27#include "llvm/IR/IntrinsicsAMDGPU.h"
34#define DEBUG_TYPE "AMDGPUtti"
37 "amdgpu-unroll-threshold-private",
38 cl::desc(
"Unroll threshold for AMDGPU if private memory used in a loop"),
42 "amdgpu-unroll-threshold-local",
43 cl::desc(
"Unroll threshold for AMDGPU if local memory used in a loop"),
47 "amdgpu-unroll-threshold-if",
48 cl::desc(
"Unroll threshold increment for AMDGPU for each if statement inside loop"),
52 "amdgpu-unroll-runtime-local",
53 cl::desc(
"Allow runtime unroll for AMDGPU if local memory used in a loop"),
57 "amdgpu-unroll-max-block-to-analyze",
58 cl::desc(
"Inner loop block size threshold to analyze in unroll for AMDGPU"),
63 cl::desc(
"Cost of alloca argument"));
71 cl::desc(
"Maximum alloca size to use for inline cost"));
76 cl::desc(
"Maximum number of BBs allowed in a function after inlining"
77 " (compile time constraint)"));
81 "amdgpu-memcpy-loop-unroll",
82 cl::desc(
"Unroll factor (affecting 4x32-bit operations) to use for memory "
83 "operations when lowering memcpy as a loop"),
92 for (
const Value *V :
I->operand_values()) {
97 return SubLoop->contains(PHI); }))
107 TargetTriple(TM->getTargetTriple()),
109 TLI(ST->getTargetLowering()) {}
114 const Function &
F = *L->getHeader()->getParent();
116 F.getFnAttributeAsParsedInteger(
"amdgpu-unroll-threshold", 300);
117 UP.
MaxCount = std::numeric_limits<unsigned>::max();
130 const unsigned MaxAlloca = (256 - 16) * 4;
136 if (
MDNode *LoopUnrollThreshold =
138 if (LoopUnrollThreshold->getNumOperands() == 2) {
140 LoopUnrollThreshold->getOperand(1));
141 if (MetaThresholdValue) {
147 ThresholdPrivate = std::min(ThresholdPrivate, UP.
Threshold);
148 ThresholdLocal = std::min(ThresholdLocal, UP.
Threshold);
153 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
156 unsigned LocalGEPsSeen = 0;
159 return SubLoop->contains(BB); }))
169 if (UP.
Threshold < MaxBoost && Br->isConditional()) {
172 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
173 (L->contains(Succ1) && L->isLoopExiting(Succ1)))
179 << *L <<
" due to " << *Br <<
'\n');
191 unsigned AS =
GEP->getAddressSpace();
192 unsigned Threshold = 0;
194 Threshold = ThresholdPrivate;
196 Threshold = ThresholdLocal;
210 unsigned AllocaSize = Ty->
isSized() ?
DL.getTypeAllocSize(Ty) : 0;
211 if (AllocaSize > MaxAlloca)
220 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2)
228 << *L <<
" due to LDS use.\n");
233 bool HasLoopDef =
false;
236 if (!Inst || L->isLoopInvariant(
Op))
240 return SubLoop->contains(Inst); }))
264 << *L <<
" due to " << *
GEP <<
'\n');
287 AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
288 AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
289 AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
290 AMDGPU::FeatureUnalignedAccessMode,
292 AMDGPU::FeatureAutoWaitcntBeforeBarrier,
295 AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
296 AMDGPU::FeatureTrapHandler,
300 AMDGPU::FeatureSRAMECC,
303 AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
308 TLI(ST->getTargetLowering()), CommonTTI(TM,
F),
309 IsGraphics(
AMDGPU::isGraphics(
F.getCallingConv())) {
312 HasFP64FP16Denormals =
317 return !
F || !ST->isSingleLaneExecution(*
F);
349 if (Opcode == Instruction::Load || Opcode == Instruction::Store)
350 return 32 * 4 / ElemWidth;
353 return (ElemWidth == 8 && ST->has16BitInsts()) ? 4
354 : (ElemWidth == 16 && ST->has16BitInsts()) ? 2
355 : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
360 unsigned ChainSizeInBytes,
362 unsigned VecRegBitWidth = VF * LoadSize;
365 return 128 / LoadSize;
371 unsigned ChainSizeInBytes,
373 unsigned VecRegBitWidth = VF * StoreSize;
374 if (VecRegBitWidth > 128)
375 return 128 / StoreSize;
391 return 8 * ST->getMaxPrivateElementSize();
399 unsigned AddrSpace)
const {
404 return (Alignment >= 4 || ST->hasUnalignedScratchAccessEnabled()) &&
405 ChainSizeInBytes <= ST->getMaxPrivateElementSize();
412 unsigned AddrSpace)
const {
418 unsigned AddrSpace)
const {
428 unsigned DestAddrSpace,
Align SrcAlign,
Align DestAlign,
429 std::optional<uint32_t> AtomicElementSize)
const {
431 if (AtomicElementSize)
445 unsigned I32EltsInVector = 4;
455 unsigned RemainingBytes,
unsigned SrcAddrSpace,
unsigned DestAddrSpace,
457 std::optional<uint32_t> AtomicCpySize)
const {
461 OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
462 DestAlign, AtomicCpySize);
465 while (RemainingBytes >= 16) {
467 RemainingBytes -= 16;
471 while (RemainingBytes >= 8) {
477 while (RemainingBytes >= 4) {
483 while (RemainingBytes >= 2) {
489 while (RemainingBytes) {
507 case Intrinsic::amdgcn_ds_ordered_add:
508 case Intrinsic::amdgcn_ds_ordered_swap: {
511 if (!Ordering || !Volatile)
514 unsigned OrderingVal = Ordering->getZExtValue();
521 Info.WriteMem =
true;
522 Info.IsVolatile = !Volatile->isZero();
536 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
537 int ISD = TLI->InstructionOpcodeToISD(Opcode);
541 unsigned NElts = LT.second.isVector() ?
542 LT.second.getVectorNumElements() : 1;
551 return get64BitInstrCost(
CostKind) * LT.first * NElts;
553 if (ST->has16BitInsts() && SLT == MVT::i16)
554 NElts = (NElts + 1) / 2;
557 return getFullRateInstrCost() * LT.first * NElts;
563 if (SLT == MVT::i64) {
565 return 2 * getFullRateInstrCost() * LT.first * NElts;
568 if (ST->has16BitInsts() && SLT == MVT::i16)
569 NElts = (NElts + 1) / 2;
571 return LT.first * NElts * getFullRateInstrCost();
573 const int QuarterRateCost = getQuarterRateInstrCost(
CostKind);
574 if (SLT == MVT::i64) {
575 const int FullRateCost = getFullRateInstrCost();
576 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
579 if (ST->has16BitInsts() && SLT == MVT::i16)
580 NElts = (NElts + 1) / 2;
583 return QuarterRateCost * NElts * LT.first;
591 const int OPC = TLI->InstructionOpcodeToISD(
FAdd->getOpcode());
593 if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
595 if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
608 if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
609 NElts = (NElts + 1) / 2;
610 if (ST->hasBF16PackedInsts() && SLT == MVT::bf16)
611 NElts = (NElts + 1) / 2;
613 return LT.first * NElts * get64BitInstrCost(
CostKind);
615 if (ST->has16BitInsts() && SLT == MVT::f16)
616 NElts = (NElts + 1) / 2;
618 if (SLT == MVT::f32 || SLT == MVT::f16 || SLT == MVT::bf16)
619 return LT.first * NElts * getFullRateInstrCost();
625 if (SLT == MVT::f64) {
630 if (!ST->hasUsableDivScaleConditionOutput())
631 Cost += 3 * getFullRateInstrCost();
633 return LT.first *
Cost * NElts;
638 if ((SLT == MVT::f32 && !HasFP32Denormals) ||
639 (SLT == MVT::f16 && ST->has16BitInsts())) {
640 return LT.first * getQuarterRateInstrCost(
CostKind) * NElts;
644 if (SLT == MVT::f16 && ST->has16BitInsts()) {
651 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(
CostKind);
652 return LT.first *
Cost * NElts;
659 int Cost = getQuarterRateInstrCost(
CostKind) + getFullRateInstrCost();
660 return LT.first *
Cost * NElts;
663 if (SLT == MVT::f32 || SLT == MVT::f16) {
665 int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
666 1 * getQuarterRateInstrCost(
CostKind);
668 if (!HasFP32Denormals) {
670 Cost += 2 * getFullRateInstrCost();
673 return LT.first * NElts *
Cost;
679 return TLI->isFNegFree(SLT) ? 0 : NElts;
693 case Intrinsic::fmuladd:
694 case Intrinsic::copysign:
695 case Intrinsic::minimumnum:
696 case Intrinsic::maximumnum:
697 case Intrinsic::canonicalize:
699 case Intrinsic::round:
700 case Intrinsic::uadd_sat:
701 case Intrinsic::usub_sat:
702 case Intrinsic::sadd_sat:
703 case Intrinsic::ssub_sat:
714 switch (ICA.
getID()) {
715 case Intrinsic::fabs:
718 case Intrinsic::amdgcn_workitem_id_x:
719 case Intrinsic::amdgcn_workitem_id_y:
720 case Intrinsic::amdgcn_workitem_id_z:
724 case Intrinsic::amdgcn_workgroup_id_x:
725 case Intrinsic::amdgcn_workgroup_id_y:
726 case Intrinsic::amdgcn_workgroup_id_z:
727 case Intrinsic::amdgcn_lds_kernel_id:
728 case Intrinsic::amdgcn_dispatch_ptr:
729 case Intrinsic::amdgcn_dispatch_id:
730 case Intrinsic::amdgcn_implicitarg_ptr:
731 case Intrinsic::amdgcn_queue_ptr:
744 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(RetTy);
746 unsigned NElts = LT.second.isVector() ?
747 LT.second.getVectorNumElements() : 1;
751 if ((ST->hasVOP3PInsts() &&
752 (SLT == MVT::f16 || SLT == MVT::i16 ||
753 (SLT == MVT::bf16 && ST->hasBF16PackedInsts()))) ||
754 (ST->hasPackedFP32Ops() && SLT == MVT::f32))
755 NElts = (NElts + 1) / 2;
758 unsigned InstRate = getQuarterRateInstrCost(
CostKind);
760 switch (ICA.
getID()) {
762 case Intrinsic::fmuladd:
763 if (SLT == MVT::f64) {
764 InstRate = get64BitInstrCost(
CostKind);
768 if ((SLT == MVT::f32 && ST->hasFastFMAF32()) || SLT == MVT::f16)
769 InstRate = getFullRateInstrCost();
771 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(
CostKind)
772 : getQuarterRateInstrCost(
CostKind);
775 case Intrinsic::copysign:
776 return NElts * getFullRateInstrCost();
777 case Intrinsic::minimumnum:
778 case Intrinsic::maximumnum: {
790 SLT == MVT::f64 ? get64BitInstrCost(
CostKind) : getFullRateInstrCost();
791 InstRate = BaseRate *
NumOps;
794 case Intrinsic::canonicalize: {
796 SLT == MVT::f64 ? get64BitInstrCost(
CostKind) : getFullRateInstrCost();
799 case Intrinsic::uadd_sat:
800 case Intrinsic::usub_sat:
801 case Intrinsic::sadd_sat:
802 case Intrinsic::ssub_sat: {
803 if (SLT == MVT::i16 || SLT == MVT::i32)
804 InstRate = getFullRateInstrCost();
806 static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
807 if (
any_of(ValidSatTys, [<](
MVT M) {
return M == LT.second; }))
813 if (SLT == MVT::i16 || SLT == MVT::i32)
814 InstRate = 2 * getFullRateInstrCost();
820 return LT.first * NElts * InstRate;
826 assert((
I ==
nullptr ||
I->getOpcode() == Opcode) &&
827 "Opcode should reflect passed instruction.");
830 const int CBrCost = SCost ? 5 : 7;
832 case Instruction::Br: {
835 if (BI && BI->isUnconditional())
836 return SCost ? 1 : 4;
841 case Instruction::Switch: {
845 return (
SI ? (
SI->getNumCases() + 1) : 4) * (CBrCost + 1);
847 case Instruction::Ret:
848 return SCost ? 1 : 10;
855 std::optional<FastMathFlags> FMF,
860 EVT OrigTy = TLI->getValueType(
DL, Ty);
867 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
868 return LT.first * getFullRateInstrCost();
875 EVT OrigTy = TLI->getValueType(
DL, Ty);
882 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
883 return LT.first * getHalfRateInstrCost(
CostKind);
888 unsigned Index,
const Value *Op0,
889 const Value *Op1)
const {
891 case Instruction::ExtractElement:
892 case Instruction::InsertElement: {
896 if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
907 return Index == ~0u ? 2 : 0;
921 if (Indices.
size() > 1)
927 TLI->ParseConstraints(
DL, ST->getRegisterInfo(), *CI);
929 const int TargetOutputIdx = Indices.
empty() ? -1 : Indices[0];
932 for (
auto &TC : TargetConstraints) {
937 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
940 TLI->ComputeConstraintToUse(TC,
SDValue());
943 TRI, TC.ConstraintCode, TC.ConstraintVT).second;
947 if (!RC || !
TRI->isSGPRClass(RC))
1001 case Intrinsic::read_register:
1003 case Intrinsic::amdgcn_addrspacecast_nonnull: {
1005 Intrinsic->getOperand(0)->getType()->getPointerAddressSpace();
1006 unsigned DstAS =
Intrinsic->getType()->getPointerAddressSpace();
1009 ST->hasGloballyAddressableScratch();
1011 case Intrinsic::amdgcn_workitem_id_y:
1012 case Intrinsic::amdgcn_workitem_id_z: {
1015 ST->hasWavefrontsEvenlySplittingXDim(*
F,
true);
1016 std::optional<unsigned> ThisDimSize = ST->getReqdWorkGroupSize(
1017 *
F, IID == Intrinsic::amdgcn_workitem_id_y ? 1 : 2);
1018 return !HasUniformYZ && (!ThisDimSize || *ThisDimSize != 1);
1027 if (CI->isInlineAsm())
1042 ST->hasGloballyAddressableScratch();
1053 if (CI->isInlineAsm())
1071 bool XDimDoesntResetWithinWaves =
false;
1074 XDimDoesntResetWithinWaves = ST->hasWavefrontsEvenlySplittingXDim(*
F);
1082 return C >= ST->getWavefrontSizeLog2() && XDimDoesntResetWithinWaves;
1089 ST->getWavefrontSizeLog2() &&
1090 XDimDoesntResetWithinWaves;
1105 case Intrinsic::amdgcn_if:
1106 case Intrinsic::amdgcn_else: {
1108 return Indices.
size() == 1 && Indices[0] == 1;
1125 case Intrinsic::amdgcn_is_shared:
1126 case Intrinsic::amdgcn_is_private:
1127 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1128 case Intrinsic::amdgcn_flat_atomic_fmin_num:
1129 case Intrinsic::amdgcn_load_to_lds:
1130 case Intrinsic::amdgcn_make_buffer_rsrc:
1140 Value *NewV)
const {
1141 auto IntrID =
II->getIntrinsicID();
1143 case Intrinsic::amdgcn_is_shared:
1144 case Intrinsic::amdgcn_is_private: {
1145 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
1153 case Intrinsic::ptrmask: {
1156 Value *MaskOp =
II->getArgOperand(1);
1159 bool DoTruncate =
false;
1163 if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1167 if (
DL.getPointerSizeInBits(OldAS) != 64 ||
1168 DL.getPointerSizeInBits(NewAS) != 32)
1181 MaskTy =
B.getInt32Ty();
1182 MaskOp =
B.CreateTrunc(MaskOp, MaskTy);
1185 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->
getType(), MaskTy},
1188 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1189 case Intrinsic::amdgcn_flat_atomic_fmin_num: {
1190 Type *DestTy =
II->getType();
1197 M,
II->getIntrinsicID(), {DestTy, SrcTy, DestTy});
1198 II->setArgOperand(0, NewV);
1199 II->setCalledFunction(NewDecl);
1202 case Intrinsic::amdgcn_load_to_lds: {
1207 II->setArgOperand(0, NewV);
1208 II->setCalledFunction(NewDecl);
1211 case Intrinsic::amdgcn_make_buffer_rsrc: {
1213 Type *DstTy =
II->getType();
1216 M,
II->getIntrinsicID(), {DstTy, SrcTy});
1217 II->setArgOperand(0, NewV);
1218 II->setCalledFunction(NewDecl);
1239 unsigned ScalarSize =
DL.getTypeSizeInBits(SrcTy->getElementType());
1241 (ScalarSize == 16 || ScalarSize == 8)) {
1245 unsigned RequestedElts =
1246 count_if(Mask, [](
int MaskElt) {
return MaskElt != -1; });
1247 unsigned EltsPerReg = 32 / ScalarSize;
1248 if (RequestedElts == 0)
1256 if (ST->hasVOP3PInsts() && ScalarSize == 16 && NumVectorElts == 2)
1258 unsigned NumPerms =
alignTo(RequestedElts, EltsPerReg) / EltsPerReg;
1261 return NumPerms + NumPermMasks;
1270 return alignTo(RequestedElts, EltsPerReg) / EltsPerReg;
1275 unsigned NumPerms =
alignTo(RequestedElts, EltsPerReg) / EltsPerReg;
1278 return NumPerms + NumPermMasks;
1297 for (
auto &
Op :
I->operands()) {
1306 return !
Ops.empty();
1313 =
static_cast<const GCNSubtarget *
>(TM.getSubtargetImpl(*Caller));
1315 =
static_cast<const GCNSubtarget *
>(TM.getSubtargetImpl(*Callee));
1317 const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1318 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1320 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1321 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1322 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1332 if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1333 Callee->hasFnAttribute(Attribute::InlineHint))
1339 if (Callee->size() == 1)
1341 size_t BBSize = Caller->size() + Callee->size() - 1;
1351 const int NrOfSGPRUntilSpill = 26;
1352 const int NrOfVGPRUntilSpill = 32;
1356 unsigned adjustThreshold = 0;
1362 for (
auto ArgVT : ValueVTs) {
1366 SGPRsInUse += CCRegNum;
1368 VGPRsInUse += CCRegNum;
1378 ArgStackCost +=
const_cast<GCNTTIImpl *
>(TTIImpl)->getMemoryOpCost(
1381 ArgStackCost +=
const_cast<GCNTTIImpl *
>(TTIImpl)->getMemoryOpCost(
1387 adjustThreshold += std::max(0, SGPRsInUse - NrOfSGPRUntilSpill) *
1389 adjustThreshold += std::max(0, VGPRsInUse - NrOfVGPRUntilSpill) *
1391 return adjustThreshold;
1400 unsigned AllocaSize = 0;
1407 unsigned AddrSpace = Ty->getAddressSpace();
1460 static_assert(InlinerVectorBonusPercent == 0,
"vector bonus assumed to be 0");
1464 return BB.getTerminator()->getNumSuccessors() > 1;
1467 Threshold += Threshold / 2;
1473 unsigned AllocaThresholdBonus = (Threshold * ArgAllocaSize) / AllocaSize;
1475 return AllocaThresholdBonus;
1481 CommonTTI.getUnrollingPreferences(L, SE, UP, ORE);
1486 CommonTTI.getPeelingPreferences(L, SE, PP);
1491 ? getFullRateInstrCost()
1492 : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(
CostKind)
1493 : getQuarterRateInstrCost(
CostKind);
1496std::pair<InstructionCost, MVT>
1497GCNTTIImpl::getTypeLegalizationCost(
Type *Ty)
const {
1499 auto Size =
DL.getTypeSizeInBits(Ty);
1506 Cost.first += (
Size + 255) / 256;
1511 return ST->hasPrefetch() ? 128 : 0;
1522 LB.
push_back({
"amdgpu-max-num-workgroups[0]", MaxNumWorkgroups[0]});
1523 LB.push_back({
"amdgpu-max-num-workgroups[1]", MaxNumWorkgroups[1]});
1524 LB.push_back({
"amdgpu-max-num-workgroups[2]", MaxNumWorkgroups[2]});
1525 std::pair<unsigned, unsigned> FlatWorkGroupSize =
1526 ST->getFlatWorkGroupSizes(
F);
1527 LB.push_back({
"amdgpu-flat-work-group-size[0]", FlatWorkGroupSize.first});
1528 LB.push_back({
"amdgpu-flat-work-group-size[1]", FlatWorkGroupSize.second});
1529 std::pair<unsigned, unsigned> WavesPerEU = ST->getWavesPerEU(
F);
1530 LB.push_back({
"amdgpu-waves-per-eu[0]", WavesPerEU.first});
1531 LB.push_back({
"amdgpu-waves-per-eu[1]", WavesPerEU.second});
1536 if (!ST->hasIEEEMode())
1543 Attribute IEEEAttr =
F->getFnAttribute(
"amdgpu-ieee");
1558 if ((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1559 VecTy->getElementType()->isIntegerTy(8)) {
1570 if (VecTy->getElementType()->isIntegerTy(8)) {
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Provides AMDGPU specific target descriptions.
The AMDGPU TargetMachine interface definition for hw codegen targets.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Register const TargetRegisterInfo * TRI
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
uint64_t getMaxMemIntrinsicInlineSizeThreshold() const override
AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const override
an instruction to allocate memory on the stack
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI bool getValueAsBool() const
Return the attribute's value as a boolean.
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM Basic Block Representation.
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
unsigned getNumberOfParts(Type *Tp) const override
TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind, ArrayRef< int > Mask, VectorType *SrcTy, int &Index, VectorType *&SubTy) const
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
std::pair< InstructionCost, MVT > getTypeLegalizationCost(Type *Ty) const
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
bool isInlineAsm() const
Check if this call is an inline asm statement.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
CallingConv::ID getCallingConv() const
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned getArgOperandNo(const Use *U) const
Given a use for a arg operand, get the arg operand number that corresponds to it.
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
Container class for subtarget features.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
bool hasFullRate64Ops() const
GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
Account for loads of i8 vector types to have reduced cost.
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
void collectKernelLaunchBounds(const Function &F, SmallVectorImpl< std::pair< StringRef, int64_t > > &LB) const override
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const override
bool isInlineAsmSourceOfDivergence(const CallInst *CI, ArrayRef< unsigned > Indices={}) const
Analyze if the results of inline asm are divergent.
bool isReadRegisterSourceOfDivergence(const IntrinsicInst *ReadReg) const
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override
unsigned getNumberOfRegisters(unsigned RCID) const override
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const override
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const override
bool isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
bool shouldPrefetchAddressSpace(unsigned AS) const override
bool hasBranchDivergence(const Function *F=nullptr) const override
Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const override
unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const override
unsigned getMaxInterleaveFactor(ElementCount VF) const override
void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicCpySize) const override
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
Get intrinsic cost based on arguments.
unsigned getInliningThresholdMultiplier() const override
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const override
unsigned getPrefetchDistance() const override
How much before a load we should place the prefetch instruction.
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
KnownIEEEMode fpenvIEEEMode(const Instruction &I) const
Return KnownIEEEMode::On if we know if the use context can assume "amdgpu-ieee"="true" and KnownIEEEM...
unsigned adjustInliningThreshold(const CallBase *CB) const override
bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const override
Whether it is profitable to sink the operands of an Instruction I to the basic block of I.
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const override
bool isAlwaysUniform(const Value *V) const override
bool areInlineCompatible(const Function *Caller, const Function *Callee) const override
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
Try to calculate op costs for min/max reduction operations.
bool isSourceOfDivergence(const Value *V) const override
int getInliningLastCallToStaticBonus() const override
InstructionCost getVectorInstrCost(unsigned Opcode, Type *ValTy, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const override
unsigned getNumberOfParts(Type *Tp) const override
When counting parts on AMD GPUs, account for i8s being grouped together under a single i32 value.
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
unsigned getMinVectorRegisterBitWidth() const override
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind Vector) const override
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const override
Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicElementSize) const override
uint64_t getMaxMemIntrinsicInlineSizeThreshold() const override
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
LLVM_ABI bool hasApproxFunc() const LLVM_READONLY
Determine whether the approximate-math-functions flag is set.
LLVM_ABI bool hasAllowContract() const LLVM_READONLY
Determine whether the allow-contract flag is set.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Type * getReturnType() const
const IntrinsicInst * getInst() const
Intrinsic::ID getID() const
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Represents a single loop in the control flow graph.
static LLVM_ABI MVT getVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
A Module instance is used to store all the information related to an LLVM module.
unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain targets require unusual breakdowns of certain types.
The main scalar evolution driver.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
std::vector< AsmOperandInfo > AsmOperandInfoVector
Primary interface to the complete machine description for the target machine.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
static constexpr TypeSize getScalable(ScalarTy MinimumSize)
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
user_iterator user_begin()
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
constexpr ScalarTy getFixedValue() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ BUFFER_STRIDED_POINTER
Address space for 192-bit fat buffer pointers with an additional index.
@ REGION_ADDRESS
Address space for region memory. (GDS)
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ BUFFER_FAT_POINTER
Address space for 160-bit buffer fat pointers.
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUFFER_RESOURCE
Address space for 128-bit buffer resources.
LLVM_READNONE constexpr bool isShader(CallingConv::ID CC)
bool isFlatGlobalAddrSpace(unsigned AS)
bool isArgPassedInSGPR(const Argument *A)
bool isIntrinsicAlwaysUniform(unsigned IntrID)
bool isIntrinsicSourceOfDivergence(unsigned IntrID)
bool isExtendedGlobalAddrSpace(unsigned AS)
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
@ ADD
Simple integer binary arithmetic operators.
@ FADD
Simple binary floating point operators.
@ SHL
Shift and rotation operations.
@ AND
Bitwise operators - logical and, logical or, logical xor.
LLVM_ABI int getInstrCost()
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
bool match(Val *V, const Pattern &P)
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract_or_null(Y &&MD)
Extract a Value from Metadata, allowing null.
This is an optimization pass for GlobalISel generic memory operations.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI MDNode * findOptionMDForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for a loop.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
AtomicOrdering
Atomic ordering for LLVM's memory model.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
DWARFExpression::Operation Op
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
This struct is a compact representation of a valid (non-zero power of two) alignment.
static constexpr DenormalMode getPreserveSign()
uint64_t getScalarSizeInBits() const
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
Information about a load/store intrinsic defined by the target.
bool isInlineCompatible(SIModeRegisterDefaults CalleeMode) const