(Pred);
1508 }
1509
1510 ClonedL = LI.AllocateLoop();
1511 if (ParentL) {
1512 ParentL->addBasicBlockToLoop(ClonedPH, LI);
1513 ParentL->addChildLoop(ClonedL);
1514 } else {
1515 LI.addTopLevelLoop(ClonedL);
1516 }
1517 NonChildClonedLoops.push_back(ClonedL);
1518
1519 ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1520 // We don't want to just add the cloned loop blocks based on how we
1521 // discovered them. The original order of blocks was carefully built in
1522 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1523 // that logic, we just re-walk the original blocks (and those of the child
1524 // loops) and filter them as we add them into the cloned loop.
1525 for (auto *BB : OrigL.blocks()) {
1526 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1527 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1528 continue;
1529
1530 // Directly add the blocks that are only in this loop.
1531 if (LI.getLoopFor(BB) == &OrigL) {
1532 ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1533 continue;
1534 }
1535
1536 // We want to manually add it to this loop and parents.
1537 // Registering it with LoopInfo will happen when we clone the top
1538 // loop for this block.
1539 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1540 PL->addBlockEntry(ClonedBB);
1541 }
1542
1543 // Now add each child loop whose header remains within the cloned loop. All
1544 // of the blocks within the loop must satisfy the same constraints as the
1545 // header so once we pass the header checks we can just clone the entire
1546 // child loop nest.
1547 for (Loop *ChildL : OrigL) {
1548 auto *ClonedChildHeader =
1549 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1550 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1551 continue;
1552
1553#ifndef NDEBUG
1554 // We should never have a cloned child loop header but fail to have
1555 // all of the blocks for that child loop.
1556 for (auto *ChildLoopBB : ChildL->blocks())
1557 assert(BlocksInClonedLoop.count(
1558 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1559 "Child cloned loop has a header within the cloned outer "
1560 "loop but not all of its blocks!");
1561#endif
1562
1563 cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1564 }
1565 }
1566
1567 // Now that we've handled all the components of the original loop that were
1568 // cloned into a new loop, we still need to handle anything from the original
1569 // loop that wasn't in a cloned loop.
1570
1571 // Figure out what blocks are left to place within any loop nest containing
1572 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1573 // them.
1574 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1575 if (BlocksInClonedLoop.empty())
1576 UnloopedBlockSet.insert(ClonedPH);
1577 for (auto *ClonedBB : ClonedLoopBlocks)
1578 if (!BlocksInClonedLoop.count(ClonedBB))
1579 UnloopedBlockSet.insert(ClonedBB);
1580
1581 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1582 // backwards across these to process them inside out. The order shouldn't
1583 // matter as we're just trying to build up the map from inside-out; we use
1584 // the map in a more stably ordered way below.
1585 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1586 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1587 return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1588 ExitLoopMap.lookup(RHS)->getLoopDepth();
1589 });
1590
1591 // Populate the existing ExitLoopMap with everything reachable from each
1592 // exit, starting from the inner most exit.
1593 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1594 assert(Worklist.empty() && "Didn't clear worklist!");
1595
1596 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1597 Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1598
1599 // Walk the CFG back until we hit the cloned PH adding everything reachable
1600 // and in the unlooped set to this exit block's loop.
1601 Worklist.push_back(ExitBB);
1602 do {
1603 BasicBlock *BB = Worklist.pop_back_val();
1604 // We can stop recursing at the cloned preheader (if we get there).
1605 if (BB == ClonedPH)
1606 continue;
1607
1608 for (BasicBlock *PredBB : predecessors(BB)) {
1609 // If this pred has already been moved to our set or is part of some
1610 // (inner) loop, no update needed.
1611 if (!UnloopedBlockSet.erase(PredBB)) {
1612 assert(
1613 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1614 "Predecessor not mapped to a loop!");
1615 continue;
1616 }
1617
1618 // We just insert into the loop set here. We'll add these blocks to the
1619 // exit loop after we build up the set in an order that doesn't rely on
1620 // predecessor order (which in turn relies on use list order).
1621 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1622 (void)Inserted;
1623 assert(Inserted && "Should only visit an unlooped block once!");
1624
1625 // And recurse through to its predecessors.
1626 Worklist.push_back(PredBB);
1627 }
1628 } while (!Worklist.empty());
1629 }
1630
1631 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1632 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1633 // in their original order adding them to the correct loop.
1634
1635 // We need a stable insertion order. We use the order of the original loop
1636 // order and map into the correct parent loop.
1637 for (auto *BB : llvm::concat<BasicBlock *const>(
1638 ArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1639 if (Loop *OuterL = ExitLoopMap.lookup(BB))
1640 OuterL->addBasicBlockToLoop(BB, LI);
1641
1642#ifndef NDEBUG
1643 for (auto &BBAndL : ExitLoopMap) {
1644 auto *BB = BBAndL.first;
1645 auto *OuterL = BBAndL.second;
1646 assert(LI.getLoopFor(BB) == OuterL &&
1647 "Failed to put all blocks into outer loops!");
1648 }
1649#endif
1650
1651 // Now that all the blocks are placed into the correct containing loop in the
1652 // absence of child loops, find all the potentially cloned child loops and
1653 // clone them into whatever outer loop we placed their header into.
1654 for (Loop *ChildL : OrigL) {
1655 auto *ClonedChildHeader =
1656 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1657 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1658 continue;
1659
1660#ifndef NDEBUG
1661 for (auto *ChildLoopBB : ChildL->blocks())
1662 assert(VMap.count(ChildLoopBB) &&
1663 "Cloned a child loop header but not all of that loops blocks!");
1664#endif
1665
1666 NonChildClonedLoops.push_back(cloneLoopNest(
1667 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1668 }
1669}
1670
1671static void
1673 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1674 DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1675 // Find all the dead clones, and remove them from their successors.
1677 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1678 for (const auto &VMap : VMaps)
1679 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1680 if (!DT.isReachableFromEntry(ClonedBB)) {
1681 for (BasicBlock *SuccBB : successors(ClonedBB))
1682 SuccBB->removePredecessor(ClonedBB);
1683 DeadBlocks.push_back(ClonedBB);
1684 }
1685
1686 // Remove all MemorySSA in the dead blocks
1687 if (MSSAU) {
1688 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1689 DeadBlocks.end());
1690 MSSAU->removeBlocks(DeadBlockSet);
1691 }
1692
1693 // Drop any remaining references to break cycles.
1694 for (BasicBlock *BB : DeadBlocks)
1695 BB->dropAllReferences();
1696 // Erase them from the IR.
1697 for (BasicBlock *BB : DeadBlocks)
1698 BB->eraseFromParent();
1699}
1700
1703 DominatorTree &DT, LoopInfo &LI,
1704 MemorySSAUpdater *MSSAU,
1705 ScalarEvolution *SE,
1706 LPMUpdater &LoopUpdater) {
1707 // Find all the dead blocks tied to this loop, and remove them from their
1708 // successors.
1710
1711 // Start with loop/exit blocks and get a transitive closure of reachable dead
1712 // blocks.
1713 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1714 ExitBlocks.end());
1715 DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1716 while (!DeathCandidates.empty()) {
1717 auto *BB = DeathCandidates.pop_back_val();
1718 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1719 for (BasicBlock *SuccBB : successors(BB)) {
1720 SuccBB->removePredecessor(BB);
1721 DeathCandidates.push_back(SuccBB);
1722 }
1723 DeadBlockSet.insert(BB);
1724 }
1725 }
1726
1727 // Remove all MemorySSA in the dead blocks
1728 if (MSSAU)
1729 MSSAU->removeBlocks(DeadBlockSet);
1730
1731 // Filter out the dead blocks from the exit blocks list so that it can be
1732 // used in the caller.
1733 llvm::erase_if(ExitBlocks,
1734 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1735
1736 // Walk from this loop up through its parents removing all of the dead blocks.
1737 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1738 for (auto *BB : DeadBlockSet)
1739 ParentL->getBlocksSet().erase(BB);
1740 llvm::erase_if(ParentL->getBlocksVector(),
1741 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1742 }
1743
1744 // Now delete the dead child loops. This raw delete will clear them
1745 // recursively.
1746 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1747 if (!DeadBlockSet.count(ChildL->getHeader()))
1748 return false;
1749
1750 assert(llvm::all_of(ChildL->blocks(),
1751 [&](BasicBlock *ChildBB) {
1752 return DeadBlockSet.count(ChildBB);
1753 }) &&
1754 "If the child loop header is dead all blocks in the child loop must "
1755 "be dead as well!");
1756 LoopUpdater.markLoopAsDeleted(*ChildL, ChildL->getName());
1757 if (SE)
1759 LI.destroy(ChildL);
1760 return true;
1761 });
1762
1763 // Remove the loop mappings for the dead blocks and drop all the references
1764 // from these blocks to others to handle cyclic references as we start
1765 // deleting the blocks themselves.
1766 for (auto *BB : DeadBlockSet) {
1767 // Check that the dominator tree has already been updated.
1768 assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1769 LI.changeLoopFor(BB, nullptr);
1770 // Drop all uses of the instructions to make sure we won't have dangling
1771 // uses in other blocks.
1772 for (auto &I : *BB)
1773 if (!I.use_empty())
1774 I.replaceAllUsesWith(PoisonValue::get(I.getType()));
1775 BB->dropAllReferences();
1776 }
1777
1778 // Actually delete the blocks now that they've been fully unhooked from the
1779 // IR.
1780 for (auto *BB : DeadBlockSet)
1781 BB->eraseFromParent();
1782}
1783
1784/// Recompute the set of blocks in a loop after unswitching.
1785///
1786/// This walks from the original headers predecessors to rebuild the loop. We
1787/// take advantage of the fact that new blocks can't have been added, and so we
1788/// filter by the original loop's blocks. This also handles potentially
1789/// unreachable code that we don't want to explore but might be found examining
1790/// the predecessors of the header.
1791///
1792/// If the original loop is no longer a loop, this will return an empty set. If
1793/// it remains a loop, all the blocks within it will be added to the set
1794/// (including those blocks in inner loops).
1796 LoopInfo &LI) {
1798
1799 auto *PH = L.getLoopPreheader();
1800 auto *Header = L.getHeader();
1801
1802 // A worklist to use while walking backwards from the header.
1804
1805 // First walk the predecessors of the header to find the backedges. This will
1806 // form the basis of our walk.
1807 for (auto *Pred : predecessors(Header)) {
1808 // Skip the preheader.
1809 if (Pred == PH)
1810 continue;
1811
1812 // Because the loop was in simplified form, the only non-loop predecessor
1813 // is the preheader.
1814 assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1815 "than the preheader that is not part of the "
1816 "loop!");
1817
1818 // Insert this block into the loop set and on the first visit and, if it
1819 // isn't the header we're currently walking, put it into the worklist to
1820 // recurse through.
1821 if (LoopBlockSet.insert(Pred).second && Pred != Header)
1822 Worklist.push_back(Pred);
1823 }
1824
1825 // If no backedges were found, we're done.
1826 if (LoopBlockSet.empty())
1827 return LoopBlockSet;
1828
1829 // We found backedges, recurse through them to identify the loop blocks.
1830 while (!Worklist.empty()) {
1831 BasicBlock *BB = Worklist.pop_back_val();
1832 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1833
1834 // No need to walk past the header.
1835 if (BB == Header)
1836 continue;
1837
1838 // Because we know the inner loop structure remains valid we can use the
1839 // loop structure to jump immediately across the entire nested loop.
1840 // Further, because it is in loop simplified form, we can directly jump
1841 // to its preheader afterward.
1842 if (Loop *InnerL = LI.getLoopFor(BB))
1843 if (InnerL != &L) {
1844 assert(L.contains(InnerL) &&
1845 "Should not reach a loop *outside* this loop!");
1846 // The preheader is the only possible predecessor of the loop so
1847 // insert it into the set and check whether it was already handled.
1848 auto *InnerPH = InnerL->getLoopPreheader();
1849 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1850 "but not contain the inner loop "
1851 "preheader!");
1852 if (!LoopBlockSet.insert(InnerPH).second)
1853 // The only way to reach the preheader is through the loop body
1854 // itself so if it has been visited the loop is already handled.
1855 continue;
1856
1857 // Insert all of the blocks (other than those already present) into
1858 // the loop set. We expect at least the block that led us to find the
1859 // inner loop to be in the block set, but we may also have other loop
1860 // blocks if they were already enqueued as predecessors of some other
1861 // outer loop block.
1862 for (auto *InnerBB : InnerL->blocks()) {
1863 if (InnerBB == BB) {
1864 assert(LoopBlockSet.count(InnerBB) &&
1865 "Block should already be in the set!");
1866 continue;
1867 }
1868
1869 LoopBlockSet.insert(InnerBB);
1870 }
1871
1872 // Add the preheader to the worklist so we will continue past the
1873 // loop body.
1874 Worklist.push_back(InnerPH);
1875 continue;
1876 }
1877
1878 // Insert any predecessors that were in the original loop into the new
1879 // set, and if the insert is successful, add them to the worklist.
1880 for (auto *Pred : predecessors(BB))
1881 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1882 Worklist.push_back(Pred);
1883 }
1884
1885 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1886
1887 // We've found all the blocks participating in the loop, return our completed
1888 // set.
1889 return LoopBlockSet;
1890}
1891
1892/// Rebuild a loop after unswitching removes some subset of blocks and edges.
1893///
1894/// The removal may have removed some child loops entirely but cannot have
1895/// disturbed any remaining child loops. However, they may need to be hoisted
1896/// to the parent loop (or to be top-level loops). The original loop may be
1897/// completely removed.
1898///
1899/// The sibling loops resulting from this update are returned. If the original
1900/// loop remains a valid loop, it will be the first entry in this list with all
1901/// of the newly sibling loops following it.
1902///
1903/// Returns true if the loop remains a loop after unswitching, and false if it
1904/// is no longer a loop after unswitching (and should not continue to be
1905/// referenced).
1907 LoopInfo &LI,
1908 SmallVectorImpl<Loop *> &HoistedLoops,
1909 ScalarEvolution *SE) {
1910 auto *PH = L.getLoopPreheader();
1911
1912 // Compute the actual parent loop from the exit blocks. Because we may have
1913 // pruned some exits the loop may be different from the original parent.
1914 Loop *ParentL = nullptr;
1915 SmallVector<Loop *, 4> ExitLoops;
1916 SmallVector<BasicBlock *, 4> ExitsInLoops;
1917 ExitsInLoops.reserve(ExitBlocks.size());
1918 for (auto *ExitBB : ExitBlocks)
1919 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1920 ExitLoops.push_back(ExitL);
1921 ExitsInLoops.push_back(ExitBB);
1922 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1923 ParentL = ExitL;
1924 }
1925
1926 // Recompute the blocks participating in this loop. This may be empty if it
1927 // is no longer a loop.
1928 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1929
1930 // If we still have a loop, we need to re-set the loop's parent as the exit
1931 // block set changing may have moved it within the loop nest. Note that this
1932 // can only happen when this loop has a parent as it can only hoist the loop
1933 // *up* the nest.
1934 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1935 // Remove this loop's (original) blocks from all of the intervening loops.
1936 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1937 IL = IL->getParentLoop()) {
1938 IL->getBlocksSet().erase(PH);
1939 for (auto *BB : L.blocks())
1940 IL->getBlocksSet().erase(BB);
1941 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1942 return BB == PH || L.contains(BB);
1943 });
1944 }
1945
1946 LI.changeLoopFor(PH, ParentL);
1947 L.getParentLoop()->removeChildLoop(&L);
1948 if (ParentL)
1949 ParentL->addChildLoop(&L);
1950 else
1951 LI.addTopLevelLoop(&L);
1952 }
1953
1954 // Now we update all the blocks which are no longer within the loop.
1955 auto &Blocks = L.getBlocksVector();
1956 auto BlocksSplitI =
1957 LoopBlockSet.empty()
1958 ? Blocks.begin()
1959 : std::stable_partition(
1960 Blocks.begin(), Blocks.end(),
1961 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1962
1963 // Before we erase the list of unlooped blocks, build a set of them.
1964 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1965 if (LoopBlockSet.empty())
1966 UnloopedBlocks.insert(PH);
1967
1968 // Now erase these blocks from the loop.
1969 for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1970 L.getBlocksSet().erase(BB);
1971 Blocks.erase(BlocksSplitI, Blocks.end());
1972
1973 // Sort the exits in ascending loop depth, we'll work backwards across these
1974 // to process them inside out.
1975 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1976 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1977 });
1978
1979 // We'll build up a set for each exit loop.
1980 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1981 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1982
1983 auto RemoveUnloopedBlocksFromLoop =
1984 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1985 for (auto *BB : UnloopedBlocks)
1986 L.getBlocksSet().erase(BB);
1987 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1988 return UnloopedBlocks.count(BB);
1989 });
1990 };
1991
1993 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1994 assert(Worklist.empty() && "Didn't clear worklist!");
1995 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1996
1997 // Grab the next exit block, in decreasing loop depth order.
1998 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1999 Loop &ExitL = *LI.getLoopFor(ExitBB);
2000 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
2001
2002 // Erase all of the unlooped blocks from the loops between the previous
2003 // exit loop and this exit loop. This works because the ExitInLoops list is
2004 // sorted in increasing order of loop depth and thus we visit loops in
2005 // decreasing order of loop depth.
2006 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
2007 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
2008
2009 // Walk the CFG back until we hit the cloned PH adding everything reachable
2010 // and in the unlooped set to this exit block's loop.
2011 Worklist.push_back(ExitBB);
2012 do {
2013 BasicBlock *BB = Worklist.pop_back_val();
2014 // We can stop recursing at the cloned preheader (if we get there).
2015 if (BB == PH)
2016 continue;
2017
2018 for (BasicBlock *PredBB : predecessors(BB)) {
2019 // If this pred has already been moved to our set or is part of some
2020 // (inner) loop, no update needed.
2021 if (!UnloopedBlocks.erase(PredBB)) {
2022 assert((NewExitLoopBlocks.count(PredBB) ||
2023 ExitL.contains(LI.getLoopFor(PredBB))) &&
2024 "Predecessor not in a nested loop (or already visited)!");
2025 continue;
2026 }
2027
2028 // We just insert into the loop set here. We'll add these blocks to the
2029 // exit loop after we build up the set in a deterministic order rather
2030 // than the predecessor-influenced visit order.
2031 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
2032 (void)Inserted;
2033 assert(Inserted && "Should only visit an unlooped block once!");
2034
2035 // And recurse through to its predecessors.
2036 Worklist.push_back(PredBB);
2037 }
2038 } while (!Worklist.empty());
2039
2040 // If blocks in this exit loop were directly part of the original loop (as
2041 // opposed to a child loop) update the map to point to this exit loop. This
2042 // just updates a map and so the fact that the order is unstable is fine.
2043 for (auto *BB : NewExitLoopBlocks)
2044 if (Loop *BBL = LI.getLoopFor(BB))
2045 if (BBL == &L || !L.contains(BBL))
2046 LI.changeLoopFor(BB, &ExitL);
2047
2048 // We will remove the remaining unlooped blocks from this loop in the next
2049 // iteration or below.
2050 NewExitLoopBlocks.clear();
2051 }
2052
2053 // Any remaining unlooped blocks are no longer part of any loop unless they
2054 // are part of some child loop.
2055 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
2056 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
2057 for (auto *BB : UnloopedBlocks)
2058 if (Loop *BBL = LI.getLoopFor(BB))
2059 if (BBL == &L || !L.contains(BBL))
2060 LI.changeLoopFor(BB, nullptr);
2061
2062 // Sink all the child loops whose headers are no longer in the loop set to
2063 // the parent (or to be top level loops). We reach into the loop and directly
2064 // update its subloop vector to make this batch update efficient.
2065 auto &SubLoops = L.getSubLoopsVector();
2066 auto SubLoopsSplitI =
2067 LoopBlockSet.empty()
2068 ? SubLoops.begin()
2069 : std::stable_partition(
2070 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
2071 return LoopBlockSet.count(SubL->getHeader());
2072 });
2073 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
2074 HoistedLoops.push_back(HoistedL);
2075 HoistedL->setParentLoop(nullptr);
2076
2077 // To compute the new parent of this hoisted loop we look at where we
2078 // placed the preheader above. We can't lookup the header itself because we
2079 // retained the mapping from the header to the hoisted loop. But the
2080 // preheader and header should have the exact same new parent computed
2081 // based on the set of exit blocks from the original loop as the preheader
2082 // is a predecessor of the header and so reached in the reverse walk. And
2083 // because the loops were all in simplified form the preheader of the
2084 // hoisted loop can't be part of some *other* loop.
2085 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
2086 NewParentL->addChildLoop(HoistedL);
2087 else
2088 LI.addTopLevelLoop(HoistedL);
2089 }
2090 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
2091
2092 // Actually delete the loop if nothing remained within it.
2093 if (Blocks.empty()) {
2094 assert(SubLoops.empty() &&
2095 "Failed to remove all subloops from the original loop!");
2096 if (Loop *ParentL = L.getParentLoop())
2097 ParentL->removeChildLoop(llvm::find(*ParentL, &L));
2098 else
2099 LI.removeLoop(llvm::find(LI, &L));
2100 // markLoopAsDeleted for L should be triggered by the caller (it is
2101 // typically done within postUnswitch).
2102 if (SE)
2104 LI.destroy(&L);
2105 return false;
2106 }
2107
2108 return true;
2109}
2110
2111/// Helper to visit a dominator subtree, invoking a callable on each node.
2112///
2113/// Returning false at any point will stop walking past that node of the tree.
2114template <typename CallableT>
2115void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2117 DomWorklist.push_back(DT[BB]);
2118#ifndef NDEBUG
2120 Visited.insert(DT[BB]);
2121#endif
2122 do {
2123 DomTreeNode *N = DomWorklist.pop_back_val();
2124
2125 // Visit this node.
2126 if (!Callable(N->getBlock()))
2127 continue;
2128
2129 // Accumulate the child nodes.
2130 for (DomTreeNode *ChildN : *N) {
2131 assert(Visited.insert(ChildN).second &&
2132 "Cannot visit a node twice when walking a tree!");
2133 DomWorklist.push_back(ChildN);
2134 }
2135 } while (!DomWorklist.empty());
2136}
2137
2139 bool CurrentLoopValid, bool PartiallyInvariant,
2140 bool InjectedCondition, ArrayRef<Loop *> NewLoops) {
2141 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2142 if (!NewLoops.empty())
2143 U.addSiblingLoops(NewLoops);
2144
2145 // If the current loop remains valid, we should revisit it to catch any
2146 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2147 if (CurrentLoopValid) {
2148 if (PartiallyInvariant) {
2149 // Mark the new loop as partially unswitched, to avoid unswitching on
2150 // the same condition again.
2151 auto &Context = L.getHeader()->getContext();
2152 MDNode *DisableUnswitchMD = MDNode::get(
2153 Context,
2154 MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
2156 Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
2157 {DisableUnswitchMD});
2158 L.setLoopID(NewLoopID);
2159 } else if (InjectedCondition) {
2160 // Do the same for injection of invariant conditions.
2161 auto &Context = L.getHeader()->getContext();
2162 MDNode *DisableUnswitchMD = MDNode::get(
2163 Context,
2164 MDString::get(Context, "llvm.loop.unswitch.injection.disable"));
2166 Context, L.getLoopID(), {"llvm.loop.unswitch.injection"},
2167 {DisableUnswitchMD});
2168 L.setLoopID(NewLoopID);
2169 } else
2170 U.revisitCurrentLoop();
2171 } else
2172 U.markLoopAsDeleted(L, LoopName);
2173}
2174
2176 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2177 IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI,
2179 LPMUpdater &LoopUpdater, bool InsertFreeze, bool InjectedCondition) {
2180 auto *ParentBB = TI.getParent();
2181 BranchInst *BI = dyn_cast<BranchInst>(&TI);
2182 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2183
2184 // Save the current loop name in a variable so that we can report it even
2185 // after it has been deleted.
2186 std::string LoopName(L.getName());
2187
2188 // We can only unswitch switches, conditional branches with an invariant
2189 // condition, or combining invariant conditions with an instruction or
2190 // partially invariant instructions.
2191 assert((SI || (BI && BI->isConditional())) &&
2192 "Can only unswitch switches and conditional branch!");
2193 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2194 bool FullUnswitch =
2195 SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] &&
2196 !PartiallyInvariant);
2197 if (FullUnswitch)
2198 assert(Invariants.size() == 1 &&
2199 "Cannot have other invariants with full unswitching!");
2200 else
2201 assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) &&
2202 "Partial unswitching requires an instruction as the condition!");
2203
2204 if (MSSAU && VerifyMemorySSA)
2205 MSSAU->getMemorySSA()->verifyMemorySSA();
2206
2207 // Constant and BBs tracking the cloned and continuing successor. When we are
2208 // unswitching the entire condition, this can just be trivially chosen to
2209 // unswitch towards `true`. However, when we are unswitching a set of
2210 // invariants combined with `and` or `or` or partially invariant instructions,
2211 // the combining operation determines the best direction to unswitch: we want
2212 // to unswitch the direction that will collapse the branch.
2213 bool Direction = true;
2214 int ClonedSucc = 0;
2215 if (!FullUnswitch) {
2217 (void)Cond;
2219 PartiallyInvariant) &&
2220 "Only `or`, `and`, an `select`, partially invariant instructions "
2221 "can combine invariants being unswitched.");
2222 if (!match(Cond, m_LogicalOr())) {
2223 if (match(Cond, m_LogicalAnd()) ||
2224 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2225 Direction = false;
2226 ClonedSucc = 1;
2227 }
2228 }
2229 }
2230
2231 BasicBlock *RetainedSuccBB =
2232 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2233 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2234 if (BI)
2235 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2236 else
2237 for (auto Case : SI->cases())
2238 if (Case.getCaseSuccessor() != RetainedSuccBB)
2239 UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2240
2241 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2242 "Should not unswitch the same successor we are retaining!");
2243
2244 // The branch should be in this exact loop. Any inner loop's invariant branch
2245 // should be handled by unswitching that inner loop. The caller of this
2246 // routine should filter out any candidates that remain (but were skipped for
2247 // whatever reason).
2248 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2249
2250 // Compute the parent loop now before we start hacking on things.
2251 Loop *ParentL = L.getParentLoop();
2252 // Get blocks in RPO order for MSSA update, before changing the CFG.
2253 LoopBlocksRPO LBRPO(&L);
2254 if (MSSAU)
2255 LBRPO.perform(&LI);
2256
2257 // Compute the outer-most loop containing one of our exit blocks. This is the
2258 // furthest up our loopnest which can be mutated, which we will use below to
2259 // update things.
2260 Loop *OuterExitL = &L;
2262 L.getUniqueExitBlocks(ExitBlocks);
2263 for (auto *ExitBB : ExitBlocks) {
2264 // ExitBB can be an exit block for several levels in the loop nest. Make
2265 // sure we find the top most.
2266 Loop *NewOuterExitL = getTopMostExitingLoop(ExitBB, LI);
2267 if (!NewOuterExitL) {
2268 // We exited the entire nest with this block, so we're done.
2269 OuterExitL = nullptr;
2270 break;
2271 }
2272 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2273 OuterExitL = NewOuterExitL;
2274 }
2275
2276 // At this point, we're definitely going to unswitch something so invalidate
2277 // any cached information in ScalarEvolution for the outer most loop
2278 // containing an exit block and all nested loops.
2279 if (SE) {
2280 if (OuterExitL)
2281 SE->forgetLoop(OuterExitL);
2282 else
2283 SE->forgetTopmostLoop(&L);
2285 }
2286
2287 // If the edge from this terminator to a successor dominates that successor,
2288 // store a map from each block in its dominator subtree to it. This lets us
2289 // tell when cloning for a particular successor if a block is dominated by
2290 // some *other* successor with a single data structure. We use this to
2291 // significantly reduce cloning.
2293 for (auto *SuccBB : llvm::concat<BasicBlock *const>(ArrayRef(RetainedSuccBB),
2294 UnswitchedSuccBBs))
2295 if (SuccBB->getUniquePredecessor() ||
2296 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2297 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2298 }))
2299 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2300 DominatingSucc[BB] = SuccBB;
2301 return true;
2302 });
2303
2304 // Split the preheader, so that we know that there is a safe place to insert
2305 // the conditional branch. We will change the preheader to have a conditional
2306 // branch on LoopCond. The original preheader will become the split point
2307 // between the unswitched versions, and we will have a new preheader for the
2308 // original loop.
2309 BasicBlock *SplitBB = L.getLoopPreheader();
2310 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2311
2312 // Keep track of the dominator tree updates needed.
2314
2315 // Clone the loop for each unswitched successor.
2317 VMaps.reserve(UnswitchedSuccBBs.size());
2319 for (auto *SuccBB : UnswitchedSuccBBs) {
2320 VMaps.emplace_back(new ValueToValueMapTy());
2321 ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2322 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2323 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE);
2324 }
2325
2326 // Drop metadata if we may break its semantics by moving this instr into the
2327 // split block.
2328 if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2330 // Do not spend time trying to understand if we can keep it, just drop it
2331 // to save compile time.
2332 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2333 else {
2334 // It is only legal to preserve make.implicit metadata if we are
2335 // guaranteed no reach implicit null check after following this branch.
2336 ICFLoopSafetyInfo SafetyInfo;
2337 SafetyInfo.computeLoopSafetyInfo(&L);
2338 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2339 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2340 }
2341 }
2342
2343 // The stitching of the branched code back together depends on whether we're
2344 // doing full unswitching or not with the exception that we always want to
2345 // nuke the initial terminator placed in the split block.
2346 SplitBB->getTerminator()->eraseFromParent();
2347 if (FullUnswitch) {
2348 // Keep a clone of the terminator for MSSA updates.
2349 Instruction *NewTI = TI.clone();
2350 NewTI->insertInto(ParentBB, ParentBB->end());
2351
2352 // Splice the terminator from the original loop and rewrite its
2353 // successors.
2354 TI.moveBefore(*SplitBB, SplitBB->end());
2355 TI.dropLocation();
2356
2357 // First wire up the moved terminator to the preheaders.
2358 if (BI) {
2359 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2360 BI->setSuccessor(ClonedSucc, ClonedPH);
2361 BI->setSuccessor(1 - ClonedSucc, LoopPH);
2363 if (InsertFreeze) {
2364 // We don't give any debug location to the new freeze, because the
2365 // BI (`dyn_cast<BranchInst>(TI)`) is an in-loop instruction hoisted
2366 // out of the loop.
2367 Cond = new FreezeInst(Cond, Cond->getName() + ".fr", BI->getIterator());
2368 }
2369 BI->setCondition(Cond);
2370 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2371 } else {
2372 assert(SI && "Must either be a branch or switch!");
2373
2374 // Walk the cases and directly update their successors.
2375 assert(SI->getDefaultDest() == RetainedSuccBB &&
2376 "Not retaining default successor!");
2377 SI->setDefaultDest(LoopPH);
2378 for (const auto &Case : SI->cases())
2379 if (Case.getCaseSuccessor() == RetainedSuccBB)
2380 Case.setSuccessor(LoopPH);
2381 else
2382 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2383
2384 if (InsertFreeze)
2385 SI->setCondition(new FreezeInst(SI->getCondition(),
2386 SI->getCondition()->getName() + ".fr",
2387 SI->getIterator()));
2388
2389 // We need to use the set to populate domtree updates as even when there
2390 // are multiple cases pointing at the same successor we only want to
2391 // remove and insert one edge in the domtree.
2392 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2393 DTUpdates.push_back(
2394 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2395 }
2396
2397 if (MSSAU) {
2398 DT.applyUpdates(DTUpdates);
2399 DTUpdates.clear();
2400
2401 // Remove all but one edge to the retained block and all unswitched
2402 // blocks. This is to avoid having duplicate entries in the cloned Phis,
2403 // when we know we only keep a single edge for each case.
2404 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2405 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2406 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2407
2408 for (auto &VMap : VMaps)
2409 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2410 /*IgnoreIncomingWithNoClones=*/true);
2411 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2412
2413 // Remove all edges to unswitched blocks.
2414 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2415 MSSAU->removeEdge(ParentBB, SuccBB);
2416 }
2417
2418 // Now unhook the successor relationship as we'll be replacing
2419 // the terminator with a direct branch. This is much simpler for branches
2420 // than switches so we handle those first.
2421 if (BI) {
2422 // Remove the parent as a predecessor of the unswitched successor.
2423 assert(UnswitchedSuccBBs.size() == 1 &&
2424 "Only one possible unswitched block for a branch!");
2425 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2426 UnswitchedSuccBB->removePredecessor(ParentBB,
2427 /*KeepOneInputPHIs*/ true);
2428 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2429 } else {
2430 // Note that we actually want to remove the parent block as a predecessor
2431 // of *every* case successor. The case successor is either unswitched,
2432 // completely eliminating an edge from the parent to that successor, or it
2433 // is a duplicate edge to the retained successor as the retained successor
2434 // is always the default successor and as we'll replace this with a direct
2435 // branch we no longer need the duplicate entries in the PHI nodes.
2436 SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2437 assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2438 "Not retaining default successor!");
2439 for (const auto &Case : NewSI->cases())
2440 Case.getCaseSuccessor()->removePredecessor(
2441 ParentBB,
2442 /*KeepOneInputPHIs*/ true);
2443
2444 // We need to use the set to populate domtree updates as even when there
2445 // are multiple cases pointing at the same successor we only want to
2446 // remove and insert one edge in the domtree.
2447 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2448 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2449 }
2450
2451 // Create a new unconditional branch to the continuing block (as opposed to
2452 // the one cloned).
2453 Instruction *NewBI = BranchInst::Create(RetainedSuccBB, ParentBB);
2454 NewBI->setDebugLoc(NewTI->getDebugLoc());
2455
2456 // After MSSAU update, remove the cloned terminator instruction NewTI.
2457 NewTI->eraseFromParent();
2458 } else {
2459 assert(BI && "Only branches have partial unswitching.");
2460 assert(UnswitchedSuccBBs.size() == 1 &&
2461 "Only one possible unswitched block for a branch!");
2462 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2463 // When doing a partial unswitch, we have to do a bit more work to build up
2464 // the branch in the split block.
2465 if (PartiallyInvariant)
2467 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2468 else {
2470 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH,
2471 FreezeLoopUnswitchCond, BI, &AC, DT);
2472 }
2473 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2474
2475 if (MSSAU) {
2476 DT.applyUpdates(DTUpdates);
2477 DTUpdates.clear();
2478
2479 // Perform MSSA cloning updates.
2480 for (auto &VMap : VMaps)
2481 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2482 /*IgnoreIncomingWithNoClones=*/true);
2483 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2484 }
2485 }
2486
2487 // Apply the updates accumulated above to get an up-to-date dominator tree.
2488 DT.applyUpdates(DTUpdates);
2489
2490 // Now that we have an accurate dominator tree, first delete the dead cloned
2491 // blocks so that we can accurately build any cloned loops. It is important to
2492 // not delete the blocks from the original loop yet because we still want to
2493 // reference the original loop to understand the cloned loop's structure.
2494 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2495
2496 // Build the cloned loop structure itself. This may be substantially
2497 // different from the original structure due to the simplified CFG. This also
2498 // handles inserting all the cloned blocks into the correct loops.
2499 SmallVector<Loop *, 4> NonChildClonedLoops;
2500 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2501 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2502
2503 // Now that our cloned loops have been built, we can update the original loop.
2504 // First we delete the dead blocks from it and then we rebuild the loop
2505 // structure taking these deletions into account.
2506 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE, LoopUpdater);
2507
2508 if (MSSAU && VerifyMemorySSA)
2509 MSSAU->getMemorySSA()->verifyMemorySSA();
2510
2511 SmallVector<Loop *, 4> HoistedLoops;
2512 bool IsStillLoop =
2513 rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE);
2514
2515 if (MSSAU && VerifyMemorySSA)
2516 MSSAU->getMemorySSA()->verifyMemorySSA();
2517
2518 // This transformation has a high risk of corrupting the dominator tree, and
2519 // the below steps to rebuild loop structures will result in hard to debug
2520 // errors in that case so verify that the dominator tree is sane first.
2521 // FIXME: Remove this when the bugs stop showing up and rely on existing
2522 // verification steps.
2523 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2524
2525 if (BI && !PartiallyInvariant) {
2526 // If we unswitched a branch which collapses the condition to a known
2527 // constant we want to replace all the uses of the invariants within both
2528 // the original and cloned blocks. We do this here so that we can use the
2529 // now updated dominator tree to identify which side the users are on.
2530 assert(UnswitchedSuccBBs.size() == 1 &&
2531 "Only one possible unswitched block for a branch!");
2532 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2533
2534 // When considering multiple partially-unswitched invariants
2535 // we cant just go replace them with constants in both branches.
2536 //
2537 // For 'AND' we infer that true branch ("continue") means true
2538 // for each invariant operand.
2539 // For 'OR' we can infer that false branch ("continue") means false
2540 // for each invariant operand.
2541 // So it happens that for multiple-partial case we dont replace
2542 // in the unswitched branch.
2543 bool ReplaceUnswitched =
2544 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2545
2546 ConstantInt *UnswitchedReplacement =
2549 ConstantInt *ContinueReplacement =
2552 for (Value *Invariant : Invariants) {
2553 assert(!isa<Constant>(Invariant) &&
2554 "Should not be replacing constant values!");
2555 // Use make_early_inc_range here as set invalidates the iterator.
2556 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2557 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2558 if (!UserI)
2559 continue;
2560
2561 // Replace it with the 'continue' side if in the main loop body, and the
2562 // unswitched if in the cloned blocks.
2563 if (DT.dominates(LoopPH, UserI->getParent()))
2564 U.set(ContinueReplacement);
2565 else if (ReplaceUnswitched &&
2566 DT.dominates(ClonedPH, UserI->getParent()))
2567 U.set(UnswitchedReplacement);
2568 }
2569 }
2570 }
2571
2572 // We can change which blocks are exit blocks of all the cloned sibling
2573 // loops, the current loop, and any parent loops which shared exit blocks
2574 // with the current loop. As a consequence, we need to re-form LCSSA for
2575 // them. But we shouldn't need to re-form LCSSA for any child loops.
2576 // FIXME: This could be made more efficient by tracking which exit blocks are
2577 // new, and focusing on them, but that isn't likely to be necessary.
2578 //
2579 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2580 // loop nest and update every loop that could have had its exits changed. We
2581 // also need to cover any intervening loops. We add all of these loops to
2582 // a list and sort them by loop depth to achieve this without updating
2583 // unnecessary loops.
2584 auto UpdateLoop = [&](Loop &UpdateL) {
2585#ifndef NDEBUG
2586 UpdateL.verifyLoop();
2587 for (Loop *ChildL : UpdateL) {
2588 ChildL->verifyLoop();
2589 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2590 "Perturbed a child loop's LCSSA form!");
2591 }
2592#endif
2593 // First build LCSSA for this loop so that we can preserve it when
2594 // forming dedicated exits. We don't want to perturb some other loop's
2595 // LCSSA while doing that CFG edit.
2596 formLCSSA(UpdateL, DT, &LI, SE);
2597
2598 // For loops reached by this loop's original exit blocks we may
2599 // introduced new, non-dedicated exits. At least try to re-form dedicated
2600 // exits for these loops. This may fail if they couldn't have dedicated
2601 // exits to start with.
2602 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2603 };
2604
2605 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2606 // and we can do it in any order as they don't nest relative to each other.
2607 //
2608 // Also check if any of the loops we have updated have become top-level loops
2609 // as that will necessitate widening the outer loop scope.
2610 for (Loop *UpdatedL :
2611 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2612 UpdateLoop(*UpdatedL);
2613 if (UpdatedL->isOutermost())
2614 OuterExitL = nullptr;
2615 }
2616 if (IsStillLoop) {
2617 UpdateLoop(L);
2618 if (L.isOutermost())
2619 OuterExitL = nullptr;
2620 }
2621
2622 // If the original loop had exit blocks, walk up through the outer most loop
2623 // of those exit blocks to update LCSSA and form updated dedicated exits.
2624 if (OuterExitL != &L)
2625 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2626 OuterL = OuterL->getParentLoop())
2627 UpdateLoop(*OuterL);
2628
2629#ifndef NDEBUG
2630 // Verify the entire loop structure to catch any incorrect updates before we
2631 // progress in the pass pipeline.
2632 LI.verify(DT);
2633#endif
2634
2635 // Now that we've unswitched something, make callbacks to report the changes.
2636 // For that we need to merge together the updated loops and the cloned loops
2637 // and check whether the original loop survived.
2638 SmallVector<Loop *, 4> SibLoops;
2639 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2640 if (UpdatedL->getParentLoop() == ParentL)
2641 SibLoops.push_back(UpdatedL);
2642 postUnswitch(L, LoopUpdater, LoopName, IsStillLoop, PartiallyInvariant,
2643 InjectedCondition, SibLoops);
2644
2645 if (MSSAU && VerifyMemorySSA)
2646 MSSAU->getMemorySSA()->verifyMemorySSA();
2647
2648 if (BI)
2649 ++NumBranches;
2650 else
2651 ++NumSwitches;
2652}
2653
2654/// Recursively compute the cost of a dominator subtree based on the per-block
2655/// cost map provided.
2656///
2657/// The recursive computation is memozied into the provided DT-indexed cost map
2658/// to allow querying it for most nodes in the domtree without it becoming
2659/// quadratic.
2661 DomTreeNode &N,
2664 // Don't accumulate cost (or recurse through) blocks not in our block cost
2665 // map and thus not part of the duplication cost being considered.
2666 auto BBCostIt = BBCostMap.find(N.getBlock());
2667 if (BBCostIt == BBCostMap.end())
2668 return 0;
2669
2670 // Lookup this node to see if we already computed its cost.
2671 auto DTCostIt = DTCostMap.find(&N);
2672 if (DTCostIt != DTCostMap.end())
2673 return DTCostIt->second;
2674
2675 // If not, we have to compute it. We can't use insert above and update
2676 // because computing the cost may insert more things into the map.
2677 InstructionCost Cost = std::accumulate(
2678 N.begin(), N.end(), BBCostIt->second,
2679 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2680 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2681 });
2682 bool Inserted = DTCostMap.insert({&N, Cost}).second;
2683 (void)Inserted;
2684 assert(Inserted && "Should not insert a node while visiting children!");
2685 return Cost;
2686}
2687
2688/// Turns a select instruction into implicit control flow branch,
2689/// making the following replacement:
2690///
2691/// head:
2692/// --code before select--
2693/// select %cond, %trueval, %falseval
2694/// --code after select--
2695///
2696/// into
2697///
2698/// head:
2699/// --code before select--
2700/// br i1 %cond, label %then, label %tail
2701///
2702/// then:
2703/// br %tail
2704///
2705/// tail:
2706/// phi [ %trueval, %then ], [ %falseval, %head]
2707/// unreachable
2708///
2709/// It also makes all relevant DT and LI updates, so that all structures are in
2710/// valid state after this transform.
2712 LoopInfo &LI, MemorySSAUpdater *MSSAU,
2713 AssumptionCache *AC) {
2714 LLVM_DEBUG(dbgs() << "Turning " << *SI << " into a branch.\n");
2715 BasicBlock *HeadBB = SI->getParent();
2716
2717 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2718 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false,
2719 SI->getMetadata(LLVMContext::MD_prof), &DTU, &LI);
2720 auto *CondBr = cast<BranchInst>(HeadBB->getTerminator());
2721 BasicBlock *ThenBB = CondBr->getSuccessor(0),
2722 *TailBB = CondBr->getSuccessor(1);
2723 if (MSSAU)
2724 MSSAU->moveAllAfterSpliceBlocks(HeadBB, TailBB, SI);
2725
2726 PHINode *Phi =
2727 PHINode::Create(SI->getType(), 2, "unswitched.select", SI->getIterator());
2728 Phi->addIncoming(SI->getTrueValue(), ThenBB);
2729 Phi->addIncoming(SI->getFalseValue(), HeadBB);
2730 Phi->setDebugLoc(SI->getDebugLoc());
2731 SI->replaceAllUsesWith(Phi);
2732 SI->eraseFromParent();
2733
2734 if (MSSAU && VerifyMemorySSA)
2735 MSSAU->getMemorySSA()->verifyMemorySSA();
2736
2737 ++NumSelects;
2738 return CondBr;
2739}
2740
2741/// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2742/// making the following replacement:
2743///
2744/// --code before guard--
2745/// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2746/// --code after guard--
2747///
2748/// into
2749///
2750/// --code before guard--
2751/// br i1 %cond, label %guarded, label %deopt
2752///
2753/// guarded:
2754/// --code after guard--
2755///
2756/// deopt:
2757/// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2758/// unreachable
2759///
2760/// It also makes all relevant DT and LI updates, so that all structures are in
2761/// valid state after this transform.
2763 DominatorTree &DT, LoopInfo &LI,
2764 MemorySSAUpdater *MSSAU) {
2766 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2767 BasicBlock *CheckBB = GI->getParent();
2768
2769 if (MSSAU && VerifyMemorySSA)
2770 MSSAU->getMemorySSA()->verifyMemorySSA();
2771
2772 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2773 Instruction *DeoptBlockTerm =
2775 GI->getMetadata(LLVMContext::MD_prof), &DTU, &LI);
2776 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2777 // SplitBlockAndInsertIfThen inserts control flow that branches to
2778 // DeoptBlockTerm if the condition is true. We want the opposite.
2779 CheckBI->swapSuccessors();
2780
2781 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2782 GuardedBlock->setName("guarded");
2783 CheckBI->getSuccessor(1)->setName("deopt");
2784 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2785
2786 if (MSSAU)
2787 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2788
2789 GI->moveBefore(DeoptBlockTerm);
2791
2792 if (MSSAU) {
2793 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2794 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2795 if (VerifyMemorySSA)
2796 MSSAU->getMemorySSA()->verifyMemorySSA();
2797 }
2798
2799 if (VerifyLoopInfo)
2800 LI.verify(DT);
2801 ++NumGuards;
2802 return CheckBI;
2803}
2804
2805/// Cost multiplier is a way to limit potentially exponential behavior
2806/// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2807/// candidates available. Also accounting for the number of "sibling" loops with
2808/// the idea to account for previous unswitches that already happened on this
2809/// cluster of loops. There was an attempt to keep this formula simple,
2810/// just enough to limit the worst case behavior. Even if it is not that simple
2811/// now it is still not an attempt to provide a detailed heuristic size
2812/// prediction.
2813///
2814/// TODO: Make a proper accounting of "explosion" effect for all kinds of
2815/// unswitch candidates, making adequate predictions instead of wild guesses.
2816/// That requires knowing not just the number of "remaining" candidates but
2817/// also costs of unswitching for each of these candidates.
2819 const Instruction &TI, const Loop &L, const LoopInfo &LI,
2820 const DominatorTree &DT,
2821 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) {
2822
2823 // Guards and other exiting conditions do not contribute to exponential
2824 // explosion as soon as they dominate the latch (otherwise there might be
2825 // another path to the latch remaining that does not allow to eliminate the
2826 // loop copy on unswitch).
2827 const BasicBlock *Latch = L.getLoopLatch();
2828 const BasicBlock *CondBlock = TI.getParent();
2829 if (DT.dominates(CondBlock, Latch) &&
2830 (isGuard(&TI) ||
2831 (TI.isTerminator() &&
2832 llvm::count_if(successors(&TI), [&L](const BasicBlock *SuccBB) {
2833 return L.contains(SuccBB);
2834 }) <= 1))) {
2835 NumCostMultiplierSkipped++;
2836 return 1;
2837 }
2838
2839 auto *ParentL = L.getParentLoop();
2840 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2841 : std::distance(LI.begin(), LI.end()));
2842 // Count amount of clones that all the candidates might cause during
2843 // unswitching. Branch/guard/select counts as 1, switch counts as log2 of its
2844 // cases.
2845 int UnswitchedClones = 0;
2846 for (const auto &Candidate : UnswitchCandidates) {
2847 const Instruction *CI = Candidate.TI;
2848 const BasicBlock *CondBlock = CI->getParent();
2849 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2850 if (isa<SelectInst>(CI)) {
2851 UnswitchedClones++;
2852 continue;
2853 }
2854 if (isGuard(CI)) {
2855 if (!SkipExitingSuccessors)
2856 UnswitchedClones++;
2857 continue;
2858 }
2859 int NonExitingSuccessors =
2860 llvm::count_if(successors(CondBlock),
2861 [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) {
2862 return !SkipExitingSuccessors || L.contains(SuccBB);
2863 });
2864 UnswitchedClones += Log2_32(NonExitingSuccessors);
2865 }
2866
2867 // Ignore up to the "unscaled candidates" number of unswitch candidates
2868 // when calculating the power-of-two scaling of the cost. The main idea
2869 // with this control is to allow a small number of unswitches to happen
2870 // and rely more on siblings multiplier (see below) when the number
2871 // of candidates is small.
2872 unsigned ClonesPower =
2873 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2874
2875 // Allowing top-level loops to spread a bit more than nested ones.
2876 int SiblingsMultiplier =
2877 std::max((ParentL ? SiblingsCount
2878 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2879 1);
2880 // Compute the cost multiplier in a way that won't overflow by saturating
2881 // at an upper bound.
2882 int CostMultiplier;
2883 if (ClonesPower > Log2_32(UnswitchThreshold) ||
2884 SiblingsMultiplier > UnswitchThreshold)
2885 CostMultiplier = UnswitchThreshold;
2886 else
2887 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2888 (int)UnswitchThreshold);
2889
2890 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier
2891 << " (siblings " << SiblingsMultiplier << " * clones "
2892 << (1 << ClonesPower) << ")"
2893 << " for unswitch candidate: " << TI << "\n");
2894 return CostMultiplier;
2895}
2896
2899 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch,
2900 const Loop &L, const LoopInfo &LI, AAResults &AA,
2901 const MemorySSAUpdater *MSSAU) {
2902 assert(UnswitchCandidates.empty() && "Should be!");
2903
2904 auto AddUnswitchCandidatesForInst = [&](Instruction *I, Value *Cond) {
2906 if (isa<Constant>(Cond))
2907 return;
2908 if (L.isLoopInvariant(Cond)) {
2909 UnswitchCandidates.push_back({I, {Cond}});
2910 return;
2911 }
2913 TinyPtrVector<Value *> Invariants =
2915 L, *static_cast<Instruction *>(Cond), LI);
2916 if (!Invariants.empty())
2917 UnswitchCandidates.push_back({I, std::move(Invariants)});
2918 }
2919 };
2920
2921 // Whether or not we should also collect guards in the loop.
2922 bool CollectGuards = false;
2923 if (UnswitchGuards) {
2924 auto *GuardDecl = Intrinsic::getDeclarationIfExists(
2925 L.getHeader()->getParent()->getParent(), Intrinsic::experimental_guard);
2926 if (GuardDecl && !GuardDecl->use_empty())
2927 CollectGuards = true;
2928 }
2929
2930 for (auto *BB : L.blocks()) {
2931 if (LI.getLoopFor(BB) != &L)
2932 continue;
2933
2934 for (auto &I : *BB) {
2935 if (auto *SI = dyn_cast<SelectInst>(&I)) {
2936 auto *Cond = SI->getCondition();
2937 // Do not unswitch vector selects and logical and/or selects
2938 if (Cond->getType()->isIntegerTy(1) && !SI->getType()->isIntegerTy(1))
2939 AddUnswitchCandidatesForInst(SI, Cond);
2940 } else if (CollectGuards && isGuard(&I)) {
2941 auto *Cond =
2942 skipTrivialSelect(cast<IntrinsicInst>(&I)->getArgOperand(0));
2943 // TODO: Support AND, OR conditions and partial unswitching.
2944 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2945 UnswitchCandidates.push_back({&I, {Cond}});
2946 }
2947 }
2948
2949 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2950 // We can only consider fully loop-invariant switch conditions as we need
2951 // to completely eliminate the switch after unswitching.
2952 if (!isa<Constant>(SI->getCondition()) &&
2953 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2954 UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2955 continue;
2956 }
2957
2958 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2959 if (!BI || !BI->isConditional() ||
2960 BI->getSuccessor(0) == BI->getSuccessor(1))
2961 continue;
2962
2963 AddUnswitchCandidatesForInst(BI, BI->getCondition());
2964 }
2965
2966 if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2967 !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2968 return TerminatorAndInvariants.TI == L.getHeader()->getTerminator();
2969 })) {
2970 MemorySSA *MSSA = MSSAU->getMemorySSA();
2971 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2972 LLVM_DEBUG(
2973 dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2974 << *Info->InstToDuplicate[0] << "\n");
2975 PartialIVInfo = *Info;
2976 PartialIVCondBranch = L.getHeader()->getTerminator();
2977 TinyPtrVector<Value *> ValsToDuplicate;
2978 llvm::append_range(ValsToDuplicate, Info->InstToDuplicate);
2979 UnswitchCandidates.push_back(
2980 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2981 }
2982 }
2983 return !UnswitchCandidates.empty();
2984}
2985
2986/// Tries to canonicalize condition described by:
2987///
2988/// br (LHS pred RHS), label IfTrue, label IfFalse
2989///
2990/// into its equivalent where `Pred` is something that we support for injected
2991/// invariants (so far it is limited to ult), LHS in canonicalized form is
2992/// non-invariant and RHS is an invariant.
2994 Value *&LHS, Value *&RHS,
2995 BasicBlock *&IfTrue,
2996 BasicBlock *&IfFalse,
2997 const Loop &L) {
2998 if (!L.contains(IfTrue)) {
2999 Pred = ICmpInst::getInversePredicate(Pred);
3000 std::swap(IfTrue, IfFalse);
3001 }
3002
3003 // Move loop-invariant argument to RHS position.
3004 if (L.isLoopInvariant(LHS)) {
3005 Pred = ICmpInst::getSwappedPredicate(Pred);
3006 std::swap(LHS, RHS);
3007 }
3008
3009 if (Pred == ICmpInst::ICMP_SGE && match(RHS, m_Zero())) {
3010 // Turn "x >=s 0" into "x <u UMIN_INT"
3011 Pred = ICmpInst::ICMP_ULT;
3012 RHS = ConstantInt::get(
3013 RHS->getContext(),
3015 }
3016}
3017
3018/// Returns true, if predicate described by ( \p Pred, \p LHS, \p RHS )
3019/// succeeding into blocks ( \p IfTrue, \p IfFalse) can be optimized by
3020/// injecting a loop-invariant condition.
3022 const ICmpInst::Predicate Pred, const Value *LHS, const Value *RHS,
3023 const BasicBlock *IfTrue, const BasicBlock *IfFalse, const Loop &L) {
3024 if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS))
3025 return false;
3026 // TODO: Support other predicates.
3027 if (Pred != ICmpInst::ICMP_ULT)
3028 return false;
3029 // TODO: Support non-loop-exiting branches?
3030 if (!L.contains(IfTrue) || L.contains(IfFalse))
3031 return false;
3032 // FIXME: For some reason this causes problems with MSSA updates, need to
3033 // investigate why. So far, just don't unswitch latch.
3034 if (L.getHeader() == IfTrue)
3035 return false;
3036 return true;
3037}
3038
3039/// Returns true, if metadata on \p BI allows us to optimize branching into \p
3040/// TakenSucc via injection of invariant conditions. The branch should be not
3041/// enough and not previously unswitched, the information about this comes from
3042/// the metadata.
3044 const BasicBlock *TakenSucc) {
3045 SmallVector<uint32_t> Weights;
3046 if (!extractBranchWeights(*BI, Weights))
3047 return false;
3049 BranchProbability LikelyTaken(T - 1, T);
3050
3051 assert(Weights.size() == 2 && "Unexpected profile data!");
3052 size_t Idx = BI->getSuccessor(0) == TakenSucc ? 0 : 1;
3053 auto Num = Weights[Idx];
3054 auto Denom = Weights[0] + Weights[1];
3055 // Degenerate or overflowed metadata.
3056 if (Denom == 0 || Num > Denom)
3057 return false;
3058 BranchProbability ActualTaken(Num, Denom);
3059 if (LikelyTaken > ActualTaken)
3060 return false;
3061 return true;
3062}
3063
3064/// Materialize pending invariant condition of the given candidate into IR. The
3065/// injected loop-invariant condition implies the original loop-variant branch
3066/// condition, so the materialization turns
3067///
3068/// loop_block:
3069/// ...
3070/// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
3071///
3072/// into
3073///
3074/// preheader:
3075/// %invariant_cond = LHS pred RHS
3076/// ...
3077/// loop_block:
3078/// br i1 %invariant_cond, label InLoopSucc, label OriginalCheck
3079/// OriginalCheck:
3080/// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
3081/// ...
3082static NonTrivialUnswitchCandidate
3083injectPendingInvariantConditions(NonTrivialUnswitchCandidate Candidate, Loop &L,
3084 DominatorTree &DT, LoopInfo &LI,
3085 AssumptionCache &AC, MemorySSAUpdater *MSSAU) {
3086 assert(Candidate.hasPendingInjection() && "Nothing to inject!");
3087 BasicBlock *Preheader = L.getLoopPreheader();
3088 assert(Preheader && "Loop is not in simplified form?");
3089 assert(LI.getLoopFor(Candidate.TI->getParent()) == &L &&
3090 "Unswitching branch of inner loop!");
3091
3092 auto Pred = Candidate.PendingInjection->Pred;
3093 auto *LHS = Candidate.PendingInjection->LHS;
3094 auto *RHS = Candidate.PendingInjection->RHS;
3095 auto *InLoopSucc = Candidate.PendingInjection->InLoopSucc;
3096 auto *TI = cast<BranchInst>(Candidate.TI);
3097 auto *BB = Candidate.TI->getParent();
3098 auto *OutOfLoopSucc = InLoopSucc == TI->getSuccessor(0) ? TI->getSuccessor(1)
3099 : TI->getSuccessor(0);
3100 // FIXME: Remove this once limitation on successors is lifted.
3101 assert(L.contains(InLoopSucc) && "Not supported yet!");
3102 assert(!L.contains(OutOfLoopSucc) && "Not supported yet!");
3103 auto &Ctx = BB->getContext();
3104
3105 IRBuilder<> Builder(Preheader->getTerminator());
3106 assert(ICmpInst::isUnsigned(Pred) && "Not supported yet!");
3107 if (LHS->getType() != RHS->getType()) {
3108 if (LHS->getType()->getIntegerBitWidth() <
3110 LHS = Builder.CreateZExt(LHS, RHS->getType(), LHS->getName() + ".wide");
3111 else
3112 RHS = Builder.CreateZExt(RHS, LHS->getType(), RHS->getName() + ".wide");
3113 }
3114 // Do not use builder here: CreateICmp may simplify this into a constant and
3115 // unswitching will break. Better optimize it away later.
3116 auto *InjectedCond =
3117 ICmpInst::Create(Instruction::ICmp, Pred, LHS, RHS, "injected.cond",
3118 Preheader->getTerminator()->getIterator());
3119
3120 BasicBlock *CheckBlock = BasicBlock::Create(Ctx, BB->getName() + ".check",
3121 BB->getParent(), InLoopSucc);
3122 Builder.SetInsertPoint(TI);
3123 auto *InvariantBr =
3124 Builder.CreateCondBr(InjectedCond, InLoopSucc, CheckBlock);
3125
3126 Builder.SetInsertPoint(CheckBlock);
3127 Builder.CreateCondBr(TI->getCondition(), TI->getSuccessor(0),
3128 TI->getSuccessor(1));
3129 TI->eraseFromParent();
3130
3131 // Fixup phis.
3132 for (auto &I : *InLoopSucc) {
3133 auto *PN = dyn_cast<PHINode>(&I);
3134 if (!PN)
3135 break;
3136 auto *Inc = PN->getIncomingValueForBlock(BB);
3137 PN->addIncoming(Inc, CheckBlock);
3138 }
3139 OutOfLoopSucc->replacePhiUsesWith(BB, CheckBlock);
3140
3142 { DominatorTree::Insert, BB, CheckBlock },
3143 { DominatorTree::Insert, CheckBlock, InLoopSucc },
3144 { DominatorTree::Insert, CheckBlock, OutOfLoopSucc },
3145 { DominatorTree::Delete, BB, OutOfLoopSucc }
3146 };
3147
3148 DT.applyUpdates(DTUpdates);
3149 if (MSSAU)
3150 MSSAU->applyUpdates(DTUpdates, DT);
3151 L.addBasicBlockToLoop(CheckBlock, LI);
3152
3153#ifndef NDEBUG
3154 DT.verify();
3155 LI.verify(DT);
3156 if (MSSAU && VerifyMemorySSA)
3157 MSSAU->getMemorySSA()->verifyMemorySSA();
3158#endif
3159
3160 // TODO: In fact, cost of unswitching a new invariant candidate is *slightly*
3161 // higher because we have just inserted a new block. Need to think how to
3162 // adjust the cost of injected candidates when it was first computed.
3163 LLVM_DEBUG(dbgs() << "Injected a new loop-invariant branch " << *InvariantBr
3164 << " and considering it for unswitching.");
3165 ++NumInvariantConditionsInjected;
3166 return NonTrivialUnswitchCandidate(InvariantBr, { InjectedCond },
3167 Candidate.Cost);
3168}
3169
3170/// Given chain of loop branch conditions looking like:
3171/// br (Variant < Invariant1)
3172/// br (Variant < Invariant2)
3173/// br (Variant < Invariant3)
3174/// ...
3175/// collect set of invariant conditions on which we want to unswitch, which
3176/// look like:
3177/// Invariant1 <= Invariant2
3178/// Invariant2 <= Invariant3
3179/// ...
3180/// Though they might not immediately exist in the IR, we can still inject them.
3182 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, Loop &L,
3184 const DominatorTree &DT) {
3185
3187 assert(ICmpInst::isStrictPredicate(Pred));
3188 if (Compares.size() < 2)
3189 return false;
3190 ICmpInst::Predicate NonStrictPred = ICmpInst::getNonStrictPredicate(Pred);
3191 for (auto Prev = Compares.begin(), Next = Compares.begin() + 1;
3192 Next != Compares.end(); ++Prev, ++Next) {
3193 Value *LHS = Next->Invariant;
3194 Value *RHS = Prev->Invariant;
3195 BasicBlock *InLoopSucc = Prev->InLoopSucc;
3196 InjectedInvariant ToInject(NonStrictPred, LHS, RHS, InLoopSucc);
3197 NonTrivialUnswitchCandidate Candidate(Prev->Term, { LHS, RHS },
3198 std::nullopt, std::move(ToInject));
3199 UnswitchCandidates.push_back(std::move(Candidate));
3200 }
3201 return true;
3202}
3203
3204/// Collect unswitch candidates by invariant conditions that are not immediately
3205/// present in the loop. However, they can be injected into the code if we
3206/// decide it's profitable.
3207/// An example of such conditions is following:
3208///
3209/// for (...) {
3210/// x = load ...
3211/// if (! x <u C1) break;
3212/// if (! x <u C2) break;
3213/// <do something>
3214/// }
3215///
3216/// We can unswitch by condition "C1 <=u C2". If that is true, then "x <u C1 <=
3217/// C2" automatically implies "x <u C2", so we can get rid of one of
3218/// loop-variant checks in unswitched loop version.
3221 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, Loop &L,
3222 const DominatorTree &DT, const LoopInfo &LI, AAResults &AA,
3223 const MemorySSAUpdater *MSSAU) {
3225 return false;
3226
3227 if (!DT.isReachableFromEntry(L.getHeader()))
3228 return false;
3229 auto *Latch = L.getLoopLatch();
3230 // Need to have a single latch and a preheader.
3231 if (!Latch)
3232 return false;
3233 assert(L.getLoopPreheader() && "Must have a preheader!");
3234
3236 // Traverse the conditions that dominate latch (and therefore dominate each
3237 // other).
3238 for (auto *DTN = DT.getNode(Latch); L.contains(DTN->getBlock());
3239 DTN = DTN->getIDom()) {
3240 CmpPredicate Pred;
3241 Value *LHS = nullptr, *RHS = nullptr;
3242 BasicBlock *IfTrue = nullptr, *IfFalse = nullptr;
3243 auto *BB = DTN->getBlock();
3244 // Ignore inner loops.
3245 if (LI.getLoopFor(BB) != &L)
3246 continue;
3247 auto *Term = BB->getTerminator();
3248 if (!match(Term, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
3249 m_BasicBlock(IfTrue), m_BasicBlock(IfFalse))))
3250 continue;
3251 if (!LHS->getType()->isIntegerTy())
3252 continue;
3253 canonicalizeForInvariantConditionInjection(Pred, LHS, RHS, IfTrue, IfFalse,
3254 L);
3255 if (!shouldTryInjectInvariantCondition(Pred, LHS, RHS, IfTrue, IfFalse, L))
3256 continue;
3257 if (!shouldTryInjectBasingOnMetadata(cast<BranchInst>(Term), IfTrue))
3258 continue;
3259 // Strip ZEXT for unsigned predicate.
3260 // TODO: once signed predicates are supported, also strip SEXT.
3261 CompareDesc Desc(cast<BranchInst>(Term), RHS, IfTrue);
3262 while (auto *Zext = dyn_cast<ZExtInst>(LHS))
3263 LHS = Zext->getOperand(0);
3264 CandidatesULT[LHS].push_back(Desc);
3265 }
3266
3267 bool Found = false;
3268 for (auto &It : CandidatesULT)
3270 UnswitchCandidates, L, ICmpInst::ICMP_ULT, It.second, DT);
3271 return Found;
3272}
3273
3275 if (!L.isSafeToClone())
3276 return false;
3277 for (auto *BB : L.blocks())
3278 for (auto &I : *BB) {
3279 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
3280 return false;
3281 if (auto *CB = dyn_cast<CallBase>(&I)) {
3282 assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone().");
3283 if (CB->isConvergent())
3284 return false;
3285 }
3286 }
3287
3288 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
3289 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
3290 // irreducible control flow into reducible control flow and introduce new
3291 // loops "out of thin air". If we ever discover important use cases for doing
3292 // this, we can add support to loop unswitch, but it is a lot of complexity
3293 // for what seems little or no real world benefit.
3294 LoopBlocksRPO RPOT(&L);
3295 RPOT.perform(&LI);
3296 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
3297 return false;
3298
3300 L.getUniqueExitBlocks(ExitBlocks);
3301 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
3302 // instruction as we don't know how to split those exit blocks.
3303 // FIXME: We should teach SplitBlock to handle this and remove this
3304 // restriction.
3305 for (auto *ExitBB : ExitBlocks) {
3306 auto *I = ExitBB->getFirstNonPHI();
3307 if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
3308 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
3309 "in exit block\n");
3310 return false;
3311 }
3312 }
3313
3314 return true;
3315}
3316
3317static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate(
3318 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L,
3319 const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC,
3320 const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) {
3321 // Given that unswitching these terminators will require duplicating parts of
3322 // the loop, so we need to be able to model that cost. Compute the ephemeral
3323 // values and set up a data structure to hold per-BB costs. We cache each
3324 // block's cost so that we don't recompute this when considering different
3325 // subsets of the loop for duplication during unswitching.
3327 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
3329
3330 // Compute the cost of each block, as well as the total loop cost. Also, bail
3331 // out if we see instructions which are incompatible with loop unswitching
3332 // (convergent, noduplicate, or cross-basic-block tokens).
3333 // FIXME: We might be able to safely handle some of these in non-duplicated
3334 // regions.
3336 L.getHeader()->getParent()->hasMinSize()
3339 InstructionCost LoopCost = 0;
3340 for (auto *BB : L.blocks()) {
3342 for (auto &I : *BB) {
3343 if (EphValues.count(&I))
3344 continue;
3346 }
3347 assert(Cost >= 0 && "Must not have negative costs!");
3348 LoopCost += Cost;
3349 assert(LoopCost >= 0 && "Must not have negative loop costs!");
3350 BBCostMap[BB] = Cost;
3351 }
3352 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
3353
3354 // Now we find the best candidate by searching for the one with the following
3355 // properties in order:
3356 //
3357 // 1) An unswitching cost below the threshold
3358 // 2) The smallest number of duplicated unswitch candidates (to avoid
3359 // creating redundant subsequent unswitching)
3360 // 3) The smallest cost after unswitching.
3361 //
3362 // We prioritize reducing fanout of unswitch candidates provided the cost
3363 // remains below the threshold because this has a multiplicative effect.
3364 //
3365 // This requires memoizing each dominator subtree to avoid redundant work.
3366 //
3367 // FIXME: Need to actually do the number of candidates part above.
3369 // Given a terminator which might be unswitched, computes the non-duplicated
3370 // cost for that terminator.
3371 auto ComputeUnswitchedCost = [&](Instruction &TI,
3372 bool FullUnswitch) -> InstructionCost {
3373 // Unswitching selects unswitches the entire loop.
3374 if (isa<SelectInst>(TI))
3375 return LoopCost;
3376
3377 BasicBlock &BB = *TI.getParent();
3379
3381 for (BasicBlock *SuccBB : successors(&BB)) {
3382 // Don't count successors more than once.
3383 if (!Visited.insert(SuccBB).second)
3384 continue;
3385
3386 // If this is a partial unswitch candidate, then it must be a conditional
3387 // branch with a condition of either `or`, `and`, their corresponding
3388 // select forms or partially invariant instructions. In that case, one of
3389 // the successors is necessarily duplicated, so don't even try to remove
3390 // its cost.
3391 if (!FullUnswitch) {
3392 auto &BI = cast<BranchInst>(TI);
3393 Value *Cond = skipTrivialSelect(BI.getCondition());
3394 if (match(Cond, m_LogicalAnd())) {
3395 if (SuccBB == BI.getSuccessor(1))
3396 continue;
3397 } else if (match(Cond, m_LogicalOr())) {
3398 if (SuccBB == BI.getSuccessor(0))
3399 continue;
3400 } else if ((PartialIVInfo.KnownValue->isOneValue() &&
3401 SuccBB == BI.getSuccessor(0)) ||
3402 (!PartialIVInfo.KnownValue->isOneValue() &&
3403 SuccBB == BI.getSuccessor(1)))
3404 continue;
3405 }
3406
3407 // This successor's domtree will not need to be duplicated after
3408 // unswitching if the edge to the successor dominates it (and thus the
3409 // entire tree). This essentially means there is no other path into this
3410 // subtree and so it will end up live in only one clone of the loop.
3411 if (SuccBB->getUniquePredecessor() ||
3412 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
3413 return PredBB == &BB || DT.dominates(SuccBB, PredBB);
3414 })) {
3415 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
3416 assert(Cost <= LoopCost &&
3417 "Non-duplicated cost should never exceed total loop cost!");
3418 }
3419 }
3420
3421 // Now scale the cost by the number of unique successors minus one. We
3422 // subtract one because there is already at least one copy of the entire
3423 // loop. This is computing the new cost of unswitching a condition.
3424 // Note that guards always have 2 unique successors that are implicit and
3425 // will be materialized if we decide to unswitch it.
3426 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
3427 assert(SuccessorsCount > 1 &&
3428 "Cannot unswitch a condition without multiple distinct successors!");
3429 return (LoopCost - Cost) * (SuccessorsCount - 1);
3430 };
3431
3432 std::optional<NonTrivialUnswitchCandidate> Best;
3433 for (auto &Candidate : UnswitchCandidates) {
3434 Instruction &TI = *Candidate.TI;
3435 ArrayRef<Value *> Invariants = Candidate.Invariants;
3436 BranchInst *BI = dyn_cast<BranchInst>(&TI);
3437 bool FullUnswitch =
3438 !BI || Candidate.hasPendingInjection() ||
3439 (Invariants.size() == 1 &&
3440 Invariants[0] == skipTrivialSelect(BI->getCondition()));
3441 InstructionCost CandidateCost = ComputeUnswitchedCost(TI, FullUnswitch);
3442 // Calculate cost multiplier which is a tool to limit potentially
3443 // exponential behavior of loop-unswitch.
3445 int CostMultiplier =
3446 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
3447 assert(
3448 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
3449 "cost multiplier needs to be in the range of 1..UnswitchThreshold");
3450 CandidateCost *= CostMultiplier;
3451 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
3452 << " (multiplier: " << CostMultiplier << ")"
3453 << " for unswitch candidate: " << TI << "\n");
3454 } else {
3455 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
3456 << " for unswitch candidate: " << TI << "\n");
3457 }
3458
3459 if (!Best || CandidateCost < Best->Cost) {
3460 Best = Candidate;
3461 Best->Cost = CandidateCost;
3462 }
3463 }
3464 assert(Best && "Must be!");
3465 return *Best;
3466}
3467
3468// Insert a freeze on an unswitched branch if all is true:
3469// 1. freeze-loop-unswitch-cond option is true
3470// 2. The branch may not execute in the loop pre-transformation. If a branch may
3471// not execute and could cause UB, it would always cause UB if it is hoisted outside
3472// of the loop. Insert a freeze to prevent this case.
3473// 3. The branch condition may be poison or undef
3475 AssumptionCache &AC) {
3476 assert(isa<BranchInst>(TI) || isa<SwitchInst>(TI));
3478 return false;
3479
3480 ICFLoopSafetyInfo SafetyInfo;
3481 SafetyInfo.computeLoopSafetyInfo(&L);
3482 if (SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
3483 return false;
3484
3485 Value *Cond;
3486 if (BranchInst *BI = dyn_cast<BranchInst>(&TI))
3487 Cond = skipTrivialSelect(BI->getCondition());
3488 else
3489 Cond = skipTrivialSelect(cast<SwitchInst>(&TI)->getCondition());
3491 Cond, &AC, L.getLoopPreheader()->getTerminator(), &DT);
3492}
3493
3495 AssumptionCache &AC, AAResults &AA,
3497 MemorySSAUpdater *MSSAU,
3498 LPMUpdater &LoopUpdater) {
3499 // Collect all invariant conditions within this loop (as opposed to an inner
3500 // loop which would be handled when visiting that inner loop).
3502 IVConditionInfo PartialIVInfo;
3503 Instruction *PartialIVCondBranch = nullptr;
3504 collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo,
3505 PartialIVCondBranch, L, LI, AA, MSSAU);
3506 if (!findOptionMDForLoop(&L, "llvm.loop.unswitch.injection.disable"))
3507 collectUnswitchCandidatesWithInjections(UnswitchCandidates, PartialIVInfo,
3508 PartialIVCondBranch, L, DT, LI, AA,
3509 MSSAU);
3510 // If we didn't find any candidates, we're done.
3511 if (UnswitchCandidates.empty())
3512 return false;
3513
3514 LLVM_DEBUG(
3515 dbgs() << "Considering " << UnswitchCandidates.size()
3516 << " non-trivial loop invariant conditions for unswitching.\n");
3517
3518 NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate(
3519 UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo);
3520
3521 assert(Best.TI && "Failed to find loop unswitch candidate");
3522 assert(Best.Cost && "Failed to compute cost");
3523
3524 if (*Best.Cost >= UnswitchThreshold) {
3525 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost
3526 << "\n");
3527 return false;
3528 }
3529
3530 bool InjectedCondition = false;
3531 if (Best.hasPendingInjection()) {
3532 Best = injectPendingInvariantConditions(Best, L, DT, LI, AC, MSSAU);
3533 InjectedCondition = true;
3534 }
3535 assert(!Best.hasPendingInjection() &&
3536 "All injections should have been done by now!");
3537
3538 if (Best.TI != PartialIVCondBranch)
3539 PartialIVInfo.InstToDuplicate.clear();
3540
3541 bool InsertFreeze;
3542 if (auto *SI = dyn_cast<SelectInst>(Best.TI)) {
3543 // If the best candidate is a select, turn it into a branch. Select
3544 // instructions with a poison conditional do not propagate poison, but
3545 // branching on poison causes UB. Insert a freeze on the select
3546 // conditional to prevent UB after turning the select into a branch.
3547 InsertFreeze = !isGuaranteedNotToBeUndefOrPoison(
3548 SI->getCondition(), &AC, L.getLoopPreheader()->getTerminator(), &DT);
3549 Best.TI = turnSelectIntoBranch(SI, DT, LI, MSSAU, &AC);
3550 } else {
3551 // If the best candidate is a guard, turn it into a branch.
3552 if (isGuard(Best.TI))
3553 Best.TI =
3554 turnGuardIntoBranch(cast<IntrinsicInst>(Best.TI), L, DT, LI, MSSAU);
3555 InsertFreeze = shouldInsertFreeze(L, *Best.TI, DT, AC);
3556 }
3557
3558 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " << Best.Cost
3559 << ") terminator: " << *Best.TI << "\n");
3560 unswitchNontrivialInvariants(L, *Best.TI, Best.Invariants, PartialIVInfo, DT,
3561 LI, AC, SE, MSSAU, LoopUpdater, InsertFreeze,
3562 InjectedCondition);
3563 return true;
3564}
3565
3566/// Unswitch control flow predicated on loop invariant conditions.
3567///
3568/// This first hoists all branches or switches which are trivial (IE, do not
3569/// require duplicating any part of the loop) out of the loop body. It then
3570/// looks at other loop invariant control flows and tries to unswitch those as
3571/// well by cloning the loop if the result is small enough.
3572///
3573/// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3574/// also updated based on the unswitch. The `MSSA` analysis is also updated if
3575/// valid (i.e. its use is enabled).
3576///
3577/// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3578/// true, we will attempt to do non-trivial unswitching as well as trivial
3579/// unswitching.
3580///
3581/// The `postUnswitch` function will be run after unswitching is complete
3582/// with information on whether or not the provided loop remains a loop and
3583/// a list of new sibling loops created.
3584///
3585/// If `SE` is non-null, we will update that analysis based on the unswitching
3586/// done.
3587static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
3588 AssumptionCache &AC, AAResults &AA,
3589 TargetTransformInfo &TTI, bool Trivial,
3590 bool NonTrivial, ScalarEvolution *SE,
3592 BlockFrequencyInfo *BFI, LPMUpdater &LoopUpdater) {
3593 assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3594 "Loops must be in LCSSA form before unswitching.");
3595
3596 // Must be in loop simplified form: we need a preheader and dedicated exits.
3597 if (!L.isLoopSimplifyForm())
3598 return false;
3599
3600 // Try trivial unswitch first before loop over other basic blocks in the loop.
3601 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3602 // If we unswitched successfully we will want to clean up the loop before
3603 // processing it further so just mark it as unswitched and return.
3604 postUnswitch(L, LoopUpdater, L.getName(),
3605 /*CurrentLoopValid*/ true, /*PartiallyInvariant*/ false,
3606 /*InjectedCondition*/ false, {});
3607 return true;
3608 }
3609
3610 const Function *F = L.getHeader()->getParent();
3611
3612 // Check whether we should continue with non-trivial conditions.
3613 // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3614 // unswitching for testing and debugging.
3615 // NonTrivial: Parameter that enables non-trivial unswitching for this
3616 // invocation of the transform. But this should be allowed only
3617 // for targets without branch divergence.
3618 //
3619 // FIXME: If divergence analysis becomes available to a loop
3620 // transform, we should allow unswitching for non-trivial uniform
3621 // branches even on targets that have divergence.
3622 // https://bugs.llvm.org/show_bug.cgi?id=48819
3623 bool ContinueWithNonTrivial =
3625 if (!ContinueWithNonTrivial)
3626 return false;
3627
3628 // Skip non-trivial unswitching for optsize functions.
3629 if (F->hasOptSize())
3630 return false;
3631
3632 // Returns true if Loop L's loop nest is cold, i.e. if the headers of L,
3633 // of the loops L is nested in, and of the loops nested in L are all cold.
3634 auto IsLoopNestCold = [&](const Loop *L) {
3635 // Check L and all of its parent loops.
3636 auto *Parent = L;
3637 while (Parent) {
3638 if (!PSI->isColdBlock(Parent->getHeader(), BFI))
3639 return false;
3640 Parent = Parent->getParentLoop();
3641 }
3642 // Next check all loops nested within L.
3644 Worklist.insert(Worklist.end(), L->getSubLoops().begin(),
3645 L->getSubLoops().end());
3646 while (!Worklist.empty()) {
3647 auto *CurLoop = Worklist.pop_back_val();
3648 if (!PSI->isColdBlock(CurLoop->getHeader(), BFI))
3649 return false;
3650 Worklist.insert(Worklist.end(), CurLoop->getSubLoops().begin(),
3651 CurLoop->getSubLoops().end());
3652 }
3653 return true;
3654 };
3655
3656 // Skip cold loops in cold loop nests, as unswitching them brings little
3657 // benefit but increases the code size
3658 if (PSI && PSI->hasProfileSummary() && BFI && IsLoopNestCold(&L)) {
3659 LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n");
3660 return false;
3661 }
3662
3663 // Perform legality checks.
3665 return false;
3666
3667 // For non-trivial unswitching, because it often creates new loops, we rely on
3668 // the pass manager to iterate on the loops rather than trying to immediately
3669 // reach a fixed point. There is no substantial advantage to iterating
3670 // internally, and if any of the new loops are simplified enough to contain
3671 // trivial unswitching we want to prefer those.
3672
3673 // Try to unswitch the best invariant condition. We prefer this full unswitch to
3674 // a partial unswitch when possible below the threshold.
3675 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, SE, MSSAU, LoopUpdater))
3676 return true;
3677
3678 // No other opportunities to unswitch.
3679 return false;
3680}
3681
3684 LPMUpdater &U) {
3685 Function &F = *L.getHeader()->getParent();
3686 (void)F;
3687 ProfileSummaryInfo *PSI = nullptr;
3688 if (auto OuterProxy =
3690 .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F))
3691 PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3692 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3693 << "\n");
3694
3695 std::optional<MemorySSAUpdater> MSSAU;
3696 if (AR.MSSA) {
3697 MSSAU = MemorySSAUpdater(AR.MSSA);
3698 if (VerifyMemorySSA)
3699 AR.MSSA->verifyMemorySSA();
3700 }
3701 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3702 &AR.SE, MSSAU ? &*MSSAU : nullptr, PSI, AR.BFI, U))
3703 return PreservedAnalyses::all();
3704
3705 if (AR.MSSA && VerifyMemorySSA)
3706 AR.MSSA->verifyMemorySSA();
3707
3708 // Historically this pass has had issues with the dominator tree so verify it
3709 // in asserts builds.
3710 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3711
3712 auto PA = getLoopPassPreservedAnalyses();
3713 if (AR.MSSA)
3714 PA.preserve<MemorySSAAnalysis>();
3715 return PA;
3716}
3717
3719 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3721 OS, MapClassName2PassName);
3722
3723 OS << '<';
3724 OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3725 OS << (Trivial ? "" : "no-") << "trivial";
3726 OS << '>';
3727}
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
This file defines a set of templates that efficiently compute a dominator tree over a generic graph.
Module.h This file contains the declarations for the Module class.
This defines the Use class.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
This header provides classes for managing per-loop analyses.
This header provides classes for managing a pipeline of passes over loops in LLVM IR.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
Contains a collection of routines for determining if a given instruction is guaranteed to execute if ...
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
Provides some synthesis utilities to produce sequences of values.
This file implements a set that has insertion order iteration characteristics.
static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, BasicBlock &OldExitingBB, BasicBlock &OldPH)
Rewrite the PHI nodes in an unswitched loop exit basic block.
static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, AAResults &AA, TargetTransformInfo &TTI, bool Trivial, bool NonTrivial, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, LPMUpdater &LoopUpdater)
Unswitch control flow predicated on loop invariant conditions.
static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, LoopInfo &LI, ScalarEvolution *SE, MemorySSAUpdater *MSSAU)
This routine scans the loop to find a branch or switch which occurs before any side effects occur.
static cl::opt< bool > EnableNonTrivialUnswitch("enable-nontrivial-unswitch", cl::init(false), cl::Hidden, cl::desc("Forcibly enables non-trivial loop unswitching rather than " "following the configuration passed into the pass."))
static cl::opt< bool > UnswitchGuards("simple-loop-unswitch-guards", cl::init(true), cl::Hidden, cl::desc("If enabled, simple loop unswitching will also consider " "llvm.experimental.guard intrinsics as unswitch candidates."))
static SmallPtrSet< const BasicBlock *, 16 > recomputeLoopBlockSet(Loop &L, LoopInfo &LI)
Recompute the set of blocks in a loop after unswitching.
static int CalculateUnswitchCostMultiplier(const Instruction &TI, const Loop &L, const LoopInfo &LI, const DominatorTree &DT, ArrayRef< NonTrivialUnswitchCandidate > UnswitchCandidates)
Cost multiplier is a way to limit potentially exponential behavior of loop-unswitch.
static void buildPartialInvariantUnswitchConditionalBranch(BasicBlock &BB, ArrayRef< Value * > ToDuplicate, bool Direction, BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, MemorySSAUpdater *MSSAU)
Copy a set of loop invariant values, and conditionally branch on them.
static TinyPtrVector< Value * > collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root, const LoopInfo &LI)
Collect all of the loop invariant input values transitively used by the homogeneous instruction graph...
static void deleteDeadClonedBlocks(Loop &L, ArrayRef< BasicBlock * > ExitBlocks, ArrayRef< std::unique_ptr< ValueToValueMapTy > > VMaps, DominatorTree &DT, MemorySSAUpdater *MSSAU)
void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable)
Helper to visit a dominator subtree, invoking a callable on each node.
static BranchInst * turnSelectIntoBranch(SelectInst *SI, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, AssumptionCache *AC)
Turns a select instruction into implicit control flow branch, making the following replacement:
static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI)
void postUnswitch(Loop &L, LPMUpdater &U, StringRef LoopName, bool CurrentLoopValid, bool PartiallyInvariant, bool InjectedCondition, ArrayRef< Loop * > NewLoops)
static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, ArrayRef< Value * > Invariants, bool Direction, BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze, const Instruction *I, AssumptionCache *AC, const DominatorTree &DT)
Copy a set of loop invariant values ToDuplicate and insert them at the end of BB and conditionally br...
static cl::opt< int > UnswitchNumInitialUnscaledCandidates("unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, cl::desc("Number of unswitch candidates that are ignored when calculating " "cost multiplier."))
static bool shouldTryInjectInvariantCondition(const ICmpInst::Predicate Pred, const Value *LHS, const Value *RHS, const BasicBlock *IfTrue, const BasicBlock *IfFalse, const Loop &L)
Returns true, if predicate described by ( Pred, LHS, RHS ) succeeding into blocks ( IfTrue,...
static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate(ArrayRef< NonTrivialUnswitchCandidate > UnswitchCandidates, const Loop &L, const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC, const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo)
static cl::opt< bool > EnableUnswitchCostMultiplier("enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, cl::desc("Enable unswitch cost multiplier that prohibits exponential " "explosion in nontrivial unswitch."))
static Value * skipTrivialSelect(Value *Cond)
static Loop * getTopMostExitingLoop(const BasicBlock *ExitBB, const LoopInfo &LI)
static bool collectUnswitchCandidatesWithInjections(SmallVectorImpl< NonTrivialUnswitchCandidate > &UnswitchCandidates, IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, Loop &L, const DominatorTree &DT, const LoopInfo &LI, AAResults &AA, const MemorySSAUpdater *MSSAU)
Collect unswitch candidates by invariant conditions that are not immediately present in the loop.
static cl::opt< int > UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, cl::desc("The cost threshold for unswitching a loop."))
static void replaceLoopInvariantUses(const Loop &L, Value *Invariant, Constant &Replacement)
static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, LoopInfo &LI, ScalarEvolution *SE, MemorySSAUpdater *MSSAU)
Unswitch a trivial branch if the condition is loop invariant.
static bool collectUnswitchCandidates(SmallVectorImpl< NonTrivialUnswitchCandidate > &UnswitchCandidates, IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, const Loop &L, const LoopInfo &LI, AAResults &AA, const MemorySSAUpdater *MSSAU)
static cl::opt< bool > InjectInvariantConditions("simple-loop-unswitch-inject-invariant-conditions", cl::Hidden, cl::desc("Whether we should inject new invariants and unswitch them to " "eliminate some existing (non-invariant) conditions."), cl::init(true))
static cl::opt< bool > FreezeLoopUnswitchCond("freeze-loop-unswitch-cond", cl::init(true), cl::Hidden, cl::desc("If enabled, the freeze instruction will be added to condition " "of loop unswitch to prevent miscompilation."))
static InstructionCost computeDomSubtreeCost(DomTreeNode &N, const SmallDenseMap< BasicBlock *, InstructionCost, 4 > &BBCostMap, SmallDenseMap< DomTreeNode *, InstructionCost, 4 > &DTCostMap)
Recursively compute the cost of a dominator subtree based on the per-block cost map provided.
static bool shouldInsertFreeze(Loop &L, Instruction &TI, DominatorTree &DT, AssumptionCache &AC)
static cl::opt< int > UnswitchSiblingsToplevelDiv("unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, cl::desc("Toplevel siblings divisor for cost multiplier."))
static cl::opt< unsigned > MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", cl::desc("Max number of memory uses to explore during " "partial unswitching analysis"), cl::init(100), cl::Hidden)
static void canonicalizeForInvariantConditionInjection(CmpPredicate &Pred, Value *&LHS, Value *&RHS, BasicBlock *&IfTrue, BasicBlock *&IfFalse, const Loop &L)
Tries to canonicalize condition described by:
static bool areLoopExitPHIsLoopInvariant(const Loop &L, const BasicBlock &ExitingBB, const BasicBlock &ExitBB)
Check that all the LCSSA PHI nodes in the loop exit block have trivial incoming values along this edg...
static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, BasicBlock &UnswitchedBB, BasicBlock &OldExitingBB, BasicBlock &OldPH, bool FullUnswitch)
Rewrite the PHI nodes in the loop exit basic block and the split off unswitched block.
static bool insertCandidatesWithPendingInjections(SmallVectorImpl< NonTrivialUnswitchCandidate > &UnswitchCandidates, Loop &L, ICmpInst::Predicate Pred, ArrayRef< CompareDesc > Compares, const DominatorTree &DT)
Given chain of loop branch conditions looking like: br (Variant < Invariant1) br (Variant < Invariant...
static NonTrivialUnswitchCandidate injectPendingInvariantConditions(NonTrivialUnswitchCandidate Candidate, Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, MemorySSAUpdater *MSSAU)
Materialize pending invariant condition of the given candidate into IR.
static cl::opt< bool > DropNonTrivialImplicitNullChecks("simple-loop-unswitch-drop-non-trivial-implicit-null-checks", cl::init(false), cl::Hidden, cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " "null checks to save time analyzing if we can keep it."))
static cl::opt< unsigned > InjectInvariantConditionHotnesThreshold("simple-loop-unswitch-inject-invariant-condition-hotness-threshold", cl::Hidden, cl::desc("Only try to inject loop invariant conditions and " "unswitch on them to eliminate branches that are " "not-taken 1/<this option> times or less."), cl::init(16))
static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, LoopInfo &LI, ScalarEvolution *SE, MemorySSAUpdater *MSSAU)
Unswitch a trivial switch if the condition is loop invariant.
static void unswitchNontrivialInvariants(Loop &L, Instruction &TI, ArrayRef< Value * > Invariants, IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, LPMUpdater &LoopUpdater, bool InsertFreeze, bool InjectedCondition)
static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef< BasicBlock * > ExitBlocks, LoopInfo &LI, SmallVectorImpl< Loop * > &HoistedLoops, ScalarEvolution *SE)
Rebuild a loop after unswitching removes some subset of blocks and edges.
static bool unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, AAResults &AA, TargetTransformInfo &TTI, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, LPMUpdater &LoopUpdater)
static BasicBlock * buildClonedLoopBlocks(Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, ArrayRef< BasicBlock * > ExitBlocks, BasicBlock *ParentBB, BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, const SmallDenseMap< BasicBlock *, BasicBlock *, 16 > &DominatingSucc, ValueToValueMapTy &VMap, SmallVectorImpl< DominatorTree::UpdateType > &DTUpdates, AssumptionCache &AC, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution *SE)
Build the cloned blocks for an unswitched copy of the given loop.
static void deleteDeadBlocksFromLoop(Loop &L, SmallVectorImpl< BasicBlock * > &ExitBlocks, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution *SE, LPMUpdater &LoopUpdater)
bool shouldTryInjectBasingOnMetadata(const BranchInst *BI, const BasicBlock *TakenSucc)
Returns true, if metadata on BI allows us to optimize branching into TakenSucc via injection of invar...
static BranchInst * turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU)
Turns a llvm.experimental.guard intrinsic into implicit control flow branch, making the following rep...
static Loop * cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, const ValueToValueMapTy &VMap, LoopInfo &LI)
Recursively clone the specified loop and all of its children.
static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution *SE)
Hoist the current loop up to the innermost loop containing a remaining exit.
static void buildClonedLoops(Loop &OrigL, ArrayRef< BasicBlock * > ExitBlocks, const ValueToValueMapTy &VMap, LoopInfo &LI, SmallVectorImpl< Loop * > &NonChildClonedLoops)
Build the cloned loops of an original loop from unswitching.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
This pass exposes codegen information to IR-level passes.
Value * RHS
Value * LHS
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:219
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:410
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator end() const
Definition: ArrayRef.h:157
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
iterator begin() const
Definition: ArrayRef.h:156
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:163
A cache of @llvm.assume calls within a function.
void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
iterator end()
Definition: BasicBlock.h:461
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:448
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:517
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:212
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
size_t size() const
Definition: BasicBlock.h:469
void moveBefore(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it into the function that MovePos lives ...
Definition: BasicBlock.h:376
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
Definition: BasicBlock.cpp:516
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
void setCondition(Value *V)
void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
Value * getCondition() const
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1294
void setArgOperand(unsigned i, Value *v)
Definition: InstrTypes.h:1299
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
Definition: CmpPredicate.h:22
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:866
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:873
This is an important base class in LLVM.
Definition: Constant.h:42
bool isOneValue() const
Returns true if the value is one.
Definition: Constants.cpp:124
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:156
iterator begin()
Definition: DenseMap.h:75
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:152
iterator end()
Definition: DenseMap.h:84
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:211
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void applyUpdates(ArrayRef< UpdateType > Updates)
Inform the dominator tree about a sequence of CFG edge insertions and deletions and perform a batch u...
void insertEdge(NodeT *From, NodeT *To)
Inform the dominator tree about a CFG edge insertion and update the tree.
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void deleteEdge(NodeT *From, NodeT *To)
Inform the dominator tree about a CFG edge deletion and update the tree.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:321
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
This class represents a freeze function that returns random concrete value if an operand is either a ...
This implementation of LoopSafetyInfo use ImplicitControlFlowTracking to give precise answers on "may...
Definition: MustExecute.h:131
bool isGuaranteedToExecute(const Instruction &Inst, const DominatorTree *DT, const Loop *CurLoop) const override
Returns true if the instruction in a loop is guaranteed to execute at least once (under the assumptio...
void computeLoopSafetyInfo(const Loop *CurLoop) override
Computes safety information for a loop checks loop body & header for the possibility of may throw exc...
Definition: MustExecute.cpp:77
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition: IRBuilder.h:2566
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Definition: IRBuilder.h:1144
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition: IRBuilder.h:2048
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1498
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1520
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:177
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
void dropLocation()
Drop the instruction's debug location.
Definition: DebugInfo.cpp:984
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:471
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:92
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:386
bool isTerminator() const
Definition: Instruction.h:277
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1679
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:468
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
InstListType::iterator insertInto(BasicBlock *ParentBB, InstListType::iterator It)
Inserts an unlinked instruction into ParentBB at position It and returns the iterator of the inserted...
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
This class provides an interface for updating the loop pass manager based on mutations to the loop ne...
void markLoopAsDeleted(Loop &L, llvm::StringRef Name)
Loop passes should use this method to indicate they have deleted a loop from the nest.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBlocks() const
Get the number of blocks in this loop in constant time.
BlockT * getHeader() const
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
void reserveBlocks(unsigned size)
interface to do reserve() for Blocks
iterator_range< block_iterator > blocks() const
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
bool isLoopExiting(const BlockT *BB) const
True if terminator in the block can branch to another block that is outside of the current loop.
LoopT * removeChildLoop(iterator I)
This removes the specified child from being a subloop of this loop.
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
Definition: LoopIterator.h:172
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
Definition: LoopIterator.h:180
void verify(const DominatorTreeBase< BlockT, false > &DomTree) const
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
iterator end() const
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * removeLoop(iterator I)
This removes the specified top-level loop from this loop info object.
void changeLoopFor(BlockT *BB, LoopT *L)
Change the top-level loop that contains BB to the specified loop.
unsigned getLoopDepth(const BlockT *BB) const
Return the loop nesting level of the specified block.
iterator begin() const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
void destroy(LoopT *L)
Destroy a loop that has been removed from the LoopInfo nest.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
StringRef getName() const
Definition: LoopInfo.h:388
Metadata node.
Definition: Metadata.h:1069
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1543
static MDString * get(LLVMContext &Context, StringRef Str)
Definition: Metadata.cpp:606
Represents a read-write access to memory, whether it is a must-alias, or a may-alias.
Definition: MemorySSA.h:370
An analysis that produces MemorySSA for a function.
Definition: MemorySSA.h:928
MemorySSA * getMemorySSA() const
Get handle on MemorySSA.
void removeEdge(BasicBlock *From, BasicBlock *To)
Update the MemoryPhi in To following an edge deletion between From and To.
void updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, ArrayRef< BasicBlock * > ExitBlocks, const ValueToValueMapTy &VM, bool IgnoreIncomingWithNoClones=false)
Update MemorySSA after a loop was cloned, given the blocks in RPO order, the exit blocks and a 1:1 ma...
void removeDuplicatePhiEdgesBetween(const BasicBlock *From, const BasicBlock *To)
Update the MemoryPhi in To to have a single incoming edge from From, following a CFG change that repl...
void removeBlocks(const SmallSetVector< BasicBlock *, 8 > &DeadBlocks)
Remove all MemoryAcceses in a set of BasicBlocks about to be deleted.
void moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start)
From block was spliced into From and To.
MemoryAccess * createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, MemorySSA::InsertionPlace Point, bool CreationMustSucceed=true)
Create a MemoryAccess in MemorySSA at a specified point in a block.
void applyInsertUpdates(ArrayRef< CFGUpdate > Updates, DominatorTree &DT)
Apply CFG insert updates, analogous with the DT edge updates.
void applyUpdates(ArrayRef< CFGUpdate > Updates, DominatorTree &DT, bool UpdateDTFirst=false)
Apply CFG updates, analogous with the DT edge updates.
void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, MemorySSA::InsertionPlace Where)
void updateExitBlocksForClonedLoop(ArrayRef< BasicBlock * > ExitBlocks, const ValueToValueMapTy &VMap, DominatorTree &DT)
Update phi nodes in exit block successors following cloning.
Encapsulates MemorySSA, including all data associated with memory accesses.
Definition: MemorySSA.h:701
void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
Definition: MemorySSA.cpp:1905
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
Definition: MemorySSA.h:719
const DefsList * getBlockDefs(const BasicBlock *BB) const
Return the list of MemoryDef's and MemoryPhi's for a given basic block.
Definition: MemorySSA.h:767
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
An analysis over an "inner" IR unit that provides access to an analysis manager over a "outer" IR uni...
Definition: PassManager.h:692
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
bool isColdBlock(const BBType *BB, BFIT *BFI) const
Returns true if BasicBlock BB is considered cold.
The main scalar evolution driver.
void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
void forgetTopmostLoop(const Loop *L)
void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
This class represents the LLVM 'select' instruction.
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:98
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition: SetVector.h:264
iterator begin()
Get an iterator to the beginning of the SetVector.
Definition: SetVector.h:103
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
size_type size() const
Definition: SmallPtrSet.h:94
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:363
bool erase(PtrType Ptr)
Remove pointer from the set.
Definition: SmallPtrSet.h:401
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:452
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:937
void reserve(size_type N)
Definition: SmallVector.h:663
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:683
iterator insert(iterator I, T &&Elt)
Definition: SmallVector.h:805
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
A wrapper class to simplify modification of SwitchInst cases along with their prof branch_weights met...
void setSuccessorWeight(unsigned idx, CaseWeightOpt W)
Instruction::InstListType::iterator eraseFromParent()
Delegate the call to the underlying SwitchInst::eraseFromParent() and mark this object to not touch t...
void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W)
Delegate the call to the underlying SwitchInst::addCase() and set the specified branch weight for the...
CaseWeightOpt getSuccessorWeight(unsigned idx)
std::optional< uint32_t > CaseWeightOpt
SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I)
Delegate the call to the underlying SwitchInst::removeCase() and remove correspondent branch weight.
unsigned getSuccessorIndex() const
Returns successor index for current case successor.
BasicBlockT * getCaseSuccessor() const
Resolves successor for current case.
ConstantIntT * getCaseValue() const
Resolves case value for current case.
Multiway switch.
BasicBlock * getDefaultDest() const
static SwitchInst * Create(Value *Value, BasicBlock *Default, unsigned NumCases, InsertPosition InsertBefore=nullptr)
void setDefaultDest(BasicBlock *DefaultCase)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
bool hasBranchDivergence(const Function *F=nullptr) const
Return true if branch divergence exists.
TargetCostKind
The kind of cost model.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
TinyPtrVector - This class is specialized for cases where there are normally 0 or 1 element in a vect...
Definition: TinyPtrVector.h:29
void push_back(EltTy NewVal)
bool empty() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
unsigned getIntegerBitWidth() const
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:237
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: ValueMap.h:164
size_type count(const KeyT &Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: ValueMap.h:151
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:377
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
iterator_range< use_iterator > uses()
Definition: Value.h:376
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Function * getDeclarationIfExists(Module *M, ID id, ArrayRef< Type * > Tys, FunctionType *FT=nullptr)
This version supports overloaded intrinsics.
Definition: Intrinsics.cpp:746
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:592
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
Definition: PatternMatch.h:189
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:612
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:239
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
void stable_sort(R &&Range)
Definition: STLExtras.h:2037
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1759
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
Definition: Local.cpp:546
auto successors(const MachineBasicBlock *BB)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2115
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:657
MDNode * findOptionMDForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for a loop.
Definition: LoopInfo.cpp:1055
Op::Description Desc
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:340
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
Definition: GuardUtils.cpp:18
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&...args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest.
Definition: STLExtras.h:877
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1664
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
Definition: ValueMapper.h:94
@ RF_NoModuleLevelChanges
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:76
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool VerifyLoopInfo
Enable verification of loop info.
Definition: LoopInfo.cpp:51
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Convert the instruction operands from referencing the current values into those specified by VM.
Definition: ValueMapper.h:263
BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
bool VerifyMemorySSA
Enables verification of MemorySSA.
Definition: MemorySSA.cpp:84
bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Ensure that all exit blocks of the loop are dedicated exits.
Definition: LoopUtils.cpp:57
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1945
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
PreservedAnalyses getLoopPassPreservedAnalyses()
Returns the minimum set of Analyses that all loop passes must preserve.
llvm::MDNode * makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, llvm::ArrayRef< llvm::StringRef > RemovePrefixes, llvm::ArrayRef< llvm::MDNode * > AddAttrs)
Create a new LoopID after the loop has been transformed.
Definition: LoopInfo.cpp:1158
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition: STLExtras.h:2099
auto predecessors(const MachineBasicBlock *BB)
bool pred_empty(const BasicBlock *BB)
Definition: CFG.h:118
Instruction * SplitBlockAndInsertIfThen(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ThenBlock=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
std::optional< IVConditionInfo > hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold, const MemorySSA &MSSA, AAResults &AA)
Check if the loop header has a conditional branch that is not loop-invariant, because it involves loa...
Definition: LoopUtils.cpp:2058
bool formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put loop into LCSSA form.
Definition: LCSSA.cpp:443
void RemapDbgRecordRange(Module *M, iterator_range< DbgRecordIterator > Range, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Remap the Values used in the DbgRecords Range using the value map VM.
Definition: ValueMapper.h:281
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition: Analysis.h:28
static void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
Definition: CodeMetrics.cpp:71
Description of the encoding of one expression Op.
Struct to hold information about a partially invariant condition.
Definition: LoopUtils.h:556
SmallVector< Instruction * > InstToDuplicate
Instructions that need to be duplicated and checked for the unswitching condition.
Definition: LoopUtils.h:559
Constant * KnownValue
Constant to indicate for which value the condition is invariant.
Definition: LoopUtils.h:562
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...
Direction
An enum for the direction of the loop.
Definition: LoopInfo.h:215
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition: PassManager.h:69